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Abstract This paper is about the minimization of Lipschitz-continuous and strongly
convex functions over integer points in polytopes. Our results are related to the rate of
convergence of a black-box algorithm that iteratively solves special quadratic integer
problems with a constant approximation factor. Despite the generality of the under-
lying problem, we prove that we can find efficiently, with respect to our assumptions
regarding the encoding of the problem, a feasible solution whose objective function
value is close to the optimal value. We also show that this proximity result is the best
possible up to a factor polynomial in the encoding length of the problem.
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1 Introduction and motivation

This paper deals with discrete optimization problems, where the integer points are
required to satisfy linear inequalities, and the objective is to minimize a convex func-
tion f possessing some additional properties. Throughout the paper, P ⊂ R

n denotes
a polytope and F = P ∩ Z

n the feasible domain. With this notation, our underlying
problem can be formulated as

min
{

f (x) s.t. x ∈ F}
. (1)

For x ∈ R
n, ‖x‖ denotes its l2-norm. Let us discuss our requirements regarding the

convex function f : R
n �→ R. We assume that there exist universal scalars 0 ≤ l ≤ L ,

and a family of maps di : F �→ R for i = 1, . . . , n such that for every x, y ∈ F ,

n∑

i=1

di (y)(xi − yi ) + l

2
‖x − y‖2 ≤ f (x) − f (y)

≤
n∑

i=1

di (y)(xi − yi ) + L

2
‖x − y‖2. (2)

Since F is assumed to be a finite set of points, this condition holds for several families
of convex functions f , such as, for example, the set of all strictly convex functions
from R

n to R. Another important family that satisfies the above condition for all
x, y ∈ F is the set of strongly convex functions with Lipschitz-continuous gradient.
In that case, any function f of this family satisfies two additional properties:

– at any point y ∈ R
n the gradient ∇ f (y) ∈ Rn exists, and

– condition (2) holds for all x, y ∈ R
n (and not only for all x, y ∈ F).

In order to keep the exposition as simple as possible, and to avoid terminological
confusions, we will simply assume from now on that f is strongly convex and has
Lipschitz-continuous gradient. Hence, it is always assumed that the function f is
encoded by means of a first-order oracle that returns, for x ∈ R

n , both f (x) and
∇ f (x). Finally, we assume the existence of universal scalars 0 ≤ l ≤ L such that for
all x, y ∈ R

n ,

∇ f (y)T (x − y) + l

2
‖x − y‖2 ≤ f (x) − f (y)

≤ ∇ f (y)T (x − y) + L

2
‖x − y‖2. (3)

Of course, problem (1) is intrinsically difficult since it contains as a special case
the problem of optimizing linear functions over integer points in polyhedra. (This
is the case when l = L = 0 and f (x) = cT x). Therefore, we assume that we have
access to an oracle to solve “easier” subproblems over the feasible domain. The result-
ing algorithms are some representatives of a large class of algorithmic schemes that
researchers in convex optimization have studied in the past. One of them is similar to
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Strongly convex integer minimization 307

the Gradient Method [13], and another one to Kelley’s cutting plane algorithm [10]
and its extensions to the mixed integer setting.

In order to make this precise, let us define a parametric family of functions

gy,τ (x) = ∇ f (y)T (x − y) + τ

2
‖x − y‖2,

with varying τ ≥ 0 and y ∈ Z
n .

We study first the following black-box algorithm, which produces a sequence of N
feasible points. Each point is the approximate minimizer of a quadratic subproblem
associated with the gradient direction from the previous iterate. Bounds on appropriate
values of N will be established later in this paper.

More precisely, at each step we are given a feasible point xk and determine a new
point xk+1 that solves an auxiliary optimization problem

wk := min
{
gxk ,τ (x) s.t. x ∈ F}

(4)

within an approximation factor (1 − α) with some α ∈ [0, 1). This means that
gxk ,τ (xk+1) ≤ (1 − α)wk . Note that wk ≤ 0 because gxk ,τ (xk) = 0 and xk ∈ F .
Thus, imposing α = 0 requires us to solve the problem (4) exactly.

Iterative algorithm
Input A polytope P ⊂ R

n ,
a function f : R

n �→ R

- satisfying (3) for all x, y ∈ F = P ∩ Z
n ,

- and presented by a first-order oracle;
N ∈ Z+, 0 ≤ α < 1x0 ∈ F , τ ≥ 0

For k = 0, . . . , N − 1, perform the following steps:
1. Determine xk+1 ∈ F subject to gxk ,τ (xk+1) ≤ (1 − α)wk .

2. If xk+1 ∈ {x0, . . . , xk}, then Stop.
Return x̂ ∈ {x0, x1, . . . , x N } such that f (x̂) is minimal.

(5)

In Sect. 3, we analyze the number of iterations that our algorithm requires to arrive
at a feasible point not too far away from an optimal solution. In Sect. 4, we elaborate
on the complexity of our algorithm, pointing out a few situations where the condition
gxk ,τ (xk+1) ≤ (1 − α)wk can be realized efficiently. We also discuss whether our
algorithm is the best possible strategy with respect to a suitable complexity measure
introduced in Sect. 4.

It is well-known that the problems that we want to deal with are in general NP-hard.
We derive in Sect. 5 a result of this flavor, showing that black-box methods cannot
solve in general our problem exactly in polynomial time. Interestingly, our proof is
independent of the P �= NP conjecture as it relies solely on purely combinatorial
considerations.

An inherent issue for our algorithm is that it might stop prematurely because it
could generate for xk+1 a previously visited point, a phenomenon that we term as
cycling. We introduce in Sect. 6 an alternative oracle that avoids this effect, and we
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308 M. Baes et al.

discuss a few problem classes where this oracle can be implemented in polynomial
time.

2 Related literature and main results

The Algorithm (5) can be improved using the ideas of Kelley’s cutting plane method
[10]. Recall that Kelley’s original setting was to study a set S = {x ∈ R

n s.t. f (x) ≤
0} ⊆ R

n which is assumed to be compact and where f : R
n �→ R is convex. The

objective is to solve the continuous optimization problem

min{cT x s.t. x ∈ S},

where f is encoded by a first-order oracle returning, for x ∈ R
n , both f (x) and ∇ f (x).

We further assume that ∇ f (x) is bounded by a constant for all x . The assumption of
f being convex implies that

∇ f (y)T (x − y) ≤ f (x) − f (y) for all x, y ∈ R
n .

Kelley’s cutting plane scheme consists of the following steps:

– Let S0 be a polytope containing S and let x1 ∈ S0.
– For k ≥ 1, define Sk := Sk−1 ∩ {x ∈ R

n s.t. f (xk) + ∇ f (xk)T (x − xk) ≤ 0}.
– Determine

xk+1 = arg min
{

cT x s.t. x ∈ Sk

}
.

If f is Lipschitz continuous, one can easily establish the existence of a subsequence
of {xk : k ≥ 0} that converges to an optimal solution in S.

Kelly’s cutting plane method has been adapted and extended to general mixed
integer convex optimization problems of the form (6) introduced below, see [4,15].

min{ f (x, y) s.t. g(x, y) ≤ 0, x ∈ X, y ∈ Y }, (6)

where f : R
n+d �→ R is a real valued convex function, g : R

n+d �→ R
p is a vec-

tor of real valued convex functions gk : R
n+d �→ R for k = 1, . . . , p, X := {x ∈

Z
n s.t. Ax ≤ a} is a set of all integer points lying in a polyhedron and Y := {y ∈

R
d s.t. By ≤ b} is a polyhedron.
An intuitive standard method to attack (6) is to solve the underlying continuous con-

vex subproblem obtained by neglecting the integrality conditions. This leads to a valid
lower bound on the optimal objective function value. In order to improve this bound,
the feasible domain of the integer variables is iteratively partitioned into smaller sub-
domains, where the corresponding continuous convex relaxations are solved over each
subdomain, separately. The successive refinement of the domain is typically handled
within a branch and bound framework. Similar to the mixed integer linear case, such
branch and bound algorithms are often combined with cutting plane techniques (e.g.,
see [14]).
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Strongly convex integer minimization 309

Further approaches originating from Kelly’s cutting plane method are the Gen-
eralized Bender Decomposition method [6] and the outer-approximation algorithms
introduced in [4] and later refined and improved, e.g., cf. [3,5]. Both approaches work
in two phases. The outer phase consists in manipulating the integer variables only.
In each inner iteration a nonlinear subproblem in continuous variables is solved to
optimality for the given fixing of the integer variables. The inner optimal solution is
used to construct a relaxation in form of a second order problem to determine a better
fixing of the integer variables. They differ in the way the second order problem is con-
structed. Whereas Generalized Bender Decomposition methods use dual information,
the outer-approximation approaches construct a linear mixed integer relaxation for the
primal problem.

The approaches mentioned above have in common that they may result in a com-
plete enumeration of the solution set of the integer variables. Hence, no results are
known regarding the number of iterations required to converge. This is theoretically
unsatisfactory and motivates us to study the iterative algorithm in the pure integer set-
ting and under the additional assumption that f is strongly convex and has a Lipschitz
continuous gradient.

Before stating our main results let us introduce the following notation that is used
for the remainder of the paper.

Definition 1 For a compact set S ⊆ R
n , we denote by δS the diameter of S:

δS := max{‖y − x‖ s.t. x, y ∈ S}.

Our first main result is presented in Sect. 3 and shows that after a polynomial num-
ber of steps of the iterative algorithm (5) we detect a point with additive integrality
gap only depending on α, L , l and δF .

Theorem 1 Let f : R
n �→ R satisfy Formula (3) for all x, y ∈ F . Let x∗ =

arg min{ f (x) s.t. x ∈ F}, τ ∈ [l, L], η > 0 and

N :=
⌈

1

ln(1/α)
ln

(
max

{
1,

f (x0) − f (x∗)
η

})⌉
,

if α > 0. Otherwise define N := 1. For the point x̂ generated by Algorithm (5) after
N iterations, we have that

f (x̂) − f (x∗) ≤ L − l

2(1 − α)
δ2
F + η.

Let us discuss here a very special case: set l = 0, α = 0, η = L/2, and assume that
the continuous minimizer x∗

c of the function f lies in the polytope P . In this extremely
special case, we have for all x ∈ F :

f (x) − f (x∗
c ) ≤ ∇ f (x∗

c )T (x − x∗
c ) + L

2
‖x − x∗

c ‖2 = L

2
‖x − x∗

c ‖2 ≤ L

2
δ2

P . (7)
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310 M. Baes et al.

Hence, in this special case Theorem 1 is trivially true with N = 0. In general though,
the result does not seem obvious.

Theorem 1 gives rise to a series of complexity results that we will discuss in Sect. 4.
Our second main result is an intractability result presented in Sect. 5. It states that in
general the iterative algorithm (5) will require an exponential number of steps N to
arrive at an optimal solution. More precisely:

Theorem 2 Let F = P ∩Z
n be presented by an oracle for solving quadratic minimi-

zation problems of the type min cT x + τ
2 ‖x‖2 with varying c ∈ Q

n and τ ∈ Q+. Let x∗
denote an optimal solution for the optimization problem (1). There is no polynomial
time algorithm that can produce for every F = P ∩ Z

n and every convex function f
satisfying (3) a feasible point x̄ such that f (x̄) − f (x∗) ≤ n2 − n.

In Sect. 6 we put additional structure on F and f so that the iterative algorithm
runs in polynomial time in some very special cases.

Theorem 3 Let f : R
n �→ R

– satisfy Formula (3) for all x, y ∈ F ,
– be integral, i.e., for x ∈ Z

n, both f (x) ∈ Z and ∇ f (x) ∈ Z
n,

– be {0, 1}-injective, i.e., f (x) �= f (y) for all x �= y ∈ {0, 1}n,
– be encoded in binary.

Let l, L and ∇ f be encoded in unary. Suppose that c = L−l
2 n2 is a constant.

(a) If F ⊆ {0, 1}n is the set of all feasible solutions to a vectorial matroid, then there
is a polynomial time algorithm to compute an optimal solution of Problem (1).

(b) If F ⊆ {0, 1}n is the set of all feasible solutions to the intersection of two vecto-
rial matroids, then there is a randomized polynomial time algorithm to compute
an optimal solution of Problem (1).

3 Analysis of the iterative algorithm

Assume that we are equipped with an oracle that, for any c ∈ R
n , returns an (1 − α)-

approximate solution x ∈ F to the minimization problem

min

{
τ

2

n∑

i=1

x2
i + cT x s.t. x + xk ∈ F

}

.

Lemma 1 (Proximity of objective function values of two consecutive points) We
assume that the function f : R

n �→ R satisfies Formula (3) for all x, y ∈ F . Let
x∗ = arg min{ f (x) s.t. x ∈ F}, and τ ∈ [l, L]. Then for every k ∈ {0, . . . , N − 1},
the following relation holds:

f (xk+1) − f (x∗) ≤ L − τ

2
‖xk − xk+1‖2 + α

[
f (xk) − f (x∗)

]

+ (1 − α)
τ − l

2
‖xk − x∗‖2.
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Proof

f (xk+1) − f (xk)
(3)≤ ∇ f (xk)T (xk+1 − xk) + L

2
‖xk − xk+1‖2

= gxk ,τ (xk+1) + L − τ

2
‖xk − xk+1‖2

≤ (1 − α)wk + L − τ

2
‖xk − xk+1‖2 (by definition of α)

(4)≤ (1 − α)
{
∇ f (xk)T (x∗ − xk) + τ

2
‖xk − x∗‖2

}
+ L − τ

2
‖xk − xk+1‖2

(3)≤ (1 − α)

(
f (x∗) − f (xk) + τ − l

2
‖xk − x∗‖2

)
+ L − τ

2
‖xk − xk+1‖2.

��
This result leads to the following simple corollary.

Corollary 1 (Stopping criterion) Let τ = l. If there exists an index 0 ≤ k < N such
that xk+1 = xk , then xk = arg min{ f (x) s.t. x ∈ F}.
Proof From Lemma 1 and equality xk+1 = xk we conclude that

f (xk) − f (x∗) = f (xk+1) − f (x∗) ≤ α[ f (xk) − f (x∗)].

Hence, f (xk) − f (x∗) ≤ 0. ��
If α = 0 and τ ∈ [l, L], then Lemma 1 shows that after a single iteration of Algo-

rithm (5) we reach the best possible global guarantee. If α > 0, then we may need
several steps. Our next result shows that the number of steps is reasonably small.

Theorem 4 Let f : R
n �→ R satisfy Formula (3) for all x, y ∈ F . Let x∗ =

arg min{ f (x) s.t. x ∈ F}, τ ∈ [l, L], η > 0 and

N :=
⌈

1

ln(1/α)
ln

(
max

{
1,

f (x0) − f (x∗)
η

})⌉
,

if α > 0. Otherwise define N := 1. For the point x̂ generated by Algorithm (5) after
N iterations, we have that

f (x̂) − f (x∗) ≤ L − l

2(1 − α)
δ2
F + η.

Proof If α = 0, then the result follows from Lemma 1. Otherwise, let α > 0. To
simplify notation, let us write μk := f (xk)− f (x∗) for k ≥ 0 and C := (L − l)δ2

F/2.
From Lemma 1, we know that μk+1 ≤ C + αμk for all k. Assume, contrarily to the
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statement, that there exists no k in {0, 1, . . . , N } for which μk ≤ C
1−α

+ η. We can
write:

C

1 − α
+ η < μN ≤ C + αμN−1 ≤ C + α(C + αμN−2)

≤ C + αC + α2C + · · · + αN−1C + αN μ0 ≤ C

1 − α
+ αN μ0,

and ln(μ0/η)/ ln(1/α) > N , a contradiction to the definition of N . ��
This result shows that there is a tradeoff between the number of iterations of the iter-

ative algorithm and the proximity of our best found solution to an optimal one. In fact,
in the remainder of the paper we will often apply this theorem with η := L−l

2(1−α)
δ2
F .

In this case the additive integrality gap becomes L−l
1−α

δ2
F .

4 Complexity results

This section comments on the performance of the iterative algorithm. In fact, the
running time of our iterative algorithm only depends on the number of iterations N
and the running time for computing (4) with approximation guarantee 1 − α. Hence,
whenever there exists an approximation algorithm for computing (4) that runs in poly-
nomial time in the encoding length of the objective functions gy,τ (x) and of F , then the
overall computation is polynomial time executable in N , the encoding of the objective
functions and the encoding of the feasible region F .

It is always assumed that the function f is encoded by means of a first-order oracle
that returns, for x ∈ R

n both f (x) and ∇ f (x). Moreover, we assume that the data
l, L as well as δF are encoded in unary. Although this assumption is quite restrictive,
there are good reasons for requiring it. One can definitely justify this assumption in the
case where l = 0, as no first-order method for continuous optimization can manage
to find a point x ∈ R

n for which f (x) − f (x∗) ≤ 1 faster than in Ω(
√

L‖x0 − x∗‖)
iterations, provided that the dimension n is sufficiently large, see Theorem 2.1.7 in
[13] for further details. In the case of l > 0, the lower bound complexity regarding the
number of iterations of any first-order method for continuous optimization depends
only polynomially on the logarithm of the quantity L

l . We are not able to achieve this
bound in the constrained integer setting.

Next we study the question under which assumptions we can solve the subproblem

min{gy,τ (x) s.t. x ∈ F}, (8)

and whether or not this then leads to an efficient algorithm that can solve the original
problem (1).

If the dimension n is a constant, we can derive a simple complexity result, provided
that P is given to us explicitly in form of an inequality description and that f is integer
valued. It is based on the following result extending earlier work in [11].
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Theorem 5 [7] Let f, f1, . . . , fm ∈ Z[x1, . . . , xn] be quasi-convex polynomials of
degree at most δ whose coefficients have a binary encoding length of at most s. There
exists an algorithm running in time msO(1)δO(n)2O(n3) that computes an optimal solu-
tion for

min{ f (x) s.t. f1(x) ≤ 0, . . . , fm(x) ≤ 0, x ∈ Z
n}

of binary encoding length at most sδO(n) or reports that such a solution does not exist.

This result directly shows that if the number of integer variables n is fixed, then we
can solve problem (8) in polynomial time exactly (i.e. α = 0).

In variable dimension, the subproblem min{gy,τ (x) s.t. x ∈ F} is hard, in general.
Due to the special nature of the function though,

gy,τ (x) = τ

2

n∑

i=1

x2
i + cT

y x + dy, with cy ∈ R
n,

and where dy ∈ R is such that gy,τ (y) = 0, there are special cases that are effi-
ciently solvable. Indeed, under one of the following three assumptions a solution of
the subproblem is achievable in polynomial time.

1. When n is variable and F ⊆ {0, 1}n , then gxk ,τ (x) is affine since x2
i = xi . Hence,

if we have access to an oracle solving the problem of optimizing linear functions
over F , then we can solve the subproblem with α = 0. Note that this applies
in particular to the feasible sets associated with matroids, the intersection of two
matroids, matchings, etc.

2. When n is variable and we have access to a polynomial time approximation algo-
rithm for solving the subproblem over F , then we can solve the subproblem with
α > 0. Note that this applies in particular to the feasible sets associated with binary
knapsacks, the max cut problem, and various prominent combinatorial problems
for which the exact solution of the subproblem is NP-hard.

3. When n is variable and F is presented by means of its Graver basis, then there
is a polynomial time algorithm for solving the subproblem with α = 0 [9]. This
result applies to functions that one can represent as a sum of univariate separable
convex functions. In particular, a polynomial time algorithm in the encoding of F
can be designed for N-fold systems, see [8].

These comments are summarized below.

Theorem 6 (Special cases of polynomial solvability) We assume that the function
f : R

n �→ R satisfies Formula (3) for all x, y ∈ F .

– Let F be the feasible solutions of an integer programming problem in fixed dimen-
sion with a given outer description of its polyhedron P. The first solution provided
by the iterative algorithm solves (1) with additive integrality gap at most L−l

2 δ2
F .

The execution of the iterative algorithm is polynomial in the encoding length of P.
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– Let F be the feasible solutions of a 0/1 programming problem equipped with an
algorithm A′ for optimizing linear functions. The first solution provided by the
iterative algorithm solves (1) with additive integrality gap at most L−l

2 n2. The
execution of the iterative algorithm requires one call of algorithm A′.

– Let F be the feasible solutions of a 0/1 programming problem equipped with an
algorithm A′ for optimizing linear functions with approximation factor (1 − α).

After N = O
(

1
ln(1/α)

ln
[

1
n(L−l) ( f (x0) − f (x∗))

])
steps of the iterative algo-

rithm we have detected a solution for (1) with additive integrality gap at most
L−l
1−α

n2. The execution of the iterative algorithm requires N calls of algorithm A′.
– Let F be the feasible solutions of an N-fold system with a given outer descrip-

tion of its polyhedron P. The first solution provided by the iterative algorithm
solves (1) with additive integrality gap at most L−l

2 δ2
F . The overall running time

is polynomial in the binary encoding of P.

The question emerges whether these complexity results are best possible. In other
words, is it possible that the black-box iterative algorithm can determine an optimal
solution in polynomial time, given our assumption that we have access to an oracle
for computing the subproblem? This topic is discussed in the next section.

5 An intractability result

In this section it is shown that there is a limitation of what such a black-box iterative
algorithm can produce in polynomial time. To this end let us consider, for c ∈ {2, 3}n

an optimization problem of the kind

min f (x) = n2(cT x − γ )2 +
n∑

i=1

xi s.t. x ∈ F , (9)

where F ⊆ {0, 1}n denotes an independence system with n = 4m and γ = 5m − 1.
Notice that this implies that our subproblem is just linear. Hence, the assumption of
having access to an exact solver (α = 0) for our subproblems amounts to assume that
the independence system is equipped with an oracle for maximizing linear functions.

Lemma 2 Consider the function f : {0, 1}n �→ R defined as f (x) = n2(cT x −γ )2 +∑n
i=1 x2

i , with |ci | ≤ 3. This function satisfies condition (3) for constants l = 2 and
L = 18n3 + 2.

Proof We easily compute:

�x,y := f (x) − f (y) − ∇ f (y)(x − y) = ‖x − y‖2 + n2(cT (x − y))2.
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Therefore �x,y ≥ ‖x − y‖2, justifying l = 2. Also,

(cT (x − y))2 =
(

n∑

i=1

ci (xi − yi )

)2

≤
(

n∑

i=1

|ci‖xi − yi |
)2

≤
(

n∑

i=1

3|xi − yi |
)2

≤ 9n
n∑

i=1

(xi − yi )
2.

Thus �x,y ≤ (1 + 9n3)‖x − y‖2, and we can take L := 18n3 + 2. ��
Note that, given x2

i = xi on {0, 1}, the function f of the above lemma equals the
function defined in (9).

We next show that in order to solve problem (9) exactly over any independence
system F with a ground set of n = 4m elements with m ≥ 2, at least

( 2m
m+1

) ≥ 2m

queries of the oracle presenting F are required. Hence, we cannot decide in polyno-
mial time whether, for the optimization problem (9) the optimal function value is less
or equal than n or whether it is greater than n2. Following [12], we summarize these
assertions below.

Theorem 7 There is no polynomial time algorithm for computing an optimal solution
of (9) presented by a linear optimization oracle. In other words, there cannot exist a
polynomial algorithm for producing a best feasible point x̄ , so that, if x∗ denotes an
optimal point, then f (x̄) − f (x∗) ≤ n2 − n for one of the functions f described in
(9).

Proof We apply the construction of a family of independence systems as presented
in [12]. Let n := 4m with m ≥ 2, I := {1, . . . , 2m}, J := {2m + 1, . . . , 4m}, and
let w := 2 · 1I + 3 · 1J , where 1I denotes the incidence vector of the set I . For
E ⊆ {1, . . . , n} and any nonnegative integer k, let

(E
k

)
be the set of all k-element

subsets of E . For i = 0, 1, 2, let

Ti :=
{

x = 1A + 1B s.t. A ∈
(

I

m + i

)
, B ∈

(
J

m − i

)}
⊂ {0, 1}n .

Let I be the independence system generated by T0 ∪ T2, that is,

I := {
z ∈ {0, 1}n s.t. z ≤ x, for some x ∈ T0 ∪ T2

}
.

Note that the w-image of I is

{
wT S s.t. S ∈ I} = {

0, . . . , 5m
} \ {1, 5m − 1} .

For every y ∈ T1, let Iy := I ∪ {y} . Note that each Iy is an independence system
as well, but with w-image

{
wT S s.t. S ∈ Iy

} = {
0, . . . , 5m

} \ {1}.
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Finally, for each vector c ∈ Z
n , let

Y (c) :=
{

y ∈ T1 s.t. cT y > max{cT x s.t. x ∈ I}
}

.

It follows from the proof of Theorem 6.1 in [12] that

|Y (c)| ≤
(

2m

m − 1

)
for every c ∈ Z

n .

Consider any algorithm, and let c1, . . . , cp ∈ Z
n be the sequence of oracle queries

made by the algorithm. Suppose that p <
( 2m

m+1

)
. Then

∣
∣
∣
∣
∣

p⋃

i=1

Y (ci )

∣
∣
∣
∣
∣

≤
p∑

i=1

|Y (ci )| ≤ p

(
2m

m − 1

)
<

(
2m

m + 1

)(
2m

m − 1

)
= |T1| .

This implies that there exists some y ∈ T1 that is an element of none of the Y (ci ),
that is, satisfies (ci )T y ≤ max{(ci )T x s.t. x ∈ I} for each i = 1, . . . , p. Therefore,
whether the linear optimization oracle presents I or Iy , on each query ci it can reply
with some xi ∈ I attaining

(ci )T xi = max{(ci )T x s.t. x ∈ I} = max{(ci )T x s.t. x ∈ Iy} .

Therefore, the algorithm cannot tell whether the oracle presents I or Iy . Since

min

{

f (x) = n2(cT x − γ )2 +
n∑

i=1

xi s.t. x ∈ Iy

}

≤ n

min

{

f (x) = n2(cT x − γ )2 +
n∑

i=1

xi s.t. x ∈ I
}

≥ n2

the iterative black-box algorithm cannot produce a solution x̄ so that, if x∗ denotes
the optimal point, then f (x̄) − f (x∗) ≤ n2 − n. ��

Given, that the iterative algorithm in this case is guaranteed to determine a feasible
point x̄ , so that, if x∗ denotes an optimal point, then f (x̄) − f (x∗) ≤ L−l

2 δ2
F =

(9n3 + 1 − 1)n2 = 9n5, the lower bound given in Theorem 7 is only off by a poly-
nomial factor. We conclude from this that in order to close the gap, one needs either
more structure regarding F or to have access to a stronger oracle that delivers more
than just optimal solutions for solving the subproblem. This topic is discussed in the
next section.

6 Modifications of the iterative algorithm to avoid cycling

It might happen that the iterative algorithm (5) cycles, that is, returns to a point that
is previously visited in the sequence. In this section we discuss the possibilities of
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putting additional structure on F and f in order to avoid this unpleasant phenomenon.
As before we assume that we have access to an oracle for solving problem (8) or even
something a bit stronger.

One intrinsic obstacle in applying the iterative algorithm is the issue of cycling.
From Theorem 4 it follows that we can efficiently find a point, x̄ say, satisfying

f (x̄) − f (x∗) ≤ L − l

1 − α
δ2
F ,

where x∗ again denotes an optimal solution. The initial idea would be to keep the
algorithm running. However, it might well happen that the algorithm will cycle,
i.e. return to a previously visited point in the sequence. A strategy of avoiding cycling
could be to determine xk+1 ∈ F such that

gxk ,l(xk+1) ≤ (1 − α) min
{
gxk ,l(x) s.t. x ∈ F , gxi ,l(x) ≤ −1, ∀i = 1, . . . , k

}
.

Indeed, the additional constraints gxi ,l(x) ≤ −1 prohibit the algorithm to return to
previously visited points. Moreover, they are valid for any optimal solution provided
that one has not yet found it. This simply follows from the fact that if an optimal
solution x∗ is different from xi and f is integer valued, then,

−1 ≥ f (x∗) − f (xi ) ≥ gxi ,l(x∗) ∀xi .

With this modification of the subproblem the convergence of the iterative algorithm
as stated in Lemma 1 remains true.

This leads to the following complexity result in fixed dimension.

Theorem 8 Let f : R
n �→ R satisfy Eq. (3) and such that, for x ∈ Z

n, both f (x) ∈ Z

and ∇ f (x) ∈ Z
n. Let

c f := max
{|F ∪ {x s.t. f (x) = α}| s.t. α ∈ Z

}
.

If n is constant, and if s designates a bound on the binary encoding length of the data of
a subproblem (8), then we can determine an optimal solution for min{ f (x) s.t. x ∈ F}
in time O

(
c f (L − l)δ2

F sO(1)
)
.

Proof We define the number of iterations to be N := c f (L − l)δ2
F + 1. For any index

k, we have that either {x1, . . . , xk} contains an optimal solution x∗, or

f (x∗) − f (xk) ≥ ∇ f (xk)T (x∗ − xk) + l

2
‖x∗ − xk‖2 = gxk ,l(x∗)

≥ min{gxk ,l(x) s.t. x ∈ F , gxi ,l(x) ≤ −1 ∀i = 1, . . . , k}
= gxk ,l(xk+1)

= l

L

[
∇ f (xk)(xk+1 − xk) + L

2
‖xk+1 − xk‖2

]

+ L − l

L

[
∇ f (xk)(xk+1 − xk)

]

≥ l

L

[
f (xk+1) − f (xk)

]
+ L − l

L

[
∇ f (xk)(xk+1 − xk)

]
.
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Following the remaining steps of the proof of Lemma 1 and using the fact that
α = 0, we obtain that for any index k, we have that

f (xk+1) − f (x∗) ≤ L − l

2
‖xk+1 − xk‖2

≤ L − l

2
δ2
F . (10)

There exist points xk and x j such that

f (xk) = max{ f (xi ), i = 1, . . . N },
f (x j ) = min{ f (xi ), i = 1, . . . N }.

It follows that xk−1 applied to the formula in In Eq. (10) gives f (xk) − f (x∗) ≤
L−l

2 δ2
F . Since, by assumption, for every index i, |{l s.t. f (xl) = f (xi )}| ≤ c f , it

follows that f (x j ) ≤ f (xk) − N
c f

. The result is now implied by Theorem 5. ��
Note that this complexity result is not really surprising if we assume that l, L and

δF are encoded in unary. In this case it is easy to verify that the overall number of
integer points in P is bounded by δn

F . Hence, by a straight-forward enumeration of all
lattice points in P we could determine an optimal solution anyhow in polynomial time.
This, however, comes with a price of having a running time that increases drastically
with the dimension.

In variable dimension, the following issue arises: if we add constraints gxi ,l(x) ≤
−1, then this changes the structure of the feasible set and hence, we cannot assume
that we can solve a modified subproblem

min
{
gxk ,l(x) s.t. x ∈ F , gxi ,l(x) ≤ −1 ∀i = 1, . . . , k

}
,

given that we are endowed with an oracle for solving (8). Since the constraints
gxi ,l(x) ≤ −1 are even nonlinear, we refrain from suggesting this idea in the general
case. Instead we assume that we are equipped with an oracle (AO) that, queried on
a vector c ∈ Q

n and a set of inequalities hT
1 x ≥ h1,0, . . . , hT

m x ≥ hm,0 with normal
vectors hi ∈ Q

n and right hand side vectors hi,0 ∈ Q returns an optimal solution
x ∈ F of the minimization problem

min

{
τ

2

n∑

i=1

x2
i + cT x s.t. x ∈ F , hT

i x ≥ hi,0 ∀ i = 1, . . . , m

}

.

In other words, resorting to this oracle allows us to solve subproblems over polyhedral
subsets of F . Of course this is a much stronger assumption than just being able to
optimize approximately over F .

Being endowed with such an oracle allows us to escape from cycling.

Lemma 3 LetF be presented by means of an oracle (AO). Given X := {x0, . . . , xk} ⊆
F there is an oracle polynomial time algorithm to either conclude that X contains an
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optimal solution or computes a point xk+1 �∈ X such that f (xk+1)− f (x∗) ≤ L−l
2 δ2

F ,
with f satisfying (3)

Proof Consider the auxiliary problem

min
{

max{ f (xi ) + gxi ,l(x), i = 1, . . . , k} s.t. x ∈ F}
. (11)

Letting gxi ,l(x) = l
2

∑n
i=1 x2

i +cT
i x where ci ∈ Q

n , we define the following family
of polyhedra:

Pi =
{

x ∈ R
n s.t. f (xi ) + cT

i x ≥ f (x j ) + cT
j x for all j ∈ {1, . . . , m \ {i}

}
.

Since f (xi )+cT
i x ≥ f (x j )+cT

j x if and only if f (xi )+gxi ,l(x) ≥ f (x j )+gx j ,l(x),

we obtain that for all x ∈ Pi we have that max{ f (x j )+gx j ,l(x) s.t. j =1, . . . , k} =
f (xi ) + gxi ,l(x). Henceforth, by solving k problems of the form min

{
f (xi ) +

gxi ,l(x) s.t. x ∈ F ∩ Pi
}

using the oracle (AO), and choosing the overall minimum
we can solve Problem (11). Moreover, if X does not contain an optimal solution, then
f (xi ) + gxi ,l(x∗) < f (xi ) for all i = 1, . . . , k. Henceforth, a solution, xk+1 to Prob-
lem (11) will also satisfy f (xi ) + gxi ,l(xk+1) < f (xi ). Since gxi ,l(xi ) = 0 for all
i = 1, . . . , k, we conclude that xk+1 �∈ X . Let i be the index such that xk+1 ∈ Pi .
Since x∗ ∈ P j for some index j ∈ {1, . . . , k} we have that

f (xi ) + gxi ,l(xk+1)≤min
{

f (x j ) + gx j ,l(x) s.t. x ∈ F ∩ P j}

≤ f (x j )+gx j ,l(x∗).

This completes the proof noting that

f (xk+1) ≤ f (xi ) + ∇ f (xk)(xk+1 − xi ) + L

2
‖xi − xk+1‖2

= f (xi ) + gxi ,l(xk+1) + L − l

2
‖xi − xk+1‖2

≤ f (x j ) + gx j ,l(x∗) + L − l

2
‖xi − xk+1‖2

≤ f (x∗) + L − l

2
‖xi − xk+1‖2.

��
It remains to discuss cases in which we can realize the oracle (AO) in polynomial

time. It follows again from Theorem 5 that if n is fixed we can realize such an oracle
(AO) in polynomial time. In variable dimension though, polynomial time algorithms
for solving the subproblem (AO) rarely exist. In some special cases regarding f and
the feasible domain F ⊆ {0, 1}n though, there are efficient algorithms for solving even
the auxilary problem (11). This is shown next. In order to elucidate our construction
let us introduce the following notation.
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wi,0 + wT
i x := f (xi ) + gxi ,l(x)

= f (xi ) + ∇ f (xi )T (x − xi ) + l

2
1T x − l(xi )T x + l

2
1T xi

= [
f (xi ) − ∇ f (xi )T xi + l

2
1T xi ] + [∇ f (xi ) + l

2
1 − l(xi )

]T
x .

Theorem 9 Let f satisfy Formula (3). Let f be encoded in binary and let ∇ f be
encoded in unary.

(a) Let F ⊆ {0, 1}n be the set of all feasible solutions to a vectorial matroid asso-
ciated with a given matrix. Then, for any fixed k there is a polynomial time
algorithm to compute an optimal solution of

min

{
max

{
wi,0 + wT

i x, i = 1, . . . , k
}

s.t. x ∈ F
}
. (12)

(b) Let F ⊆ {0, 1}n be the set of all feasible solutions to the intersection of two vec-
torial matroids associated with two given matrices. Then, for any fixed k, there
is a randomized polynomial time algorithm to compute an optimal solution of
Problem (12).

Proof (a) For the set of all feasible solutions to a vectorial matroid associated with a
given matrix and for any fixed k there is a polynomial time algorithm to compute
explicitly the entire image

{
(wT

1 x, . . . , wT
k x) s.t. x ∈ F}

,

see [1]. This leads to a polynomial time algorithm to determine an optimal solu-
tion of

min

{
g
(
wT

1 x, . . . , wT
k x)

)
s.t. x ∈ F

}
,

for any nonlinear function g : R
k �→ R with unary encoded data wi . This

applies, in particular to the nonlinear function g(y1, . . . , yk) := max{w1,0 +
y1, . . . , wk,0 + yk}.

(b) For the special matroid intersection problem considered here there is a polyno-
mial time algorithm to compute a good approximating randomized subset of the
entire image

w(F) := {
(wT

1 x, . . . , wT
k x) s.t. x ∈ F}

,

that is, to compute a random subset T ⊆ w(F) using the random coin tosses
made by the algorithm such that every point in w(F) is in T with sufficiently high
probability. In particular, for any nonlinear function g : R

k �→ R, any optimal
point y = (y1, . . . , yk) ∈ w(F) of the program

min {g(y1, . . . , yk) s.t. y ∈ w(F)} = min
{

g
(
wT

1 x, . . . , wT
k x

)
s.t. x ∈ F

}
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will be in T with high probability, see [2]. By taking again the function g to be
as in (a) above, this then leads to a randomized polynomial time algorithm to
determine an optimal solution of

min
{

max
{
w1,0 + wT

1 x, . . . , wk,0 + wT
k x

}
s.t. x ∈ F

}
.

��
These results allow us to develop straight-forward polynomial time algorithms for

solving the original problem (1) in some very special cases.

Theorem 10 Let f :Rn �→ R satisfy condition (3) for all x, y ∈ F . Let f be encoded in
binary, let l, L and ∇ f be encoded in unary. Moreover, let f (x) ∈ Z and ∇ f (x) ∈ Z

n

for all x ∈ {0, 1}n. Let f be {0, 1}n-injective. Assume that the quantity c = n2 L−l
2 is

a known constant.
If F ⊆ {0, 1}n satisfies (a) in Theorem 9, then there is a polynomial time algorithm to
compute an optimal solution of Problem (1).
If F ⊆ {0, 1}n satisfies (b) in Theorem 9, then there is a randomized polynomial time
algorithm to compute an optimal solution of Problem (1).

Proof Define N := c. For k = 1 to N we solve repeatedly the problem (12). Then
there exist unique points xr and xs such that

f (xr ) = max{ f (xi ), i = 1, . . . N },
f (xs) = min{ f (xi ), i = 1, . . . N }.

Since every point xi in the sequence satisfies

f (xi ) − f (x∗) ≤ L − l

2
δ2
F = L − l

2
n2 = c

n2 n2 = c = N ,

we conclude that f (xs) ≤ f (xr )−N . Hence after at most c iterations we have detected
an optimal solution for min{ f (x) s.t. x ∈ F}. ��

7 Conclusions

We view this article as a first step in understanding the complexity of a general non-
linear optimization problem over integer points in polyhedral domains presented by
oracles. Our work raises many intriguing research questions that might ultimately lead
to a development of the subfield of integer and mixed integer convex optimization.
The iterative algorithm that is analyzed here is one representative of a large class of
algorithmic schemes that researchers in convex optimization have studied in the past.
For each of those we can now try to see how close we can get in the integer setting
and whether or not there are limitations of what is computable in polynomial time.
We cannot anticipate the outcome at this stage. It seems, however, quite plausible
that for variations of a subgradient type algorithm there will also remain a gap of
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what we can obtain in a polynomial number of iterations. If this holds true, then this
clearly suggests a second line of research questions: how can we refine the black-box
assumption of just being able to optimize “blindly” a relaxed objective function over
the feasible domain? Knowing the edge directions of the feasible domain might help,
but it seems more promising to us to have further knowledge about the type of convex
function. This additional knowledge in combination with further structure regarding
the feasible domain appears to us extremely promising for obtaining exciting results.
Indeed, this would be a first step into the direction of developing an algorithmically
useful classification of nonlinear integer problems.
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