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Abstract

This note presents a unified analysis of the recovery of simple objects from random linear
measurements. When the linear functionals are Gaussian, we show that an s-sparse vector in R

n

can be efficiently recovered from 2s logn measurements with high probability and a rank r, n×n
matrix can be efficiently recovered from r(6n − 5r) measurements with high probability. For
sparse vectors, this is within an additive factor of the best known nonasymptotic bounds. For
low-rank matrices, this matches the best known bounds. We present a parallel analysis for block-
sparse vectors obtaining similarly tight bounds. In the case of sparse and block-sparse signals,
we additionally demonstrate that our bounds are only slightly weakened when the measurement
map is a random sign matrix. Our results are based on analyzing a particular dual point which
certifies optimality conditions of the respective convex programming problem. Our calculations
rely only on standard large deviation inequalities and our analysis is self-contained.

Keywords. ℓ1-norm minimization nuclear-norm minimization block-sparsity duality random
matrices.

1 Introduction

The past decade has witnessed a revolution in convex optimization algorithms for recovering struc-
tured models from highly incomplete information. Work in compressed sensing has shown that
when a vector is sparse, then it can be reconstructed from a number of nonadaptive linear measure-
ments proportional to a logarithmic factor times the signal’s sparsity level [4, 8]. Building on this
work, many have recently demonstrated that if an array of user data has low-rank, then the matrix
can be re-assembled from a sampling of information proportional to the number of parameters
required to specify a low-rank factorization. See [2, 3, 19] for some early references on this topic.

Sometimes, one would like to know precisely how many measurements are needed to recover an
s-sparse vector (a vector with at most s nonzero entries) by ℓ1 minimization or a rank-r matrix by
nuclear-norm minimization. This of course depends on the kind of measurements one is allowed to
take, and can be empirically determined or approximated by means of numerical studies. At the
theoretical level, however, very precise answers—e.g., perfect knowledge of numerical constants—for
models of general interest may be very hard to obtain. For instance, in [4], the authors demonstrated
that about 20s log n randomly selected Fourier coefficients were sufficient to recover an s-sparse
signal, but determining the minimum number that would suffice appears to be a very difficult
question. Likewise, obtaining precise theoretical knowledge about the number of randomly selected
entries required to recover a rank-r matrix by convex programming seems delicate, to say the least.
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For some special and idealized models, however, this is far easier and the purpose of this note is to
make this clear.

In this note, we demonstrate that many bounds concerning Gaussian measurements can be de-
rived via elementary, direct methods using Lagrangian duality. By a careful analysis of a particular
Lagrange multiplier, we are able to prove that 2s log n measurements are sufficient to recover an
s-sparse vector in R

n and r(6n− 5r) measurements are sufficient to recover a rank r, n×n matrix
with high probability. These almost match the best-known, non-asymptotic bounds for sparse vec-
tor reconstruction (2s log(n/s) + 5/4s measurements [5,7]), and match the best known bounds for
low-rank matrix recovery in the nuclear norm (as reported in [5, 16]).

The work [5], cited above, presents a unified view of the convex programming approach to inverse
problems and provides a relatively simple framework to derive exact, robust recovery bounds for a
variety of simple models. As we already mentioned, the authors also provide rather tight bounds on
sparse vector and low-rank matrix recovery in the Gaussian measurement ensemble by using a deep
theorem in functional analysis due to Gordon, which concerns the intersection of random subspaces
with subsets of the sphere [11]. Gordon’s Theorem has also been used to provide sharp estimates of
the phase transitions for the ℓ1 and nuclear norm heuristics in [20] and [16] respectively. Our work
complements these results, demonstrating that the dual multiplier ansatz proposed in [10] can also
yield very tight bounds for many signal recovery problems.

To introduce our results, suppose we are given information about an object x0 ∈ R
n of the

form Φx0 ∈ R
m where Φ is an m× n matrix. When Φ has entries i.i.d. sampled from a Gaussian

distribution with mean 0 and variance 1/m, we call it a Gaussian measurement map. We want
bounds on the number of rows m of Φ to ensure that x0 is the unique minimizer of the problem

minimize ‖x‖A
subject to Φx = Φx0.

(1.1)

Here ‖ · ‖A is a norm with some suitable properties which encourage solutions which conform to
some notion of simplicity. Our first result is the following

Theorem 1.1 Let x0 be an arbitrary s-sparse vector and ‖ · ‖A be the ℓ1 norm. Let β > 1.

• For Gaussian measurement maps Φ with m ≥ 2βs log n+ s, the recovery is exact with proba-
bility at least 1− 2n−f(β,s) where

f(β, s) =

[
√

β

2s
+ β − 1−

√

β

2s

]2

.

• Let ǫ ∈ (0, 1). For binary measurement maps Φ with i.i.d. entries taking on values ±m−1/2

with equal probability, there exist numerical constants c0 and c1 such that if n ≥ exp(c0/ǫ
2)

and m ≥ 2β(1−ǫ)−2s log n+s, the recovery is exact with probability at least 1−n1−β−n−c1βǫ2.

The algebraic expression f(β, s) is positive for all β > 1 and s > 0. For all fixed β > 1, f(β, s) is an
increasing function of s so that mins≥1 f(β, s) = f(β, 1). Moreover, observe that lims→∞ f(β, s) =
β − 1. For binary measurement maps, our result states that for any δ > 0, (2 + δ)s log n entries
suffice to recover an s-sparse signal when n is sufficiently large. We also provide a very similar
result for block-sparse signals, stated in Section 3.2.

Our third result concerns the recovery of a low-rank matrix.
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Theorem 1.2 Let X0 be an arbitrary n1×n2 rank-r-matrix and ‖·‖A be the matrix nuclear norm.
For a Gaussian measurement map Φ with m ≥ βr(3n1 + 3n2 − 5r) for some β > 1, the recovery is
exact with probability at least 1− 2e(1−β)n/8, where n = max(n1, n2).

Our results are 1) nonasymptotic and 2) demonstrate sharp constants for sparse signal and low-
rank matrix recovery, perhaps the two most important cases in the general model reconstruction
framework. Further, our bounds are proven using elementary concepts from convex analysis and
probability theory. In fact, the most elaborate result from probability that we employ concerns the
largest singular value of a Gaussian random matrix, and this is only needed to analyze the rank
minimization problem.

We show in Section 2 that the same construction and analysis can be applied to prove Theorems
1.1 and 1.2. The method, however, handles a variety of complexity regularizers including the ℓ1/ℓ2-
norm as well. When specialized in Section 3, we demonstrate sharp constants for exact model
reconstruction in all three of these cases (ℓ1, ℓ1/ℓ2 and nuclear norms). We conclude the paper
with a brief discussion of how to extend these results to other measurement ensembles. Indeed, with
very minor modifications, we can achieve almost the same constants for subgaussian measurement
ensembles in some settings such as sign matrices as reflected by the second part of Theorem 1.1.

2 Dual Multipliers and Decomposable Regularizers

Definition 2.1 The dual norm is defined as

‖x‖∗A = sup {〈x,a〉 : ‖a‖A ≤ 1} . (2.1)

A consequence of the definition is the well-known and useful dual-norm inequality

|〈x,y〉| ≤ ‖x‖A‖y‖∗A. (2.2)

The supremum in (2.1) is always achieved and thus the dual norm inequality (2.2) is tight in the
sense that for any x, there is a corresponding y that achieves equality. Additionally, it is clear from
the definition that the subdifferential of ‖ · ‖A at x is {v : 〈v,x〉 = ‖x‖A, ‖v‖∗A ≤ 1}.

2.1 Decomposable Norms

We will restrict our attention to norms whose subdifferential has very special structure effectively
penalizing “complex” solutions. In a similar spirit to [15], the following definition summarizes the
necessary properties of a good complexity regularizer:

Definition 2.2 A norm ‖ · ‖A is decomposable at x0 if there is a subspace T ⊂ R
n and a vector

e ∈ T such that the subdifferential at x0 has the form

∂‖x0‖A = {z ∈ R
n : PT (z) = e and ‖PT⊥(z)‖∗A ≤ 1}

and for any w ∈ T⊥, we have
‖w‖A = sup

v∈T⊥

‖v‖∗A≤1

〈v,w〉 .

Above, PT (resp. PT⊥) is the orthogonal projection onto T (resp. orthogonal complement of T ).
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When a norm is decomposable at x0, the norm essentially penalizes elements in T⊥ indepen-
dently from x0. The most common decomposable regularizer is the ℓ1 norm on R

n. In this case,
if x0 is an s-sparse vector, then T denotes the set of coordinates where x0 is nonzero and T⊥ the
complement of T in {1, . . . , n}. We denote by x0,T the restriction of x0 to T and by sgn(x0,T ) the
vector with ±1 entries depending upon the signs of those of x0,T . The dual norm to the ℓ1 norm
is the ℓ∞ norm. The subdifferential of the ℓ1 norm at x0 is given by

∂‖x0‖1 = {z ∈ R
n : PT (z) = sgn(x0,T ) and ‖PT⊥(z)‖∞ ≤ 1} .

That is, z is equal to the sign of x0 on T and has entries with magnitudes bounded above by 1 on
the orthogonal complement. As we will discuss in Section 3, the ℓ1/ℓ2 norm and the matrix nuclear
norm are also decomposable. The following Lemma gives conditions under which x0 is the unique
minimizer of (1.1).

Lemma 2.3 Suppose that Φ is injective on the subspace T and that there exists a vector y in the
image of Φ∗ (the adjoint of Φ) obeying

1. PT (y) = e, where e is as in Definition 2.2,

2. ‖PT⊥(y)‖∗A < 1.

Then x0 is the unique minimizer of (1.1).

Proof The proof is an adaptation from a standard argument. Consider any perturbation x0 + h

where Φh = 0. Since the norm is decomposable, there exists a v ∈ T⊥ such that ‖v‖∗A ≤ 1 and
〈v,PT⊥(h)〉 = ‖PT⊥(h)‖A. Moreover, we have that e+ v is a subgradient of ‖ · ‖A at x0. Hence,

‖x0 + h‖A ≥ ‖x0‖A + 〈e+ v,h〉
= ‖x0‖A + 〈e+ v − y,h〉
= ‖x0‖A + 〈v − PT⊥(y),PT⊥(h)〉
≥ ‖x0‖A + (1− ‖PT⊥(y)‖∗A)‖PT⊥(h)‖A .

Since ‖PT⊥(y)‖∗A is strictly less than one, this last inequality holds strictly unless PT⊥(h) = 0.
But if PT⊥(h) = 0, then PT (h) must also be zero because we have assumed that Φ is injective on
T . This means that h is zero proving that x0 is the unique minimizer of (1.1).

2.2 Constructing a Dual Multiplier

To construct a y satisfying the conditions of Lemma 2.3, we follow the program developed in [10]
and followed by many researchers in the compressed sensing literature. Namely, we choose the least
squares solution of PT (Φ

∗q) = e, and then prove that y := Φ∗q has dual norm strictly less than 1
on T⊥.

Let ΦT and ΦT⊥ denote the restriction of Φ to T and T⊥ respectively. Let dT denote the
dimension of the space T . Observe that if ΦT is injective, then

q = ΦT (Φ
∗
TΦT )

−1e, (2.3)

PT⊥(y) = Φ∗
T⊥q. (2.4)
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The key fact we use to derive our bounds in this note is that, when Φ is a Gaussian map, q and Φ∗
T⊥

are independent, no matter what T is. This follows from the isotropy of the Gaussian ensemble.
This property is also true in the sparse-signal recovery setting whenever the columns of Φ are
independent. Another way to express the same idea is that given the value of q, one can infer the
distribution of PT⊥(y) with no knowledge of the values of the matrix ΦT .

We assume in the remainder of this section that Φ is a Gaussian map. Conditioned on q,
PT⊥(y) is distributed as

ιT⊥g,

where ιT⊥ is an isometry from R
n−dT onto T⊥ and g ∼ N (0,

‖q‖2
2

m I) (here and in the sequel, ‖ · ‖2
is the ℓ2 norm). Also, ΦT is injective as long as m ≥ dT and to bound the probability that the
optimization problem (1.1) recovers x0, we therefore only need to bound

P[‖PT⊥(y)‖∗A ≥ 1] ≤ P[‖PT⊥(y)‖∗A ≥ 1 | ‖q‖2 ≤ τ ] + P[‖q‖2 ≥ τ ] (2.5)

for some value of τ greater than 0. The first term in the upper bound will be analyzed on a case-
by-case basis in Section 3. As we have remarked, once we have conditioned on q, this term just
requires us to analyze the large deviations of Gaussian random variables in the dual norm. What
is more surprising is that the second term can be tightly upper bounded in a generic fashion for
the Gaussian ensemble, independent of the regularizer under study.

To see this, observe that q has squared norm

‖q‖22 = 〈e, (Φ∗
TΦT )

−1e〉 .
By assumption, (Φ∗

TΦT )
−1 is a dT × dT inverse Wishart matrix with m degrees of freedom and

covariance m−1IdT . Since the Gaussian distribution is isotropic, we have that ‖q‖22 is distributed
as ‖e‖22mB11, where B11 is the first entry in the first column of an inverse Wishart matrix with m
degrees of freedom and covariance IdT .

To estimate the large deviations of ‖q‖2, it thus suffices to understand the large deviations of
B11. A classical result in statistics states that B11 is distributed as an inverse chi-squared random
variable with m− dT +1 degrees of freedom (see, [14, page 72] for example)1. We can thus lean on
tail bounds for the chi-squared distribution to control the magnitude of B11. For each t > 0,

P

[

‖q‖2 ≥
√

m

m− dT + 1− t
‖e‖2

]

= P[z ≤ m− dT + 1− t]

≤ exp

(

− t2

4(m− dT + 1)

)

.

(2.6)

Here z is a chi-squared random variable with m−dT +1 degrees of freedom, and the final inequality
follows from the standard tail bound for chi-square random variables (see, for example, [13]).

To summarize, we have proven the following

Proposition 2.4 Let ‖ · ‖A be a decomposable regularizer at x0 and let t > 0. Let q and y be
defined as in (2.3) and (2.4). Then x0 is the unique optimal solution of (1.1) with probability at
least

1− P

[

‖PT⊥(y)‖∗A ≥ 1

∣

∣

∣

∣

‖q‖2 ≤
√

m
m−dT+1−t‖e‖2

]

− exp
(

− t2/4
m−dT+1

)

. (2.7)

1The reader not familiar with this result can verify with linear algebra that 1/B11 is equal to the squared distance

between the first column of ΦT and the linear space spanned by all the others. This squared distance is a chi-squared

random variable with m− dT + 1 degrees of freedom.
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3 Bounds

Using Proposition 2.4, we can now derive non-asymptotic bounds for exact recovery of sparse
vectors, block-sparse vectors, and low-rank matrices in a unified fashion.

3.1 Compressed Sensing in the Gaussian Ensemble

Let x0 be an s-sparse vector in R
n. In this case, T denotes the set of coordinates where x0 is

nonzero and T⊥ the complement of T in {1, . . . , n}. As previously discussed, the dual norm to the
ℓ1 norm is the ℓ∞ norm and the subdifferential of the ℓ1 norm at x0 is given by

∂‖x0‖1 = {z ∈ R
n : PT (z) = sgn(x0,T ) and ‖PT⊥(z)‖∞ ≤ 1} .

Here, dim(T ) = s, the sparsity of x0, and e = sgn(x0) so that ‖e‖2 =
√
s.

For m ≥ s, set q and y as in (2.3) and (2.4). To apply Proposition 2.4, we only need to
estimate the probability that ‖PT⊥(y)‖∞ exceeds 1 conditioned on the event that ‖q‖2 is bounded.
Conditioned on q, the components of PT⊥(y) in T⊥ are i.i.d. N (0, ‖q‖22/m). Hence, for any τ > 0,
the union bound gives

P [‖PT⊥(y)‖∞ ≥ 1 | ‖q‖2 ≤ τ ] ≤ (n− s)P[|z| ≥ √
m/τ ]

≤ n exp
(

− m

2τ2

)

, (3.1)

where z ∼ N (0, 1). We have made use above of the elementary inequality P(|z| ≥ t) ≤ e−t2/2 which
holds for all t ≥ 0. For β > 1, select

τ =

√

ms

m− s+ 1− t
with t = 2β log(n)

(
√

1 +
2s(β − 1)

β
− 1

)

.

Here, t is chosen to make the two exponential terms in our probability equal to each other. We can
put all of the parameters together and plug (3.1) into (2.7). For m = 2βs log n+ s, β > 1, a bit of
algebra gives the first part of Theorem 1.1.

3.2 Block-Sparsity in the Gaussian Ensemble

In simultaneous sparse estimation, signals are block-sparse in the sense that Rn can be decomposed
into a decomposition of subspaces

R
n =

M
⊕

b=1

Vb (3.2)

with each Vb having dimension B [9, 17]. We assume that signals of interest are only nonzero on a
few of the Vb’s and search for a solution which minimizes the norm

‖x‖ℓ1/ℓ2 =

M
∑

b=1

‖xb‖2,

where xb denotes the projection of x onto Vb.
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Suppose x0 is block-sparse with k active blocks. T here denotes the coordinates associated with
the groups where x0 has nonzero energy. T⊥ is equal to all of the coordinates of the groups where
x0 = 0. The dual norm to the ℓ1/ℓ2 norm is the ℓ∞/ℓ2 norm

‖x‖ℓ∞/ℓ2 = max
1≤b≤M

‖xb‖2 .

The subdifferential of the ℓ1/ℓ2 norm at x0 is given by

∂‖x0‖ℓ1/ℓ2 =







z ∈ R
n : PT (z) =

∑

b∩T 6=∅

x0,b

‖x0,b‖2
and ‖PT⊥(z)‖ℓ∞/ℓ2 ≤ 1







.

Much like in the ℓ1 case, T denotes the span of the set of active subspaces and T⊥ is the set of
inactive subspaces. In this formulation, dim(T ) = kB and

e =
∑

b∩T 6=∅

x0,b

‖x0,b‖2
.

Note also that ‖e‖2 =
√
k.

With the parameters we have just defined, we can define q and y by (2.3) and (2.4). If we again
condition on ‖q‖2, the components of y on T⊥ are i.i.d. N (0, ‖q‖22/m). Using the union bound, we
have

P
[

‖PT⊥(y)‖ℓ∞/ℓ2 ≥ 1 | ‖q‖2 ≤ τ
]

≤
∑

b∈T⊥

P [‖yb‖2 ≥ 1 | ‖q‖2 ≤ τ ] . (3.3)

Conditioned on q, m
‖q‖2

2

‖yb‖22 is identically distributed as a chi-squared random variable with B

degrees of freedom. Letting u =
√
χB , the Borell inequality [21, Proposition 5.34] gives

P(u ≥ Eu+ t) ≤ e−t2/2.

Since Eu ≤
√
B, we have P(u ≥

√
B + t) ≤ e−t2/2. Using this inequality, with

τ =

√

mk

m− kB + 1− t
,

we have that the probability of failure is upper bounded by

M exp



−1
2

[
√

m− kB + 1− t

k
−

√
B

]2


+ exp

(

− t2/4

m− kB + 1

)

. (3.4)

Choosing m ≥ (1 + β)k(
√
B +

√
2 logM)2 + kB and setting t = (β/2)k(

√
B +

√
2 logM)2, we can

then upper bound (3.4) by

M exp

(

−1

2

[

√

1 + β/2(
√
B +

√

2 logM)−
√
B
]2
)

+ exp

(

− β2

16(1 + β)
k(
√
B +

√

2 logM)2
)

≤ M−β/4 +M−β2/(8+8β) .

This proves the following
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Theorem 3.1 Let x0 be a block-sparse signal with M blocks of size B and k active blocks under
the decomposition (3.2). Let ‖ · ‖A be the ℓ1/ℓ2 norm. For Gaussian measurement maps Φ with

m > (1 + β)k(
√
B +

√

2 logM )2 + kB

the recovery is exact with probability at least M−β/4 +M−β2/(8+8β) .

The bound on m obtained by this theorem is identical to that of [18], and is, to our knowledge, the
tightest known non-asymptotic bound for block-sparse signals. For example, when the block size
B is much greater than logM , the results asserts that roughly 2kB measurements are sufficient for
the convex programming to be exact. Since there are kB degrees of freedom, one can see that this
is quite tight.

Note that the theorem gives a recovery result for sparse vectors by setting B = 1, k = s,
and M = n. In this case, Theorem 3.1 gives a slightly looser bound and requires a slightly more
complicated argument as compared to Theorem 1.1. However, Theorem 3.1 provides bounds for
more general types of signals, and we note that the same analysis would handle other ℓ1/ℓp block

regularization schemes defined as ‖x‖ℓ1/ℓp =
∑M

b=1 ‖xb‖p with p ∈ [2,∞]. Indeed, the ℓ1/ℓp norm
is decomposable and its dual is the ℓ∞/ℓq norm with 1/p + 1/q = 1. The only adjustment would
consist in bounding ‖yb‖q; up to a scaling factor, this is a sum of independent standard normals
and our analysis goes through. We omit the details.

3.3 Low-Rank Matrix Recovery in the Gaussian Ensemble

To apply our results to recovering low-rank matrices, we need a little bit more notation, but the
argument is principally the same. Let X0 be an n1 × n2 matrix of rank r with singular value
decomposition UΣV ∗. Without loss of generality, impose the conventions n1 ≤ n2, Σ is r × r, U
is n1 × r, V is n2 × r.

In the low-rank matrix reconstruction problem, the subspace T is the set of matrices of the form
UY ∗+XV ∗ where X and Y are arbitrary n1× r and n2× r matrices. The span of matrices of the
form UY ∗ has dimension n1r, the span of XV ∗ has dimension n2r, and the intersection of these
two spans has dimension r2. Hence, we have dT = dim(T ) = r(n1 + n2 − r). T⊥ is the subspace
of matrices spanned by the family (xy∗), where x (respectively y) is any vector orthogonal to U

(respectively V ). The spectral norm denoted by ‖·‖ is dual to the nuclear norm. The subdifferential
of the nuclear norm at X0 is given by

∂‖X0‖∗ = {Z : PT (Z) = UV ∗ and ‖PT⊥(Z)‖ ≤ 1} .

Note that the Euclidean norm of UV ∗ is equal to
√
r.

For matrices, a Gaussian measurement map takes the form of a linear operator whose ith
component is given by

[Φ(Z)]i = Tr(Φ∗
iZ) .

Above, Φi is an n1 × n2 random matrix with i.i.d., zero-mean Gaussian entries with variance 1/m.
This is equivalent to defining Φ as an m× (n1n2) dimensional matrix acting on vec(Z), the vector
composed of the columns of Z stacked on top of one another. In this case, the dual multiplier is a
matrix taking the form

Y = Φ∗ΦT (Φ
∗
TΦT )

−1(UV ∗) .

8



Here, ΦT is the restriction of Φ to the subspace T . Concretely, one could define a basis for T and
write out ΦT as anm×dT dimensional matrix. Note that none of the abstract setup from Section 2.2
changes for the matrix recovery problem: Y exists as soon as m ≥ dim(T ) = r(n1 + n2 − r) and
PT (Y ) = UV ∗ as desired. We need only guarantee that ‖PT⊥(Y )‖ < 1. We still have that

PT⊥(Y ) =

m
∑

i=1

qiPT⊥(Ai)

where q = ΦT (Φ
∗
TΦT )

−1(UV ∗) is given by (2.3) and, importantly, q and PT⊥(Ai) are independent
for all i.

With such a definition, we can again straightforwardly apply (2.7) once we obtain an estimate of
‖PT⊥(Y )‖ conditioned on q. Observe that PT⊥(Y ) = PU⊥Y PV ⊥ , where PU⊥ (respectively PV ⊥ is
a projection matrix onto the orthogonal complement of U (respectively V ). It follows that PT⊥(Y )
is identically distributed to a rotation of an (n1 − r) × (n2 − r) Gaussian random matrix whose
entries have mean zero and variance ‖q‖22/m. Using the Davidson-Szarek concentration inequality
for the extreme singular values for Gaussian random matrices [6], we have

P [‖PT⊥(Y )‖ > 1 | ‖q‖2 ≤ τ ] ≤ exp

(

−1
2

(√
m
τ −√

n1 − r −√
n2 − r

)2
)

.

We are again in a position ready to prove (2.7). To guarantee matrix recovery, with τ =
√

mr
m−dT+1−t , we thus need

√

m− dT + 1− t

r
−√

n1 − r −√
n2 − r ≥ 0 .

This occurs if

m ≥ r(n1 + n2 − r) +
(

√

r(n1 − r) +
√

r(n2 − r)
)2

+ t− 1

But since (a+ b)2 ≤ 2(a2 + b2), we can upper bound

(

√

r(n1 − r) +
√

r(n2 − r)
)2

≤ 2r(n1 + n2 − 2r) .

Setting t = (
√
2r + 1− 1)(β − 1)(3n1 + 3n2 − 5r) in (2.7) then yields Theorem 1.2.

4 Discussion

We note that with minor modifications, the results for sparse and block-sparse signals can be
extended to measurement matrices whose entries are i.i.d. subgaussian random variables. In this
case, we can no longer use the theory of inverse Wishart matrices, but ΦT⊥ and ΦT are still
independent, and we can bound the norm of q using bounds on the smallest singular value of
rectangular matrices. For example, Theorem 39 in [21] asserts that there exist positive constants θ
and γ such that the smallest singular value obeys the deviation inequality

P

[

σmin(ΦT ) ≤ 1− θ
√

dT /m− t
]

≤ e−γmt2 (4.1)
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for t > 0.
We use this concentration inequality to prove the second part of Theorem 1.1. Since ‖ΦT (Φ

∗
TΦT )

−1‖ =
σ−1
min(ΦT ), we have that

‖q‖2 ≤
√
s

1− θ
√

s/m− t
:= ρ

with probability at least 1−e−γmt2 . This is the analog of (2.6). Now whenever ‖q‖2 ≤ ρ, Hoeffding’s
inequality [12] implies that (3.1) still holds. Thus, we are in the same position as before, and obtain

P [‖PT⊥(y)‖∞ ≥ 1] ≤ 2(n − s) exp
(

− m

2ρ2

)

+ exp(−γmt2).

Setting t = ǫ/2 proves the second part of Theorem 1.1.
For block-sparse signals, a similar argument would apply. The only caveat is that we would

need the following concentration bound which follows from Lemma 5.2 in [1]: Let M be an d1× d2
dimensional matrix with i.i.d. entries taking on values ±1 with equal probability. Let v be a fixed
vector in R

d2 . Then
P [‖Mv‖2 ≥ 1] ≤ exp

(

−‖v‖−2

2
−d1

4

)

provided ‖v‖ ≤ √
d1. Plugging this bound into (3.3) gives an analogous threshold for block-sparse

signals in the Bernoulli model:

Theorem 4.1 Let x0 be a block-sparse signal with M blocks and k active blocks under the decom-
position (3.2). Let ‖ · ‖A be the ℓ1/ℓ2 norm. Let β > 1 and ǫ ∈ (0, 1). For binary measurement
maps Φ with i.i.d. entries taking on values ±m−1/2 with equal probability, there exist numerical
constants c0 and c1 such that if M ≥ exp(c0/ǫ

2) and m ≥ 4kβ(1 − ǫ)−2 logM + 2kB, the recovery
is exact with probability at least 1−M1−β −M−c1βǫ2.

For low-rank matrix recovery, the situation is more delicate. With general subgaussian mea-
surement matrices, we no longer have independence between the action on the subspaces T and
T⊥ unless the singular vectors somehow align serendipitously with the coordinate axes. In this
case, it unfortunately appears that we need to resort to more complicated arguments and will likely
be unable to attain such small constants through the dual multiplier without a conceptually new
argument.
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