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Abstract

Iterative rounding and relaxation have arguably becomentbthod of choice in dealing with
unconstrained and constrained network design problemghidrpaper we extend the scope of the
iterative relaxation method in two directions: (1) by handlmore complex degree constraints in the
minimum spanning tree problem (namddyninar crossing spanning tree), and (2) by incorporating
‘degree bounds’ in other combinatorial optimization pehb such amatroid intersectiorandlat-
tice polyhedraWe give new or improved approximation algorithms, hardmesults, and integrality
gaps for these problems.

e Our mainresultis &1, b+ O(logn))-approximation algorithm for theinimum crossing span-
ning tree(MCST) problem withlaminar degree constraints. The laminar MCST problem is a
natural generalization of the well-studied bounded-de®&T, and is a special case of gen-
eral crossing spanning tree. We also give an additileg™ m) hardness of approximation for
generalMCST, even in the absence of costs¥ 0 is a fixed constant, and is the number of
degree constraints).

e \We then consider therossing contra-polymatroid intersectigomoblem and obtain &, 2b +
A—1)-approximation algorithm, wher is the maximum element frequency. This models for
example the degree-bounded spanning-set intersectiovoimitroids. Finally, we introduce
the crossing lattice polyhedraroblem, and obtain &l,b + 2A — 1) approximation under
certain condition. This result provides a unified framewarkd common generalization of
various problems studied previously, such as degree baumdé&oids.

1 Introduction

Iterative rounding and relaxation have arguably becomenrththod of choice in dealing with uncon-
strained and constrained network design problems. Sgastitm Jain’s elegariterative roundingscheme
for the generalized Steiner network problem(in/[18], an esi@n of this technique (iterativelaxation
has more recently lead to breakthrough results in the areanstrained network design, where a number
of linear constraints are added to a classical network desigblem. Such constraints arise naturally in
a wide variety of practical applications, and model limdas in processing power, bandwidth or budget.
The design of powerful techniques to deal with these probletherefore an important goal.

The most widely studied constrained network design prohbtethe minimum-cost degree-bounded
spanning tregroblem. In an instance of this problem, we are given an eatkd graph, non-negative
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costs for the edges, and positive, integral degree-bowrdsaich of the nodes. The problem is easily
seen to be NP-hard, even in the absence of edge-costs, sidaggfa spanning tree with maximum
degree two is equivalent to finding a Hamiltonian Path. Aeftgrof techniques have been applied to
this problem([8[ 8, 15, 21, 2P, P7,128], culminating in Singld & au’s breakthrough result in [81]. They
presented an algorithm that computes a spanning tree of stt qpdmum cost whose degree at each
vertexv exceeds its bound by at mastusing theiterative relaxationframework developed in [24, 31].

The iterative relaxation technique has been applied torabgenstrained network design problems:
spanning tree [31], survivable network design![24, 25]ectied graphs with intersecting and crossing
super-modular connectivity [24] 4]. It has also been appiiedegree bounded versions of matroids and
submodular flow{[19].

In this paper we further extend the applicability of itevatielaxation, and obtain new or improved bi-
criteria approximation results for minimum crossing spagrree (MCST), crossing contra-polymatroid
intersection, and crossing lattice polyhedra. We alsoigesome hardness results and integrality gaps
for these problems.

Notation. As is usual, when dealing with an undirected graph= (V, E), for any S C V we let
dc(S) :={(u,v) e E|ue S, v¢S}. When the graph is clear from context, the subscript is dedpp
A collection{Uy,--- , U, } of vertex-sets is callethminar if for every pairU;, U; in this collection, we
haveU; C U;,U; C U;, orU; NU; = 0. A (p, f(b)) approximation for minimum cost degree bounded
problems refers to a solution that (1) has cost at mosines the optimum that satisfies the degree
bounds, and (2) satisfies the relaxed degree constraintsiama bound is replaced with a bouni(b).

1.1 Our Results, Techniques and Paper Outline

Laminar MCST. Our main result is for a natural generalization of boundegrde MST (called Lam-
inar Minimum Crossing Spanning Tree laminar MCST), where we are given an edge-weighted undi-
rected graph with a laminar familg = {S;}, of vertex-sets having bound$; }!" ,; and the goal is to
compute a spanning tree of minimum cost that contains at lestges fromy(.S;) for eachi € [m].

The motivation behind this problem is in designing a netweHere there is a hierarchy (i.e. laminar
family) of service providers that control nodes (i.e. v&t). The number of edges crossing the boundary
of any service provider (i.e. its vertex-cut) representaesagost to this provider, and is therefore limited.
The laminar MCST problem precisely models the question ofieating all nodes in the network while
satisfying bounds imposed by all the service providers.

From a theoretical viewpoint, cut systems induced by lamfamilies are well studied, and are
known to display rich structure. For examplene-way cut-incidence matricege matrices whose
rows are incidence vectors of directed cuts induced by thexssets of a laminar family; It is well
known (e.g., see [23]) that such matrices are totally unimard Using the laminar structure of degree-
constraints and the iterative relaxation framework, weaiobthe following main result, and present its
proof in Sectiol P.

Theorem 1 There is a polynomial timél, b+ O(log n)) bicriteria approximation algorithm for laminar
MCST. That is, the cost is no more than the optimum cost andetee violation is at most additive
O(logn). This guarantee is relative to the natural LP relaxation.

This guarantee is substantially stronger than what follbs known results for the generalin-
imum crossing spanning trg®CST) problem: where the degree bounds could be on arpigdge-
subsetsFy, ..., E,,. In particular, for general MCST @l,b + A — 1) [4,[19] is known whereA is
the maximum number of degree-bounds an edge appears in. vidowieis guarantee is not useful for



laminar MCST as\ can be as large &¥(n) in this case. If a multiplicative factor in the degree viaat

is allowed, Chekuri et al T11] recently gave a very elegant1 + )b + O(% log m)) guarantee (which
subsumes the previous bésgi(log n), O(logm)b) [6] result). However, these results also cannot be
used to obtain a small additive violation, especially i§ large. In particular, both the results [6] 11] for
general MCST are based on the natural LP relaxation, fortwthiere is an integrality gap éf+ Q(y/n)
even without regard to costs and when= O(n) [30] (see also Sectidn 3.2). On the other hand, The-
orem[1 shows that a purely additive(log n) guarantee on degree (relative to the LP relaxation and
even in presence of costs) is indeed achievable for MCSThhedegree-bounds arise from a laminar
cut-family.

The algorithm in Theorem 1 is based on iterative relaxatimhuses two main new ideas. Firstly, we
drop a carefully choseconstant fraction of degree-constrairiteeach iteration. This is crucial as it can
be shown that dropping one constraint at a time as in the @gpmications of iterative relaxation can
indeed lead to a degree violation@fA). Secondly, the algorithm does not just drop degree consstai
but in some iterations it alsgenerates new degree constrajrity merging existing degree constraints.

All previous applications of iterative relaxation to caaéhed network design treat connectivity and
degree constraints rather asymmetrically. While the &iremf the connectivity constraints of the under-
lying LP is used crucially (e.g., in the ubiquitous uncragsargument), the handling of degree constraints
is remarkably simple. Constraints are dropped one by ortetrenfinal performance of the algorithm is
good only if the number of side constraints is small (e.greirent work by Grandoni et al. [116]), or if
their structure is simple (e.g., if the ‘frequency’ of eaddneent is small). In contrast, our algorithm for
laminar MCST exploits the structure of degree constraimts mon-trivial manner.

Hardness Results. We obtain the following hardness of approximation for giemeral MCSTproblem
(and its matroid counterpart). In particular this rules any algorithm for MCST that has additive
constant degree violation, even without regard to costs.

Theorem 2 UnlessN'P has quasi-polynomial time algorithms, the MCST problem iggdrmo polyno-
mial time O (log® m) additive approximation for the degree bounds for some emist > 0; this holds
even when there are no costs.

The proof for this theorem is given in Sectidn 3, and uses aestep reduction from the well-known
Label Covemproblem. First, we show hardness fougiform matroid instance. In a second step, we then
demonstrate how this implies the result for MCST claimed edreniP.

Note that our hardness bound nearly matches the resulhebtaly Chekuri et al. i [11]. We note
however that in terms giurelyadditive degree guarantees, a large gap remains. As nabed,dhere is
a much stronger lower bound bft+ Q(y/n) for LP-based algorithm$ [30] (even without regard to cgsts)
which is based on discrepancy. In light of the small numbétmaiwn hardness results for discrepancy
type problems, it is unclear how our bounds for MCST couldtbengjthened.

An interesting consequence of the hardness result in The@res for therobust (or min-max)-
medianproblem [1]. In this problem, there are different client-sets in a metric and the goal is to
openk facilities that are simultaneously good (in terms of khmedian objective) for all the client-sets.
Anthony et al.[[1] obtained a logarithmic approximationaithm for this problem, and showed that it
is hard to approximate better than fackorThe following result shows that the robustnedian problem
is indeed harder to approximate than usrahedian, for whichO(1)-approximations are knowhl[7] 3].
We present its proof in Sectign B.1.

Corollary 3 Robustk-median isQ2(log® m)-hard to approximate even on uniform metrics (for some
fixed constanty > 0), assumingVP does not have quasi-polynomial time algorithms.



Degree Bounds in More General Settings. We consider crossing versions of other classic combina-
torial optimization problems, namebontra-polymatroid intersectioandlattice polyhedrg29].

Definition 4 (Minimum crossing contra-polymatroid intersection problem) Letr;,r, : 28 — Z be
two supermodular functions,: E — R and{E; };c; be a collection of subsets &fwith corresponding
bounds{b; };c;. Then the goal is to minimize:

{Tx | 2(9) > max{ri(5),r2(9)},V S C E;
w(E) <b, Yiel, zec{01}F}

In particular, this definition captures the degree-boundgsdion of spanning-set intersection in two
matroids (for eg. thbipartite edge-coveproblem). We note that this definition does not capture radtier
notions of matroid intersection, such as intersection geban two matroids; hence it does not apply to
the degree-bounded arborescence pro%m.

Let A = max.ep |[{i € [m] | e € E;}| be the largest number of sel§ that any element of
belongs to, and refer to it deequency The proof of this theorem can be found in Secfibn 4.

Theorem 5 Any optimal basic solution:* of the linear relaxation of the minimum crossing contra-
polymatroid intersection problem can be rounded into aegnal solutionz such that:

Z(S) > max{ri(5),r2(S)}, VS C E; #(E) <2b;+A—1,Viel, and ' <2c "

The algorithm for this theorem again uses iterative relaratand its proof is based on a ‘fractional
token’ counting argument similar to the one used.in [4]. Wealbserve that the natural iterative relax-
ation steps are insufficient to obtain a better approximagigarantee.

Crossing Lattice Polyhedra. Classicallattice polyhedraform a unified framework for various discrete
optimization problems and go back to Hoffman and Schwai@\Who proved their integrality. They are
polyhedra of type

{z € [0,1)7 | 2(p(5)) = r(S), VSeF}

whereF is aconsecutive submodulattice,p : F — 2F is a mapping frond to subsets of the ground-
setF, andr € R” is supermodular. A key property of lattice polyhedra is thatuncrossing technique
can be applied which turns out to be crucial in almost alkifiee relaxation approaches for optimization
problems with degree bounds. We refer the reader to [29] fooee comprehensive treatment of this
subject.

We generalize our work further twossing lattice polyhedrevhich arise from classical lattice polyhe-
dra by adding “degree-constraints” of the foum< z(E;) < b; for a given collection E; C E | i € I}
and lower and upper boundsb € R’. We mention two (of several) examples which are covered by
this model:

Example 1: Crossing matroid basislere F = 2F, p is the identity map, and the partial order in
F is the canonical one that is induced by set inclusion. Faneti: 2 — N is defined as(S) =
rank(V) — rank(V \ S); where E is the ground-set of the matroid amghk is its rank function The
crossing matroid basis problem finds the minimum cost badise matroid satisfying degree bounds.

Example 2: Crossing planar min cutet G = (V, E) be a (directed or undirected)t-planar graph
(along with an embedding) with ¢t € V. Here elements oF correspond ta-t paths inG (p maps each

In an earlier version of the papér [5], we had incorrectlyrakd that our result extends to degree-bounded arborescenc



element ofF to the edge-set of that — ¢ path), and the partial order iA relates paths where one is
below/above the other in the planar embeddingrofThe rank function is the constant all-ones function.
The crossing planar min-cut problem involves finding a mimimcosts — ¢ cut in G that obeys the
degree bounds.

We can show that the standard LP relaxation for the genenabitrg lattice polyhedron problem is
weak; in Sectiofh 5]1 we give instances of crossing planarauir(i.e., Example 2 above) where the LP-
relaxation is feasible, but any integral solution violasesne degree-bound I§y(,/n). For this reason,
we henceforth focus on a restricted class of crossing ¢atiyhedra in which the underlying lattice
(F, <) satisfies the following monotonicity property

(x) S<T = |p(S)| <|p(T)] VS,TecF.

We obtain the following theorem whose proof is given in Sauf.

Theorem 6 For any instance of the crossing lattice polyhedron problarwhich F satisfies property
(%), there exists an algorithm that computes an integral sofutvf cost at most the optimal, where all
rank constraints are satisfied, and each degree bound iatédlby at most an additive\ — 1.

We note that the above property) is satisfied for matroids, and hence Theofgdm 6 matches the
previously best-known bound [[19] for degree bounded mdgréivith both upper/lower bounds). Also
note that propertyx) holds wheneverF is ordered by inclusion. In this special case, we can improve
the result to an additiv& — 1 approximation if only upper bounds are given.

1.2 Related Work

As mentioned earlier, the basic bounded-degree MST prohlasnbeen extensively studied [8,9] 15,
[21,[22)27[ 2B, 31]. The iterative relaxation technique fegrée-constrained problems was developed
in [24,[317].

MCST was first introduced by Bilo et al.l[6], who presented rd@mized-rounding algorithm that
computes a tree of coél(log n) times the optimum where each degree constraint is violagealroul-
tiplicative O(log n) factor and an additiv® (log m) term. Subsequently, Bansal et al. [4] gave an algo-
rithm that attains an optimal cost guarantee and an additive 1 guarantee on degree; recall that
is the maximum number of degree constraints that an edg@lieBhis algorithm used iterative relax-
ation as its main tool. Recently, Chekuri et al.1[11] obtaira improved(1, (1 + €)b + O(% logm))
approximation algorithm for MCST, for ary> 0; this algorithm is based on pipage rounding.

The minimum crossing matroid basis problem was introduodd9], where the authors used itera-
tive relaxation to obtain (1)1, + A — 1)-approximation when there are only upper bounds on degree,
and (2)(1,b+ 2A — 1)-approximation in the presence of both upper and lowed @egoeinds. The [11]
result also holds in this matroid setting. [19] also constdea degree-bounded version of udmodular
flow problem and gave @, b + 1) approximation guarantee.

The bounded-degree arborescence problem was consideted iet al. [24], where &2, 2b + 2)
approximation guarantee was obtained. Subsequently Bansh [4] designed an algorithm that for
any0 < e < 1/2, achieves d1/¢,b,/(1 — €) 4+ 4) approximation guarantee. They also showed that
this guarantee is the best one can hope for via the naturaklaRation (for every) < e < 1/2). In
the absence of edge-costs] [4] gave an algorithm that emké¢gree bounds by at most an additive two.
Recently Nutov([[26] studied the arborescence problem un@égghteddegree constraints, and gave a
(2, 5b) approximation for it.



Lattice polyhedra were first investigated by Hoffman andv@ttz [17] and the natural LP relaxation
was shown to be totally dual integral. Even though greegg-tglgorithms are known for all examples
mentioned earlier, so far no combinatorial algorithm hasnbfund for lattice polyhedra in general.
Two-phase greedy algorithms have been established onlgsescwhere an underlying rank function
satisfies a monotonicity property [14], [12].

2 Crossing Spanning Tree with Laminar degree bounds

In this section we prove Theordm 1 by presenting an iteraéiaxation-based algorithm with the stated
performance guarantee. During its execution, the algorgelects and deletes edges, and it modifies
the given laminar family of degree bounds. A generic iterattarts with a subsét of edges already
picked in the solution, a subsétof undecidededges, i.e., the edges not yet picked or dropped from the
solution, a laminar familyC on V, and residual degree bountsS) for eachS € L.

The laminar familyZ has a natural forest-like structure witbhdescorresponding to each element of
L. AnodeS € L is called theparentof nodeC € L if S is the inclusion-wise minimal set i \ {C'}
that containg”; andC' is called achild of S. Node D € L is called agrandchildof nodeS € L if S'is
the parent ofD’s parent. NodesS, T € L aresiblingsif they have the same parent node. A node that
has no parent is calladot. Thelevelof any nodeS € L is the length of the path in this forest frofhto
the root of its tree. We also maintairlimear orderingof the children of eaclf-node. A subseB C L
is calledconsecutivef all nodes inB are siblings (with paren$) and they appear consecutively in the
ordering ofS’s children. In any iteratior{ F, £, £, b), the algorithm solves the following LP relaxation
of the residual problem.

min Z Cee (1)
c€E
st. 2(E(V))=|V|—-|F| -1
(EU)) < |U[-[F(U)| -1 v cv
z(dp(S)) < b(S) VS e L
Te >0 Vee E

For any vertex-subsé¥’ C V' and edge-setl, we let H(W) := {(u,v) € H | u,v € W} denote
the edges induced o; anddy (W) := {(u,v) € H | w € W, v ¢ W} the set of edges crossing.
The first two sets of constraints are spanning tree congrainile the third set corresponds to the degree
bounds. Letr denote an optimatxtreme point solutioto this LP. By reducing degree bountss), if
needed, we assume thatsatisfies all degree bounds at equalftiie degree bounds may therefore be
fractional-valued). Lety := 24.

Definition 7 An edgee € F is said to belocal for S € L if e has at least one end-point ifi but is
neither inE(C') norin6(C)NJ(.S) for any grandchildC of S. Letlocal(S) denote the set of local edges
for S. AnodeS € £ is said to begoodif [local(S)| < o

Figure[1 shows a se, its childrenB; and Bz, and grand-childrer®, . .., Cy; edges inlocal(S)
are drawn solid, non-local ones are shown dashed.

Initially, E is the set of edges in the given gragh« (), £ is the original laminar family of vertex
sets for which there are degree bounds, and an arbitragrlorelering is chosen on the children of each
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Figure 1. Example of local edges.

node inL. In a generic iteratiofiF, £, £, b), the algorithm performs one of the following steps (see also
Figurel2):

1. If z. = 1 for some edge € E thenF <+ F U{e}, E + E\ {e}, and seb(S) < b(S) — 1 for
all S € Lwithe € 6(9).

2. If z. = 0 for some edge € E thenE «+ E\ {e}.

3. DropN: Suppose there at ledst|/4 good non-leaf nodes id. Then either odd-levels or even-
levels contain a sett C L of |£|/8 good non-leaf nodes. Drop the degree bounds aftakiiren
of M and modifyL accordingly. The ordering of siblings also extends nalyral

4. DropL: Suppose there are more thi@l/4 good leaf nodes i, denoted by\'. Then partition\/'
into parts corresponding to siblings th For any parf{ Ny,--- , N} € N consisting of ordered
(not necessarily contiguous) children of some néde

(a) DefineM; = No;—1 U Ny; forall 1 <i < |k/2] (if k is odd Ny, is not used).

(b) Modify £ by removing leavegNy, - - - , Ni.} and adding new leaf-nodg9/y, - - - , M ;5 }
as children ofS (if & is odd Ny, is removed). The children of in the new laminar family
are ordered as follows: each nodé¢ takes the position of eitheVN,;_; or No;, and other
children ofS are unaffected.

(c) Setthe degree bound of eakh to b(M;) = b(Na;_1) + b(Noy;).

Assuming that one of the above steps applies at each itey#étie algorithm terminates wheh = ()
and outputs the final sét as a solution. It is clear that the algorithm outputs a spantree ofG. An
inductive argument (see e.d.]24]) can be used to show tedtPh(1) is feasible at each each iteration
andc(F) + zeur < 2z, Wherez, is the original LP valuez,,,, is the current LP value, anfl is the chosen
edge-set at the current iteration. Thus the cost of the folatien is at most the initial LP optimur,.
Next we show that one of the four iterative steps always appli

Lemma 8 In each iteration, one of the four steps above applies.

Proof: Let z* be the optimal basic solution dfl(1), and suppose that thetfis steps do not apply.
Hence, we have < z} < 1forall e € E. The fact that:* is a basic solution together with a standard
uncrossing argument (e.g., seel[18]) implies tfais uniquely defined by

2(EU)) = |U| - |[F(U)| -1 YUeS, and z(65(S)) =5h(S), VSecr,

7
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Figure 2: Examples of the degree constraint modificatiorsgpNrand DropL.

whereS is a laminar subset of the tight spanning tree constraimtd,/4 is a subset of tight degree
constraints, and whet&| = |S| + |£/].

A simple counting argument (see, e.@.,/[31]) shows thatketlaee at least edges induced on each
S € S that are not induced on any of its children; 36| < |E|. Thus we obtaiE| < 2|£'| < 2|L]|.

From the definition of local edges, we get that any eelge (u, v) is local to at most the following
six sets: the smallest sé4 € L containingu, the smallest se$; € L containingv, the parents?;
and P, of S; and .Ss resp., the least-common-ancesiorof P, and P, and the parent of.. Thus
> ser Nocal(S)| < 6|E|. From the above, we conclude thalg, . |local(S)| < 12|£]. Thus at least
|£]/2 setsS € £ must havelocal(S)| < a = 24, i.e., must be good. Now either at le&st/4 of them
must be non-leaves or at leg#} /4 of them must be leaves. In the first case, step 3 holds and in the
second case, step 4 holds. [

It remains to bound the violation in the degree constraimntsch turns out to be rather challenging.
We note that this is unlike usual applications of iterativending/relaxation, where the harder part is in
showing that one of the iterative steps applies.

It is clear that the algorithm reduces the sizeCdfy at least£|/8 in each DropN or DropL iteration.
Since the initial number of degree constraints is at r2ast 1, we get the following lemma.

Lemma 9 The number of drop iterations (DropN and DropL)#is:= O(log n).

Performance guarantee for degree constraintsWe begin with some notation. The iterations of the
algorithm are broken into periods between successive teogtions: there are exactly drop-iterations
(Lemmd9). In what follows, the-th drop iteration is calledound¢. Thetimet refers to the instant just
after roundt; time 0 refers to the start of the algorithm. At any timeconsider the following parameters.

e L; denotes the laminar family of degree constraints.
e [, denotes the undecided edge set, i.e., support of the cliReoptimal solution.

e For any set3 of consecutive siblingt £, Bnd(B,t) = > y.zb(IN) equals the sum of the
residual degree bounds on noded3of

e Forany sef3 of consecutive siblings L, Inc(B, t) equals the number of edges from, (UncgN)
included in the final solution.



Recall that denotes theesidualdegree bounds at any point in the algorithm. The followingrea
is the main ingredient in bounding the degree violation.

Lemma 10 For any set3 of consecutive siblings ifi; (at any timet), Inc(B,t) < Bnd(B,t)+ 4« - (T —
t).

Observe that this implies the desired bound on each origiegiee constraing: usingt = 0 and
B = {S}, the violation is bounded by an additive: - 7" term.

Proof: The proof of this lemma is by induction dh — ¢. The base case= T is trivial since the only
iterations after this correspond to including 1-edges:chehere is no violation imny degree bound,
i.e. Inc({N},T) < b(N) forall N € Lr. Hence forany B C L, Inc(B,T) < > yeglnc({N},T) <
> neg0(N) = Bnd(B,T).

Now suppose < T, and assume the lemma for- 1. Fix a consecutive3 C £,. We consider
different cases depending on what kind of drop occurs indaun 1.

DropN round. Here either all nodes i8 get dropped or none gets dropped.

Case 1:None ofB3 is dropped.Then observe thaf is consecutive irC;; as well; so the inductive
hypothesis implietnc(B,t+1) < Bnd(B, t+1)+4«-(T'—t—1). Since the only iterations between round
t and round + 1 involve edge-fixing, we haviac(5,t) < Bnd(B,t) —Bnd(B,t+ 1) + Inc(B,t +1) <
Bnd(B,t) +4a - (T'—t —1) < Bnd(B,t) +4a - (T —t).

Case 2:All of B is dropped.Let C denote the set of all children (if;) of nodes in5. Note thatC
consists of consecutive siblingsih,, and inductivelyinc(C,t+1) < Bnd(C,t+ 1) +4a- (T —t—1).
Let S € L; denote the parent of thB-nodes; s are grand-children of' in £;. Let x denote the
optimal LP solutionjust beforeroundt + 1 (when the degree bounds are still givenfy), and H =
E,1, the support edges af. At that point, we havé(N) = z(6(N)) forall N € BUC. Also let
Bnd'(B,t + 1) := > yeb(NV) be the sum of bounds oB-nodes just before round+ 1. SinceS
' ' "Bt +1) —Bnd(C,t + 1)| = | > yegb(N) = X yec b(M)| =
| > neg®(0(N)) = X pec 2(6(M))| < 20 The last inequality follows sincé is good; the factor of
2 appears since some edges, e.g., the edges between twerloldiwo grandchildren of, may get
counted twice. Note also that the symmetric differencémfuycgN) anddy (UnrecM) is contained
inlocal(S). Thusomy (UnesN) anddr (Unrec M) differ in at mosta edges.

Again since all iterations between timandt + 1 are edge-fixing:

Inc(B,t) < Bnd(B,t) —Bnd (B,t + 1)+ |dg (UnesN) \ g (Upree M)
+Inc(C,t +1)
Bnd(B,t) — Bnd'(B,t + 1) + a + Inc(C,t + 1)

B,t) —Bnd'(B,t+ 1)+ a+Bnd(C,t + 1) +4a - (T —t —1)
B,t) —Bnd'(B,t +1) + a+ Bnd'(B,t + 1) + 2a + 4a - (T —t — 1)
d(B,t) + 4o (T — 1)

The first inequality above follows from simple counting; thecond follows sinc@y (UnesN)
and dg (Uprec M) differ in at mosta edges; the third is the induction hypothesis, and the foisrth
Bnd(C,t +1) < Bnd'(B,¢ + 1) + 2a (as shown above).

DropL round. In this case, letS be the parent oB-nodes inl;, andN = {Ny,--- ,N,} be all the
ordered children of, of which B is a subsequence (since it is consecutive). Suppose indices(1) <

(VAN VAN VAN VAN



7(2) < --- < w(k) < p correspond to good leaf-nodes M. Then for eachl < ¢ < |k/2], nodes
Nr(2i—1) and Ny (o;) are merged in this round. Létr(i) [ e < i < f} (possibly empty) denote the
indices of good leaf-nodes . Then it is clear that the only nodes Bfthat may be merged with nodes
outsideB are N,y and Ny y; all other3-nodes are either not merged or merged with anofiaode.
Let C be the inclusion-wise minimal set ohildren ofS'in £, s.t.

e Cis consecutive irCsyq,
e C contains all nodes o \ {N,(;}%_,, and
e C contains all new leaf nodes resulting from merging good leaf nodesf 5.

Note thatU,,cc M consists of some subset Bfand at most two good leaf-nodes.m \ B. These
two extra nodes (if any) are those merged with the good ledesN, ) and N ) of B. Again let
Bnd'(B,t + 1) := Y nepb(N) denote the sum of bounds d@hjust before drop round + 1, when
degree constraints a®,. Let H = F; 1 be the undecided edges in rouhd 1. By the definition of
bounds on merged leaves, we h@el(C,t + 1) < Bnd'(B,t + 1) + 2. The term2« is present due to
the two extra good leaf-nodes described above.

Claim 11 We havedy (UnesN) \ 0 (UnrecM)| < 20

Proof: We say thatV € N is represented i@ if either N € C or N is contained in some node 6f
Let D be set of nodes df that arenotrepresented i@ and the nodes oi/ \ B that are represented ¢h
Observe that by definition df, the setD C {Ny(c—1), Nx(e)s Nr(r)» Nr(s+1) 15 In fact it can be easily
seen thatD| < 2. MoreoverD consists of only good leaf nodes. Thus we havgep o (L)] < 2a.
Now note that the edges iy (UnegN) \ dg(Unrec M) must be inUrepdy (L). This completes the
proof. [

As in the previous case, we have:

Inc(B,t) < Bnd(B,t) — Bnd' (B, + 1) + |61 (UnesN) \ 6 (Unsce )|
+Inc(C,t + 1)

< Bnd(B,t) — Bnd' (B,t+ 1) + 2a + Inc(C,t + 1)

< Bnd(B,t) —Bnd'(B,t + 1) + 2a + Bnd(C,t + 1) + 4o - (T —t — 1)

< Bnd(B,t) —Bnd'(B,t + 1) +2a + Bnd' (B,t + 1) + 2a + 4a- (T — t — 1)
= Bnd(B,t) +4a- (T —1t)

The first inequality follows from simple counting; the sedarses Clairi 11, the third is the induction
hypothesis (sinc€ is consecutive), and the fourth@nd(C,t+1) < Bnd'(B,t+ 1) + 2« (from above).
This completes the proof of the inductive step and hence Lalfin [

3 Hardness Results

In this section we prove Theorelm 2; i.e. unlg€$ has quasi-polynomial time algorithms, there is
no polynomial timeO(log®m) additive approximation for degree bounds for the minimummssing
spanning tree problem, wheee> 0 is some universal constant. This result also holds in therades
of edge-costs. We note that this hardness result only holdéé general MCST problem, and not the
laminar MCST addressed earlier. The first step to provirgrisult is a hardness for the more general
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minimum crossing matroid basis problem: given a matibidon a ground set” of elements, a cost
functionc : V' — Ry, and degree bounds specified by pdit&;, b;)}!*, (where each®; C V and
b; € N), find a minimum cost basi&in M such that/ N E;| < b; forall i € [m)].

Theorem 12 UnlessN'P has quasi-polynomial time algorithms, the unweighted mimn crossing ma-
troid basis problem admits no polynomial tirdglog® m) additive approximation for the degree bounds
for some fixed constamat> 0.

Proof: We reduce from the label cover problem [2]. The input is a gr@p= (U, E') where the vertex
setU is partitioned into piece#, - - - , U, each having size, and all edges irfZ are between distinct
pieces. We say that there isaperedgdetween’; andU; if there is an edge connecting some vertex in
U; to some vertex il/;. Lett denote the total number of superedges; i.e.,

t =

{(z,]) € < NE there is an edge iV betweenU; andU;

The goal is to pick one vertex from each p&tf;}7 ; so as to maximize the number of induced
edges. This is called the value of the label cover instanddsaat most.

It is well known that there exists a universal constant- 1 such that for every: € N, there is a
reduction from any instance of SAT (having siz8 to a label cover instanc&s = (U, E), ¢,t) such
that:

e If the SAT instance is satisfiable, the label cover instaraedptimal value.
o If the SAT instance is not satisfiable, the label cover instamas optimal value t/y"f.
o |G| = NOW) ¢ =2k |E| < t? and the reduction runs in timg©®),

We consider a uniform matroid/ with rankt¢ on ground sefr (recall that any subset éfedges is
a basis in a uniform matroid). We now construct a crossingarhbasis instanc& on M. There is a
set of degree bounds corresponding to eaehn|: for every collectionC' of edges incident to vertices
in U; such that no two edges i@ are incident to the same vertex i), there is a degree bound
requiringat most oneslement to be chosen fro@i. Note that the number of degree boumdss at most
|E|7 < NOk 2"), The following claim links the SAT and crossing matroid arstes.

Claim 13 [Yes instancg If the SAT instance is satisfiable, there is a basis (i.e. eluBsC FE with
|B| = t) satisfying all degree bounds.

[No instancé If the SAT instance is unsatisfiable, every suli$et E with |B’| > t/2 violates some
degree bound by an additive= v*/2/1/2.

Proof: Observe that if the original SAT instance is satisfiablenttiee matroidM contains a basis
obeying all the degree bounds: namely trexiges™ C F covered in the optimal solution to the label
cover instance. This is because if we consider@nyhen all thel™-edges having a vertex iii; as their
endpoint, have the same endpoint. Thus, for any degree lmrnesponding to collectio@' (as defined
above), at most oné*-edge can lie irC'.

Now consider the case that the SAT instance is unsatisfiabé. B’ C FE be any subset with
|B| > t/2. We claim thatB’ contains at leash = ~"/2/y/2 edges from some degree-constrained
set of edges. Suppose (for a contradiction) t2ltn C| < p for each degree constraigt. This
means that each pajt/;}_, contains fewer thap vertices that are incident to edgBs For each part
i € [n], letW; C U; denote the vertices incident to edgesiifnote that/1V;| < p. Consider the label
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cover solution obtained as follows. For eacke [n], choose one vertex frof¥/; independently and
uniformly at random. Clearly, the expected number of edgeke resulting induced subgraph is at least
|B'|/p* > ﬁ = t/+". This contradicts the fact that the value of label coverainse is strictly less than

t/~k. |
The steps described in the above reduction can be done inpiitgaomial inm and |G|. Also,
instead of randomly choosing vertices from the d&ts we can use conditional expectations to derive
a deterministic algorithm that recovers at legst? edges. Setting = ©(loglog N) (recall that\N is
the size of the original SAT instance), we obtain an instasfckounded-degree matroid basis of size
max{m, |G|} = NN andp = log® N, wherea, b > 0 are constants. Note thatgm = log®*! N,
which impliesp = log®m for ¢ = -2~ > 0, a constant. Thus it follows that for this constant 0 the

a+1
bounded-degree matroid basis problem has no polynomial @hog®m) additive approximatiorfor
the degree bounds, unle&§P has quasi-polynomial time algorithms. [

We now prove Theorefd 2.
Proof: [Proof of Theoreni2] We show how the bases of a uniform matcaid be represented in a
suitable instance of the crossing spanning tree problent. tHesuniform matroid from Theorem 112
consist ofe elements and have rank< ¢; recall thatt > /e and clearlym < 2¢. We construct a graph
as in Figurd B, with vertices,, - - - , v, corresponding to elements in the uniform matroid. Eachexert
v; is connected to the roetby two vertex-disjoint paths(v;, u;, ) and(v;, w;, ). There are no costs in
this instance. Corresponding to each degree bound (in ifermmatroid) ofo(C') on a subse€' C [¢],
there is a constraint to pick at mgst| + b(C) edges from¥({u; | i € C}). Additionally, there is a
special degree bounof 2¢ — ¢ on the edge-seb’ = | J;_, d(w;); this corresponds to picking a basis in
the uniform matroid.

Figure 3: The crossing spanning tree instance used in thetiod.

Observe that for eache [e], any spanning tree must choose exactly three edges am{@ngst), (u;, v;),
(r,w;), (wg,v;)}, in fact any three edges suffice. Hence every spannind/tieehis graph corresponds
to a subsetX C [e] such that: (I)T" contains both edges if{u;) and one edge from(w;), for each
i € X, and (I) T contains both edges if{w;) and one edge fromi(u;) for eachi € [e] \ X.

From Theoreni 112, for the crossing matroid problem, we olitartwo cases:

Yes instanceThere is a basi®* (i.e. B* C [e], |B*| = t) satisfying all degree bounds. Consider the
spanning tree

T = {(r,u;), (us,v;), (ryw;) | i € B*}U{(r, w; ), (ui,w;), (ryu;) | i € [e] \ B*}.

Since B* satisfies its degree-bounds; satisfies all degree bounds derived from the crossing ndatroi
instance. For the special degree boundi®nnote thal7* N E’| = 2e — | B*| = 2e — t; so this is also
satisfied. Thus there is a spanning tree satisfying all theegebounds.
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No instance Every subseB’ C [e] with |B’| > ¢/2 (i.e. near basis) violates some degree bound by
an additivep = Q(log®m) term, wherec > 0 is a fixed constant. Consider any spanning ffethat
corresponds to subsét C [e] as described above.

1. Suppose thatX| < ¢/2; then we havél N E'| = 2e — |X| > 2e — ¢ + £, i.e. the special degree
bound is violated by/2 > Q(y/e) = Q(log"/? m).

2. Now suppose thafX| > t/2. Then by the guarantee on the no-instaricejolates some degree-
bound derived from the crossing matroid instance by adslitiv

Thus in either case, every spanning tree violates some elégrend by additive = Q(log®m).

By Theoreni 1P, it is hard to distinguish the above cases andbian the corresponding hardness
result for crossing spanning tree, as claimed in Theddem 2. [

3.1 Hardness for Robustk-median

Another interesting consequence of Theoferh 12 is for thastdbmedian problem(]1]. Here we are
given a metric(V,d), m client-sets{S; C V},, and boundk; the goal is to find a sef” C V of k
facilities such that the worst-case connection cost (oNetiant-sets) is minimized, i.e.

. m
min  max d(v, F).
FCV,|F|=k i=1
vES;

Above d(v, F') denotes the shortest distance frento any vertex inF. Anthony et al.[[1] gave an
O(log m+log k)-approximation algorithm for robugtmedian, and showed that it is hard to approximate
better than factor two. At first sight this problem may seemelated to crossing matroid basis. However
using Theoreri 12, we obtain the poly-logarithmic hardnesslt stated in Corollafy 3.

Proof: Recall that in a uniform metric, the distance between evaiy @ vertices is one. In this case
the robust:-median problem can be rephrased as:

min  max |S;\ F|, where{S; C V}, are the client-sets
FCV,|F|=k i=1

The hard instances of crossing matroid basis in Thegrémel thdact for uniform matroids where
every degree upper-bound equaite i.e. there is a ground-sét, degree bounds given Hy2; C V}",,
and rankt; the goal is to find (if possible) a subsetC V' with |I| = ¢ such thall () E;| < 1 for all
i € [m]. TheorenIR showed that it is hard to distinguish the follmvcases: (Yes-case) there is
somel C V with |I| = ¢t andmaxef,, [I N E;| < 1; and (No-case) for every C V with |I| = ¢,
maxe(m) [I N E| > p = Q(logm).

These hard instances naturally correspond to the robusédian problem on uniform metri,
client-sets{ £; C V}*,, and boundk = |V| — t. Itis clear that the robust-median objective is at
most one in the Yes-case, and at leagt the No-case. Thus we obtain a multiplicativdhardness of
approximation for robust-median on uniform metrics. This proves Corollaty 3. [

3.2 Integrality Gap for general MCST

We now present thé + Q(y/n) integrality gap instance for minimum crossing spanning.tréVhile
such gaps instances are easy to obtain if one allevis be super-polynomially large (for example, by
setting a degree bound for each subset of edges), the nigerpraf the example here is that is quite
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small, in factm = O(n). This result is due to Mohit Singh [30], we thank him for Iegius present the
example here.

The graph is the same as the one used for the hardness rdmilteiiex-set igr} (J{v;, u;, w; }§_,
son = 3e+ 1. The edges aré(r,u;) | i € [e]} U{(vi,u;) | i € [e]} and{(r,w;) | i € [e]} U{(vi, w;) |
i € [e]}. See also Figurlg 3. There are no costs in this instance.

The ‘degree bounds’ for the MCST instance are derived froenldiver bound for tha&liscrepancy
problem[10]. From discrepancy theory there exists a collecioh C [e]}5_; of subsets such that,

m%f{HXﬁSﬂ — X NnS;l| >p, foreveryXx C[e].
j:

Above X = [¢] \ X as usual, ang = Q(y/e) = Q(y/n). In other words, for every way of partitioning
le], there is some se&d; such that the partition induced &) has a large imbalance. There ane= 2e
degree bounds, defined as follows. For each [¢] there is a bound ofS;| + [|S;|/2] on each of the
edge-set:%]j = Uiesjé(ui) = {(’I", ’LLZ'), (’LLZ',UZ‘)}Z'GSJ., ande = Uiesjé(wi) = {(T‘, wi), (wi,vi)}iesj.

Consider the fractional solution to the natural LP releodtihat sets each edge to valiél. It is
easily seen that it is indeed a fractional spanning tree atisfigs all the degree bounds.

On the other hand, we claim that any integer solution mudatécsome degree bound by additive
£ — 1. Note that every spanning trgein this graph corresponds to a subsetC [e] such that: (I)T’
contains both edges if{u;) and one edge fromi(w;), for eachi € X, and (I1)T" contains both edges in
§(w;) and one edge fromi(u;) for eachi € X. The number of edges used by tfEé the degree-bounds
(for eachy € [e]) are:

° |TﬂUj| :2|Xﬁ5j|—|—|YﬂSj| = |Sj|+|XﬂSj|,and
o [TNW;|=|XnNS;|+2[XNS;|=19+]X NS,

From the discrepancy instance, it follows thatx;_; || X NS;| =X NS;|| > p; letk be the index
achieving this maximum. Then we have:

— S
max{|T N Uy, |T N W[} = |Sk| + max{|X N Sk|, [X N Sk|} > [Sk| + ’—;’ + g

Thus the degree-bound for eithiég or 1, is violated by additivel — 1.

4 Minimum Crossing Contra-Polymatroid Intersection

In this section we consider theossing contra-polymatroid intersection problgsee Definitioi 4) and
prove Theoreril5. The algorithm (given as Algorithim 1) fosthioblem is based on iteratively relaxing
the following natural LP relaxation.

min E Ce " Te

ecE’

2(SNE)>r(S)—|FnS| VSCFE
2(SNE) >r(S)—|FNS| VSCFE
x(E;NE)<U, VieW
0<z. <1 Ve € E'.
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At a generic iterationf’ C E denotes the set of unfixed elementsC E the set of chosen elements
(recall thatE' denotes the groundset of the instand&),C I the set of remaining degree bounds, and
b (for eachi € W) the residual degree-bound in ti#é constraint. Observe that this LP can indeed
be solved in polynomial time by the Ellipsoid algorithm: theparation oracle for the first two sets of
constraints involve submodular function minimization foe two functionsy;(S) = z(S N E’) + SN

F| —r;(S) (with : = 1,2). The resulting fractional solution can then be convertedrt extreme point
solution of no larger cost, as described in Jaid [18].

Algorithm 1 Algorithm for minimum crossing contra-polymatroid intecsion.
1: Initially, setE' = E, F =0, W =1,b, = b;, foralli € I
2: while £’ # () do
3:  Compute an optimal extreme point solutiohof the LR(E’, F, W);
forall e € E' with 2*(e) = 0 do
E' «+ E'\ {e}
end for
forall e € E’ with 2*(e) > 5 do
F <+ FU{e}; E' + E'\ {e}
b, < b, —a*(e), foralli € W with e € E;
10:  end for
11:  forall i € W with |E; N E'| < [20)] + A —1do
12: W« W\ {i}
13:  end for
14: end while
15: Return the incidence vector &f;

© o NGO A

Note that this algorithm rounds variables of valtige) > % to 1, and hence we loose a factor of two

in the cost and in the degree bounds. Thedrém 5 follows asseqaence if we can show that in each
iteration, either some variable can be rounded, or someredmiscan be dropped.

Lemma 14 If z* € R is an optimal extreme point solution to the above LP for dragsontra-
polymatroid intersection, with < z*(e) < % for all e € E, then there exists € W such that

|[E;NE| <20 +A—-1

Proof: Let7 = {x(E' N S)|z*(SNE'") =r(S)—|SNF|, SC E}fori= 1,2 denote the tight
sets from the first two constraints of the LP. I#t= {x(E’' N E;)|z*(E; N E') = b}, i € W} denote
the tight degree constraints. Sincéis an extreme point solution (atid< z* < 1), there exist linearly
independent tight sets, C 7/, 72 C 7, andB C B’ such thalE’| = |T1| + | T2| + |B].

Sincez* is modular and-;(S) — |S N F| (for i = 1,2) are supermodular 02", it can be assumed
(again, using uncrossing arguments) that eacti7efC) and (73, C) forms a chai. The following

claim goes back to a similiar result for spanning trees dedta [4].
Claim 15 For eachi = 1,2, we have7;| < 2*(E’); additionally if | 7;| = *(E’) thenE’ € T,.

Proof: We prove the claim foi = 1. Let7; = {S; C ... C Si} whereS; C E'. Let Sy = () and
consider an arbitrary pair of subsequent chain elemgnts S, 1, for anyi € {0,1,...,k — 1}. Since

2A family (£, C) is a chain iff for everyX,Y € £, eitherX C Y orY C X.
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xf > 0foralle € E' it follows thatz*(S;+1 \ S;) > 0. Hence, by the integrality of; (S) — [S N F| and
tight constraintsS; andS; 1,

" (Sip1 \ Si) = 2%(Sip1) — 2°(Si) = r1(Siz1) — [Six1 N F| = 7r1(S;) + [SiNn F| > 1.

Summing ovel = 0,...,k — 1 we therefore obtain the inequality:
7 (E) > Zw (Siv1\ Si) >k =|Til,
with equality only if £/ = S;.. [ ]

We now proceed with the proof of Lemrhal14. Suppose (for a adittion) that for alli € W,
|E; N E'| > [2b]] + A. Foreachi € W, defineSp; := > pinp. (1 — 227) = |E' N E;| — 227 (E).
Then we havép, > |E' N E;| — 20, > |E' N E;| — [20;] > A. Hence}_, .y, Sp; > A - |[W].

Foreachte € F/, letr. := |{i € W : e € E;}| < A the maximum element frequency. Note also that
0 < 1— 2z < 1foreache € E'. Now,

dSp = D re-(1-220) <A (1-2a7)

ieW ecE’ ecE’

= A (|E]=227(E)) <A (IF'| - Tl - Ta)

The last inequality uses Claim]15. Note that equality holalsva only if E/ € 73 N 73 (by Claim[15),
which would contradict the linear independence/ptind7;. Thus we have:

> sy <A (E| - |Ti| - |Tl) =A- B[ < A-[W].
iceW

However this contradicts the assumptidsi N E;| > [2b)] + A foralli € W. |

Proof: [Theorem[5] Lemmd14 implies that an improvement is possible in eachtitar of Algorithm(].
Since we only round elements that the LP sets to value at hedfstthe cost guarantee is immediate.
Consider any degree bound: I; let b, denote its residual bound when it is dropped, &Hdresp. E’)
the set of chosen (resp. unfixed) elements at that iterafigain, rounding elements of fractional value
atleast half implie$E; N F'| < |2b;, —2b, | = 2b;—[2b]. Furthermore, the number &f-elements in the
support of the basic solution at the iteration (i) when constraint is dropped is at mogb; | + A — 1.
Thus the number of’;-elements chosen in the final solution is at mdstn F'| + |E; N E'| < 2b; —
[200] + [20)] + A —1=2-b; + A —1. |

Tight Example. We note that the natural iterative relaxation steps (usesigtare insufficient to obtain
a better approximation guarantee. Consider the specialafdke crossing bipartite edge cover problem.
The instance consists of graghwhich is adn-length cycle, with its edges partitioned into two perfect
matchingsE, and E». There is a degree-bound afon each off); and E»; so A = 1. Consider the
fractional solution to the LP-relaxation that assigns eamﬂ% to all edges. It is indeed a fractional
edge-cover since each vertex is covered to extent one. greadounds are clearly satisfied. It is also
an extreme point: note that this is the unique fractionalitsmh minimizing the all-ones cost vector.
For this extreme point solution, the largest edge—valu@ Bnd the support-size (i.€n) of its degree-
constraints is twice their bound (i.e). Thus the iterative relaxation must either pick a halfedgdrop

a degree-constraint that is potentially violated by fatiar.
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5 Minimum Crossing Lattice Polyhedra

Before formally defining the lattice polyhedra problem, weed to introduce some terminology. We
use notation similar td [14]. LetF, <) be a partially ordered set with £ (). We consider dattice
(F, <), where there are two commutative binary operationsetA andjoin Vv, that are defined oall
pairsA, B € F, such that:

ANB < A,B < AVB

Note that our definition is more general than the usual defimiof a lattice, since the joill v B is
not required to be the least common upper boundl @nd B. A functionr : F — Z, is said to be
supermodulaon (F, <, A, V) iff:

r(A)+r(B) < r(AAB)+r(AVv B), forallA,Be F

Given a supermodular function : 7 — Z,, a ground set, a cost functionc : £ — R,, and a
set-valued functiop : F — 2¥ satisfying:

1. Consecutive property:If A < B < C'thenp(A4) N p(C) C p(B),
2. Submodularity: ForallA, B € F, p(AV B)Up(AA B) C p(A) U p(B),

thelattice polyhedron probleris defined as the following integer program:

min{cT-w Z ze > 1(S), VS € F; xG{O,l}E}.

e€p(S)

Definition 16 (Minimum crossing lattice polyhedron) Given a lattice polyhedrodE, (F, <), p,c)
as above, and lower/upper bounds,; };c; and {b; };c; on a collection{E; C E},cs, the goal is to
minimize:

{CT-:U Z xe >1(9), VS eF;, a; <z(E;) <b, Viel; xE{O,l}E}.
e€p(9)

We already mentioned in the introduction that several discoptimization problems fit into the
lattice polyhedron model (see e.g.[29]).
For example, in theontra-polymatroid intersectioproblem with two supermodular rank functions
r, 7o 1 2F — R, the lattice(F, <) consists of two copie§’ andS” for each subse$ C F, with partial
order:
S'<T" and (SCT = S§'<T,8">T1"); VS 1TC2

This is easily seen to satisfy the consecutivity and subraoity properties. The rank functionfor the
lattice polyhedron has(S’) = r1(S) andr(S”) = r9(S), forall S C E.

In the planar min-cutproblem, recall thaf# consists of alls — ¢ paths in the gives, t-planar graph
G. The partial order sets for any pair of- ¢ pathsP, @,

P<@ <« P"“below” Q inthe planar representation

The induced lattice turns out to be consecutive and subraodiihe rank function is the all-ones func-
tion. For more details on the relation between planar miraadtlattice polyhedra, the reader is referred

to [13].
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5.1 Integrality gap for general crossing lattice polyhedra

We first show that there is a bad integrality gap for crossattice polyhedra. Consider the planar
min-cut instance on grap¥ = (V, F) in Figure[4 with vertices;, ¢ € V as shown. Define edge-sets
E; i= {(vi—1,ui 5) }i_y U{(vi, ui )}, for eachi € [k]; here we sety = s andvy, = t. There are only
degree upper-bounds in this instance, namely bound of orwdm{Ei}le. Note also thath = 1 in
this instance, and size of the ground-set |E| = O(k?).

U1,1 U2,1 Up1

U1 V9 Vk—

Ut g Ug f U, k

Figure 4: The integrality gap instance for crossing planar-cuit.

Consider the LP solution that sets = ﬁ for every edge: € E. Itis clearly feasible for the rank
constraints (everg — ¢ path hasc-value one). Furthermore,(E;) = |E;|/(2k) = 1 for all i € [k]; i.e.
the degree constraints are also satisfied. Hence the LRatelaxs feasible.

On the other hand, consider any integral solutiofi E that hag/ N E;| < k — 1 forall i € [k].
It can be checked directly that there isan ¢t path using only edgeg \ I. Thus any integral feasible
solutionJ must havemax;c,; |J N E;| > k, i.e. it violates some degree-bound by at least an additive
k—1=Q(y/n)term.

5.2 Algorithm for crossing lattice polyhedra satisfying manotonicity

Given this bad integrality gap for general crossing latfiwdyhedra, we are interested special cases
that admit good additive approximations. In this sectionoeasider lattice polyhedra that satisfy the
following monotonicity propertyand provide an additive approximation.

(x) S<T = |p(9)] <|p(T)|, forallS,TeF

As noted earlier, this property is satisfied by all matroais] so our results generalize that of Kiraly
et al. [19]. In the rest of this section we prove Theofédm 6. @lg®rithm is again based on iterative
relaxation. At each iteration, we maintain the following:

e [' C F of elements that have been chosen into the solution.

e ' C F'\ F of undecided elements.
e W C [m] of degree bounds.

Initially £’ = E, F = () andWW = [m]. In a generic iteration witl&’, F, W, we solve the following
LP relaxation on variable§z, | e € E'}, calledLPg(E', F,W):
min ¢’

z(p(S)) = r(S) — [F np(S)]; VS eF
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a,—\FﬂE,\ §x(EZ) Sbl—‘FﬂEZ’, VieW
0<z. <1, Ve € E'.

Consider an optimal basic feasible solutioto the above LP relaxation. The algorithm does one of
the following in iteration(E’, F, W), until E' = W = ().

1. Ifthereise € E' with . = 0, thenE’ « E’ \ {e}.

2. Ifthere ise € E' with z. = 1, thenF < F U {e} andE’ + E’\ {e}.
3. Ifthere isi € W with |E; N E’| < 2A, thenW «+ W\ {i}.

We note that this algorithm is a natural extension of the onenfatroids[[19] and the one for spanning
trees[[31]. However the correctness proof (next subsectalies only on properties of lattice polyhedra
and the monotonicity property).

5.3 Proof of Theorem®

Assuming that one of the stejp$ (L)-(3) applies at eachiibexat is clear that we obtain a final solutidti
that has cost at most the optimal value, satisfies the rardtiednts, and violates each degree constraint
by at most an additiveA — 1. We next show that one of J(1{(3) applies at each iteratigh F, ).

Lemma 17 SupposéF, <) is a lattice satisfying the consecutive and submodular @rigs, and con-
dition (x), functionr is supermodular, and is a basic feasible solution t6P5; with 0 < x. < 1 for
all e € E'. Then there exists somes W with |E; N E'| < 2A.

We first establish some standard uncrossing claims (GlalmntiBLemmd 19), before proving this
lemma. We also need some more definitions. Two eleménis € F are said to beomparabldf either
A < B or B < A; they arenon-comparabletherwise. A subsef C F is called achainif £ contains
no pair of non-comparable elements. Note that a chaif oloesnot necessarily correspond to a chain
in 2F (with the usual subset relation) under mapping

Letr/(S) := r(S) — |F N p(S)| for all S € F denote the right hand side of the rank constraints in
the LP solved in a generic iteratigi’, F, W).

Claim 18 7’ is supermodular.

Proof: This follows from the consecutive and submodular propentielattice (F, <). Consider any
A,B € F,and

|[F'0pal+[FNppl = [FN(paUpp)|+[FN0(panps)l
|F' N (parB U pavs)| + |F N (paNpg)l

|F 'O (parB U pavs)| + | F N (pars N pavi)|
= |FNpars|l+ |FNpavsl

>
>

The second inequality follows from submodularity (ile.Ups 2 parsUpavi), and the third inequality
uses the consecutive propepty s Npavs C pa, pp (SinceAANB < A, B < AV B). This combined
with supermodularity of impliesr’(A) + r'(B) <r'(AAB) +71'(AV B) forall A,B € F. |

For any elementl € F, letx(A) € {0, 1}* be the incidence vector @g{ A) C F'. LetT := {A € F |

x(pa) = r'(A)} denote the elements jA that correspond to tight rank constraints in the LP solutior
this iteration. Using the fact that is supermodular (from above), and by standard uncrossmgreents,
we obtain the following.
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Lemma 19 If S, T € F satisfyz(ps) = r'(S) andz(pr) = r'(T), then:
2(p(SAT))=7"(SAT) and z(p(SVT)) =r'(SVT)

Moreover,x(S) + x(T) = x(SAT) + x(SVT).

Proof: We have the following sequence of inequalities:

P (SAT)+7r'(SVT)

IN

z(psat) + z(psvr)

z(psar N psvr) + z(psat U psvr)
z(psar N psvr) + z(ps U pr)
z(ps N pr) + z(ps U pr)

(ps) + x(pr)

r'(S) +r(T)
r"(SAT)+r'(SVT)

IN A

|
=

IN

The first inequality is by feasibility of:, the third inequality is the submodular lattice propertye t
fourth inequality is by consecutive property, and the lasguality is supermodularity of. Thus we
have equality throughout, in particulatp(S VvV T)) = r'(S VvV T) andz(p(S AT)) = r'(S AT). Finally
sincezx, > 0 for alle € E’, we also have((S) + x(T) = x(SAT) + x(SVT). |

Given Claim 18 and Lemnfa 119, we immediately obtain the falhgy(see eg/[29], Chapter 60).

Lemma 20 ([29]) There exists a chaif C 7 such that the vector§x(A) | A € L} are linearly
independent and spafx(B) | B € T }.

We are now ready for the proof of Lemimna 17.

Proof: [Lemma [7] |E’| is the number of non-zero variables in basic feasibleHence there exist
tight linearly independent constraintg: C F corresponding to rank-constraints aBdC W degree-
constraints, such that’| = |£| + |B|. Furthermore, by Lemnfa®0 is achainin F, say consisting of
the elements; < Sy < --- < S;. We claim that,

1p(S;)\ ( I=1p(S )) | > 2, foreachl < j <k (2)

The above condition is clearly true fgr= 1: sincex(p(S1)) = r/(S1) > 1 (it is positive and integer-
valued), and:. < 1forall e € E'. Consider any > 2. By the consecutive property ¢ < S;_1 < S;

(for any1 < t < j—1), we havep(S;) N1p(S1) € p(S;-1)- So,(8))\ (U1 p(S0)) = p(S;)\ p(Sj-1).

We now claim thatp(S;) \ p(S;—1)| > 2, which would prove[(R). Sinc&,_; < S;, assumptior(x)
implies that there is at Ieast one element p(S;) \ p(S;—1). Moreover, if this is the only element, i.e.,

if p(S;)\ p(Sj—1) = {e}, thenp(S;_1) = p(Sj) \ {e} must be true (again by property)). But this
causes a contradiction to the non-integralitycof

ze =2 (p(85)) — x (p(Sj-1)) = 1" (p(S;)) — ' (p(Sj-1)) € Z.

Now, equation[(R) implies thdt = |£| < 'b;—/‘ Hence|E'| < 2|B].
Suppose (for contradiction) thak; N E'| > 2A 4+ 1 foralli € W. Then}", .y |E; N E|
(2A 4+ 1) - [W|. Since each element iR’ appears in at mosA sets{E; },cy, we haveA - |E|

ALY,
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Yiew |[EiNE'| > (2A + 1) - [W]. Thus|E'| > 2|W| > 2|B|, which contradict§ £’| < 2|B| from
above. ]

We are now able to prove the main result of this section:
Proof: [Theorem[] Since the algorithm only picks-elements into the solutiofi, the guarantee on cost
can be easily seen. As argued in Lenimh 17, at each itergkigr, 17) one of the Step$11)4(3) apply.
This implies that the quantity=’| + |W| decreases by 1 in each iteration; hence the algorithm tetesn
after at mostE/| + |I| iterations. To see the guarantee on degree violation, denany: € I and let
(E', F,W) denote the iteration in which it is dropped, i.e. Step (3)li@gphere with|E; N E'| < 2A
(note that there must be such an iteration, since fidally= ()). Since a degree bound is dropped at this
iteration, we havé < z. < 1 for all e € E’ (otherwise one of the earlier step$ (1)[dr (2) applies).

1. Lower Bound:a; — [FNE;| <x(E;NE) < |E'NE;| <2A,i.e.a; <|FNE;|+2A—1.The
final solution contains at least all elementgfinso the degree lower bound @ is violated by at
mMost2A — 1.

2. Upper Bound: The final solution contains at mogt' N E;| + |E' N E;| elements fromE;. If
E; N E’" = (), the upper bound o#; is not violated. Else) < xz(F; N E') < b; — |F N E,|, i.e.
b > 1+ |FNE|, and|FNE;|+|E'NE;]| <b;+2A — 1. Soin either case, the final solution
violates the upper bound df; by at mosA — 1.

Observing that all the stefds] (1}H(3) preserve the featsililithe LP 4, it follows that the final solution
satisfies all rank constraints (siné# = () finally). [

5.4 Algorithm for inclusion-wise ordered lattice polyhedra

We now consider a special case of minimum crossing lattidghpdra where the lattic& is ordered
by inclusion. l.e. the partial order in the lattice is the alssubset relation od”. This class of lattice
polyhedra clearly satisfies the monotonicity property, so Theorem]6 applies. However in this case,
we prove the following stronger guarantee for the settinthwhly upper bounds This improvement
comes from the use of fractional tokens in the counting aentnas in[[4] (for spanning trees) and [19]
(for matroids).

Theorem 21 If the underlying lattice of the minimum crossing latticdyt@dron problem is ordered by
inclusion and only upper bounds are given, then there is gorithm that computes a solution of cost at
most the optimal, where all rank constraints are satisfied] aach degree bound is violated by at most
an additiveA — 1.

The algorithm remains the same as the one above for Theddrémdsder to prove Theorem 21 it
suffices to show the following strengthening of Lenima 17.

Lemma 22 Supposé.F, <) is a lattice satisfying condition
S<T <= psCpr VS,TEeELF,

functionr is supermodular, and is a basic feasible solution t6P|5; with0 < z, < 1forall e € E'.
Then there exists some= W with |E; N E'| < b, + A — 1.
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Proof: The proof is very similiar to the proof of Lemniall4. Clearliyyce F is ordered by inclusion,
the consecutivity and submodularity property are satisfBdcer is a basic feasible solution, there exist
linearly independent tight rank function- and degree bocmustraints/ and3 C W such that

|E'| =|T|+1B].
Using uncrossing arguments, we can assume(fhat) forms a chain
T:{Tl <T2 < ... <Tk}.

Consider an arbitrary palf; < T;.1 in T, wherei € {1,...,k — 1}. Sincex, > 0 for all e € E and
p(T;) C p(Tit1), it follows that0 < z(p(T;+1) \ p(T3)) and therefore, by the integrality of

z(p(Tis1) \ p(T3)) = 2(p(Tix1)) — 2(p(T3)) = r(Lit1) —7(Ti) > 1.

By a similar argumenty(p(77)) > 1. Thus,

Ead

-1
2(E) > x(p(Tk) = > x(p(Tis1) \ p(T3)) + x(p(T1)) > k = |T]|

i=1

with equality only if £ = p(1}). This implies that
|E'| = 2(E) = |T|+ |B| — 2(E) < |B]. ©)

Let E; = E' N E;. To prove the statement of the Lemma, it suffices to show:

Y (BN =) =Y (B —«(E) < A|W|.

ieW ieW

In order to prove this, defindA, = |{i € W | e € E;}| and consider the derivations

DB —=(E) = DD -z =y Acl-x)

iew i€EW ecE! ekl
= A) (I—x)— > (A=A)1—x)
ecll ecE

< AB- ) (A=A - x)

~ eckE

eq{d
= AW =AWN\B[ =Y (A—-A)(1—z.) < AW

eckE

Note that equality can only hold ' = p(T}) andA|W \ B|+ > cp(A = A.)(1 — z.) = 0. The latter
can only be true ifB| = |W| andA, = A for eache € E. But this would imply that

D oxP=ax" = axT,
1€B

wherex® € {0,1}7*F is the incidence vector of € F with x5 = 1iff e € p(S). However, this
contradicts the fact that the constraiffisand5 are linearly independent. [

Acknowledgement: We thank Mohit Singh[[30] for the integrality gap for genek&CST, and Chandra
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