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Abstract We consider a class of inverse problems in which the forward model
is the solution operator to linear ODEs or PDEs. This class admits several di-
mensionality-reduction techniques based on data averaging or sampling, which are
especially useful for large-scale problems. We survey these approaches and their
connection to stochastic optimization. The data-averaging approach is only viable,
however, for a least-squares misfit, which is sensitive to outliers in the data and
artifacts unexplained by the forward model. This motivates us to propose a robust
formulation based on the Student’s t-distribution of the error. We demonstrate
how the corresponding penalty function, together with the sampling approach, can
obtain good results for a large-scale seismic inverse problem with 50% corrupted
data.

Keywords inverse problems · seismic inversion · stochastic optimization · robust
estimation

1 Introduction

Consider the generic parameter-estimation scheme in which we conduct m exper-
iments, recording the corresponding experimental input vectors {q1, q2, . . . , qm}
and observation vectors {d1, d2, . . . , dm}. We model the data for given parameters
x ∈ Rn by

di = Fi(x)qi + εi for i = 1, . . . ,m, (1.1)
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where observation di is obtained by the linear action of the forward model Fi(x)
on known source parameters qi, and independent errors εi capture the discrepancy
between di and prediction Fi(x)qi. The class of models captured by this repre-
sentation includes solution operators to any linear (partial) differential equation
with boundary conditions, where the qi are the right-hand sides of the equations.
A special case arises when Fi ≡ F , i.e., the forward model is the same for each
experiment.

Inverse problems based on these forward models arise in a variety of applications,
including medical imaging and seismic exploration, in which the parameters x
usually represent particular physical properties of a material. We are particularly
motivated by the full-waveform inversion (FWI) application in seismology, which is
used to image the earth’s subsurface [38]. In full-waveform inversion, the forward
model F is the solution operator of the wave equation composed with a restriction
of the full solution to the observation points (receivers); x represents sound-velocity
parameters for a (spatial) 2- or 3-dimensional mesh; the vectors qi encode the
location and signature of the ith source experiment; and the vectors di contain
the corresponding measurements at each receiver. A typical survey in exploration
seismology may contain thousands of experiments (shots), and global seismology
relies on natural experiments provided by measuring thousands of earthquakes
detected at seismic stations around the world. Standard data-fitting algorithms may
require months of CPU time on large computing clusters to process this volume of
data and yield coherent geological information.

Inverse problems based on the forward models that satisfy (1.1) are typically
solved by minimizing some measure of misfit, and have the general form

minimize
x

φ(x) :=
1

m

m∑
i=1

φi(x), (1.2)

where each φi(x) is some measure of the residual

ri(x) := di − Fi(x)qi (1.3)

between the observation and prediction of the ith experiment. The classical approach
is based on the least-squares penalty

φi(x) = ‖ri(x)‖2. (1.4)

This choice can be interpreted as finding the maximum likelihood (ML) estimate of
x, given the assumptions that the errors εi are independent and follow a Gaussian
distribution.

Formulation (1.2) is general enough to capture a variety of models, including
many familiar examples. If the di and qi are scalars, and the forward model is
linear, then standard least-squares

φi(x) = 1
2 (aTi x− di)2

easily fits into our general formulation. More generally, ML estimation is based on
the form

φi(x) = − log pi
(
ri(x)

)
,

where pi is a particular probability density function of εi.



Robust inversion, dimensionality reduction, and randomized sampling 3

1.1 Dimensionality reduction

Full-waveform inversion is a prime example of an application in which the cost
of evaluating each element in the sum of φ is very costly: every residual vector
ri(x)—required to evaluate one element in the sum of (1.2)—entails solving a
partial differential equation on a 2D or 3D mesh with thousands of grid points in
each dimension. The scale of such problems is a motivation for using dimensionality
reduction techniques that address small portions of the data at a time.

The least-squares objective (1.4) allows for a powerful form of data aggregation
that is based on randomly fusing groups of experiments into “meta” experiments,
with the effect of reducing the overall problem size. The aggregation scheme is based
on Haber et al.’s [17] observation that for this choice of penalty, the objective is
connected to the trace of a residual matrix. That is, we can represent the objective
of (1.2) by

φ(x) =
1

m

m∑
i=1

‖ri(x)‖2 ≡ 1

m
trace

(
R(x)TR(x)

)
, (1.5)

where
R(x) := [r1(x), r2(x), . . . , rm(x)]

collects the residual vectors (1.3). Now consider a small sample of s weighted
averages of the data, i.e.,

d̃j =
m∑
i=1

wijdi and q̃j =
m∑
i=1

wijqi, j = 1, . . . , s,

where s � m and wij are random variables, and collect the corresponding s

residuals r̃j(x) = d̃j − Fj(x)q̃j into the matrix RW (x) := [r̃1(x), r̃2(x), . . . , r̃s(x)].
Because the residuals are linear in the data, we can write compactly

RW (x) := R(x)W where W := (wij).

Thus, we may consider the sample function

φW (x) =
1

s

s∑
j=1

‖r̃j(x)‖2 ≡ 1

s
trace

(
RW (x)TRW (x)

)
(1.6)

based on the s averaged residuals. Proposition 1.1 then follows directly from
Hutchinson’s [22, §2] work on stochastic trace estimation.

Proposition 1.1. If E[WWT ] = I, then

E
[
φW (x)

]
= φ(x) and E[∇φW (x)] = ∇φ(x).

Hutchinson proves that if the weights wij are drawn independently from a
Rademacher distribution, which takes the values ±1 with equal probability, then
the stochastic-trace estimate has minimum variance. Avron and Toledo [4] compare
the quality of stochastic estimators obtained from other distributions. Golub and
von Matt [15] report the surprising result that the estimate obtained with even a
single sample (s = 1) is often of high quality. Experiments that use the approach
in FWI give evidence that good estimates of the true parameters can be obtained
at a fraction of the computational cost required by the full approach [19,24,41].
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1.2 Approach

Although the least-squares approach enjoys widespread use, and naturally accom-
modates the dimensionality-reduction technique just described, it is known to be
unsuitable for non-Gaussian errors, especially for cases with very noisy or corrupted
data often encountered in practice. The least-squares formulation also breaks down
in the face of systematic features of the data that are unexplained by the model Fi.

Our aim is to characterize the benefits of robust inversion and to describe
randomized sampling schemes and optimization algorithms suitable for large-scale
applications in which even a single evaluation of the forward model and its action
on qi is computationally expensive. (In practice, the product Fi(x)qi is evaluated
as a single unit.) We interpret these sampling schemes, which include the well-
known incremental-gradient algorithm [28], as dimensionality-reduction techniques,
because they allow algorithms to make progress using only a portion of the data.

This paper is organized into the following components:
Robust statistics (§2). We survey robust approaches from a statistical perspective,

and present a robust approach based on the heavy-tailed Student’s t-distribution.
We show that all log-concave error models share statistical properties that differ-
entiate them from heavy-tailed densities (such as the Student’s t) and limit their
ability to work in regimes with large outliers or significant systematic corruption
of the data. We demonstrate that densities outside the log-concave family allow
extremely robust formulations that yield reasonable inversion results even in the
face of major data contamination.

Sample average approximations (§3). We propose a dimensionality-reduction
technique based on sampling the available data, and characterize the statistical
properties that make it suitable as the basis for an optimization algorithm to solve
the general inversion problem (1.2). These techniques can be used for the general
robust formulation described in §2, and for formulations in which forward models
Fi vary with i.

Stochastic optimization (§4) We review stochastic-gradient, randomized in-
cremental-gradient, and sample-average methods. We show how the assumptions
required by each method fit with the class of inverse problems of interest, and can
be satisfied by the sampling schemes discussed in §3.

Seismic inversion (§5) We test the proposed sample-average approach on the
robust formulation of the FWI problem. We compare the inversion results obtained
with the new heavy-tailed approach to those obtained using robust log-concave
models and conventional methods, and demonstrate that a useful synthetic velocity
model can be recovered by the heavy-tailed robust method in an extreme case with
50% missing data. We also compare the performance of stochastic algorithms and
deterministic approaches, and show that the robust result can be obtained using
only 30% of the effort required by a deterministic approach.

2 Robust Statistics

A popular approach in robust regression is to replace the least-squares penalty (1.4)
on the residual with a penalty that increases more slowly than the 2-norm. (Virieux
and Operto [42] discuss the difficulties with least-squares regression, which are
especially egregious in seismic inversion.)
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One way to derive a robust approach of this form is to assume that the noise
εi comes from a particular non-Gaussian probability density, pi, and then find
the maximum likelihood (ML) estimate of the parameters x that maximizes the
likelihood that the residual vectors ri(x) are realizations of the random variable εi,
given the observations di. Because the negative logarithm is monotone decreasing,
it is natural to minimize the negative log of the likelihood function rather than
maximizing the likelihood itself. In fact, when the distribution of the errors εi is
modeled using a log-concave density

p(r) ∝ exp
(
− ρ(r)

)
,

with a convex loss function ρ, the ML estimation problem is equivalent to the
formulation (1.2), with

φi(x) = ρ(ri(x)) for i = 1, . . . ,m. (2.1)

One could also simply start with a penalty ρ on ri(x), without explicitly
modelling the noise density; estimates obtained this way are generally known
as M-estimates [20]. A popular choice that follows this approach is the Huber
penalty [20,21,27].

Robust formulations are typically based on convex penalties ρ—or equivalently,
on log-concave densities for εi—that look quadratic near 0 and increase linearly far
from zero. Robust penalties, including the 1-norm and Huber, for electromagnetic
inverse problems are discussed by Farquaharson and Oldenburg in [13]. Guitton
and Symes [16] consider the Huber penalty in the seismic context, and they cite
many previous examples of the use of 1-norm penalty in geophysics. Huber and
1-norm penalties are further compared on large-scale seismic problems by Brossier
et al. [7], and a Huber-like (but strictly convex) hyperbolic penalty is described by
Bube and Nemeth [9], with the aim of avoiding possible non-uniqueness associated
with the Huber penalty.

Clearly, practitioners have a preference for convex formulations. However, it is
important to note that

– for nonlinear forward models Fi, the optimization problem (1.2) is typically
nonconvex even for convex penalties ρ (it is difficult to satisfy the compositional
requirements for convexity in that case);

– even for linear forward models Fi, it may be beneficial to choose a nonconvex
penalty in order to guard against outliers in the data.

We will justify the second point from a statistical perspective. Before we proceed
with the argument, we introduce the Student’s t-density, which we use in designing
our robust method for FWI.

2.1 Heavy-tailed distribution: Student’s t

Robust formulations using the Student’s t-distribution have been shown to out-
perform log-concave formulations in various applications [1]. In this section, we
introduce the Student’s t-density, explain its properties, and establish a result
that underscores how different heavy-tailed distributions are from those in the
log-concave family.
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The scalar Student’s t-density function with mean µ and positive degrees-of-
freedom parameter ν is given by

p( r | µ, ν ) ∝
(
1 + (r − µ)2/ν

)−(1+ν)/2
. (2.2)

The density is depicted in Figure 1(a). The parameter ν can be understood by
recalling the origins of the Student’s t-distribution. Given n i.i.d. Gaussian variables
xi with mean µ, the normalized sample mean

x̄− µ
S/
√
n

(2.3)

follows the Student’s t-distribution with ν = n − 1, where the sample variance
S2 = 1

n−1

∑
(xi − x̄)2 is distributed as a χ2 random variable with n− 1 degrees

of freedom. As ν → ∞, the characterization (2.3) immediately implies that the
Student’s t-density converges pointwise to the density of N(0, 1). Thus, ν can be
interpreted as a tuning parameter: for low values one expects a high degree of
non-normality, but as ν increases, the distribution behaves more like a Gaussian
distribution. This interpretation is highlighted in [25].

For a zero-mean Student’s t-distribution (µ = 0), the log-likelihood of the
density (2.2) gives rise to the nonconvex penalty function

ρ(r) = log(1 + r2/ν), (2.4)

which is depicted in Figure 1(b). The nonconvexity of this penalty is equivalent to
the sub-exponential decrease of the tail of the Student’s t-distribution, which goes
to 0 at the rate 1/rν+1 as r →∞.

The significance of these so-called heavy tails in outlier removal becomes clear
when we consider the following question: Given that a scalar residual deviates from
the mean by more than t, what is the probability that it actually deviates by more
than 2t?

The 1-norm is the slowest-growing convex penalty, and is induced by the Laplace
distribution, which is proportional to exp(−‖ · ‖1). A basic property of the scalar
Laplace distribution is that it is memory free. That is, given a Laplace distribution
with mean 1/α, then the probability relationship

Pr(|r| > t2 | |r| > t1) = Pr(|r| > t2 − t1) = exp(−α[t2 − t1]) (2.5)

holds for all t2 > t1. Hence, the probability that a scalar residual is at least 2t away
from the mean, given that it is at least t away from the mean, decays exponentially
fast with t. For large t, it is unintuitive to make such a strong claim for a residual
already known to correspond to an outlier.

Contrast this behavior with that of the Student’s t-distribution. When ν = 1,
the Student’s t-distribution is simply the Cauchy distribution, with a density
proportional to 1/(1 + r2). Then we have that

lim
t→∞

Pr(|r| > 2t | |r| > t) = lim
t→∞

π
2 − arctan(2t)
π
2 − arctan(t)

=
1

2
.

Remarkably, the conditional probability is independent of t for large residuals. This
cannot be achieved with any probability density arising from a convex penalty,
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because (2.5) provides a lower bound for this family of densities, as is shown in
the following theorem.

Theorem 2.1. Consider any scalar density p arising from a symmetric proper
closed convex penalty ρ via p(t) = exp(−ρ(t)), and take any point t0 with positive
right derivative α0 = ∂+ρ(t0) > 0. Then for all t2 > t1 ≥ t0, the conditional tail
distribution induced by p(r) satisfies

Pr(|r| > t2 | |r| > t1) ≤ exp(−α0[t2 − t1]) .

Proof. Define `(t) = ρ(t1)+α1(t−t1) to be the (global) linear under-estimate for ρ at
t1, where α1 = ∂+ρ(t1) is the right derivative of ρ at t1. Define F (t) =

∫∞
t
p(r) dr.

We first note that F (t) is log-concave (apply [33, Theorem 3], taking the set
A = {z | z ≥ 0}). Then log(F (t)) is concave, and so its derivative

log(F (t))′ =
p(t)

−F (t)

is non-increasing. Therefore, the ratio p(t)/F (t) is nondecreasing, and in particular

p(t1)

F (t1)
≤ p(t2)

F (t2)
, or equivalently,

F (t2)

F (t1)
≤ p(t2)

p(t1)
.

By assumption on the functions ` and ρ,

ρ(t2)− `(t2) ≥ ρ(t1)− `(t1) = 0,

which implies that

Pr(|r| > t2 | |r| > t1) =
F (t2)

F (t1)
≤ exp(−ρ(t2))

exp(−ρ(t1))

= exp(−[ρ(t2)− `(t1)])

≤ exp(−[`(t2)− `(t1)])

= exp(−α1[t2 − t1]) .

To complete the proof, note that the right derivative ∂+ρ(t) is nondecreasing [34,
Theorem 24.1]. Then we have α0 ≤ α1 for t0 ≤ t1.

For differentiable log-concave densities, the influence function is defined to be
ρ′(t), and for a general distribution it is the derivative of the negative log of the
density. These functions provide further insight into the difference between the
behaviors of log-concave densities and heavy-tailed densities such as the Student’s.
In particular, they measure the effect of the size of a residual on the negative log
likelihood. The Student’s t-density has a so-called redescending influence function:
as residuals grow larger, they are effectively ignored by the model. Figure 1 shows
the relationships among densities, penalties, and influence functions of two log-
concave distributions (Gaussian and Laplacian) and those of the Student’s t, which
is not log-concave. If we examine the derivative

ρ′(r) =
2r

ν + r2
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0 0 0

0

(a) (b) (c)

Fig. 1: The Gaussian (·−), Laplace (−−), and Student’s t- (—) distributions: (a)
densities, (b) penalties, and (c) influence functions.

of the Student’s t-penalty (2.4), it is clear that large residuals have a small influence
when r2 � ν. For small r, on the other hand, the derivative resembles that of the
least-squares penalty. See Hampel et al. [18] for a discussion of influence-function
approaches to robust statistics, and redescending influence functions in particular,
and Shevlyakov et al. [35] for further connections.

There is an implicit tradeoff between convex and non-convex penalties (and
their log-concave and non-log-concave counterparts). Convex models are easier to
characterize and solve, but may be wrong in a situation in which large outliers are
expected. Nonconvex penalties are particularly useful with large outliers.

2.2 The Student’s t in practice

Figure 2 compares the reconstruction obtained using the Student’s t-penalty, with
those obtained using least-squares and Huber penalties, on an FWI experiment
(described more fully in §5). These panels show histograms of the residuals (1.3) that
are obtained at different solutions, including the true solution, and the solutions
recovered by solving (1.2) where the subfunctions φi in (2.1) are defined by the
least-squares, Huber, and Student’s t- penalties.

The experiment simulates 50% missing data using a random mask that zeros
out half of the data obtained via a forward model at the true value of x. A residual
histogram at the true x therefore contains a large spike at 0, corresponding to
the residuals for correct data, and a multimodal distribution of residuals for the
erased data. The least-squares recovery yields a residual histogram that resembles
a Gaussian distribution. The corresponding inversion result is useless, which is not
surprising, because the residuals at the true solution are very far from Guassian.
The reconstruction using the Huber penalty is a significant improvement over the
conventional least-squares approach, and the residual has a shape that resembles
the Laplace distribution, which is closer to the shape of the true residual. The
Student’s t approach yields the best reconstruction, and, remarkably, produces
a residual distribution that matches the multi-modal shape of the true residual
histogram. This is surprising because the Student’s t-distribution is unimodal, but
the residual shape obtained using the inversion formulation is not. It appears that
the statistical prior implied by the Student’s t-distribution is weak enough to allow
the model to converge to a solution that is almost fully consistent with the good
data, and completely ignors the bad data.
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(a) True model residual and solution
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(b) Least-squares residual and solution
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(c) Huber residual and solution
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(d) Student’s t residual and solution

Fig. 2: Residual histograms (normalized) and solutions for an FWI problem. The
histogram at (a) the true solution shows that the errors follow a tri-modal distri-
bution (superimposed on the other histogram panels for reference). The residuals
for (b) least-squares and (c) Huber reconstructions follow the model error densities
(i.e., Gaussian and Laplace). The residuals for (d) the Student t reconstruction,
however, closely match the distribution of the actual errors.
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Despite several successful applications in statistics and control theory [12,25],
Student’s t-formulations do not enjoy widespread use, especially in the context
of nonlinear regression and large-scale inverse problems. Recently, however, they
were shown to work very well for robust recovery in nonlinear inverse problems
such as Kalman smoothing and bundle adjustment [1], and to outperform the
Huber penalty when inverting large synthetic models [2, 3]. Moreover, because the
corresponding penalty function is smooth, it is usually possible to adapt existing
algorithms and workflows to work with a robust formulation.

In order for algorithms to be useful with industrial-scale problems, it is essential
that they be designed for conventional and robust formulations that use a relatively
small portion of the data in any computational kernel. We lay the groundwork for
these algorithms in the next section.

3 Sample average approximations

The data-averaging approach used to derive the approximation (1.6) may not
be appropriate when the misfit functions φi are something other than the 2-
norm. In particular, a result such as Proposition 1.1, which reassures us that the
approximations are unbiased estimates of the true functions, relies on the special
structure of the 2-norm, and is not available to us in the more general case. In
this section, we describe sampling strategies—analogous to the stochastic-trace
estimation procedure of §1.1—that allow for more general misfit measures φi. In
particular, we are interested in a sampling approach that allows for differential
treatment across experiments i, and for robust functions.

We adopt the useful perspective that each of the constituent functions φi and
the gradients ∇φi are members of a fixed population of size m. The aggregate
objective function and its gradient,

φ(x) =
1

m

m∑
i=1

φi(x) and ∇φ(x) =
1

m

m∑
i=1

∇φi(x),

can then simply be considered to be population averages of the individual objectives
and gradients, as reflected in the scaling factors 1/m. A common method for esti-
mating the mean of a population is to sample only a small subset S ⊆ { 1, . . . ,m }
to derive the sample averages

φS(x) =
1

s

∑
i∈S

φi(x) and ∇φS(x) =
1

s

∑
i∈S
∇φi(x), (3.1)

where s = |S| is the sample size. We build the subset S as a uniform random
sampling of the full population, and in that case the sample averages are unbiased:

E[φS(x)] = φ(x) and E[∇φS(x)] = ∇φ(x). (3.2)

The cost of evaluating these sample-average approximations is about s/m times
that for the true function and gradient. (Non-uniform schemes, such as importance
and stratified sampling, are also possible, but require prior knowledge about the
relative importance of the φi.) We use these quantities to drive the optimization
procedure.
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This approach constitutes a kind of dimensionality-reduction scheme, and it
is widely used by census takers to avoid the expense of measuring the entire
population. In our case, measuring each element of the population means an
evaluation of a function φi and its gradient ∇φi. The goal of probability sampling
is to design randomized sampling schemes that estimate statistics—such as these
sample averages—with quantifiable error; see, for example, Lohr’s introductory
text [26].

The stochastic-optimization methods that we describe in §4 allow for approx-
imate gradients, and thus can take advantage of these sampling schemes. The
error analysis of the sample-average method described in §4.3 relies on the second
moment of the error

e = ∇φS −∇φ (3.3)

in the gradient. Because the sample averages are unbiased, the expected value of
the squared error of the approximation reduces to the variance of the norm of the
sample average:

E
[
‖e‖2

]
= V

[
‖∇φS‖

]
. (3.4)

This error is key to the optimization process, because the accuracy of the gradient
estimate ultimately determines the quality of the search directions available to the
underlying optimization algorithm.

3.1 Sampling with and without replacement

Intuitively, the size s of the random sample influences the norm of the error e
in the gradient estimate. The difference between uniform sampling schemes with
or without replacement greatly affects how the variance of the sample average
decreases as the sample size increases. In both cases, the variance of the estimator
is proportional to the sample variance

σ2
g :=

1

m− 1

m∑
i=1

‖∇φi −∇φ‖2 (3.5)

of the population of gradients { ∇φ1, . . . ,∇φm } evaluated at x. This quantity is
inherent to the problem and independent of the chosen sampling scheme.

When sampling from a finite population without replacement (i.e., every element
in S occurs only once), then the error en of the sample average gradient satisfies

E[‖en‖2] =
1

s

(
1− s

m

)
σ2
g ; (3.6)

for example, see Cochran [11] or Lohr [26, §2.7]. Note that the expected error
decreases with s, and—importantly—is exactly 0 when s = m. On the other hand,
in a sample average gradient built by uniform sampling with replacement, every
sample draw of the population is independent of the others, so that the error er of
this sample average gradient satisfies

E[‖er‖2] =
1

s
σ2
g . (3.7)

This error goes to 0 as 1/s, and is never 0 when sampling over a finite population.
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Comparing the expected error between sampling with and without replacement
for finite populations, we note that

E[‖en‖2] =
(

1− s

m

)
E[‖er‖2],

and so sampling without replacement yields a uniformly lower expected error than
independent finite sampling.

3.2 Data averaging

The data-averaging approach discussed in §1.1 for the objective (1.5) does not
immediately fit into the sample-average framework just presented, even though the
function φW defined in (1.6) is a sample average. Nevertheless, for all sampling
schemes described by Proposition 1.1, the sample average

φW (x) =
1

s

s∑
j=1

φ̃i(x), with φ̃i(x) := ‖R(x)wi‖2,

is in some sense a sample average of an infinite population. If the random vectors
are uncorrelated—as required by Proposition 1.1—than, as with (3.7), the error

ew = ∇φW − φ

of the sample average gradient is proportional to the sample variance of the
population of gradients of φW . That is,

E[‖ew‖2] =
1

s
σ̃2
g ,

where σ̃2
g is the sample variance of the population of gradients {∇φ̃1, . . . ,∇φ̃m }.

The particular value of σ̃2
g will depend on the distribution from which the

weights wi are drawn; for some distributions of wi this quantity may even be
infinite, as is shown by the following results.

The sample variance (3.5) is always finite, and the analogous sample variance

σ̃2
g of the implicit functions ∇φ̃i is finite under general conditions on w.

Proposition 3.1. The sample variance σ̃2
g of the population {∇φ̃1, . . . ,∇φ̃m }

of gradients is finite when the distribution for wi has finite fourth moments.
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Proof. The claim follows from a few simple bounds (all sums run from 1 to m):

σ̃2
g ≤ E

[
‖∇φ̃i‖2

]
= 4E

[ ∥∥∥∥∥
(∑

i

wi∇ri(x)

)(∑
i

wiri(x)

)∥∥∥∥∥
2]

≤ 4E

[(∥∥∥∥∥∑
i

wi∇ri(x)

∥∥∥∥∥
2

∥∥∥∥∥∑
i

wiri(x)

∥∥∥∥∥
)2]

≤ 4E

[(∑
i

‖wi∇ri(x)‖2
∑
i

‖wiri(x)‖

)2]

= 4E

[(∑
i

|wi| ‖∇ri(x)‖2
∑
i

|wi| ‖ri(x)‖

)2]

≤ 4 max
i
m2‖∇ri(x)‖22 ·max

i
‖ri(x)‖2E

[∑
ij

w2
iw

2
j

]
.

The quantity E
[∑

ij w
2
iw

2
j

]
<∞ when the fourth moments are finite.

As long as σ̃2
g is nonzero, the expected error of uniform sampling without

replacement is asymptotically better than the expected error that results from data
averaging. That is,

E[‖en‖2] < E[‖ew‖2] for all s large enough.

At least as measured by the second moment of the error in the gradient, the simple
random sampling without replacement has the benefit of yielding a good estimate
when compared to these other sampling schemes.

4 Stochastic optimization

Stochastic optimization, which naturally allows for inexact gradient calculations,
meshes well with the various sampling and averaging strategies described in §3.
We review several approaches that fall under the stochastic optimization umbrella,
and describe their relative benefits.

Although the full-waveform inversion application that we consider is nonconvex,
the following discussion make the assumption that the optimization problem
is convex; this expedient concedes the analytical tools that allow us to connect
sampling with rates of convergence. It is otherwise difficult to connect a convergence
rate to the sample size; see [14, §2.3]. The usefulness of the approach is justified by
numerical experiments, both in the present paper and in [14, §5], where results for
both convex and nonconvex models are presented.
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4.1 Stochastic gradient methods

Stochastic gradient methods for minimizing a differentiable function φ, not neces-
sarily of the form defined in (1.2), can be generically expressed by the iteration

xk+1 = xk − αkdk with dk := sk + ek, (4.1)

where αk is a positive stepsize, sk is a descent direction for φ, and ek is a random
noise term. Bertsekas and Tsitsiklis [6, Prop. 3] give general conditions under which

lim
k→∞

∇φ(xk) = 0,

and every limit point of {xk} is a stationary point of φ. Note that unless the
minimizer is unique, this does not imply that the sequence of iterates {xk} converges.
Chief among the required conditions are that ∇φ is globally Lipschitz, i.e., for
some positive L,

‖∇φ(x)−∇φ(y)‖ ≤ L‖x− y‖ for all x and y;

that for all k,

sTk∇φ(xk) ≤ −µ1‖∇φ(xk)‖2, (4.2a)

‖sk‖ ≤ µ2(1 + ‖∇φ(xk)‖), (4.2b)

E[ek] = 0 and E
[
‖ek‖2

]
< µ3, (4.2c)

for some positive constants µ1, µ2, and µ3; and that the steplengths satisfy the
infinite travel and summable conditions

∞∑
k=0

αk =∞ and
∞∑
k=0

α2
k <∞. (4.3)

Many authors have worked on similar stochastic-gradient methods, but the Bert-
sekas and Tsitsiklis [6] is particularly general; see their paper for further references.

Note that the randomized sample average schemes (with or without replacement)
from §3 can be immediately used to design a stochastic gradient that satisfies (4.2b).
It suffices to choose the sample average of the gradient (3.1) as the search direction:

dk = ∇φS(xk).

Because the sample average ∇φS is unbiased—cf. (3.2)—this direction is on average
simply the steepest descent, and can be interpreted as having been generated from
the choices

sk = ∇φ(xk) and ek = ∇φS(xk)−∇φ(xk).

Moreover, the sample average has finite variance—cf. (3.6)–(3.7)—and so the
direction sk and the error ek clearly satisfy conditions (4.2).

The same argument holds for the data-averaging scheme outlined in §1.1, as
long as the distribution of the mixing vector admits an unbiased sample average
with a finite variance. Propositions 1.1 and 3.1 establish conditions under which
these requirements hold.
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Suppose that φ is strongly convex with parameter µ, which implies that

µ

2
‖xk − x∗‖2 ≤ φ(xk)− φ(x∗),

where x∗ is the unique minimizer of φ. Under this additional assumption, further
statements can be made about the rate of convergence. In particular, the iteration
(4.1), with sk = ∇φ(xk), converges sublinearly, i.e.,

E[‖xk − x∗‖] = O(1/k). (4.4)

where the steplengths αk = O(1/k) are decreasing [30, §2.1]. This is in fact the
optimal rate among all first-order stochastic methods [29, §14.1].

A strength of the stochastic algorithm (4.1) is that it applies so generally. All
of the sampling approaches that we have discussed so far, and no doubt others,
easily fit into this framework. The convergence guarantees are relatively weak for
our purposes, however, because they do not provide guidance on how a sampling
strategy might influence the speed of convergence. This analysis is crucial within
the context of the sampling schemes that we consider, because we want to gain an
understanding of how the sample size influences the speed of the algorithm.

4.2 Incremental-gradient methods

Incremental-gradient methods, in their randomized form, can be considered a
special case of stochastic gradient methods that are especially suited to optimizing
sums of functions such as (1.2). They can be described by the iteration scheme

xk+1 = xk − αk∇φik(xk), (4.5)

for some positive steplengths αk, where the index ik selects among the m constituent
functions of φ. In the deterministic version of the algorithm, the ordering of the
subfunctions φi is predetermined, and the counter ik = (k mod m) + 1 makes a
full sweep through all the functions every m iterations. In the randomized version,
ik is at each iteration randomly selected with equal probability from the indices
1, . . . ,m. (The Kaczmarz method for linear system [23] is closely related, and a
randomized version of it is analyzed by Strohmer and Vershynin [37].)

In the context of the sampling discussion in §3, the incremental-gradient algo-
rithm can be viewed as an extreme sampling strategy that at each iteration uses
only a single function φi (i.e., a sample of size s = 1) in order to form a sample
average φS of the gradient. For the data-averaging case of §1.1, this corresponds to
generating the approximation φW from a single weighted average of the data (i.e.,
using a single random vector wi to form R(x)wi).

Bertsekas and Tsitsiklis [5, Prop. 3.8] describe conditions for convergence of
the incremental-gradient algorithm for functions with globally Lipschitz continuous
gradients, when the steplengths αk → 0 as specified by (4.3). Note that it is
necessary for the steplengths αk → 0 in order for the iterates xk produced by (4.5)
to ensure stationarity of the limit points. Unless we assume that ∇φ(x̄) = 0 implies
that ∇φi(x̄) = 0 for all i, a stationary point of φ is not a fixed point of the iteration
process; Solodov [36] and Tseng [39] study this case. Solodov [36] further describes
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how bounding the steplengths away from zero yields limit points x̄ that satisfy the
approximate stationarity condition

‖∇φ(x̄)‖ = O
(

inf
k
αk
)
.

With the additional assumption of strong convexity of φ, it follows from Nedić
and Bertsekas [28] that the randomized incremental-gradient algorithm with a
decreasing stepsize αk = O(1/k) converges sublinearly accordingly to (4.4). They
also show that keeping the stepsize constant as αk ≡ m/L implies that

E[‖xk − x∗‖2] ≤ O([1− µ/L]k) +O(m/L).

This expression is interesting because the first term on the right-hand side decreases
at a linear rate, and depends on the condition number µ/L of φ; this term is present
for any deterministic first-order method with constant stepsize. Thus, we can see
that with the strong-convexity assumption and a constant stepsize, the incremental-
gradient algorithm has the same convergence characteristics as steepest descent,
but with an additional constant error term.

4.3 Sampling methods

The incremental-gradient method described in §4.2 has the benefit that each
iteration costs essentially the same as evaluating only a single gradient element
∇φi. The downside is that they achieve only a sublinear convergence to the exact
solution, or a linear convergence to an approximate solution. The sampling approach
described in Friedlander and Schmidt [14] allows us to interpolate between the
one-at-a-time incremental-gradient method at one extreme, and a full gradient
method at the other.

The sampling method is based on the iteration update

xk+1 = xk − αgk, α = 1/L, (4.6)

where L is the Lipschitz constant for the gradient, and the search direction

gk = ∇φ(xk) + ek (4.7)

is an approximation of the gradient; the term ek absorbes the discrepancy between
the approximation and the true gradient. We define the direction gk in terms of
the sample average gradient (3.1), and then ek corresponds to the error defined
in (3.3).

When the function φ is strongly convex and has a globally Lipschitz continuous
gradient, than the following theorem links the convergence of the iterates to the
error in the gradient.

Theorem 4.1. Suppose that E[‖ek‖2] ≤ Bk, where limk→∞Bk+1/Bk ≤ 1. Then
each iteration of algorithm (4.6) satisfies for each k = 0, 1, 2, . . . ,

E[‖xk − x∗‖2] ≤ O([1− µ/L]k) +O(Ck), (4.8)

where Ck = max{Bk, (1− µ/L+ ε)k} for any positive ε.
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Fig. 3: Comparing the difference between the theoretical errors bounds in the sample
averages for three sampling strategies (randomized with replacement, randomized
without replacement, and deterministic). (a) Sample sizes, as fractions of the total
population m = 1000, required to reduce the error linearly with error constant 0.9.
(b) The corresponding cumulative number of samples used. See bounds (4.10).

It is also possible to replace gk in (4.6) with a search direction pk that is the
solution of the system

Hkp = gk, (4.9)

for any sequence of Hessian approximations Hk that are uniformly positive definite
and bounded in norm, as can be enforced in practice. Theorem 4.1 continues to
hold in this case, but with different constants µ and L that reflect the conditioning
of the “preconditioned” function; see [14, §1.2].

It is useful to compare (4.4) and (4.8), which are remarkably similar. The
distance to the solution, for both the incremental-gradient method (4.5) and the
gradient-with-errors method (4.6), is bounded by the same linearly convergent term.
The second terms in their bounds, however, are crucially different: the accuracy of
the incremental-gradient method is bounded by a multiple of the fixed steplength;
the accuracy of the gradient-with-errors method is bounded by the norm of the
error in the gradient.

Theorem 4.1 is significant because it furnishes a guide for refining the sample
Sk that defines the average approximation

gk =
1

sk

∑
i∈Sk

φi(xk)

of the gradient of φ, where sk is the size of the sample Sk; cf. (3.1). In particular, (3.6)
and (3.7) give the second moment of the errors of these sample averages, which
correspond precisely to the gradient error defined by (4.7). If we wish to design a
sampling strategy that gives a linear decrease with a certain rate, then a policy for
the sample size sk needs to ensure that it grows fast enough to induce E[‖ek‖2] to
decrease with at least that rate. Also, from (4.8), it is clear that there is no benefit
in increasing the sample size at a rate faster than the underlying “pure” first-order
method without gradient error. If, for example, the function is poorly conditioned—
i.e., µ/L is small—than the sample-size increase should be commensurately slow.
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It is instructive to compare how the sample average error decreases in the
randomized (with and without replacement) and deterministic cases. We can more
easily compare the randomized and deterministic variants by following Bertsekas
and Tsitsiklis [5, §4.2], and assuming that

‖∇φi(x)‖2 ≤ β1 + β2‖∇φ(x)‖2 for all x and i = 1, . . . ,m,

for some constants β1 ≥ 0 and β2 ≥ 1. Together with the Lipschitz continuity of φ,
we can provide the following bounds:

randomized, without replacement E[‖ek‖2] ≤ 1

sk

[
1− sk

m

][
m

m− 1

]
βk (4.10a)

randomized, with replacement E[‖ek‖2] ≤ 1

sk

[
m

m− 1

]
βk (4.10b)

deterministic ‖ek‖2 ≤ 4

[
m− sk
m

]2
βk, (4.10c)

where βk = β1 + 2β2L[φ(xk) − φ(x∗)]. These bounds follow readily from the
derivation in [14, §§3.1–3.2]. Figure 3 illustrates the difference between these
bounds on an example problem with m = 1000. The panel on the left shows how
the sample size needs to be increased in order for the right-hand-side bounds
in (4.10) to decrease linearly at a rate of 0.9. The panel on the right shows the
cumulative sample size, i.e.,

∑k
i=0 si. Uniform sampling without replacement yields

a uniformly and significantly better bound than the other sampling strategies. Both
types of sampling are admissible, but sampling without replacement requires a
much slower rate of growth of s to guarantee a linear rate.

The strong convexity assumption needed to derive the error bounds used in
this section is especially strong because the inverse problem we use to motivate
the sampling approach is not a convex problem. In fact, it is virtually impossible
to guarantee convexity of a composite function such as (2.1) unless the penalty
function ρ(·) is convex and each ri(·) is affine. This is not the case for many
interesting inverse problems, such as full waveform inversion, and for nonconvex
loss functions corresponding to distributions with heavy tails, such as Student’s t.

Even relaxing the assumption on φ from strong convexity to just convexity
makes it difficult to design a sampling strategy with a certain convergence rate.
The full-gradient method for convex (but not strongly) functions has a sublinear
convergence rate of O(1/k). Thus, all that is possible for a sampling-type approach
that introduces errors into the gradient is to simply maintain that sublinear rate.
For example, if ‖ek‖2 ≤ Bk, and

∑∞
k=1Bk <∞, then the iteration (4.6) maintains

the sublinear rate of the gradient method [14, Theorem 2.6]. The theory for the
strongly convex case is also supported by empirical evidence, where sampling
strategies tend to outperform basic incremental-gradient methods.

5 Numerical experiments in seismic inversion

A good candidate for the sampling approach we have discussed is the full waveform
inversion problem from exploration geophysics, which we address using a robust
formulation. The goal is to obtain an estimate of subsurface properties of the
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earth using seismic data. To collect the data, explosive charges are detonated just
below the surface, and the energy that reflects back is recorded at the surface by a
large array of geophones. The resulting data consist of a time-series collection for
thousands of source positions.

The estimate of the medium parameters is based on fitting the recorded and
predicted data. Typically, the predicted data are generated by solving a PDE whose
coefficients are the features of interest. The resulting PDE-constrained optimization
problem can be formulated in either the time [38] or the frequency [32] domain.
It is common practice to use a simple scalar wave equation to predict the data,
effectively assuming that the earth behaves like a fluid—in this case, sound speed
is the parameter we seek.

Raw data are processed to remove any unwanted artifacts; this requires signifi-
cant time and effort. One source of unwanted artifacts in the data is equipment
malfunction. If some of the receivers are not working properly, the resulting data
can be either zero or contaminated with an unusual amount of noise. And even if
we were to have a perfect estimate of the sound speed, we still would not expect to
be able to fit our model perfectly to the data. The presence of these outliers in the
data motivates us (and many other authors, e.g., [7, 8, 16]) to use robust methods
for this application. We compare the results of robust Student’s t-based inversion
to those obtained using least-squares and Huber robust penalties, and we compare
the performance of deterministic, incremental-gradient, and sampling methods in
this setting.

5.1 Modelling and gradient computation for full waveform inversion

The forward model for frequency-domain acoustic FWI, for a single source function
q, assumes that wave propagation in the earth is described by the scalar Helmholtz
equation

Aω(x)u = [ω2x+∇2]u = q,

where ω is the angular frequency, x is the squared-slowness (seconds/meter)2, and
u represents the wavefield. The discretization of the Helmholtz operator includes
absorbing boundary conditions, so that Aω(x) and u are complex-valued. The data
are measurements of the wavefield obtained at the receiver locations d = Pu. The
forward modelling operator F (x) is then given by

F (x) = PA−1(x),

where A is a sparse block-diagonal matrix, with blocks Aω indexed by the frequencies
ω. Multiple sources qi are typically modeled as discretized delta functions with a
frequency-dependent weight. The resulting data are then modeled by the equation
di = F (x)qi, and the corresponding residual equals ri(x) = di − F (x)qi (cf. (1.3)).

For a given loss function ρ, the misfit function and its gradient are defined as

φ(x) =
m∑
i=1

ρ(ri(x)) and ∇φ(x) =
m∑
i=1

∇F (x, qi)
∗∇ρ(ri(x)),

where ∇F (x, qi) is the Jacobian of F (x)qi. The action of the adjoint of the Jacobian
on a vector y can be efficiently computed via the adjoint-state method [38] as
follows:

∇F (x, qi)
∗y = G(x, ui)

∗vi,
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where G(x, ui) is the (sparse) Jacobian of A(x)ui with respect to x, and ui and vi
are solutions of the linear systems

A(x)ui = qi and A(x)∗vi = Py.

The Huber penalty function for a vector r is

ρ(r) =
∑
i

ζi, where ζi =

{
r2i /2µ if |ri| ≤ µ
|ri| − µ/2 otherwise.

The Student’s t penalty function (2.4) for a vector r is defined by

ρ(r) =
∑
i

log(1 + r2i /ν).

5.2 Experimental setup and results

For the seismic velocity model x∗ ∈ R60501 on a 201-by-301 grid depicted in
Figure 2(a), observed data d (a complex-valued vector of length 272,706) are
generated using 6 frequencies, 151 point sources, and 301 receivers located at the
surface. To simulate a scenario in which half of the receivers at unknown locations
have failed, we multiply the data with a mask that zeroes out 50% of the data at
random locations. We emphasize that the model was blind to this corruption, and
so we could have equivalently added a large perturbation to the data, as was done
for example in [3]. The resulting data thus differ from the prediction F (x∗) given
by the true solution x∗. A spike in the histogram of the residuals ri(x

∗) evaluated
at the true solution x∗, shown in Figure 2(a), shows these outliers. The noise does
not fit well with any simple prior distribution that one might like to use. We solve
the resulting optimization problem with the least-squares, Huber, and Student t-
penalties using a limited-memory BFGS method. Figure 4 tracks across iterations
the relative model error ‖xk−x∗‖/‖x∗‖ for all three approaches. Histograms of the
residuals after 50 iterations are plotted in Figures 2(c)–(e). The residuals for the
least-squares and Huber approaches resemble Gaussian and Laplace distributions
respectively. This fits well with the prior assumption on the noise, but does not
fit the true residual at all. The residual for the Student’s t approach does not
resemble the prior distribution at all. The slowly increasing penalty function allows
for enough freedom to let the residual evolve into the true distribution.

Next, we compare the performance of the incremental-gradient (§4.2) and
sampling (§4.3) algorithms against the full-gradient method. For the incremental-
gradient algorithm (4.5), at each iteration we randomly choose i uniformly over the
set { 1, 2, . . . ,m }, and use either a fixed stepsize αk ≡ α or a decreasing stepsize
αk = α/bk/mc. The sampling method is implemented via the iteration

xk+1 = xk − αkpk,

where pk satisfies (4.9), and Hk is a limited-memory BFGS Hessian approximation.
The quasi-Newton Hessian Hk is updated using the pairs (∆xk,∆gk), where

∆xk := xk+1 − xk and ∆gk := gk+1 − gk;
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Fig. 5: (a) Convergence of different optimization strategies on the Students t penalty:
Limited-memory BFGS using the full gradient (“full”), incremental gradient with
constant and decreasing step sizes, and the sampling approach. Different lines of
the same color indicate independent runs with different random number streams.
(b) The evolution of the amount of data used by the sampling method.

the limited-memory Hessian is based on a history of length 4. Nocedal and Wright
[31, §7.2] describe the recursive procedure for updating Hk. The batch size is
increased at each iteration by only a single element, i.e.,

sk+1 = min{m, sk + 1 }.

The members of the batch are redrawn at every iteration, and we use an Armijo
backtracking linesearch based on the sampled function (1/sk)

∑
i∈Sk

φi(x).

The convergence plots for several runs of the sampling method and the stochastic
gradient method with α = 10−6 are shown in Figure 5(a). Figure 5(b) plots the
evolution of the amounts of data sampled.
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6 Discussion and conclusions

The numerical experiments we have conducted using the Student’s t-penalty are
encouraging, and indicate that this approach can overcome some of the limitations of
convex robust penalties such as the Huber norm. Unlike the least-squares and Huber
penalties, the Student t-penalty does not force the residual into a shape prescribed
by the corresponding distribution. The sampling method successfully combines the
steady convergence rate of the full-gradient method with the inexpensive iterations
provided by the incremental-gradient method.

The convergence analysis of the sampling method, based on Theorem 4.1, relies
on bounding the second moment of the error in the gradient, and hence the variance
of the sample average (see (3.4)). The bound on the second-moment arises because
of our reliance on the concept of an expected distance to optimality E[‖xk − x∗‖2].
However, other probabilistic measures of distance to optimality may be more
appropriate; this would influence our criteria for bounding the error in the gradient.
For example, Avron and Toledo [4] measure the quality of a sample average using
an “epsilon-delta” argument that provides a bound on the sample size needed to
achieve a particular accuracy ε with probability 1− δ.

Other refinements are possible. For example, van den Doel and Ascher [40]
advocate an adaptive approach for increasing the sample size, and Byrd et al. [10]
use a sample average-approximation of the Hessian.
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