
               Universität Konstanz

The tracial moment problem and trace-optimization of
polynomials 

Sabine Burgdorf 
Kristijan Cafuta

Igor Klep 
Janez Povh

Konstanzer Schriften in Mathematik

Nr. 287, August 2011

ISSN 1430-3558

© Fachbereich Mathematik und Statistik

Universität Konstanz

Fach D 197, 78457 Konstanz, Germany

http://nbn-resolving.de/urn:nbn:de:bsz:352-152846


 



THE TRACIAL MOMENT PROBLEM

AND TRACE-OPTIMIZATION OF POLYNOMIALS

SABINE BURGDORF1,3, KRISTIJAN CAFUTA, IGOR KLEP2,3, AND JANEZ POVH4

Abstract. The main topic addressed in this paper is trace-optimization of polynomials in

noncommuting (nc) variables: given an nc polynomial f , what is the smallest trace f(A) can

attain for a tuple of matrices A? A relaxation using semidefinite programming (SDP) based

on sums of hermitian squares and commutators is proposed. While this relaxation is not

always exact, it gives effectively computable bounds on the optima. To test for exactness,

the solution of the dual SDP is investigated. If it satisfies a certain condition called flatness,

then the relaxation is exact. In this case it is shown how to extract global trace-optimizers

with a procedure based on two ingredients. The first is the solution to the truncated tracial

moment problem, and the other crucial component is the numerical implementation of the

Artin-Wedderburn theorem for matrix ∗-algebras due to Murota, Kanno, Kojima, Kojima,

and Maehara.

Trace-optimization of nc polynomials is a nontrivial extension of polynomial optimization

in commuting variables on one side and eigenvalue optimization of nc polynomials on the

other side – two topics with many applications, the most prominent being to linear systems

engineering and quantum physics. The optimization problems discussed here facilitate new

possibilities for applications, e.g. in operator algebras and statistical physics.

1. Introduction

A matrix has nonnegative trace if and only if it is a sum of a positive semidefinite matrix
(a hermitian square) and a trace zero matrix (a commutator).

In this article we propose a method for finding and proving trace inequalities involving
symmetric matrices. Our procedure provides certificates holding irrespective of the size of
the matrices involved. Following Helton and his school [dOHMP08] we call such situations
dimension-free. The algorithm is based on sum of squares and commutators certificates for
noncommutative (nc) polynomials which can be obtained using semidefinite programming and
has been implemented in the open source Matlab toolbox NCSOStools written by the second,
third and fourth author [CKP+]. We refer the reader to [KP10, PNA10] for a similar treat-
ment of dimension-free matrix inequalities given via positive semidefiniteness, and to Glop-
tiPoly [HLL09], SparsePOP [WKKMS09], YALMIP [Löf04], and SOSTOOLS [PPSP05] for
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optimization software for polynomials in commuting variables based on sum of squares meth-
ods. Readers interested in symbolic computation with noncommuting variables are advised to
see NCAlgebra [HdOMS] under Mathematica.

1.1. Motivation. Starting with Helton’s seminal paper [Hel02], free real algebraic geometry
(including free positivity, the study of positivity of polynomials in noncommutating variables)
is being established. In this article we focus on trace-positive polynomials. These are nc
polynomials all of whose evaluations at tuples of matrices have nonnegative trace.

Much of today’s interest in real algebraic geometry is due to its powerful applications.
For instance, the use of sum of squares and the truncated moment problem for polynomial
optimization on Rn established by Lasserre and Parrilo [Las01, Las09, PS03, Par03] is nowadays
a common fact in real algebraic geometry with applications to control theory, mathematical
finance or operations research. In the free context there are many facets of applications as
well. A nice survey on connections to control theory, systems engineering and optimization
is given by Helton, McCullough, de Oliveira, Putinar [dOHMP08]. Another interesting use
of nc sum of squares is given by Cimprič [Cim10], who investigates PDEs and eigenvalues of
polynomial partial differential operators. Applications to quantum physics are explained by
Pironio, Navascués, Aćın [PNA10] who also consider computational aspects related to nc sum
of squares. Furthermore, optimization of nc polynomials has direct applications in quantum
information science (to compute upper bounds on the maximal violation of a generic Bell
inequality [PV09]), and also in quantum chemistry (e.g. to compute the ground-state electronic
energy of atoms or molecules [Maz04]). Another application in quantum physics is presented
by Doherty, Liang, Toner, Wehner [DLTW08], who use free real algebraic geometry to consider
the quantum moment problem and multi-player quantum games. Certificates of positivity via
sums of squares are often used in the theoretical physics literature to place very general bounds
on quantum correlations (cf. [Gla63]). These applications of free real algebraic geometry in
quantum physics are based on finding lower bounds or estimates for the smallest eigenvalue of
a given system represented by an nc polynomial.

Considering quantum mechanical many particle systems one often investigates the statis-
tical means of the system instead of the system itself. Hence one is interested in bounds or
estimates of the trace of a quantum statistical system. This brings us to the consideration
of trace-positive nc polynomials, the main topic of this article. Trace-positive polynomials
also arise in the Lieb-Seiringer reformulation of the important Bessis-Moussa-Villani (BMV)
conjecture [BMV75] from statistical quantum mechanics. This reformulation states on the
polynomial level that the nc polynomials Sm,k(X

2, Y 2) that describe the coefficient of tk in
(X2 + tY 2)m ∈ R[t] are trace-positive for all m, k ∈ N. In addition, trace-positive polynomials
(and the tracial moment problem we discuss) occur naturally in von Neumann algebras and
functional analysis. For instance, Connes’ embedding problem [Con76] on finite II1-factors is
a question about the existence of a certain type of sum of hermitian squares (sohs) certificates
for trace-positive polynomials [KS08a]. It is widely believed that Connes’ conjecture is false
and our results will enable us to look for a counterexample using a computer algebra system.

We developed NCSOStools [CKP+] as a consequence of this surge of interest in free real
algebraic geometry and sums of (hermitian) squares of nc polynomials. NCSOStools is an open
source Matlab toolbox for solving sohs problems using semidefinite programming (SDP). As a
side product our toolbox implements symbolic computation with noncommuting variables in
Matlab.

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/


THE TRACIAL MOMENT PROBLEM AND TRACE-OPTIMIZATION OF POLYNOMIALS 3

For a precise statement of our contribution we need a bit of notation. We start by ex-
plaining the gist of the idea on an example.

Example 1.1. For symmetric matrices A,B of the same size we have

tr(A2B2 +AB2A+ABAB +BA2B +BABA+B2A2) ≥ 0, (1)

where tr stands for trace. In fact,

tr(A2B2 +AB2A+ABAB +BA2B +BABA+B2A2)

= tr(ABAB +BABA+AB2A+BA2B) + 2 tr(AB2A)

= tr((AB +BA)t(AB +BA)) + 2 tr((BA)t(BA)) ≥ 0

since (AB +BA)t(AB +BA) and (BA)t(BA) are positive semidefinite matrices.

1.2. Words and nc polynomials. Fix n ∈ N and let 〈X〉 be the monoid freely generated
by X := (X1, . . . , Xn), i.e., 〈X〉 consists of words in the n noncommuting letters X1, . . . , Xn

(including the empty word denoted by 1). We consider the free algebra R〈X〉. The elements
of R〈X〉 are linear combinations of words in the n letters X and are called nc polynomials.
An element of the form aw where a ∈ R \ {0} and w ∈ 〈X〉 is called a monomial and a its
coefficient. Words are monomials with coefficient 1. The length of the longest word in an nc
polynomial f ∈ R〈X〉 is the degree of f and is denoted by deg f . The set of all nc polynomials
of degree ≤ d will be denoted by R〈X〉≤d. If an nc polynomial f involves only two variables,
we write f ∈ R〈X,Y 〉.

1.3. Sums of hermitian squares. We equip R〈X〉 with the involution ∗ that fixes R∪ {X}
pointwise and thus reverses words, e.g. (X1X

2
2X3 − 2X3

3 )∗ = X3X
2
2X1 − 2X3

3 . Hence R〈X〉
is the ∗-algebra freely generated by n symmetric letters. Let SymR〈X〉 denote the set of all
symmetric elements, that is,

SymR〈X〉 := {f ∈ R〈X〉 | f = f∗}.

An nc polynomial of the form g∗g is called a hermitian square and the set of all sums of
hermitian squares will be denoted by Σ2. Clearly, Σ2 ( SymR〈X〉. The involution ∗ extends
naturally to matrices (in particular, to vectors) over R〈X〉. For instance, if V = (vi) is a
(column) vector of nc polynomials vi ∈ R〈X〉, then V ∗ is the row vector with components v∗i .
We use V t to denote the row vector with components vi.

The main idea in systematizing the verification of inequalities as in Example 1.1 is to look
for certificates at the level of nc polynomials. In particular, we propose a relaxation for finding
the trace-optimum based on sums of hermitian squares and commutators.

1.4. Contribution and reader’s guide. To verify the trace-inequality of Example 1.1 via
sums of hermitian squares and commutators at the level of nc polynomials consider

f = X2Y 2 +XY 2X +XYXY + Y X2Y + Y XY X + Y 2X2 ∈ R〈X,Y 〉.

This f is of the form

f = (XYXY + Y XY X +XY 2X + Y X2Y ) + 2XY 2X

+(X2Y 2 −XY 2X) + (Y 2X2 −XY 2X)

= (XY + Y X)∗(XY + Y X) + 2(Y X)∗(Y X) + (sum of commutators).
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Note that the two differences in the brackets are commutators, e.g. X2Y 2−XY 2X = X ·XY 2−
XY 2 · X. Hence f(A,B) is a sum of hermitian squares and commutators for all symmetric
matrices A,B of the same size, and so has nonnegative trace.

The purpose of this paper is threefold.

First, we present how to systematize the search for sum of hermitian squares (sohs) and
commutators certificates using a computer algebra system. This is done via a variant of the
classical Gram matrix method. It is purely symbolic and constructs an SDP whose feasibility
is equivalent to the existence of such a certificate. In order to find the best possible bound
(equivalently, what is the greatest lower bound for the trace an nc polynomial can attain), we
study a closely related instance of a semidefinite programming problem. From the solution of
this SDP we extract the desired bound and the corresponding polynomial sohs certificate.

Second, to investigate exactness of the obtained bound and the corresponding certificate,
we consider the dual SDP, giving rise to the tracial moment problem. Loosely speaking, it
asks which linear functionals on R〈X〉 are integration of the trace of an nc polynomial. In
Section 3 we continue the investigation of the tracial moment problem started in [BK+] by
the first and the third author. Motivated by optimization problems, our main focus is on the
truncated tracial moment problem, like in the classical case of polynomial optimization on Rn
[Las01, Las09, PS03, Par03]. We define a seemingly more general version of the tracial moment
problem by considering integrals over Borel measures on tuples of matrices as opposed to finite
atomic measures as is done in [BK+]. In the truncated case both definitions are equivalent by
the tracial version of the Bayer-Teichmann theorem [BT06] presented in Theorem 3.8 below.
We emphasize that the truncated version is more general than the full tracial moment problem.
In fact, solving the truncated moment problems solves the full moment problem. This is the
topic of Section 3.2.

Third, the solution of the truncated tracial moment problem is utilized to give a condition
for the exactness of the sohs certificate for trace-optimization of polynomials. If the solution to
the dual SDP satisfies a condition called flatness, then our sohs relaxation is exact (Theorem
3.12). While this resembles the classical case of polynomial optimization on Rn, the extraction
of optimizers is more involved and is explained in detail in Section 3.3. First of all, the Gelfand-
Naimark-Segal (GNS) construction gives rise to a set of symmetric matrices X̂j , one for each of
the noncommuting variables. Unlike in the commutative [Las01] or the free noncommutative
setting [PNA10], an additional step is needed to recover trace-optimizers. We consider the

matrix ∗-algebra generated by the X̂j and compute its Artin-Wedderburn decomposition. This
is done with the aid of the algorithm of Murota, Kanno, Kojima, and Kojima [MKKK10], and

Maehara and Murota [MM10]. It produces a simultaneous block diagonalization of the X̂j ,
and each of these blocks yields a trace-optimizer.

2. Sums of hermitian squares and commutators

In this section we present the main notions we exploit in the sequel, namely sums of
hermitian squares and commutators of nc polynomials. Via the so-called Gram matrix method
they relate naturally to semidefinite programming.

2.1. Matrix-positive polynomials and sums of hermitian squares. Every positive semi-
definite matrix A has a square root, i.e., A is a hermitian square. On the polynomial level we
have the following:
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Definition 2.1. An nc polynomial f ∈ R〈X〉 is called matrix-positive if

f(A) � 0 for all tuples of symmetric matrices A of the same size. (2)

If f ∈ R〈X〉 is a sum of hermitian squares, i.e., f ∈ Σ2, then f is matrix-positive. Helton
[Hel02] (and independently, McCullough [McC01]) proved the converse of this easy observation:
if f ∈ R〈X〉 is matrix-positive, then f ∈ Σ2.

2.2. Trace zero polynomials and cyclic equivalence. It is well-known and easy to see that
trace zero matrices are (sums of) commutators. To mimic this property for nc polynomials,
we introduce cyclic equivalence [KS08a]:

Definition 2.2. An element of the form [p, q] := pq−qp for p, q ∈ R〈X〉 is called a commutator.

nc polynomials f, g ∈ R〈X〉 are called cyclically equivalent (f
cyc∼ g) if f − g is a sum of

commutators:

f − g =
k∑
i=1

[pi, qi] =
k∑
i=1

(piqi − qipi) for some k ∈ N and pi, qi ∈ R〈X〉.

Example 2.3. We have 2X2Y 2X3 +XY 2X2 +XY 2X4 cyc∼ 3Y X5Y + Y X3Y as

2X2Y 2X3 +XY 2X2 +XY 2X4 − (3Y X5Y + Y X3Y ) =

= [2X2Y, Y X3] + [XY, Y X4] + [XY, Y X2].

It is clear that
cyc∼ is an equivalence relation. The following remark shows that it can be

easily tested and motivates its name.

Remark 2.4.

(a) For v, w ∈ 〈X〉, we have v
cyc∼ w if and only if there are v1, v2 ∈ 〈X〉 such that v = v1v2

and w = v2v1. That is, v
cyc∼ w if and only if w is a cyclic permutation of v.

(b) nc polynomials f =
∑

w∈〈X〉 aww and g =
∑

w∈〈X〉 bww (aw, bw ∈ R) are cyclically equiva-

lent if and only if for each v ∈ 〈X〉,∑
w∈〈X〉

w
cyc
∼ v

aw =
∑
w∈〈X〉

w
cyc
∼ v

bw. (3)

This notion is important for us because trace zero nc polynomials are exactly sums of
commutators:

Theorem 2.5 (Klep-Schweighofer [KS08a]). Let s ∈ N and f ∈ SymR〈X〉≤s. Then f
cyc∼ 0 if

and only if tr(f(A)) = 0 for all n-tuples A = (A1, . . . , An) of symmetric s× s-matrices.

2.3. Trace-positive polynomials, cyclic equivalence and sums of hermitian squares.
A matrix has nonnegative trace if and only if it is a sum of a positive semidefinite matrix and
a trace zero matrix.

Definition 2.6. An nc polynomial f ∈ R〈X〉 is called trace-positive if

tr f(A) ≥ 0 for all tuples of symmetric matrices A of the same size. (4)

Clearly, every matrix-positive f ∈ R〈X〉 is trace-positive and the same is true for every
nc polynomial cyclically equivalent to a sum of hermitian squares.
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Definition 2.7. Let
Θ2 := {f ∈ R〈X〉 | ∃g ∈ Σ2 : f

cyc∼ g}
denote the convex cone of all nc polynomials cyclically equivalent to a sum of hermitian squares.
By definition, the elements in Θ2 are exactly nc polynomials which can be written as sums of
hermitian squares and commutators.

Unlike in the matrix-positive case, there are trace-positive polynomials which are not
members of Θ2. The easiest example is the noncommutative Motzkin polynomial, f =
X1X

4
2X1 +X2X

4
1X2−3X1X

2
2X1 +1 [KS08a, Example 4.4]. We also refer the reader to [KS08b,

Example 3.5] for more sophisticated examples obtained by considering the BMV conjecture.
Nevertheless, this obvious certificate for trace-positivity turns out to be useful in optimization,
so merits a further systematic investigation here.

2.4. Gram matrix method. Testing whether a given f ∈ R〈X〉 is an element of Θ2 can be
done using semidefinite programming as first observed in [KS08b, Section 3]. This is based
on the Gram matrix method. The core of the method is given by the following proposition,
an extension of the results for sums of hermitian squares (cf. [Hel02, Section 2.2] or [KP10,
Theorem 3.1 and Algorithm 1]), which are in turn variants of the classical result for polynomials
in commuting variables due to Choi, Lam and Reznick ([CLR95, Section 2]; see also Parrilo
[Par03], and Parrilo and Sturmfels [PS03]).

Proposition 2.8. Suppose f ∈ R〈X〉. Then f ∈ Θ2 if and only if there exists a positive
semidefinite matrix G such that

f
cyc∼ W ∗GW, (5)

where W is a vector consisting of all words w ∈ 〈X〉 satisfying 2 deg(w) ≤ deg(f). Con-
versely, given such a positive semidefinite matrix G of rank r, one can construct nc polynomials
g1, . . . , gr ∈ R〈X〉 with

f
cyc∼

r∑
i=1

g∗i gi. (6)

The matrix G is called a (tracial) Gram matrix for f . More generally, given a vector

of words V , every symmetric matrix G satisfying f
cyc∼ V ∗GV is called a Gram matrix. If

f = V ∗GV , then G is an exact Gram matrix. The proof of Proposition 2.8 is straightforward
as in the commutative case.

For an nc polynomial f ∈ R〈X〉 the tracial Gram matrix is not unique, hence determining
whether f ∈ Θ2 amounts to finding a positive semidefinite Gram matrix from the affine set of
all Gram matrices for f . Problems like this can be (in theory) solved exactly using quantifier
elimination. However, this only works for problems of small size, so a numerical approach is
needed in practice. Thus we turn to semidefinite programming.

2.5. Semidefinite programming. Semidefinite programming (SDP) is a subfield of convex
optimization concerned with the optimization of a linear objective function over the intersec-
tion of the cone of positive semidefinite matrices with an affine space. More precisely, given
symmetric matrices C, A1, . . . , Am ∈ Rs×s and a vector b ∈ Rm, we formulate a semidefinite
program in standard primal form (in the sequel we refer to problems of this type by PSDP) as
follows:

inf 〈C,G〉
s. t. 〈Ai, G〉 = bi, i = 1, . . . ,m

G � 0.
(PSDP)



THE TRACIAL MOMENT PROBLEM AND TRACE-OPTIMIZATION OF POLYNOMIALS 7

Here 〈 , 〉 stands for the standard scalar product of matrices: 〈A,B〉 = tr(BtA). The dual
problem to (PSDP) is the semidefinite program in the standard dual form

sup 〈b, y〉
s. t.

∑
i yiAi � C.

(DSDP)

Here y ∈ Rm, and the difference C −
∑

i yiAi is usually denoted by Z.

The relevance of SDPs increased with the ability to solve these problems efficiently in
theory and in practice. Given an ε > 0 we can extend most interior point methods for linear
programming to polynomial time algorithms giving an ε-optimal solution for SDPs [NN94]
(provided that both (PSDP) and (DSDP) have non-empty interiors of feasible sets and we
have good initial points). The variables appearing in these polynomial bounds are the size s
of the matrix variable, the number m of linear constraints in (PSDP) and log ε (cf. [WSV00,
Ch. 10.4.4] and [BTN01] for details). However, the complexity to obtain exact solutions of
an SDP is still an open question in semidefinite optimization, see e.g. [Ram97]. Nevertheless,
there exist several general purpose open source packages (cf. SeDuMi [Stu99], SDPA [YFK03],
SDPT3 [TTT99]) which can efficiently find ε-optimal solutions in practice. If the problem
is of medium size (i.e., s ≤ 1000 and m ≤ 10.000), these packages are based on interior
point methods, while packages for larger semidefinite programs use some variant of the first
order methods (see [Mit03] for a comprehensive list of state-of-the-art SDP solvers and also
[MPRW09]). However, once s ≥ 3000 or m ≥ 250000, the problem must share some special
property otherwise state-of-the-art solvers will fail to solve it for complexity reasons.

3. Trace-optimization of nc polynomials

One of the main features of our freely available Matlab software package NCSOStools

[CKP+] is NCcycMin which uses a sum of hermitian squares and commutators relaxation to
approximate a trace-minimum of a given nc polynomial. The purpose of this section is three-
fold. The first subsection presents our relaxation as an SDP and states its duality properties.
We then recall the tracial moment problem (Section 3.2) introduced and studied by the first and
third author in [BK+], needed in Section 3.3 where we show how to use the solution to the tra-
cial moment problem to test for exactness of our Θ2-relaxation and to extract trace-optimizers.
This part is influenced by the method of Henrion and Lasserre [HL05] for the commutative
case, which has been implemented in GloptiPoly [HLL09]. For a similar investigation in the
free noncommutative setting see [PNA10].

Let Ss×s denote the set of symmetric matrices of size s, for some s ∈ N, and let Tr denote
the normalized trace.

3.1. SDP relaxation and its duality properties. Let f ∈ R〈X〉 be given. We are interested
in the trace-minimum of f , that is,

f∗ := inf{Tr
(
f(A)

)
| d ∈ N, A ∈ (Sd×d)n}. (7)

This is a hard problem. For instance, a good understanding of trace-positive polynomials
is likely to lead to a solution of two outstanding open problems: Connes’ embedding conjecture
[Con76] from operator algebras, and the BMV conjecture [BMV75] from quantum statistical
mechanics; see [KS08b, KS08a]. In fact, our computational advances will make it possible to
look for a counterexample to Connes’ conjecture using our software.

http://ncsostools.fis.unm.si/
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We propose the following relaxation of trace-minimization of nc polynomials:

fsos := sup{a | f − a ∈ Θ2}. (8)

Remark 3.1. Since we are only interested in the trace of the values of f ∈ R〈X〉, we may
use that tr(f(A)) = tr(f∗(A)) for all real A; hence there is no harm in replacing f by its
symmetrization 1

2(f + f∗). Thus we will mostly focus on symmetric nc polynomials.

Lemma 3.2. Let f ∈ SymR〈X〉. Then fsos ≤ f∗.

In general we do not have equality in Lemma 3.2. For instance, the Motzkin polynomial
f satisfies f∗ = 0 and fsos = sup∅ := −∞, see [KS08a]. Nevertheless, fsos gives a solid
approximation of f∗ for most of the examples and is easier to compute. It is obtained by
solving the SDP

sup a
s. t. f − a ∈ Θ2.

(SDPmin)

Suppose f ∈ SymR〈X〉 is of degree ≤ 2d (with constant term f1). Let W be a vector of all
words up to degree d with first entry equal to 1. Then (SDPmin) rewrites into

sup f1 − 〈E11, G〉
s. t. f − f1

cyc∼ W t(G− g11E11)W
G � 0.

(SDPmin′)

Here E11 is the matrix with all entries 0 except for the (1, 1)-entry which is 1, and g11 de-
notes the (1, 1)-entry of G. The cyclic equivalence translates into a set of linear constraints,
cf. Remark 2.4.

In general (SDPmin) does not satisfy the Slater condition. Nevertheless:

Theorem 3.3. (SDPmin) satisfies strong duality.

Proof. The proof is essentially the same as that of [KP10, Theorem 5.1] so is omitted. We only
mention an important ingredient is the closedness of the cone Θ2 established in [BK+, Lemma
4.5].

The dual problem to the (SDPmin) can be written as

inf L(f)
s. t. L : R〈X〉≤2d → R is a linear ∗-map

L(1) = 1
L(p) ≥ 0 for all p ∈ Θ2 ∩ R〈X〉≤2d.

(DSDPmin)

(L is a ∗-map means L(p∗) = L(p) for all p. Note the last constraint enforces L(pq − qp) = 0
for all p, q ∈ R〈X〉≤d, i.e., L is tracial.) Let f sos denote the optimal value of (DSDPmin).
By Theorem 3.3, we have fsos = f sos. The question is, does fsos = f sos = f∗ hold? And
if so, can we detect this using the above SDP? If the dual optimizer L∗ satisfies an easy to
check condition called flatness (see Subsection 3.3.1 for a definition), then the answer to both
questions is affirmative. In particular, the proposed Θ2-relaxation is then exact. Furthermore,
in this case we can even extract global trace-minimizers of f . This is based on the solution to
the truncated tracial moment problem, uses the Gelfand-Naimark-Segal construction and the
Artin-Wedderburn theorem; see Section 3.3.
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3.2. Tracial moment problem. The moment problem is a classical question in functional
analysis, well studied because of its importance and applications [Akh65, CF96, Lau09]. For
the free noncommutative moment problem see McCullough [McC01]. In this section we recall
the tracial moment problem from [BK+], which is essentially the study of feasible points of
(DSDPmin). In fact, we define a seemingly more general version using integrals over Borel
measures as opposed to finite atomic measures as is done in [BK+]. However, in the truncated
case both versions are equivalent by the tracial version of the Bayer-Teichmann theorem [BT06]
presented in Theorem 3.8 below. Our emphasis on the truncated tracial moment problem is
justified for two reasons. First of all, this is what is needed for the application to trace-
optimization of nc polynomials. Second, by Theorem 3.6, a tracial analog of the classical
result of Stochel [Sto01], solving the truncated tracial moment problems solves the full tracial
moment problem.

Definition 3.4. A sequence of real numbers (yw) indexed by words w ∈ 〈X〉 satisfying

yw = yu whenever w
cyc∼ u, yw = yw∗ for all w, (9)

and y1 = 1, is called a (normalized) tracial sequence.

Example 3.5.

(a) Given s ∈ N and a probability measure µ on (Ss×s)n, the sequence given by

yw :=

∫
Tr(w(A)) dµ(A) (10)

is a tracial sequence since the traces of cyclically equivalent words coincide.
(b) Every feasible point L of (DSDPmin) induces a truncated tracial sequence yL := (L(w))w,

where w ∈ 〈X〉 are constrained by degw ≤ 2d. Conversely, every finite tracial sequence
(yw)≤2d yields a linear ∗-map (often called the Riesz functional) Ly : R〈X〉≤2d → R,
w 7→ yw.

For us the converse of Example 3.5(a) (the tracial moment problem) is of importance: for
which sequences (yw) do there exist an s ∈ N and a probability measure µ on (Ss×s)n such
that (10) holds? We then say that (yw) has a tracial moment representation and call it a
tracial moment sequence. The truncated tracial moment problem is the study of (finite) tracial
sequences (yw)≤k where w is constrained by degw ≤ k for some k ∈ N, and properties (9) hold
for these w. For instance, which sequences (yw)≤k have a tracial moment representation, i.e.,
when does there exist a representation of the values yw as in (10) for degw ≤ k? If this is the
case, the sequence (yw)≤k is called a truncated tracial moment sequence.

3.2.1. Stochel’s theorem. The truncated tracial moment problem is more general than the full
tracial moment problem in the sense explained in Theorem 3.6.

Theorem 3.6. Suppose y = (yw)w is a tracial sequence. If there is an s ∈ N such that for
all k ∈ N there is a probability measure µk on (Ss×s)n satisfying (10) for all w ∈ 〈X〉 with
degw ≤ k, then y is a tracial moment sequence. Furthermore, there is a probability measure
µ on (Ss×s)n such that (10) holds for all w ∈ 〈X〉.

We start by a preliminary lemma showing that a specific function needed in the proof of
Theorem 3.6 vanishes at infinity.
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Lemma 3.7. Let s ∈ N be fixed. For u ∈ 〈X〉 the map ϕu : (Ss×s)n → R defined by

ϕu(A) :=
Tr
(
u(A)

)
1 +

∑n
i=1 Tr

(
A

2 deg(u)+2
i

)
lies in C0

(
(Ss×s)n,R

)
.

Proof. Let u ∈ R〈X〉 be fixed with deg(u) =: d and let A ∈ (Ss×s)n be such that
∑n

i=1 Tr(A2
i ) >

`2 for some ` ∈ N. Choose the index iA ∈ {1 . . . , n} such that Tr(A2
iA

) ≥ Tr(A2
i ) for all

i = 1, . . . , n. Then

Tr(A2
iA

) ≥
∑

i Tr(A2
i )

n
>
`2

n
.

Since the matrices A2
i are positive semidefinite we have Tr(A2d+2

i ) = ‖A2
i ‖
d+1
d+1, where ‖ ‖p

denotes the normalized p-Schatten norm on Ss×s, which generalizes the Hilbert-Schmidt norm
(p = 2) and is given by

‖T‖pp = Tr(|T |p) with |T | =
√
T 2 for T ∈ Ss×s.

Since Ss×s is finite dimensional, the (d + 1)-Schatten norm is equivalent to the 1-Schatten
norm, also known as the trace-norm, on Ss×s. Hence there is a c ∈ R>0 such that

cTr(A2
i )
d+1 = c‖A2

i ‖d+1
1 ≤ ‖A2

i ‖d+1
d+1 = Tr(A2d+2

i )

for all Ai ∈ Ss×s. Further, for the numerator of ϕu we have

(Tr(u(A)))2 ≤ sd−2u(Tr(A2
1), . . . ,Tr(A2

n)) ≤ sd−2(Tr(A2
iA

))d

by induction on d and the Cauchy-Schwarz inequality. All together this implies

ϕu(A)2 =

(
Tr(u(A))

)2(
1 +

∑n
i=1 Tr(A2d+2

i )
)2 ≤ sd−2(Tr(A2

iA
))d(

1 +
∑n

i=1 Tr(A2d+2
i )

)2
≤

sd−2(Tr(A2
iA

))d(
1 + c

∑n
i=1(Tr(A2

i ))
d+1
)2 < sd−2(Tr(A2

iA
))d

c2(Tr(A2
iA

))2d+2

≤ sd−2

c2 Tr(A2
iA

)d+2
<

sd−2nd+2

c2`2d+4

which goes to zero for large `. Hence ϕu ∈ C0

(
(Ss×s)n,R

)
.

Proof of Theorem 3.6. Endow C0 := C0

(
(Ss×s)n,R

)
with the maximum norm ‖ ‖∞. To every

finite measure η on (Ss×s)n we associate the linear functional η̂ : C0 → R,

η̂(f) :=

∫
f(A) dη(A).

Due to our normalization, for all k ∈ N we have

|µ̂k(f)| ≤
∫
‖f‖∞ dµk = ‖f‖∞ for all f ∈ C0,

so all the µ̂k belong to B, the closed unit ball in the dual space C∨0 = C0

(
(Ss×s)n,R

)∨
.

By the Banach-Alaoglu theorem, there is a subsequence (µ̂k`)` of (µ̂k)k converging to some
ψ ∈ B. For simplicity of notation, we omit the subindex ` in the sequel and assume that (µ̂k)k
converges to ψ. If f ∈ C0 and f ≥ 0, then

ψ(f) = lim
k→∞

µ̂k(f) ≥ 0.
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Hence by the Riesz representation theorem, there is a finite positive Borel measure µ on (Ss×s)n
with µ̂ = ψ. Since µ̂(1) = 1, µ is a probability measure.

Let u ∈ 〈X〉 be fixed with deg(u) =: d and %u(A) := 1+
∑n

i=1 Tr
(
A2d+2
i

)
. The assumption

that (yw)≤2k is a truncated tracial moment sequence with corresponding measure µk, implies∫
%u dµk =

∫ (
1 +

n∑
i=1

Tr
(
A2d+2
i

))
dµk(A) = 1 +

n∑
i=1

yX2d+2
i

. for all k ≥ 2d+ 2.

Thus the sequence (ν̂k)k of linear functionals associated to the Borel measures νk on (Ss×s)n
which are defined by

dνk(A) = %u(A) dµk(A),

is uniformly bounded. We now proceed to show that the Borel measure ν, given by

dν(A) = %u(A) dµ(A),

is finite. Let (X`)` be an increasing sequence of compact subsets of
(
Ss×s

)n
with

⋃∞
`=1X` =(

Ss×s
)n

. For each ` ≥ 1 there is a continuous function τ` :
(
Ss×s

)n → R with compact support
such that 0 ≤ τ` ≤ 1 and τ` = 1 on X`. Then,∫

dν =

∫
%u dµ = lim

`→∞

∫
X`

%u dµ ≤ lim sup
`→∞

lim
k→∞

∫
τ`%u dµk ≤ lim sup

k→∞

∫
%u dµk <∞.

The finiteness of ν yields that (ν̂k)k converges pointwise to ν̂ ∈ C∨0 in the σ(C∨0 , C0)-topology.
Since ϕu : (Ss×s)n → R,

ϕu(A) :=
Tr
(
u(A)

)
1 +

∑n
i=1 Tr

(
A

2 deg(u)+2
i

)
lies in C0 by Lemma 3.7, we get the desired conclusion

yu = lim
k→∞

∫
Tr(u(A)) dµk(A) = lim

k→∞

∫
ϕu%u dµk =

∫
ϕu%u dµ =

∫
Tr
(
u(A)

)
dµ(A).

3.2.2. Bayer-Teichmann theorem. Our next theorem is a tracial version of the classical result
of Bayer and Teichmann [BT06] stating that every truncated moment sequence y that admits a
representing measure, admits a finite atomic representing measure. That is, the corresponding
linear map Ly is given by a cubature formula. Our proof is an easy modification of the
Schweighofer adaptation of the original proof as presented by Laurent in [Lau09, Section 5.2].

Theorem 3.8. If y = (yw)≤k is a truncated tracial moment sequence with probability measure

µ on (Ss×s)n for some s ∈ N, then there exist N ∈ N, λi ∈ R>0 with
∑N

i λi = 1 and n-tuples

A(i) = (A
(i)
1 , . . . , A

(i)
n ) ∈ (Ss×s)n, such that for all w with degw ≤ k:

yw =
N∑
i=1

λi Tr(w(A(i))). (11)

Proof. Let S = suppµ ⊆ (Ss×s)n and

C = conv cone{yA = (yAw)≤k | yAw = Tr(w(A)) for some A ∈ suppµ}.

The closure of C can be written as the intersection of supporting halfspaces H, that is,

C = {z = (zw)≤k | ∀c ∈ H : ctz ≥ 0}.
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Thus y ∈ C. We now proceed to show that y ∈ rel intC. For this, consider a supporting
hyperplane {z = (zw)≤k | ctz = 0} that does not contain C and assume cty = 0. Let

X = {A ∈ S | ctyA > 0} and X` = {A ∈ S | ctyA ≥ 1

`
}.

Then X 6= ∅ and X =
⋃
`X`, hence there is some ` with µ(X`) > 0. We have

0 = cty =

∫
X
ctyAdµ(A) ≥

∫
X`

ctyAdµ(A) ≥ 1

`

∫
X`

dµ =
1

`
µ(X`) > 0,

a contradiction. This shows cty > 0 thus y ∈ rel intC = rel intC. Whence y ∈ C, as desired.

Remark 3.9. Using Carathéodory’s theorem, we deduce that y from Theorem 3.8 can be

written as a convex combination of at most N ≤ 1 +
∑k

`=1Bn(`) tracial sequences yA, where

Bn(`) =


1
2Nn(`) + 1

4(n+ 1)n`/2; if ` even

1
2Nn(`) + 1

2n
(`+1)/2; if ` odd

is the bracelet number,

Nn(`) =
1

`

∑
d|`

φ

(
`

d

)
nd

is the necklace number, and φ is the Euler function.

3.3. Exactness of the Θ2-relaxation and extraction of trace-optimizers. In this sub-
section we shall use our results on the truncated tracial moment problem and flat extensions
of tracial moment matrices to detect exactness of the Θ2-relaxation and to extract global
trace-optimizers.

3.3.1. The flatness condition. The tracial moment matrix Mk(y) of a truncated tracial se-
quence y = (yw)≤2k is

Mk(y) = (yu∗v)u,v,

a matrix indexed by words u, v with deg u,deg v ≤ k. The tracial moment matrix represents
the bilinear form on R〈X〉≤k ×R〈X〉≤k given by (f, g) 7→ Ly(f

∗g), cf. Example 3.5(b). Hence
if y is a truncated tracial moment sequence, then Mk(y) is positive semidefinite.

Example 3.10. A feasible point L of (DSDPmin) with corresponding tracial sequence yL has
a tracial moment matrix ML = Md(yL). Since L(p∗p) ≥ 0 for all p ∈ R〈X〉≤d the tracial
moment matrix ML is positive semidefinite.

Definition 3.11. Let A ∈ Ss×s be given. A (symmetric) extension of A is a matrix Ã ∈
S(s+`)×(s+`) of the form

Ã =

[
A B
Bt C

]
for some B ∈ Rs×` and C ∈ R`×`. Such an extension is flat if rankA = rank Ã, or, equivalently,
if B = AZ and C = ZtAZ for some matrix Z.

The property we use is that a truncated tracial sequence y = (yw)≤2k with a positive
semidefinite tracial moment matrix Mk(y) which is a flat extension of Mk−1(y), is a truncated
tracial moment sequence [BK+, Corollary 3.19]. How the finite atomic measure as in (11) can
be explicitly constructed we explain in Subsections 3.3.2 and 3.3.3 below.
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Theorem 3.12. If the optimizer L∗ of (DSDPmin) satisfies the flatness condition, i.e., ML∗ =
Md(yL∗) is flat over Md−1(yL∗), then the Θ2-relaxation is exact: fsos = f sos = f∗.

Proof. By assumption the tracial moment matrix ML∗ is a flat extension of Md−1(yL∗). From
L∗(Θ

2 ∩ R〈X〉≤2d) ⊆ [0,∞) it follows that ML∗ is positive semidefinite. Then, by [BK+,
Theorem 3.18], there exists a unique (infinite) tracial extension ỹ of yL∗ with tracial moment
matrix M(ỹ) being a flat extension of ML∗ . Thus yL∗ is a truncated tracial moment sequence
[BK+, Corollary 3.19], and has a finite representation (11). Hence there exist N ∈ N, λi ∈ R>0

with
∑N

i λi = 1 and tuples A(i) ∈ (Ss×s)n, such that

L∗(f) =

N∑
i=1

λi Tr(f(A(i))).

Since L∗ is the optimizer of (DSDPmin), we have L∗(f) = f sos = fsos. Further,

Tr(f(A(i))) ≥ fsos

for each i = 1, . . . , N . Hence

f∗ ≤ Tr(f(A(i))) = fsos ≤ f∗.
Thus the minimum f∗ = fsos is attained at each of the A(i).

For the rest of this section assume f ∈ SymR〈X〉≤2d is such that the optimizer L of
(DSDPmin) is flat. By Theorem 3.12, f∗ = fsos = f sos. In the next two subsections we explain

how to construct the trace-minimizing tuples A(i) for f .

3.3.2. GNS construction. In this subsection we use the Gelfand-Naimark-Segal (GNS) con-
struction to associate a matrix ∗-algebra A to L.

Since Md = Md(yL) is flat over Md−1 = Md−1(yL), there exist s = rankMd linear inde-
pendent columns of Md−1 labeled by words w ∈ 〈X〉 with degw ≤ d − 1 which form a basis
B of E = RanMd, the range of Md. Now L (or Md) induces a positive definite bilinear form
(i.e., a scalar product) 〈 , 〉E on E.

Let X̂i be the right multiplication with Xi on E, i.e., if w denotes the column of Md

labeled by w ∈ 〈X〉≤d, then X̂iu := uXi for u ∈ 〈X〉≤d−1. The operator X̂i is well defined and
symmetric by the tracial property of L:

〈X̂ip, q〉E = L(Xip
∗q) = L(p∗qXi) = 〈p, X̂iq〉E .

Therefore we can construct matrix representations Ai ∈ Ss×s of these multiplication op-
erators X̂i by calculating their image according to our chosen basis B. To be more specific,
X̂iu1 for u1 ∈ 〈X〉≤d−1 being the first label in B, can be written as a unique linear combination∑s

j=1 λjuj with words uj labeling B such that L
(
(u1Xi−

∑
λjuj)

∗(u1Xi−
∑
λjuj)

)
= 0. Then[

λ1 . . . λs
]t

will be the first column of Ai.

Remark 3.13. We note there is an alternative and more abstract approach to the construction
of the X̂i based upon properties of flat moment matrices. Let L̃ : R〈X〉 → R be the linear
functional corresponding to the unique flat extension ỹ of yL [BK+, Theorem 3.18]. Since

L̃|R〈X〉≤2d
= L we write L instead of L̃. Equip R〈X〉 with the bilinear form given by

〈p, q〉 := L(p∗q).

Let I = {p ∈ R〈X〉 | L(p∗p) = 0}. By [BK+, Proposition 3.7], I is an ideal of R〈X〉. Thus
E := R〈X〉/I with the induced scalar product is a Hilbert space of dimension rankMd(y) <∞.
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Let X̂i be the right regular representation of Xi on E, i.e., X̂ip := pXi for p = p+ I ∈ E. The
operator X̂i is well defined and symmetric with respect to the scalar product induced by L.
The construction of the matrices Ai is now similar as above.

Let A denote the unital (∗-)subalgebra of Rs×s generated by A1, . . . , An.

3.3.3. Artin-Wedderburn block decomposition. The matrix ∗-algebra A is semisimple and thus
admits an Artin-Wedderburn block decomposition [Lam91, (3.5)]. In this subsection we employ
this block decomposition of A; each of the blocks obtained will yield a trace-minimizer of f .

Elements of A can be presented as p̂ := p(A1, . . . , An) for p ∈ R〈X〉. Let L̂ : A → R be

the induced linear functional given by L̂(p̂) = L(p). By construction, L̂ is a tracial state, that

is, L̂ maps positive semidefinite matrices to nonnegative scalars, L̂(1) = 1, and L̂ vanishes on
commutators.

By [BK+, Proposition 3.13], the tracial state L̂ is given by a conic combination of nor-
malized traces on the Artin-Wedderburn blocks of A. More precisely, there exist unital ∗-
subalgebras A(i) of Rs×s, each isomorphic to a full matrix algebra over R, C or H, a ∗-
isomorphism

A →
N⊕
i=1

A(i), (12)

and λ1, . . . , λN ∈ R>0 with
∑

i λi = 1, such that for all A ∈ A,

L̂(A) =

N∑
i=1

λi Tr(A(i)).

Here,
⊕

iA
(i) denotes the image of A under the isomorphism (12). In particular,

L(p) = L̂(p̂) =
N∑
i=1

λi Tr(p(A
(i)
1 , . . . , A(i)

n )) for p ∈ R〈X〉. (13)

As Tr(f(A
(i)
1 , . . . , A

(i)
n )) ≥ f∗ ≥ L(f) for all i, (13) implies L(f) = Tr(f(A

(i)
1 , . . . , A

(i)
n )). That

is, each of the tuples (A
(i)
1 , . . . , A

(i)
n ) is a trace-minimizer for f .

3.3.4. Implementation. All steps in our algorithm to extract trace-minimizers are straightfor-
ward with the possible exception of the last one where one has to construct for given matrices

Aj ∈ Ss×s, the matrices A
(i)
j as in Subsection 3.3.3, i.e. one has to implement the decompo-

sition of A into simple components. The first efficient algorithm to decompose a semisimple
algebra over a number field into simple components goes back to Friedl and Rónyai [FR85].
Later, Eberly and Giesbrecht [EG04] modified their method to obtain an efficient algorithm
to find the simple components of a separable algebra over an infinite field by decomposing its
center. In particular, their algorithm works for semisimple algebras over a field of characteris-
tic 0. One can also employ the Murota, Kanno, Kojima, Kojima, and Maehara probabilistic
method [MKKK10, MM10] which produces an orthogonal change of basis U for Rs so that the

matrix ∗-algebra A ⊆ Rs×s decomposes into a direct sum of simple matrix algebras A(i) which

cannot be further decomposed. Then U tAjU = ⊕iA(i)
j .

The entire algorithm using the probabilistic method of Murota et al. has been implemented
in NCSOStools [CKP+]. We conclude by an example.

http://ncsostools.fis.unm.si/
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Example 3.14. Let

f = 3 +X2
1 + 2X3

1 + 2X4
1 +X6

1 − 4X4
1X2 +X4

1X
2
2 + 4X3

1X2 + 2X3
1X

2
2 − 2X3

1X
3
2

+ 2X2
1X2 −X2

1X
2
2 + 8X1X2X1X2 + 2X2

1X
3
2 − 4X1X2 + 4X1X

2
2 + 6X1X

4
2 − 2X2

+X2
2 − 4X3

2 + 2X4
2 + 2X6

2 .

The minimum of f on R2 is 1.0797. Using NCcycMin we obtain the floating-point trace-
minimum fsos = 0.2842 for f which is different from the commutative minimum. In particular,
the minimizers will not be scalar matrices. The tracial moment matrix ML∗ of the optimizer
L∗ in (DSDPmin) is of rank 4 and flat over M2(yL∗). Thus the matrix representation of the

multiplication operators X̂i is given by 4× 4 matrices:

X̂1 =


−1.0761 0.1802 0.5107 0.2590
0.1802 −0.3393 −0.1920 0.9428
0.5107 −0.1920 0.5094 0.0600
0.2590 0.9428 0.0600 −0.3020

 ,

X̂2 =


0.7108 0.7328 0.1043 0.4415
0.7328 −0.3706 0.4757 −0.2147
0.1043 0.4757 0.0776 −0.9102
0.4415 −0.2147 −0.9102 0.1393

 .
The Artin-Wedderburn decomposition for the matrix ∗-algebra A generated by X̂1, X̂2

gives in this case only one block. Using NCcycOpt leads to the trace-minimizer

A1 =


−1.1843 0 −0.2095 0.3705

0 −1.1843 0.3705 0.2095
−0.2095 0.3705 0.5803 0
0.3705 0.2095 0 0.5803

 ,

A2 =


−0.1743 0 0.4851 −0.8577

0 −0.1743 −0.8577 −0.4851
0.4851 −0.8577 0.4529 0
−0.8577 −0.4851 0 0.4529

 .
The reader can easily verify that Tr(f(A1, A2)) = 0.2842.

Note that A is (as a real ∗-algebra) isomorphic to M2(C). For instance,

A1 =

[
−1.1843 0.3705− 0.2095i

0.3705 + 0.2095i 0.5803

]
, A2 =

[
−0.1743 −0.8577 + 0.4851i

−0.8577− 0.4851i 0.4529

]
.

In this case it is possible to find a unitary matrix U ∈ C2×2 with A′j = U∗AjU ∈ R2×2, e.g.

U =

[
0.180122− 0.0473861i 0.950143− 0.250076i
0.950143 + 0.250076i −0.180122− 0.0473861i

]
,

A′1 =

[
0.674861 0.0731923
0.0731923 −1.27886

]
, A′2 =

[
0.0705101 −1.03179
−1.03179 0.20809

]
.

Then (A′1, A
′
2) ∈

(
S2×2

)2
is also a trace-minimizer for f .
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