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Abstract A numerical scheme for solving high-dimensional stochastic con-
trol problems on an infinite time horizon that appear relevant in the context
of molecular dynamics is outlined. The scheme rests on the interpretation
of the corresponding Hamilton-Jacobi-Bellman equation as a nonlinear eigen-
value problem that, using a logarithmic transformation, can be recast as a
linear eigenvalue problem, for which the principal eigenvalue and its eigen-
function are sought. The latter can be computed e�ciently by approximating
the underlying stochastic process with a coarse-grained Markov state model
for the dominant metastable sets. We illustrate our method with two numeri-
cal examples, one of which involves the task of maximizing the population of
↵-helices in an ensemble of small biomolecules (Alanine dipeptide), and discuss
the relation to the large deviation principle of Donsker and Varadhan.

1 Introduction

Optimal control of stochastic processes is an area of active research. From
a theoretical perspective the theory of viscosity solutions and the Hamilton-
Jacobi-Bellman (HJB) equation is well-established [1]. The applications are
predominantly in Financial Mathematics where it is used to determine opti-
mal investment strategies for the market. On the other hand, application in
materials science and molecular dynamics are rare. Although the idea of nu-
merically solving the HJB or dynamic programming equation using backward
iterations is rather simple, the curse of dimensionality is often prohibitive and
restricts the fields of possible application, excluding molecular dynamics and
the alike.

Available methods for the numerical solution of high dimensional HJB
equations include Markov chain approximations [2], monotone schemes [3,4],
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or methods designed for relatively specific problems [5,6]. Nonetheless we are
not aware of a single article on optimal control of molecular dynamics (MD)
using dynamic programming principles, although the interest in controlling
molecular dynamics simulations has already started more than a decade ago
with the development of Targeted MD or Steered MD [7,8], and laser control
of (open) quantum systems [9]; see [10] for a recent survey of approaches
from molecular physics, chemistry, and optical control of quantum molecular
dynamics. While most experimental techniques are used in order to learn about
a certain system from its response to an external forcing, like in atomic force
microscopy [11], experimental works on controlling conformational changes
or molecular switches has recently attracted a lot of attention (also among
theorists).

In this article we propose an approach to solving the HJB for optimal
control of stochastic molecular dynamics (MD) in high dimensions. The main
idea is to first approximate the dominant modes of the molecular dynamics
transfer operator by a low-dimensional, so-called Markov state model (MSM),
and then solve the HJB for the MSM rather than the full MD. The type of
optimal control problems that we consider here, and which appear relevant
in molecular dynamics applications, belong to the class of ergodic stochastic
control problems. Following ideas of Fleming and co-workers [12,13], we show
that the optimal control of MD on an infinite time horizon can be reformulated
as a linear eigenvalue problem that has deep relations to a Donsker-Varadhan
large deviation principle (LDP) for the uncontrolled MD. The general strategy
that is pursued in this article, namely, using low dimensional MSM for solving
high dimensional optimal control problems is illustrated in Figure 1.

Fig. 1 Correspondence between HJB equation for controlled MD, LDP for uncontrolled
MD, and the linear eigenvalue problem that is approximated by a Markov state model.

This article cannot give all the technical details. It is rather meant as a
collection of the material that is required to introduce the main idea, namely,
using MSMs to find approximate optimal control strategies for MD problems.
Section 2 gives a short overview of stochastic molecular dynamics, Markov
state models, and the role of optimal control in MD. Section 3 is devoted to
ergodic control and its relation to the dominant eigenvalue of a certain elliptic
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operator. How this can be turned into an optimal control algorithm using
MSMs is outlined in Section 4. Section 5 briefly analyzes the connection to
large deviation principles for the uncontrolled MD problem. Our findings are
summarized in Section 6, including a short outlook for possible future research.
The appendix contains the derivation of the HJB equation of ergodic control.

2 Molecular Dynamics and Markov State Models

Molecular dynamics models the dynamical behaviour of molecular systems,
mostly in terms of the (Euclidean) coordinates of all atoms in the system. At
each instance in time, the state x of the system is a vector in S ✓ Rn where n

is three times the number N of atoms in the system. Most systems of interest
contain hundreds to thousands of atoms which makes the state space S huge.
The key object of molecular dynamics is the gradient �rV (x) of a potential
V : S ! R that models the interactions between all atoms in the system. The
potential V contains an enormous number of minima and saddle points (the
number of minima is growing exponentially with the number of atoms). The
deepest minima are located in wells that are separated by high energy barriers
or extended di↵usive transition regions. For the observation time scale of the
conformation dynamics only the rare transitions between the minima are of
interest, while on the time scale of the internal molecular vibrations these
transitions are unlikely to occur, for the dynamics are confined to the energy
minima. In this sense we speak of the potential V as a multiscale object.

In the following the energy landscape of potential V is assumed to be
bounded below and to satisfy suitable growth conditions at infinity. Then, by
the laws of statistical mechanics, the system visits all possible states according
to the equilibrium distribution µ (also called the invariant measure) which is
(via dµ/dx = ⇢) given by the density function ⇢(x) = exp(��V (x))/Z with
Z being the normalization constant Z =

R
S exp(��V (x))dx and the inverse

temperature � = 1/(k
b

T ) given by the temperature T of the environment
of the system and the Boltzmann constant k

b

. Let us assume that the main
energy barriers in the system are of order 1, whereas the temperature " = 1/�
is small compared to 1 or, more precisely, compared to the most important
energy barriers. Then the wells of the energy landscape are the regions in which
the dynamics spend most of their time and which are separated by transition
regions of vanishing probability.

The simplest model of molecular dynamics is given by

dx

t

= �rV (x
t

)dt+
p
2" dw

t

, x

0

= x , (1)

where w

t

2 Rn denotes standard Brownian motion, 0 < " ⌧ 1 the tempera-
ture, and x

t

the state of the molecular system at time t > 0. It is known that
(under appropriate conditions on V ) x

t

converges to the equilibrium distribu-
tion µ in the sense that the strong law of large numbers holds, i.e.,

lim
T!1

1

T

Z
T

0

f(x
s

) ds =

Z

S
f(x) dµ(x) a.s., (2)
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for any f 2 L

1(µ) and µ-almost all initial conditions x
0

= x.
Many molecular systems exhibit dominant metastable states, in that a

typical MD trajectory will remain in the vicinity of the main wells for a long
time before making a transition to another well. The wells are metastable
or almost invariant subsets under the dynamics, and, as a consequence, the
dynamical behaviour of the system on the longest timescales is essentially
characterized by the rare transitions between these metastable sets. Metastable
dynamics thus means that the system remains in metastable sets for long

periods of time before it exits quickly to another metastable set; here the
words ”long” and ”quickly” mainly state that the typical residence time has
to be much longer than the typical transition time.

The most prominent toy system that displays metastability is the double-
well potential shown in Figure 2 and that will serve as a paradigm throughout
the text. If the energy barrier between the right (lower) well and the left
one is �V then the rare transitions from the right to the left well happen
on timescale exp(�V/"); more precisely, it follows from the Freidlin-Wentzell
theory of large deviations [14] that

lim
"!0

" logE(⌧ "
x

) = �V ,

where ⌧ "
x

is the first exit time from the right well, given that it started at
x

0

= x, and E(·) is the expectation over the Brownian trajectories.1
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Fig. 2 The double well potential V = V (x).

In the language of biophysics and biochemistry the metastable sets are
called molecular conformations. Conformational transitions are essential to the
function of proteins, nucleic acids and other macromolecules. These transitions

1 It is a fundamental corollary of the Freidlin-Wentzell theory that, in the limit " ! 0,
the expected exit time E(⌧"

x

) becomes independent of the initial value x0 = x.
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span large ranges of length scales, time scales and complexity, and include pro-
cesses as important as folding [15,16], complex conformational rearrangements
between native protein substates [17,18], and ligand binding [19]. MD simu-
lations are becoming increasingly accepted as a tool to investigate both the
structural and the dynamical features of these transitions at a level of detail
that is beyond that accessible in laboratory experiments [20–22].

2.1 Markov State Models

Recent years have seen the advance of Markov state models (MSM) as low-
dimensional models for metastable dynamical behaviour of molecular systems
[23–27]. Recently the interest in MSMs has increased a lot, for it had been
demonstrated that MSMs can be constructed even for very high dimensional
systems [25]. They have been especially useful for modelling the interesting
slow dynamics of biomolecules [21,28–32] and materials [33] (there under the
name ”kinetic Monte Carlo”). If the system exhibits metastability and the
jump process between the metastable sets are approximately Markovian, the
corresponding MSM simply describes the Markov process that jumps between
the sets with the aggregated statistics of the original process.

The key object of MSM theory is the transfer operator T

⌧

of the system.
The transfer operator is the propagator of the system: T

⌧

f models the trans-
port of the function f from time t = 0 to t = ⌧ by the underlying dynamics.
Mostly, the transfer operator is considered as a linear operator T

⌧

: H
µ

! H
µ

on the weighted Hilbert space

H
µ

=

⇢
 : Rn ! R

����
Z

Rn

| |2dµ < 1
�
, (3)

with the weighted scalar product h 
1

, 

2

i
µ

=
R
Rn  1

 

2

dµ and µ denoting the
invariant measure of the underlying dynamics. If the dynamics are given by
(1) with µ / exp(�V ) then the transfer operator satisfies T

⌧

= exp(⌧L) where
L denotes the infinitesimal generator

L = "��rV (x) ·r . (4)

In the space H
µ

, the operators L and T

⌧

are known to be essentially self-
adjoint which implies that their spectrum is real-valued. The spectrum of L is
contained in (�1, 0] with � = 0 being a simple eigenvalue with eigenvector 1,
the constant function. The location of the dominant metastable sets and the
transition rates between these sets are encoded in the leading eigenvalues of
T

⌧

, or L. In particular, the number of metastable sets is determined by the
number of eigenvalues close to the maximum eigenvalue � = 0 [27,34].

MSMs are low-dimensional representations of the dynamics that approxi-
mate its longest timescales. If there are m ⌧ n dominant metastable sets, an
MSM is based on m disjoint core sets C

1

, . . . , C

m

⇢ S that form the cores of
the dominant metastable sets, i.e., the most attractive parts of the main wells
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in the energy landscape. Given these sets, one then constructs the so-called
committor functions q

1

, . . . , q

m

by

q

j

(x) = Prob(⌧
x

(C
j

) < ⌧

x

(D
j

)), D

j

= [
k 6=j

C

k

,

where ⌧
x

(A) denote the first hitting time for the set A, assuming that x
t

was
initialized at x

0

= x. That is, the committor q
j

gives the probability that the
dynamics if started in x at time t = 0 hits the core set C

j

next and before all
other core sets.

By being probabilities, the committors form a partition of unity,
P

m

j=1

q

j

=
1, and a basis of an m-dimensional subspace D = span(q

1

, . . . , q

m

} of H
µ

. For
instance, the Galerkin projection of the eigenvalue problem Lu = �u onto D

reads

L̂v = �̂Mv, L̂

ij

= hq
i

, Lq

j

i
µ

, M

ij

= hq
i

, q

j

i
µ

. (5)

The pair (L̂,M) represents the MSM. For appropriately chosen core sets, the
entries of M

�1

L̂ are known to approximate the transition rates of the un-
derlying dynamics between the main metastable sets while its eigenvalues
0 = �̂

1

> . . . � �̂

m

are close approximations of the leading eigenvalues
0 = �

1

> . . . � �

m

of the infinitesimal generator L [32]. In this case, the MSM
can be taken as a low-dimensional representation of the e↵ective dynamics
of the molecular system: instead of the complicated dynamical behaviour in
some high dimensional state space we now can consider a Markov jump pro-
cess on a finite state space. Since the metastable sets can be interpreted as
biomolecular conformations, the entries of the MSM matrix M

�1

L̂ have the
direct interpretation of conformational transition rates or residence times.

Remark 1 In real life molecular dynamics applications the state space is very
high dimensional. In such cases the accurate computation of the committors as
functions on state space is infeasible even on the most powerful computers. Yet
the matrix pair (L̂,M) can be accurately estimated from one long realization
of x

t

or from many independent short realizations [35].

Example 1 (Double well potential) For the illustration, the committor func-
tions q

1

and q

2

for the dynamics (1) for the double well potential from Fig-
ure 2 and core sets C

1

= [�1.1,�0.9] and C

2

= [0.9, 1.1] are shown in Figure 3
(" = 1/4). Here the infinitesimal generator has leading spectrum

0 = �

1

, �

2

= �0.0186, �
3

= �1.6647, . . . ,

while the spectrum of the 2⇥ 2 matrix M

�1

L̂ is found to be

0 = �̂

1

, �̂

2

= �0.0186.
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Fig. 3 Committor functions q1 and q2 for the dynamics (1) for the double well potential
(� = 4) and core sets C1 = [�1.1,�0.9] and C2 = [0.9, 1.1].

2.2 Controlled MD

Biophysical and biochemical research aims at controlling the function of molec-
ular systems, or even at designing molecular systems to perform certain func-
tions. One direction of research focuses on steering the molecular system of
interest from one conformation into another conformation. Mostly there is one
conformation C ⇢ S with considerably higher equilibrium population2 than
all other conformations, and one wishes to drive the system into another con-
formation B ⇢ S, e.g., by applying an external force as in force microscopy,
or by photo or vibrational excitations as in pump-probe laser experiments.
Instead of the dynamics (1) one considers the controlled process

dx

t

= (u
t

�rV (x
t

)) dt+
p
2" dw

t

, x

0

= x

0

, (6)

with u

t

denoting a suitable Rn valued vector of control variables. The control
is chosen such that the cost function

lim inf
T!1

E

 
1

T

Z
T

0

f(x
s

) ds

����x0

= x

!
, (7)

is maximized where f is any bounded function, measuring, e.g., the population
of conformation B (this can be achieved by choosing f = 1

B

, the indicator
function of the conformation B, or f being the committor of conformation
B). The expectation goes over all realizations of the process x

s

starting in
x

0

= x 2 C where x is any suitable reference point in C, e.g., the deepest
minimum. To make sure that the maximum in (7) exists, the control must be

2 Here the term equilibrium population refers to the probability µ(C) =
R
C

⇢(x)dx to find
the system in the conformation C ⇢ Rn when it is in thermal equilibrium, given by the
stationary probability measure µ.
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penalized, typically in form of a cost term �
R
T

0

|u
s

|2ds that is proportional to
the work done to the system between t = 0 and t = T , for too much external
work may either alter the system irreversibly, e.g., by bond breaking, or it may
be just too costly for practical purposes.

In order to consider both aspects, high output in the sense of (7) and low
cost in terms of work done to the system, one can consider to solve

sup lim inf
T!1

1

T

E

 Z
T

0

(�f(x
s

)� ⌘|u
s

|2) ds
����x0

= x

!
,

where the maximization goes over all admissible controls u

t

, and �, ⌘ > 0
are (so far) arbitrary coe�cients that weight the desired maximization of the
output relative to the cost of the work done to the system.

3 From Ergodic Control to Eigenvalue Problems

When u = 0 in (6) the strong law of large numbers (2) is valid. A similar
statement holds (under suitable assumptions) when u 6= 0 is a stationary
feedback law of the form u

t

= c(x
t

). We thus seek a control law u = (u
t

)
t�0

that maximizes the cost functional

J

x

[u] = lim inf
T!1

E

 
1

T

Z
T

0

g(x
s

, u

s

) ds

����x0

= x

!
, (8)

where we assume the cost function to be of the form

g(x, u) = �f(x)� ⌘|u|2 , �, ⌘ > 0 . (9)

3.1 A dynamic programming equation

The following result relates the solution of the above optimal control problem
to the solution of a Hamilton-Jacobi-Bellman (HJB) equation.3

Theorem Let W 2 C

2

and � 2 R be the solution of

� = sup
c2Rn

{"�W + (c�rV (x)) ·rW + g(x, c)} . (10)

Further assume that

c

⇤(x) 2 argmax
c2Rn

{"�W + (c�rV (x)) ·rW + g(x, c)} (11)

exists and defines an admissible Markov control by u

⇤
t

= c

⇤(x
t

), such that

lim inf
t!1

1

t

E (W (x
t

) |x
0

= x) = 0 .

Then J

x

[u]  J

x

[u⇤] among all admissible controls, where the optimal cost

J

x

[u⇤] = J [u⇤] is independent of the initial value x

0

= x and is equal to �.

3 For a brief derivations of the HJB equation and the interpretation of the value function
W , we refer to Appendix A below.
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Proof The proof is standard and consists basically in the application of Itô’s
formula to the value function W . A brief version is provided for the reader’s
convenience; for the technical details we refer to, e.g., [36]. Let

L

u = "�+ (u�rV (x)) ·r

denote the infinitesimal generator of (6). Here the superscript indicates the
explicit dependence on the control variable. We have to show that the solutions
to (10) yield optimal controls that maximize (8)–(9) subject to (6).

Now choose a
c

⇤(x) 2 argmax
c2Rn

{Lc

W + g(x, c)} .

Obviously u

⇤
t

= c

⇤(x
t

) is Markovian. Applying Itô’s formula to W and taking
expectations conditional on x

0

= x yields

�+
W (x)�E (W (x

t

) |x
0

= x)

t

= E

✓
1

t

Z
t

0

(�� L

u

W (x
s

) ds
���x

0

= x

◆

� E

✓
1

t

Z
t

0

g(x
s

, u

s

) ds
���x

0

= x

◆
,

where the second line follows from dropping the sup{. . .} in (10). Taking the
limit t ! 1 gives

� � lim inf
t!1

E

✓
1

t

Z
t

0

g(x
s

, u

s

) ds
���x

0

= x

◆
.

But the right hand side of the inequality equals J
x

[u] where equality is attained
for u = u

⇤. Hence the assertion is proved. ut

3.2 Formulation as an eigenvalue problem

The HJB equation (10) admits an interpretation in terms of an eigenvalue
problem [37,12]. To reveal it we first of all note that

sup
c2Rn

�
c ·rW � ⌘|c|2

 
=

1

4⌘
|rW |2

is unambiguously defined, so that (10) can be recast as

� = LW +
1

4⌘
|rW |2 + �f(x) , (12)

where L again denotes the infinitesimal generator of the control-free process
(for u = 0) as given by (4). We can transform (12) into an eigenvalue equation
for the function  = exp(W ): Using chain rule, it follows that  solves

L + �f(x) +

✓
1

4⌘
� "

◆
|r |2
 

= � ,
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where the nonlinearity can be removed by choosing ⌘ = (4")�1. With this
choice, solving the HJB equation (10) turns out to be equivalent to solving
the linear elliptic eigenvalue problem

(L+ �f(x)) = � . (13)

By the Perron-Frobenius Theorem, the eigenfunction  to the maximum eigen-
value � is positive. Hence the transformation from the eigenfunction  to the
value function W = log is well defined. Furthermore the operator L + �f

is symmetric in the weighted Hilbert space H
µ

defined by (3), which implies
that its spectrum in H

µ

is real-valued [38].
The representation of the value function W = log 

�

and its relation to the
optimal control u⇤

t

= c

⇤(x
t

) by c

⇤(x) = 2"rW (x) implies that the optimally
controlled MD (6) takes the form

dx

t

= �r [V (x
t

)� 2"W (x
t

)] dt+
p
2" dw

t

, x

0

= x

0

,

from which we see that the optimally controlled MD is again a di↵usion in a
transformed energy landscape

dx

t

= �rU(x
t

)dt+
p
2" dw

t

, x

0

= x

0

, (14)

with
U(x) = V (x)� 2"W (x) = V (x)� 2" log 

�

(x). (15)

This allows to compute the optimal target population

⇡

�

= lim inf
T!1

E

 
1

T

Z
T

0

f(x�

s

) ds

����x0

= x

!
, (16)

where x

�

t

denotes the optimally controlled MD, that is, the solution of (14),
for a given �. Assuming that U grows su�ciently at infinity, ergodicity implies
that x�

t

is sampling state space according to exp(��U). Hence we have

⇡

�

=
h 

�

, f 

�

i
µ

h 
�

, 

�

i
µ

.

Remark 2 The logarithmic transformation that leads to the eigenvalue equa-
tion (13) is not unique, and for di↵erent parameter regimes it may be advan-
tageous to use a scaled transformation. For instance, for studying the low-
temperature regime " ⌧ 1, a transformation of the form  ̃ = exp(W/") gives
rise to a risk-sensitive control problem with the cost function [39,13]

g̃(x, u) =
�

"

f(x)� 1

4
|u|2 .

The result ⌘ = (4")�1 of the specific logarithmic transformation considered
above ought to be explained: The dominant energy barriers in the system are of

order 1. The external work exerted by the control force, W = 1/2 ·
R
T

0

|u
s

|2 ds,
should not be larger than the average kinetic energy of the system that scales
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with "; otherwise one risks thermal dissociation of the molecular system. In
order to allow the external work to overcome the dominant barriers e�ciently
and thus achieve order 1 improvements of the output, one needs to scale the
work with "�1.

Remark 3 The operator L+�f is formally equivalent to a Schrödinger operator
[40]. Define

S' = exp(�V/(2")) (L+ �f) (' exp(V/(2"))) .

A straightforward computation then shows that S is a Schrödinger operator,
namely,

S = "�+ U
�

, U
�

= �f +
1

2
|rV |2 � 1

4"
�V .

Setting  = ' exp(V/(2")), it can be readily seen that (13) is equivalent to

S' = �' .

Example 2 (Double well potential, cont’d) For the illustration, let us return to
the di↵usion (1) in the double well potential shown in Figure 2. We choose
the target function f = 1

B

with B = (�1,�0.5) corresponding to the left
well of the double well potential. The eigenvalue problem (13) can be solved
by means of a finite element discretization to almost arbitrary accuracy. The
results for the principal eigenvalue �

�

, especially its dependence on � are
shown in Figure 4. We observe that the eigenvalue �

�

grows almost linearly
with � for large � (the graph displays that ��1

�

�

tends to a constant line
asymptotically) while for small � we observe a linear regime of ��1

�

�

that
starts at a constant value a > 0. This behavior can be easily explained by
noting that �

0

= 0 and �

0
0

equals the expectation of the equilibrium cost (7),
while the behaviour for large � is due to the fact that the optimal cost in (8)
saturates when � is increased while " is kept fixed. (Here the prime denotes
the derivative with respect to the parameter �; cf. also Section 5 below)

Figure 5 shows the respective eigenvector  
�

as a function of x for di↵erent
values of �. The arbitrary prefactor of the eigenvector has been chosen such
that max

x

 

�

(x) = 1.
Based on  

�

we can compute the transformed potential U from (15) that
governs the optimally controlled MD. The potential U is shown in Figure 6.
We observe that the well on the right hand side (which for � = 0 and U = V

has been the deeper well of the double well potential V ) is shifted upwards
with increasing � until � = 0.5, for which the two wells become equal; for
� > 0.5, i.e., for low penalization of the control u relative to the cost function
f , the left well becomes dominant and strongly attracts the dynamics.

4 Approximate Solution using MSMs

In real life molecular dynamics applications the state space is very high di-
mensional. Then finite element discretizations of (13) are infeasible even on
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Fig. 4 The principal eigenvalue �
�

/� of the eigenvalue problem (13) versus �.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

x

Fig. 5 Eigenvector  
�

of principal eigenvalue for di↵erent �. The eigenvector is shown
for the following values of �: 0.005/0.01/0.015/0.02/0.025/0.05/0.1/0.2/0.3/0.4/0.5. The
smallest value of � belongs to the highest line on the right hand side. Increasing values of
� belong to lower and lower values of  on the right hand side. The highest values of � are
displayed as dashed lines.

the most powerful computers. Thus for such applications the step from the
optimization problem (10) to the eigenvalue problem (13) does not seem to be
a big step forward. We are in need of a method that allows to transform (13)
to a feasible problem. We will now see that MSMs can do this job.

Let us assume that we have access to an MSM (M, L̂) for the system with
the dynamics (1) and that the MSM subspace is D = span{q

1

, . . . , q

m

} with
committor functions q

1

, . . . , q

m

. Then the eigenvalue problem (L+�f) = � 

can be projected onto D. To this end, we represent the eigenvector  in the



Optimal control of molecular dynamics using Markov state models 13

−1.5 −1 −0.5 0 0.5 1 1.5
0

2

4

6

8

x

Fig. 6 The transformed potential U(x) depending on �. Same values of � as shown in
Figure 5. Again the highest values of � are displayed as dashed lines.

basis of D, i.e.,  =
P

j

↵

j

q

j

with unknown coe�cients ↵
i

. This results in

(L+ �f) =
X

j

(↵
j

Lq

j

+ ↵

j

fq

j

) = �

X

j

↵

j

q

j

.

Taking the scalar product with q

i

i = 1, . . . ,m from the left yields the following
generalized eigenvalue problem in m dimensions:

(L̂+ �F )↵ = �M↵, (17)

where ↵ = (↵
1

, . . . ,↵

m

)T is the vector of the unknown coe�cients, L̂ and M

are the MSM matrices given in (5) and F is the m⇥m matrix representation
of the multiplication operator f with entries

F

ij

= hq
i

, fq

j

i
µ

, (18)

where (fq
j

)(x) = f(x)q
j

(x) denotes pointwise multiplication.
As outlined in Remark 1 we typically do not have access to the committor

functions in molecular dynamics applications, but to the matrix pair (M, L̂)
instead. Fortunately, the matrix F can also be accurately estimated from one
long realization of the process (x

t

) or from many independent shorter realiza-
tions without knowing the committor functions [35].

The optimal target population given in (16) can be computed based on the
MSM approximation by

⇡

�

=
↵

T

�

F↵

�

↵

T

�

M↵

�

,

where ↵
�

2 Rm is the eigenvector of the principal eigenvalue of (17).

Example 3 (Double well potential, cont’d) Returning to the di↵usive dynam-
ics in the double well potential already discussed above with f = 1

B

, B =
(�1,�0.5), corresponding to the left well of the double well potential, we



14 Christof Schütte et al.

can compute the 2 ⇥ 2 matrix F from (18) based on the committor func-
tion shown in Figure 3, and use our knowledge of the MSM (M, L̂) to solve
the 2-dimensional eigenvalue problem (17). Figure 7 shows the ratio �̂

�

/� as
a function of � in comparison with the reference ratio �

�

/� that has been
computed using a very accurate FEM discretization of the original eigenvalue
problem (13). We observe that the MSM yields a very good approximation;
in particular the asymptotic behaviour for � ! 0 and the cross-over to the
saturation regime for large � are almost perfectly reproduced.
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Fig. 7 The principal eigenvalue �
�

depending on � and its MSM approximation �̂

�

as
described in the text (dashed line).

Let the eigenvector corresponding to the principal eigenvalue �̂
�

be denoted
by (↵

1,�

,↵

2,�

)T . Then  ̂

�

=
P

j=1,2

↵

j,�

q

j

is the MSM approximation of the

dominant eigenvector  
�

of (13). Figure 8 displays  ̂
�

for di↵erent values
of �. Comparison with Figure 5 shows very good agreement with  

�

. The
corresponding MSM approximation Û = V � 2" log  ̂

�

of the transformed
potential that shown in Figure 9 is in very good agreement with the reference
potential in Figure 6 that is obtained from the accurate FEM solution.

In the above example the MSM approximation leads to a 2⇥ 2 eigenvalue
problem. Its principal eigenvalue can be computed analytically. From this an-
alytical form we find that �̂

�

scales as follows: For small � we find

�

�1

�̂

�

= a+ b� +O(�2), a = µ((�1,�0.5)).

where a = µ((�1,�0.5)) ⇡ 0.171 is the equilibrium population of the left
hand well regarding the uncontrolled dynamics, and b = �

2(1 + �

2

/4)/|�
1

|
with � = hf, u

1

i
µ

, and � = hu2

1

, u

1

i
µ

with u

1

denoting the normalized first
non-trivial eigenvector of L with eigenvalue �

1

. This shows that the increase
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Fig. 8 MSM eigenvector  ̂
�

of principal eigenvalue for di↵erent �. The eigenvector is dis-
played for the same values of � and in the same way as in Figure 5.

−1.5 −1 −0.5 0 0.5 1 1.5
0

2

4

6

8

x

Fig. 9 The transformed potential Û = Û(x) computed from the MSM described in the
text.

of ��1

�̂

�

for small � is the stronger the stronger the metastability of the
system (i.e. the smaller |�

1

|). For large � we find

�

�1

�̂

�

= a+ �

⇣1
2
� + (1 + �

2

/4)1/2
⌘
+O(��1).

Here � ⇡ 0.366 and � ⇡ 1.640 which yields ��1

�̂

�

= +O(��1) with  ⇡ 0.945
in good agreement with the reference FEM eigenvalue (see Figure 7).

In the calculation we have employed the explicit form of the committor
functions in order to compute the transformed potential Û . Since compu-
tation of the committor functions is infeasible in real MD applications this
renders the computation of Û infeasible in real life MD applications. However,
this is no limitation, for in experiments only free energy di↵erences between
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conformations matter which can be computed from the MSM approximations
directly without computing Û , cf. [18].

5 Deviations from ergodicity

The principal eigenvalue of (13) bears a deep relation with the cumulant gen-
erating function of the (time-integrated) cost function f and entails a large
deviations principle for deviations from the ergodic limit of the cost function.

5.1 Relation to cumulant-generating functions

Let us for the last time return to the uncontrolled process x
t

given by (1). We
want to study the time-averaged exponential cost (cf. [41])

c(�) = lim inf
t!1

1

t

logE (�(y, t)) , (19)

with the function

�(y, t) = E

✓
exp

✓
�

Z
t

0

f(x
s

)ds

◆ ����x0

= y

◆
. (20)

If we keep t > 0 fixed and notice that logE(exp(�F )) is the cumulant-
generating function (CGF) of the random variable

F

t

=

Z
t

0

f(x
s

)ds ,

it readily follows that

c(�) = lim inf
t!1

�

t

E (F
t

) + lim inf
t!1

�

2

2t
E
�
(F

t

�E(F
t

))2
�
+ . . . ,

which, by ergodicity, implies that

c

0(0) =

Z

S
f(x) dµ(x).

Assuming that the limit in (19) exists, we can conclude that �(y, t) grows
exponentially at rate c as t ! 1. That is, we have �(y, t) ⇣  (y) exp(ct)
where, by the Feynman-Kac theorem, � solves the linear evolution equation

✓
@

@t

� L

◆
� = �f(y)�

�(y, 0) = 1 .

If we insert the asymptotic ansatz for � in the last equation, we find that  is
the eigenvector corresponding to the maximum eigenvalue of L + �f(x), i.e.,
the one that dominates the growth of �(·, t) for large t. More precisely,

(L+ �f(y)) = c ,

which is readily seen to be equivalent to (13) with � = c.
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Remark 4 The specific structure of the eigenvalue problem (13) implies a large
deviations principle that is due to Donsker and Varadhan [42,43]; cf. also [44,
45]. It follows from Hölder’s inequality that the CGF �

�

= c(�) is convex, so
that its Legendre transform is well-defined. Now let

c⇤(!) = sup
�

{!� � c(�)}

denote the Legendre transform of c(�) and let I ✓ R be a any closed subset.
Then F

t

satisfies the large deviations principle (LDP)

lim
t!1

1

t

logP

✓
F

t

t

2 I

◆
= � inf

!2I

c⇤(!) .

with the rate function c⇤, which expresses the fact that the probability dis-
tribution p

t

of ! = F

t

/t decays like p

t

(!) ⇣ exp(�tc⇤(!)) as t ! 1. In
other words, the Donsker-Varadhan LDP determines the exponentially small
likelihood of observing deviations from the law of large numbers as t ! 1.

Example 4 (Double well potential, closing) Since we have computed the CGF
�

�

= c(�) for the di↵usive dynamics in the double well potential already dis-
cussed above with f = 1

B

, B = (�1,�0.5), we can also compute its Legendre
transform. The result is shown in Figure 10. The convex Legendre transform
has its minimum at ! = µ(B) ⇡ 0.171 which determines the most probable
value for F

t

/t when t ! 1. Another useful information that we obtain from
the knowledge of c⇤ is that if we want to get µ(B) with a probability of 95%
up to 10% correct based on long term simulation of x

t

, then we have to use
simulations of length T ⇡ 30.000.

0 0.5 1
−0.01

0

0.01

0.02

0.03

0.04

ω

c *(ω
)

Fig. 10 Legendre transform c⇤(!) of the CGF c as introduced in the text.



18 Christof Schütte et al.

5.2 Application to Alanine dipeptide

We consider the small biomolecule Alanine dipeptide (ADP), see Figure 11
(left panel). ADP with the CHARMM 27 force field was simulated in a box
of 256 TIP3P water molecules. We performed a 1 µs production run with
Langevin dynamics at 300 K, using a friction constant of 5 ps�1 and options
rigibonds all (i.e., all bond lengths were fixed). The conformation dynamics of
the system can be monitored via the � and  backbone dihedral angles. The
corresponding invariant measure exp(��V )/Z

V

is shown in the right panel of
Figure 11; specifically we have plotted the marginal density

⇢

V

(�, ) =
1

Z

V

Z

S
exp(��V (x))�[�(x)� �]�[ (x)�  ] dx .

The plot shows that the density is highest at the ↵-helical and the �-sheet-like
structures, where the fact that the conformations appear as sharp peaks in
the contour plot indicates that the chosen temperature T is small compared
to the most important energy barriers �V

max

of the system. More precisely,
the average kinetic energy E satisfies 9k

B

T = E ⌧ �V

max

. In other words,
we are in a scenario with " ⌧ 1, since �V

max

is a O(1) quantity, and " = k

B

T

in our MD model (1).
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Fig. 11 Alanine dipeptide (ADP) and its invariant measure projected onto the �- plane,
⇢

V

. The metastable ↵ and � conformations are the two indicated regions, carrying most of
the invariant measure µ of the uncontrolled ADP system.
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Our further considerations are based on the MSM (standard MSM with
250 states and a lag time of 500 time units) constructed in [35]. Our target
function is f = 1

B

with B = [�130,�50]⇥ [�100,�50], meaning that we want
to maximize the population of the ↵-helix conformation while suppressing
the �-sheet conformation without putting too much energy into the system.
Figure 12 shows the resulting marginal invariant distribution of exp(��U)/Z

U

,

⇢

U

(�, ) =
1

Z

U

Z

S
exp(��U(x))�[�(x)� �]�[ (x)�  ] dx,

for optimally controlled MD computed from the eigenvalue problem (17) and
the resulting target population ⇡

�

for di↵erent �.
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Fig. 12 Marginal invariant density ⇢

U

for optimally controlled MD (� = 1.2; left) and
optimal target population ⇡

�

as a function of � (right).

6 Summary and outlook

We have outlined a numerical scheme for solving high-dimensional stochas-
tic control problems on an infinite time horizon that appear relevant in the
context of MD. The scheme rests on the interpretation of the corresponding
Hamilton-Jacobi-Bellman equation as a nonlinear eigenvalue problem that, us-
ing a logarithmic transformation, can be recast as a linear eigenvalue problem,
for which principal eigenvalue and its eigenfunction are sought. We have given
a proof of concept that (under certain conditions that are typically met in MD)
the linear eigenvalue problem can be computed e�ciently by approximating
the underlying stochastic process with a coarse-grained Markov state model for
the dominant metastable sets. A nice feature of the proposed scheme is that
the MSM can be sampled from MD simulation data using the uncontrolled
dynamics.

Our proposal is sketchy and a lot of work remains to be done. First and
foremost, error bounds for the MSM approximation, along with an analysis of
the backward stability of the approximation in terms of the optimal control are
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still lacking. Furthermore the exact relation between the optimal cost (more
precisely: its Legendre transform) and free energy of nonequilibrium steady
states needs to be explored. Other open issues involve optimal control on finite
time horizons or optimal stopping, both for non-degenerate (i.e., uniformly
elliptic) and degenerate ergodic (i.e., hypoelliptic) di↵usion processes.
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A Hamilton-Jacobi-Bellman equation of ergodic control

The ergodic cost functional (8)–(9) is somewhat special in that the corresponding neces-
sary optimality condition (i.e., the HJB equation) does not follow directly from a dynamic
programming principle, but rather turns out to be the zero-discount limit of the following
discounted control problem:

u

⇤
↵

= argmax
u2A

E

✓Z 1

0
e

�↵s

g(x
s

, u

s

) ds

◆
. (21)

Here A is the set of admissible Markov controls and ↵ > 0 denotes the discount factor that
enforces convergence of the indefinite integral. The HJB equation for the discounted control
problem is obtained as follows: let

V

↵

(x) = E

✓Z 1

0
e

�↵s

g(x⇤
s

, u

⇤
s

) ds

����x0 = x

◆

be the optimal cost-to-go or value function of the discounted problem (21), for a given
optimal control u⇤

t

= u

⇤
↵,t

. Using the linearity and the tower property of the conditional
expectation, it can be readily seen that

V

↵

(x) = E
x0

✓Z
⌧

0
e

�↵s

g(x⇤
s

, u

⇤
s

) ds

◆
+E

x0

✓Z 1

⌧

e

�↵s

g(x⇤
s

, u

⇤
s

) ds

◆

= E
x0

✓Z
⌧

0
e

�↵s

g(x⇤
s

, u

⇤
s

) ds

◆
+E

x0

✓
e

�↵⌧

Z 1

⌧

e

�↵(s�⌧)
g(x⇤

s

, u

⇤
s

) ds

◆

= E
x0

✓Z
⌧

0
e

�↵s

g(x⇤
s

, u

⇤
s

) ds

◆
+E

x0

✓
e

�↵⌧E
x⌧

✓Z 1

⌧

e

�↵(s�⌧)
g(x⇤

s

, u

⇤
s

) ds

◆◆

= E
x0

✓Z
⌧

0
e

�↵s

g(x⇤
s

, u

⇤
s

) ds

◆
+E

x0

�
e

�↵⌧

V (x
⌧

)
�
,

where we have used the shorthand E
x0 (·) = E(·|x0 = x). Rearranging the last equation and

dividing by ⌧ > 0, we obtain

0 =
1

⌧

E
x0

✓
e

�↵⌧

V

↵

(x
⌧

)� V

↵

(x0) +

Z
⌧

0
e

�↵s

g(x⇤
s

, u

⇤
s

) ds

◆
,

which upon using Itô’s formula for e

�↵⌧

V

↵

(x
⌧

),

E
x0

�
e

�↵⌧

V

↵

(x
⌧

)� V

↵

(x0)
�
= E

x0

✓Z
⌧

0
e

�↵s(Lu

⇤
� ↵)V

↵

(x
s

) ds

◆
,
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implies

0 =
1

⌧

E
x0

✓Z
⌧

0
e

�↵s

⇣
(Lu

⇤
� ↵)V

↵

(x
s

) + g(x⇤
s

, u

⇤
s

)
⌘
ds

◆
.

If we relax the assumption on the control, we have

0 �
1

⌧

E
x0

✓Z
⌧

0
e

�↵s ((Lu � ↵)V
↵

(x
s

) + g(x
s

, u

s

)) ds

◆
,

where equality is attained for u = u

⇤
↵

. Letting ⌧ ! 0 formally yields

0 = sup
c2Rn

{(Lc � ↵)V
↵

+ g(x, c)} , (22)

which is the HJB equation for the discounted control problem (21) [46].
The ergodic control functional can be treated as the limit of (22) when ↵ ! 0. To this

end, we define �
↵

= ↵V

↵

and W

↵

= V

↵

� V

↵

(0). Formally W

↵

satisfies the equation

0 = sup
c2Rn

{(Lc � ↵)W
↵

� ↵V

↵

(0) + g(x, c)} ,

and under suitable assumptions, it can be shown that [47]

lim
↵!0

�

↵

= � , lim
↵!0

W

↵

(x) = W (x) ,

where the pair (�,W ) solves the HJB equation

� = sup
c2Rn

{Lc

W + g(x, c)} .

This is (10). Note that the reference point x̂ = 0 for which W

↵

(x̂) = 0 is arbitrary, since the
limiting value function W is defined only up to an additive constant.
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18. Noé, F., Krachtus, D., Smith, J.C., Fischer, S.: Transition Networks for the Comprehen-
sive Characterization of Complex Conformational Change in Proteins. J. Chem. Theo.
Comp. 2, 840–857 (2006)

19. Ostermann, A., Waschipky, R., Parak, F.G., Nienhaus, U.G.: Ligand binding and con-
formational motions in myoglobin. Nature 404, 205–208 (2000)

20. Schae↵er, D.D., Fersht, A., Daggett, V.: Combining experiment and simula-
tion in protein folding: closing the gap for small model systems. Curr.
Opin. Struct. Biol. 18(1), 4–9 (2008). DOI 10.1016/j.sbi.2007.11.007. URL
http://dx.doi.org/10.1016/j.sbi.2007.11.007
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