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The Quadratic Graver Cone, Quadratic

Integer Minimization, and Extensions

Jon Lee, Shmuel Onn, Lyubov Romanchuk, Robert Weismantel

Abstract

We consider the nonlinear integer programming problem of minimizing a
quadratic function over the integer points in variable dimension satisfying a
system of linear inequalities. We show that when the Graver basis of the ma-
trix defining the system is given, and the quadratic function lies in a suitable
dual Graver cone, the problem can be solved in polynomial time. We discuss
the relation between this cone and the cone of positive semidefinite matrices,
and show that none contains the other. So we can minimize in polynomial
time some non-convex and some (including all separable) convex quadrics.

We conclude by extending our results to efficient integer minimization of
multivariate polynomial functions of arbitrary degree lying in suitable cones.

1 Introduction

Consider the general nonlinear integer minimization problem in standard form,

min {f(x) : x ∈ Zn , Ax = b , l ≤ x ≤ u} , (1)

with A ∈ Zm×n, b ∈ Zm, l, u ∈ Zn
∞ with Z∞ := Z ⊎ {±∞}, and f : Rn → R.

It is well known to be NP-hard already for linear functions. However, recently it
was shown that, if the Graver basis G(A) of A is given as part of the input, then the
problem can be solved in polynomial time for the following classes of functions. First,
in [1], for composite concave functions f(x) = g(Wx), with W ∈ Zd×n, g : Rd → R
concave, and d fixed. Second, in [3], for separable convex functions f(x) =

∑

i fi(xi)
with each fi univariate convex, and in particular for linear functions f(x) = w

⊺

x.
While the Graver basis is a complex object, it can be computed in polynomial time
from A for many natural and useful classes of matrices as demonstrated in [1, 3].
Moreover, the results of [2] imply that there is a parameterized scheme that enables
to construct increasingly better approximations of the Graver basis of any matrix A
and obtain increasingly better approximations to problem (1), see [4] for details.

In this article we continue this line of investigation and consider problem (1) for
quadratic functions f(x) = x

⊺

V x + w
⊺

x + a with V ∈ Rn×n, w ∈ Rn, and a ∈ R.
We also discuss extensions to multivariate polynomial functions of arbitrary degree.

We begin by noting that problem (1) remains NP-hard even if the Graver basis
is part of the input and even if the objective function is quadratic convex of rank 1.
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Proposition 1.1 It is NP-hard to determine the optimal value of the problem

min
{

x
⊺

V x+ w
⊺

x+ a : x ∈ Zn , Ax = b , l ≤ x ≤ u
}

(2)

even when G(A) is given and the function is convex quadratic with matrix V = vv
⊺

.

Proof. Let v ∈ Zn
+ and v0 ∈ Z+ be input to the subset sum problem of deciding if

there exists x ∈ {0, 1}n with v
⊺

x = v0. Let A := 0 be the zero 1× n matrix, whose
Graver basis G(A) = {±1i : i = 1, . . . , n} consists of the n unit vectors and their
negations. Let l := 0 and u := 1 be the zero and all-ones vectors in Zn, and let
b := 0 in Zm. Let V := vv

⊺

, w := −2v0v, and a := v20. Then problem (2) becomes

min
{

(

v
⊺

x− v0
)2

: x ∈ {0, 1}n
}

,

whose optimal value is 0 if and only if there is a subset sum, proving the claim.

This shows that to solve problem (2) in polynomial time, even when the Graver
basis is given, some restrictions on the class of quadratic functions must be enforced.

In Section 2 we introduce the quadratic Graver cone Q(A), which is a cone
of n × n matrices defined via the Graver basis of A, and the diagonal Graver cone
D(A) which is the diagonal projection of Q(A) into Rn

+. We discuss some elementary
properties of these cones and their duals Q∗(A) and D∗(A) and give some examples.

In Section 3 we prove the following algorithmic result about the solvability of
problem (1) for every quadratic function (possibly indefinite, neither convex nor
concave) whose defining matrix lies in the dual quadratic Graver cone.

Theorem 1.2 There is an algorithm that, given G(A), solves the quadratic problem

min
{

x
⊺

V x+ w
⊺

x+ a : x ∈ Zn , Ax = b , l ≤ x ≤ u
}

(3)

in polynomial time for every integer matrix V lying in the cone Q∗(A) dual to Q(A).

We point out that, in practice, the algorithm that underlies Theorem 1.2 can be
applied to any quadratic function. The algorithm will always stop and output a
feasible solution if one exists, which can be used as an approximation of the optimal
one. And, whenever V lies in Q∗(A), the solution produced will be true optimal.

As a special case we obtain the following result on separable quadratic functions.

Theorem 1.3 There is an algorithm that, given G(A), solves the separable problem

min{
n
∑

i=1

(

vix
2

i + wixi + ai
)

: x ∈ Zn , Ax = b , l ≤ x ≤ u} (4)

in polynomial time for every integer vector v lying in the cone D∗(A) dual to D(A).
In particular, this applies to any convex separable quadratic, that is, with v ∈ Zn

+.



3

In particular, Theorem 1.3 enables us to solve the problem with any linear objective
function f(x) = w

⊺

x, which is the special case with v = 0, which is always in D∗(A).
In Section 4 we proceed with a discussion of the relation between the dual

quadratic Graver cone Q∗(A) and the cone Sn
+ of symmetric positive semidefinite

matrices, and establish Theorem 4.2 which provides a characterization, in terms of
their matroids only, of those matrices A for which the dual diagonal Graver cone
D∗(A) strictly contains Rn

+ and for which Theorem 1.3 assures efficient solution of
problem (4) for all separable convex as well as some nonconvex quadratic functions.

In the final Section 5 we extend our results to multivariate polynomial functions
of arbitrary degree. We define a hierarchy of higher degree analogues Pk(A) of the
quadratic Graver cone, and show that the iterative algorithm of Theorem 1.2 solves
the polynomial integer minimization problem (1) in polynomial time for every degree
d form f that lies in a cone Kd(A) defined in terms of the dual Graver cones P∗

k(A).

Theorem 1.4 For every fixed d there is an algorithm that, given G(A), solves

min {f(x) : x ∈ Zn , Ax = b , x ≥ 0} (5)

in polynomial time for every degree d integer homogenous polynomial f in Kd(A).

2 The quadratic and diagonal Graver cones

We begin with some notation. The inner product of two m × n matrices U, V is
U ·V :=

∑

i,j Ui,jVi,j. The diagonal of n×nmatrix V is the vector v := diag(V ) ∈ Rn

defined by vi := Vi,i for all i. For u ∈ Rn we denote by U := Diag(u) the n × n
diagonal matrix with diag(U) = u. The pointwise product of vectors g, h ∈ Rn is the
vector g ◦h in Rn with (g ◦h)i := gihi for all i. Note that g, h lie in the same orthant
of Rn if and only if g ◦ h ≥ 0. The tensor product of g, h ∈ Rn is the n × n matrix
g ⊗ h = gh

⊺

with (g ⊗ h)i,j := (gh
⊺

)i,j = gihj for all i, j. We will use the notation
g ⊗ h and gh

⊺

interchangeably as we find appropriate. Note that for all g, h ∈ Rn

and V ∈ Rn×n, we have g ◦ h = diag(g ⊗ h) and (g ⊗ h) · V = g
⊺

V h.
Any quadratic function f(x) = x

⊺

V x + w
⊺

x + a has an equivalent description
f(x) = x

⊺

Ux + w
⊺

x + a with U := 1

2
(V + V

⊺

) symmetric matrix. We therefore
can and will be working with symmetric matrices which are much better behaved
than arbitrary square matrices. We denote by Sn ⊂ Rn×n the linear subspace of
symmetric n × n matrices. A cone is a subset P of real vector space such that
αx + βy ∈ P for all x, y ∈ P and α, β ∈ R+. The cone generated by a set V of
vectors is the set cone(V) of nonnegative linear combinations of finitely many vectors
from V. In particular, cone(∅) := {0}. We will be using cones D ⊆ Rn of vectors
and cones Q ⊆ Sn of n × n symmetric matrices. The dual of a cone D ⊆ Rn and
the (symmetric) dual of a cone Q ⊆ Sn are, respectively, the cones

D∗ := {v ∈ Rn : u
⊺

v ≥ 0 , u ∈ D}, Q∗ := {V ∈ Sn : U · V ≥ 0 , U ∈ Q}.

Duality reverses inclusions, that is, if P ⊆ K are cones in Rn or Sn then K∗ ⊆ P∗.
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We proceed with the definition of the Graver basis of an integer matrix. The
lattice of an integer m × n matrix A is the set L(A) := {x ∈ Zn : Ax = 0}. We
denote by L∗(A) the set of nonzero elements in L(A). We use a partial order ⊑ on
Rn which extends the coordinate-wise partial order ≤ on the nonnegative orthant
Rn

+ and is defined as follows. For x, y ∈ Rn we write x ⊑ y and say that x is
conformal to y if x ◦ y ≥ 0 (that is, x, y lie in the same orthant) and |xi| ≤ |yi| for
all i. We write x ⊏ y if x ⊑ y and x 6= y. A simple extension of the classical Gordan
Lemma implies that every subset of Zn has finitely many ⊑-minimal elements.

Definition 2.1 The Graver basis of an integer matrix A is defined to be the finite
set G(A) ⊂ Zn of ⊑-minimal elements in L∗(A) = {x ∈ Zn : Ax = 0, x 6= 0}.

In this article we introduce the following objects defined via the Graver basis.

Definition 2.2 The quadratic Graver cone of an integer m× n matrix A is defined
to be the cone Q(A) ⊆ Sn of n×n matrices generated by the matrices g⊗h+h⊗ g
over all pairs of distinct elements g, h ∈ G(A) that lie in the same orthant, that is,

Q(A) := cone {g ⊗ h + h⊗ g : g, h ∈ G(A) , g 6= h , g ◦ h ≥ 0} ⊆ Sn .

The dual quadratic Graver cone is its (symmetric) dual Q∗(A) in Sn given by

Q∗(A) = {V ∈ Sn : U · V ≥ 0 , U ∈ Q(A)} (6)

= {V ∈ Sn : (gh
⊺

+ hg
⊺

) · V ≥ 0 , g, h ∈ G(A) , g 6= h , g ◦ h ≥ 0}

= {V ∈ Sn : g
⊺

V h ≥ 0 , g, h ∈ G(A) , g 6= h , g ◦ h ≥ 0}.

We are also interested is the following cone of diagonals of matrices in Q(A).

Definition 2.3 The diagonal Graver cone of A is the cone of nonnegative vectors

D(A) := cone {g ◦ h : g, h ∈ G(A) , g 6= h , g ◦ h ≥ 0} ⊆ Rn
+ .

The dual diagonal Graver cone is its dual D∗(A) in Rn given by

D∗(A) = {v : u
⊺

v ≥ 0 , u ∈ D(A)} (7)

= {v : (g ◦ h)
⊺

v ≥ 0 , g, h ∈ G(A) , g 6= h , g ◦ h ≥ 0}

= {v :
∑

gihivi ≥ 0 , g, h ∈ G(A) , g 6= h , g ◦ h ≥ 0}.

The following lemma provides some basic relations among the above cones and
more. All inclusions can be strict, as is demonstrated in Examples 2.5 and 2.6 below.
In particular, it is interesting to note that D(A) is the diagonal projection of Q(A),
but D∗(A) is generally strictly contained in the diagonal projection of Q∗(A).

Lemma 2.4 The quadratic and diagonal Graver cones and their duals satisfy

Rn
+ ⊇ D(A) = {diag(U) : U ∈ Q(A)} ⊇ {u : Diag(u) ∈ Q(A)} , (8)

Rn
+ ⊆ D∗(A) = {v : Diag(v) ∈ Q∗(A)} ⊆ {diag(V ) : V ∈ Q∗(A)} .
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Proof. First, D(A) ⊆ Rn
+ because it is generated by nonnegative vectors. Therefore

D∗(A) ⊇ (Rn
+)

∗ = Rn
+. To establish the top equality note that the following are

equivalent: u ∈ D(A); u =
∑

k
µk(gk ◦ hk) for some suitable µk ≥ 0, gk, hk ∈ G(A);

u = diag(U) with U = 1

2

∑

k µk(gk⊗hk +hk⊗gk); and u = diag(U) with U ∈ Q(A).
To establish the bottom equality note that the following are equivalent: v ∈ D∗(A);
(g ◦ h)

⊺

v ≥ 0 for all suitable g, h ∈ G(A); V = Diag(v) with g
⊺

V h ≥ 0 for all
g, h; and V = Diag(v) with V ∈ Q∗(A). The two remaining inclusions on the right-
hand sides follow from diag(Diag(x)) = x. This completes the proof of the lemma.

The next two examples show that all inclusions in Lemma 2.4 can be strict.

Example 2.5 Consider the zero 1 × n matrix A := 0, whose Graver basis is given
by G(A) = {±1i : i = 1, . . . , n}. Then g ◦ h = 0 is the zero vector for all distinct
g, h ∈ G(A) in the same orthant. So the diagonal Graver cone and its dual are
D(A) = {0} ( Rn

+ and D∗(A) = Rn ) Rn
+ so the left inclusions in (8) are strict.

Example 2.6 Consider the 1 × 3 matrix A := (1 1 1) with Graver basis G(A) =
±{(1,−1, 0), (1, 0,−1), (0, 1,−1)}. The quadratic Graver cone and its dual satisfy

Q(A) = cone











2 −1 −1
−1 0 1
−1 1 0



 ,





0 −1 1
−1 2 −1
1 −1 0



 ,





0 1 −1
1 0 −1

−1 −1 2











,

Q∗(A) =











a d e
d b f
e f c



 :
a− d− e + f ≥ 0
b− d+ e− f ≥ 0
c+ d− e− f ≥ 0







⊇











2a a+ b a+ c
a + b 2b b+ c
a+ c b+ c 2c



 : a, b, c ∈ R







. (9)

The diagonal Graver cone and its dual are D(A) = Rn
+ and D∗(A) = Rn

+. Therefore,
the top and bottom inclusions on the right-hand side of equation (8) are strict,

D(A) = Rn
+ ) {0} = {u : Diag(u) ∈ Q(A)} ,

D∗(A) = Rn
+ ( Rn = {diag(V ) : V ∈ Q∗(A)} .

3 Quadratic integer minimization

We proceed to establish our algorithmic Theorems 1.2 and 1.3. We focus on the
situation of finite feasible sets, which is natural in most applications. But we do allow
the lower and upper bounds l, u ∈ Zn

∞ to have infinite components for flexibility of
modeling (for instance, it is quite common in applications to have li = 0 and ui = ∞
for all i, with the resulting feasible set typically still finite). We also require our
algorithms to identify and properly stop when the set is infinite. So in all algorithmic
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statements, an algorithm is said to solve a (nonlinear) discrete optimization problem,
if for every input, it either finds an optimal solution, or asserts that the problem is
infeasible or the feasible set is infinite. We begin with a simple lemma that shows
that we can quickly minimize a given quadratic function in a given direction.

Lemma 3.1 There is an algorithm that, given bounds l, u ∈ Zn
∞, direction g ∈ Zn,

point z ∈ Zn with l ≤ z ≤ u, and quadratic function f(x) = x
⊺

V x + w
⊺

x + a with
V ∈ Zn×n, w ∈ Zn, and a ∈ Z, solves in polynomial time the univariate problem

min{f(z + µg) : µ ∈ Z+ , l ≤ z + µg ≤ u}. (10)

Proof. Let S := {µ ∈ Z+ : l ≤ z + µg ≤ u}, and let s := supS which is easy to
determine. If s = ∞ then we conclude that S is infinite and stop. Otherwise we need
to minimize the univariate quadratic function h(µ) := f(z + µg) = h2µ

2 + h1µ+ h0

with h2 := g
⊺

V g, h1 := z
⊺

V g + g
⊺

V z + w
⊺

g, and h0 := z
⊺

V z + w
⊺

z + a over
S = {0, 1, . . . , s}. If h2 ≤ 0, then h is concave, and the minimum over S is attained
at µ = 0 or µ = s. If h2 > 0 then h is convex with real minimum at µ∗ := − h1

2h2
.

Then minimizing h over S reduces to minimizing h over S ∩ {0, ⌊µ∗⌋, ⌈µ∗⌉, s}.

A finite sum u :=
∑

i vi of vectors in Rn is called conformal if vi ⊑ u for all i,
and hence all summands lie in the same orthant. The following lemma shows that
quadratic f with defining matrix in the dual quadratic Graver cone is supermodular
on conformal sums of nonnegative combinations of elements of the Graver basis.

Lemma 3.2 Let A be any integer m× n matrix with quadratic Graver cone Q(A).
Let f : Rn → R be any quadratic function f(x) = x

⊺

V x+w
⊺

x+ a with V ∈ Q∗(A).
Let x ∈ Rn be any point, and let

∑

µigi be any conformal sum in Rn with gi ∈ G(A)
distinct elements in the Graver basis of A and µi ≥ 0 nonnegative scalars. Then

∆ :=
(

f
(

x+
∑

µigi

)

− f(x)
)

−
∑

(f (x+ µigi)− f(x)) ≥ 0.

Proof. We have

f
(

x+
∑

µigi

)

− f(x) =
∑

x
⊺

V µjgj +
∑

µig
⊺

i V x+
∑

i,j

µig
⊺

i V µjgj +
∑

w
⊺

µigi ,

and
∑

(f(x+ µigi)− f(x)) =
∑

(

x
⊺

V µigi + µig
⊺

i V x+ µig
⊺

i V µigi + w
⊺

µigi
)

.

Therefore we obtain

∆ =
∑

i,j

µig
⊺

i V µjgj −
∑

µig
⊺

i V µigi =
∑

i 6=j

µig
⊺

i V µjgj =
∑

i 6=j

µiµjg
⊺

i V gj ≥ 0,

because gi, gj ∈ G(A) satisfy gi ◦ gj ≥ 0 and gi 6= gj for i 6= j, and V is in Q∗(A).

We need two more useful properties of Graver bases. First we need the following
integer analogue of Carathéodory’s theorem of [6] which we state without proof.
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Lemma 3.3 Let A be an integer m × n matrix, and let G(A) be its Graver basis.
Then every x ∈ L∗(A) is a conformal sum x =

∑t

i=1
µigi that involves t ≤ 2n − 2

Graver basis elements gi ∈ G(A) and nonnegative integer coefficients µi ∈ Z+.

The next lemma provides a Graver basis criterion for finiteness of integer programs.

Lemma 3.4 Let G(A) be the Graver basis of matrix A, and let l, u ∈ Zn
∞. If there

is some g ∈ G(A) satisfying gi ≤ 0 whenever ui < ∞ and gi ≥ 0 whenever li > −∞
then every set of the form S := {x ∈ Zn : Ax = b , l ≤ x ≤ u} is either empty or
infinite, whereas if there is no such g, then every set S of this form is finite. Clearly,
given the Graver basis, the existence of such g can be checked in polynomial time.

Proof. Suppose there is such g and consider such S containing a point x. Then for
all λ ∈ Z+ we have l ≤ x+λg ≤ u and A(x+λg) = Ax = b, and hence x+λg ∈ S so
S is infinite. Next suppose S is infinite. Then P := {x ∈ Rn : Ax = b, l ≤ x ≤ u} is
unbounded, and hence has a recession vector, which we may assume is integer, that
is, a nonzero h such that x+ αh ∈ P for all x ∈ P and α ≥ 0. Then h ∈ L∗(A) and
hi ≤ 0 whenever ui < ∞ and hi ≥ 0 whenever li > −∞. By Lemma 3.3, the vector
h is a conformal sum h =

∑

gi of vectors gi ∈ G(A), each of which also satisfies
gi ≤ 0 whenever ui < ∞ and gi ≥ 0 whenever li > −∞, providing such g.

Next we prove the main lemma underlying our algorithm, which shows that,
given the Graver basis, and an initial feasible point, we can minimize a quadratic
function with defining matrix in the dual quadratic Graver cone in polynomial time.

Lemma 3.5 There is an algorithm that, given A ∈ Zm×n, its Graver basis G(A),
bounds l, u ∈ Zn

∞, point z ∈ Zn with l ≤ z ≤ u, and quadratic f(x) = x
⊺

V x+w
⊺

x+a
with integer V ∈ Q∗(A), w ∈ Zn, and a ∈ Z, solves in polynomial time the program

min{f(x) = x
⊺

V x+ w
⊺

x+ a : x ∈ Zn , Ax = b , l ≤ x ≤ u} , b := Az . (11)

Proof. First, apply the algorithm of Lemma 3.4 to G(A) and l, u and either detect
that the feasible set is infinite and stop, or conclude it is finite and continue. Next
produce a sequence of feasible points x0, x1, . . . , xs with x0 := z the given input
point, as follows. Having obtained xk, solve the minimization problem

min{f(xk + µg) : µ ∈ Z+ , g ∈ G(A) , l ≤ xk + µg ≤ u } (12)

by applying the algorithm of Lemma 3.1 for each g ∈ G(A). If the minimal value in
(12) satisfies f(xk + µg) < f(xk) then set xk+1 := xk + µg and repeat, else stop and
output the last point xs in the sequence. Now, Axk+1 = A(xk + λg) = Axk = b by
induction on k, so each xk is feasible. Because the feasible set is finite and the xk

have decreasing objective values and hence distinct, the algorithm terminates.
We now show that the point xs output by the algorithm is optimal. Let x∗ be

any optimal solution to (11). Consider any point xk in the sequence, and suppose
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that it is not optimal. We claim that a new point xk+1 will be produced and will
satisfy

f(xk+1)− f (x∗) ≤
2n− 3

2n− 2
(f(xk)− f(x∗)) . (13)

By Lemma 3.3, we can write the difference x∗ − xk =
∑t

i=1
µigi as conformal sum

involving 1 ≤ t ≤ 2n− 2 elements gi ∈ G(A) with all µi ∈ Z+. By Lemma 3.2,

f(x∗)− f (xk) = f

(

xk +
t
∑

i=1

µigi

)

− f(xk) ≥
t
∑

i=1

(f (xk + µigi)− f(xk)) .

Adding t (f(xk)− f(x∗)) on both sides and rearranging terms, we obtain

t
∑

i=1

(f (xk + µigi)− f(x∗)) ≤ (t− 1) (f(xk)− f(x∗)) .

Therefore there is some summand on the left-hand side satisfying

f (xk + µigi)− f(x∗) ≤
t− 1

t
(f(xk)− f(x∗)) ≤

2n− 3

2n− 2
(f(xk)− f(x∗)) .

So the point xk + µg attaining minimum in (12) satisfies

f(xk + µg)− f(x∗) ≤ f (xk + µigi)− f(x∗) ≤
2n− 3

2n− 2
(f(xk)− f(x∗)) ,

and so indeed xk+1 := xk + µg will be produced and will satisfy (13). This shows
that the last point xs produced and output by the algorithm is indeed optimal.

We proceed to bound the number s of points. Consider any i < s and the
intermediate non-optimal point xi in the sequence produced by the algorithm. Then
f(xi) > f(x∗) with both values integer, and so repeated use of (13) gives

1 ≤ f(xi)− f(x∗) =
i−1
∏

k=0

f(xk+1)− f(x∗)

f(xk)− f(x∗)
(f(x)− f(x∗))

≤

(

2n− 3

2n− 2

)i

(f(x)− f(x∗)) ,

and therefore

i ≤

(

log
2n− 2

2n− 3

)−1

log (f(x)− f(x∗)) .

Therefore the number s of points produced by the algorithm is at most one unit
larger than this bound, and using a simple bound on the logarithm, we obtain

s = O (n log(f(x)− f(x∗))) .

Thus, the number of points produced and the total running time are polynomial.

Next we show that, given the Graver basis, we can also find an initial feasible
point for assert that the given set is empty or infinite, in polynomial time.
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Lemma 3.6 There is an algorithm that, given integer m× n matrix A, its Graver
basis G(A), l, u ∈ Zn

∞, and b ∈ Zm, in polynomial time, either finds a feasible point
in the set S := {x ∈ Zn : Ax = b, l ≤ x ≤ u} or asserts that S is empty or infinite.

Proof. Assume that l ≤ u and that lj < ∞ and uj > −∞ for all j, because otherwise
there is no feasible point. Also assume that there is no g ∈ G(A) satisfying gj ≤ 0
whenever uj < ∞ and gj ≥ 0 whenever lj > −∞, because otherwise S is empty or
infinite by Lemma 3.4. Now, either detect there is no integer solution to the system
of equations Ax = b (without the lower and upper bound constraints) and stop, or
determine some such solution x ∈ Zn and continue; it is well known that this can
be done in polynomial time, say, using the Hermite normal form of A, see [5]. Let

I := {j : lj ≤ xj ≤ uj} ⊆ {1, . . . , n}

be the set of indices of entries of x that satisfy their lower and upper bounds. While
I ( {1, . . . , n} repeat the following procedure. Pick any index i /∈ I. Then either
xi < li or xi > ui. We describe the procedure only in the former case, the latter
being symmetric. Update the lower and upper bounds by setting

l̂j := min{lj, xj} , ûj := max{uj, xj} , j = 1, . . . , n .

Solve in polynomial time the following linear integer program, for which x is feasible,

max{zi : z ∈ Zn , Az = b , l̂ ≤ z ≤ û , zi ≤ ui}, (14)

by applying the algorithm of Lemma 3.5 using the function f(z) := z
⊺

0z + 1
⊺

i z + 0
with V = 0 the zero matrix which is always in Q∗(A). Now l̂j > −∞ if and only
if lj > −∞, and ûj < ∞ if and only if uj < ∞. So there is no g ∈ G(A) satisfying

gj ≤ 0 whenever ûj < ∞ and gj ≥ 0 whenever l̂j > −∞, and hence the feasible set
of (14) is finite by Lemma 3.4 and has an optimal solution z. If zi < li then assert
that the set S is empty and stop. Otherwise, set x := z, I := {j : lj ≤ xj ≤ uj},
and repeat. Note that in each iteration, the cardinality of I increases by at least
one. Therefore, after at most n iterations, either the algorithm detects infeasibility,
or I = {1, . . . , n} is obtained, in which case the current point x is feasible.

We are now in position to establish our theorem.

Theorem 1.2 There is an algorithm that, given A ∈ Zm×n, its Graver basis G(A),
bounds l, u ∈ Zn

∞, b ∈ Zm, integer matrix V ∈ Q∗(A) in the dual quadratic Graver
cone, w ∈ Zn, and a ∈ Z, solves in polynomial time the quadratic integer program

min{x
⊺

V x+ w
⊺

x+ a : x ∈ Zn , Ax = b , l ≤ x ≤ u}.

Proof. Use the algorithm underlying Lemma 3.6 to either detect that the problem
is infeasible or that the feasible set is infinite and stop, or obtain a feasible point
and use the algorithm underlying Lemma 3.5 to obtain an optimal solution.
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An important immediate consequence of Theorem 1.2 is that we can efficiently
minimize separable quadratic functions defined by vectors in the dual diagonal
Graver cone. In particular, it applies to every convex separable quadratic function
(which can also be deduced from the results of [3] on separable convex functions).

Theorem 1.3 There is an algorithm that, given A ∈ Zm×n, its Graver basis G(A),
bounds l, u ∈ Zn

∞, b ∈ Zm, integer vector v ∈ D∗(A) in the dual diagonal Graver
cone, and w, a ∈ Zn, solves in polynomial time the separable quadratic program

min{
n
∑

i=1

(

vix
2

i + wixi + ai
)

: x ∈ Zn , Ax = b , l ≤ x ≤ u}.

In particular, this applies to any convex separable quadratic, that is, with v ∈ Zn
+.

Proof. First, for any v ∈ D∗(A) we have V := Diag(v) ∈ Q∗(A) by Lemma 2.4.
Hence, by Theorem 1.2, we can minimize in polynomial time the quadratic function

n
∑

i=1

(

vix
2

i + wixi + ai
)

= x
⊺

V x+ w
⊺

x+
n
∑

i=1

ai .

Second, if the separable quadratic function is convex, which is equivalent to its
defining vector v being nonnegative, then v ∈ Rn

+ ⊆ D∗(A) by Lemma 2.4 again.
Hence the second statement of the theorem now follows from the first statement.

4 Nonconvex solvable quadratics and matroids

Consider the quadratic minimization problem, with the Graver basis of A given,

min
{

f(x) = x
⊺

V x+ w
⊺

x+ a : x ∈ Zn , Ax = b , l ≤ x ≤ u
}

. (15)

The function f is convex if and only if its defining matrix V is positive semidefinite,
that is, if x

⊺

V x ≥ 0 for all x ∈ Rn. Let Sn
+ ⊂ Sn denote the cone of symmetric

positive semidefinite matrices. Now, on the one hand, if V ∈ Q∗(A) then, by
Theorem 1.2, we can solve problem (15) efficiently. On the other hand, if V ∈ Sn

+

then f is convex, and problem (15) may seem to be easier, but remains NP-hard even
for rank-1 matrices V = vv

⊺

∈ Sn
+ by Proposition 1.1. So it is unlikely that Q∗(A)

contains Sn
+, and it is interesting to consider the relation between these matrix cones.

For this, we need a couple of basic facts about positive semidefinite matrices.
First, Note that for any vector u ∈ Rn, the rank-1 matrix uu

⊺

is in Sn
+ because

x
⊺

(uu
⊺

)x = (u
⊺

x)2 ≥ 0 for all x ∈ Rn, whereas for any two linearly independent
vectors g, h ∈ Rn, the rank-2 matrix gh

⊺

+hg
⊺

is in Sn\Sn
+ because there is an x ∈ Rn

with g
⊺

x = 1 and h
⊺

x = −1 and hence x
⊺

(gh
⊺

+ hg
⊺

)x = 2(g
⊺

x)(h
⊺

x) = −2 < 0.
Second, the cone of symmetric positive semidefinite matrices is self dual, that is,
(Sn

+)
∗ = Sn

+. To see this, note that if U ∈ Sn \ Sn
+ then there is an x ∈ Rn with

(x⊗x)·U = x
⊺

Ux < 0 so U /∈ (Sn
+)

∗; and if V ∈ Sn
+ has rank r, then V =

∑r

i=1
xi⊗xi

for some xi ∈ Rn and hence U · V =
∑r

i=1
x

⊺

iUxi ≥ 0 for all U ∈ Sn
+, so V ∈ (Sn

+)
∗.
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So we can conclude the following. In the rare situation where each orthant of
Rn contains at most one element of G(A), we have Q(A) = {0} and Q∗(A) = Sn, so
Theorem 1.2 enables to solve problem (15) for any quadratic function. In the more
typical situation, where some orthant does contain two elements g, h ∈ G(A), the
corresponding generator of Q(A) satisfies gh

⊺

+hg
⊺

∈ Sn\Sn
+ and hence Q(A) * Sn

+.
By self duality of Sn

+, we obtain Sn
+ = (Sn

+)
∗ * Q∗(A). So we cannot solve problem

(15) for all convex quadratics, reflecting the NP-hardness of the convex problem.
But we do typically also have Q∗(A) * Sn

+, that is, we can solve problem (15) in
polynomial time for various nonconvex quadratics. For instance, in Example 2.6, the
matrix in (9) is not positive semidefinite for all a, b, c < 0. Moreover, by Lemma 2.4,
Rn

+ ⊆ D∗(A) = {v : Diag(v) ∈ Q∗(A)}, soQ∗(A)\Sn
+ 6= ∅ whenever D∗(A)\Rn

+ 6= ∅.
We proceed to discuss this diagonal case, where the function f is defined by a

diagonal matrix V = Diag(v) for some v ∈ Rn, that is, f is separable of the form
f(x) =

∑

i(vix
2
i +wixi+ai). In this case, f is convex if and only if v is nonnegative.

As noted in Lemma 2.4, the dual diagonal Graver cone D∗(A) always contains the
nonnegative orthant Rn

+. We proceed to characterize those matrices A for which
this inclusion is strict, so that D∗(A) \ Rn

+ 6= ∅ and Theorem 1.3 enables to solve
problem (15) in polynomial time also for various nonconvex separable quadratics.

For this we need a few more definitions. A circuit of an integer matrix A is an
element c ∈ L∗(A) whose support supp(c) is minimal under inclusion and whose
entries are relatively prime. We denote the set of circuits of A by C(A). It is easy
to see that for every integer matrix A, the set of circuits is contained in the Graver
basis, that is, C(A) ⊆ G(A). Recall that a finite sum u :=

∑

i vi of vectors in Rn is
conformal if vi ⊑ u for all i, and hence all summands lie in the same orthant. The
following property of circuits is well known. For a proof see, for instance, [4] or [7].

Lemma 4.1 Let A be an integer matrix. Then every x ∈ L∗(A) is a conformal sum
x =

∑

i αici involving circuits ci ∈ C(A) and nonnegative real coefficients αi ∈ R+.

It turns out that the matroid of linear dependencies on the columns of the integer
m×n matrix A (over the reals or integers) plays a central role in the characterization
we are heading for. A matroid-circuit is any set C ⊆ {1, . . . , n} that is the support
C = supp(c) of some circuit c ∈ C(A) of A. Note that a circuit c is in C(A) if
and only if its antipodal −c is, and if c, e ∈ C(A) are circuits with c 6= ±e then
supp(c) 6= supp(e). We denote the set of matroid-circuits of A, that is, the set of
supports of circuits in C(A), by M(A) := {supp(c) : c ∈ C(A)}, and refer to it
simply as the matroid of A. For instance, for the 1× 3 matrix A := (1 2 1) we have

C(A) = ±{(2,−1, 0), (0,−1, 2), (1, 0,−1)} , M(A) = {{1, 2}, {2, 3}), {1, 3}} .

We now characterize those matrices A for which D∗(A) strictly contains Rn
+.

Theorem 4.2 The dual diagonal Graver cone of every integer m × n matrix A
satisfies D∗(A) ⊇ Rn

+, and the inclusion is strict if and only if there is 1 ≤ k ≤ n
such that C ∩ E 6= {k} for every two distinct matroid-circuits C,E ∈ M(A) of A.

Proof. We prove the dual statements about the diagonal Graver cone. By definition
D(A) ⊆ Rn

+, and the inclusion is strict if and only if some unit vector 1k is not in
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D(A). Therefore it suffices to prove that, for any 1 ≤ k ≤ n, we have 1k ∈ D(A) if
and only if there are two distinct matroid-circuits C,E ∈ M(A) with C ∩E = {k}.

Suppose first C,E ∈ M(A) are distinct matroid-circuits with C ∩ E = {k}.
Then there are c, e ∈ C(A) with c 6= ±e such that supp(c) = C and supp(e) = E.
Replacing e by −e ∈ C(A) if necessary we may assume that ckek > 0. Then c◦e ≥ 0,
c 6= e, and c, e ∈ G(A) imply that c ◦ e = ckek1k is a generator of D(A), and hence
1k ∈ D(A). Conversely, suppose 1k ∈ D(A). Because D(A) ⊆ Rn

+, some nonneg-
ative multiple of 1k must be one of the generators. So there are g, h ∈ G(A) with
g ◦ h ≥ 0 and g 6= h such that g ◦ h is a nonnegative multiple of 1k, and hence
supp(g) ∩ supp(h) = {k}. By Lemma 4.1 we have g =

∑

i αici and h =
∑

j αjej
conformal sums of circuits with nonnegative coefficients. Then supp(g) = ∪ supp(ci)
and supp(h) = ∪ supp(ej), and hence there are ci and ej among these circuits such
that supp(ci) ∩ supp(ej) = {k}. Let C := supp(ci) and E := supp(ej) be the cor-
responding matroid-circuits of A. It remains to show that C and E are distinct.
Suppose indirectly that C = E. Then C = E = C ∩E = {k}. This implies that the
k-th column of A is 0 and ci = ej = ±1k. But then ci ⊑ g and ej ⊑ h, and therefore
g = ci = ej = h which is a contradiction. So C 6= E, and the proof is complete.

It is interesting to emphasize that the characterization in Theorem 4.2 is in terms
of only the matroid of A, that is, the linear dependency structure on the columns of
A. The algorithm of Theorem 1.3 enables to solve in polynomial time the program

min{
n
∑

i=1

(

vix
2

i + wixi + ai
)

: x ∈ Zn , Ax = b , l ≤ x ≤ u}

for all separable quadratics with v ∈ D∗(A) and in particular for all separable convex
quadratic functions with v ∈ Rn

+. So the algorithm can solve the program moreover
for some separable nonconvex quadratic functions precisely when the matroid of A
satisfies the criterion of Theorem 4.2. Here are some concrete simple examples.

Example 4.3 Consider again Example 2.5 with A := 0 the zero 1×n matrix having
Graver basis G(A) = {±1i : i = 1, . . . , n}. Then the set of matroid-circuits of A is
M(A) = {{1}, . . . , {n}}. Therefore C∩E = ∅ for all distinct C,E ∈ M(A) and the
condition of Theorem 4.2 trivially holds, so D∗(A) ) Rn

+. In fact, here D∗(A) = Rn.

Example 4.4 Directed graphs. Let G be a directed graph, and let A be its V ×E
incidence matrix, with Av,e := 1 if vertex v is the head of directed edge e, Av,e := −1
if v is the tail of e, and Av,e := 0 otherwise. The set M(A) of matroid-circuits
consists precisely of all subsets C ⊆ E that are circuits of the undirected graph
underlying G. The set C(A) of circuits consists of all vectors c ∈ {−1, 0, 1}E obtained
from some matroid circuit C ⊆ E by choosing any of its two orientations and setting
ce := 1 if directed edge e ∈ C agrees with the orientation, ce := −1 if e disagrees,
and ce := 0 if e /∈ C. The Graver basis is equal to the set of circuits, G(A) = C(A).
By Theorem 4.2 we have D∗(A) ) RE

+ if and only if there is an edge e ∈ E such that
no two distinct circuits C,C ′ of the underlying undirected graph satisfy C∩C ′ = {e}.
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Example 4.5 Generic Matrices. Let A be a generic integer m× n matrix, that
is, a matrix for which every set of m columns is linearly independent, say, the matrix
defined by Ai,j := ji for all i, j, whose columns are distinct points on the moment
curve in Rm. Then the matroid of A is uniform, that is, its matroid-circuits are
exactly all (m + 1)-subsets of {1, . . . , n}. Suppose n ≤ 2m. Then every distinct
C,E ∈ M(A) satisfy |C ∩ E| ≥ 2, and hence D∗(A) ) Rn

+ by Theorem 4.2. So, by
Theorem 1.2,

min{
n
∑

i=1

(

vix
2

i + wixi + ai
)

: x ∈ Zn , Ax = b , l ≤ x ≤ u}

can be solved in polynomial time for all such A, all b ∈ Zm and l, u ∈ Zn
∞, all convex

and some nonconvex separable quadratic functions defined by data v, w, a ∈ Zn.

5 Higher degree polynomial functions

The algorithm that underlies our algorithmic Theorem 1.2 using the Graver basis is
conceptually quite simple. First, it finds in polynomial time a feasible point. Then
it keeps improving points iteratively, as long as possible, where, at each iteration,
it takes the best possible improving step attainable along any Graver basis element.
It outputs the last point from which no further Graver improvement is possible.

We now proceed to show that the results of the previous sections can be extended
to multivariate polynomials of higher, arbitrary, degree. We will define a hierarchy
of cones, and whenever a polynomial function will lie in the corresponding cone, the
algorithm outlined above will converge to the optimal solution in polynomial time.

It will be convenient now to make more extensive use of tensor notation, and to
work with the tensored, nonsymmetrized form of a polynomial function. We use

⊗dR
n := Rn ⊗ · · · ⊗ Rn , ⊗dx := x⊗ · · · ⊗ x , x ∈ Rn

for the d-fold tensor product of Rn with itself and for the rank-1 tensor that is the
d-fold product of a vector x with itself, respectively. Note that the (i1, . . . , id)-th
entry of ⊗dx is the product xi1 · · ·xid of the corresponding entries of x. We denote
the standard inner product on the tensor space by

〈U, V 〉 :=

n
∑

i1=1

· · ·
n
∑

id=1

Ui1,...,idVi1,...,id , U, V ∈ ⊗dR
n .

In particular, in the vector space Rn we have 〈x, y〉 = x
⊺

y and in the matrix space
Rn ⊗ Rn we have 〈U, V 〉 = U · V . Note that for any two rank-1 tensors we have

〈x1 ⊗ · · · ⊗ xd, y1 ⊗ · · · ⊗ yd〉 =

d
∏

k=1

〈xk, yk〉 .

For simplicity, we restrict attention to homogeneous polynomials, also termed
forms. A form f(x) of degree d in the vector of n variables x = (x1, . . . , xn) can be
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compactly defined by a single tensor F ∈ ⊗dRn that collects all coefficients, by

f(x) := 〈F,⊗dx〉 =
n
∑

i1=1

· · ·
n
∑

id=1

Fi1,...,idxi1 · · ·xid .

For instance, the form f(x) = (x1 + x2 + x3)
3 of degree d = 3 in n = 3 variables can

be written as f(x) = 〈F,⊗3x〉 = 〈⊗31,⊗3x〉 = 〈1, x〉3 with 1 the all-ones vector in
R3 and F = ⊗31 the all-ones tensor in ⊗3R3, with Fi1,i2,i3 = 1 for i1, i2, i3 = 1, 2, 3.

Let A be any integer m× n matrix, and let G(A) be its Graver basis. For each
degree d ≥ 2 we now define a cone Pd(A) in the tensor space ⊗dRn as follows.

Definition 5.1 The Graver cone of degree d of an integer m × n matrix A is the
cone Pd(A) ⊆ ⊗dRn generated by the rank-1 tensors g1 ⊗ · · · ⊗ gd where the gi are
elements of G(A) that lie in the same orthant and are not all the same, that is

Pd(A) := cone{g1 ⊗ · · · ⊗ gd : gi ∈ G(A), gi ◦ gj ≥ 0 for all i, j, gi 6= gj for some i, j}.

The dual Graver cone of degree d is its dual P∗
d (A) in ⊗dRn given by

P∗
d (A) = {V ∈ ⊗dR

n : 〈U, V 〉 ≥ 0, U ∈ Pd(A)} = {V : 〈g1 ⊗ · · · ⊗ gd, V 〉 ≥ 0,

gi ∈ G(A), gi ◦ gj ≥ 0 for all i, j, gi 6= gj for some i, j}.

Note that P2(A) is the nonsymmetrized version ofQ(A), that is, Q(A) = P2(A)∩S
n.

One of the key ingredient in extending our algorithmic results to polynomials
of arbitrary degree is the following analogue of Lemma 3.2 which establishes the
supermodularity of polynomial functions that lie in suitable cones. We need one
more piece of terminology. Let D := {1, . . . , d} and for 0 ≤ k ≤ d let

(

D

k

)

be the set
of all k-subsets of D. A k-dimensional subtensor of a d-dimensional tensor

F = (Fi1,...,id : 1 ≤ i1, . . . , id ≤ n) ∈ ⊗dR
n

is any of the
(

d

k

)

nd−k tensors T ∈ ⊗kRn obtained from F by choosing I ∈
(

D

k

)

,
letting each index ij with j ∈ I vary from 1 to n, and fixing each index ij with j /∈ I
at some value between 1 and n. For instance, the k-dimensional tensor obtained by
choosing I = {1, . . . , k} and fixing some values 1 ≤ ik+1, . . . , id ≤ n is

T = (Ti1,...,ik := Fi1,...,ik,ik+1,...,id : 1 ≤ i1, . . . , ik ≤ n) ∈ ⊗kR
n .

For an integer m× n matrix A, let Kd(A) ⊆ ⊗dRn be the cone of those tensors
F such that, for all 2 ≤ k ≤ d, every k-dimensional subtensor of F is in P∗

k(A).

Lemma 5.2 Let A be integer m×n matrix. Let f : Rn → R be degree d form given
by f(x) = 〈F,⊗dx〉 with F ∈ Kd(A). Let x ∈ Rn

+ be nonnegative and
∑t

r=1
µrg

r

conformal sum in Rn with gr ∈ G(A) distinct and µr ≥ 0 nonnegative scalars. Then

∆ :=

(

f

(

x+

t
∑

r=1

µrg
r

)

− f(x)

)

−
t
∑

r=1

(f (x+ µrg
r)− f(x)) ≥ 0.
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Proof. To simplify the derivation we assume that all µr = 1. The same argument
goes through in exactly the same way for arbitrary nonnegative µr. For r = 1, . . . , t,

f(x+ gr)− f(x) = 〈F,⊗d(x+ gr)〉 − 〈F,⊗dx〉

= 〈F, gr ⊗ x⊗ · · · ⊗ x〉 + · · · + 〈F, x⊗ · · · ⊗ x⊗ gr〉

+

d
∑

k=2

∑

{

〈F, u1 ⊗ · · · ⊗ ud〉 : I ∈

(

D

k

)

, ui =

{

gr, i ∈ I
x, i /∈ I

}

.

Similarly,

f(x+

t
∑

r=1

gr) − f(x) =

〈

F,⊗d

(

x+

t
∑

r=1

gr

)〉

− 〈F,⊗dx〉

= 〈F,
t
∑

r=1

gr ⊗ x⊗ · · · ⊗ x〉 + · · · + 〈F, x⊗ · · · ⊗ x⊗
t
∑

r=1

gr〉

+
d
∑

k=2

∑

{

〈F, u1 ⊗ · · · ⊗ ud〉 : I ∈

(

D

k

)

, ui =

{
∑t

r=1
gr, i ∈ I

x, i /∈ I

}

.

Therefore,

∆ =

d
∑

k=2

∑

{

〈F, u1 ⊗ · · · ⊗ ud〉 −
t
∑

r=1

〈F, vr,1 ⊗ · · · ⊗ vr,d〉 : I ∈

(

D

k

)

, (16)

ui =

{
∑t

r=1
gr, i ∈ I

x, i /∈ I
, vr,i =

{

gr, i ∈ I
x, i /∈ I

}

.

Now, consider any 2 ≤ k ≤ d and any I ∈
(

D

k

)

. For simplicity of the indexation, we
assume that I = {1, . . . , k}. The derivation for other I is completely analogous. For
each choice of indices 1 ≤ ik+1, . . . , id ≤ n let T (ik+1, . . . , id) be the k-dimensional
subtensor of F obtained by letting i1, . . . , ik vary and fixing ik+1, . . . , id as chosen.
Then the corresponding summand of ∆ in the expression (16) above satisfies

〈

F,⊗k

(

t
∑

r=1

gr

)

⊗ (⊗d−kx)

〉

−
t
∑

r=1

〈F, (⊗kg
r)⊗ (⊗d−kx)〉 (17)

=
n
∑

ik+1=1

· · ·
n
∑

id=1

xik+1
· · ·xid

〈

T (ik+1, . . . , id),⊗k

(

t
∑

r=1

gr

)

−
t
∑

r=1

⊗kg
r

〉

.

The summand in (17) above which corresponds to 1 ≤ ik+1, . . . , id ≤ n satisfies

〈

T (ik+1, . . . , id),⊗k

(

t
∑

r=1

gr

)

−
t
∑

r=1

⊗kg
r

〉

= (18)

∑

{〈T (ik+1, . . . , id), g
r1 ⊗ · · · ⊗ grk〉 : 1 ≤ r1, . . . , rk ≤ t, not all ri the same} .
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Now, because all the gr are in the same orthant, and all k-dimensional subtensors
of F lie in the dual Graver cone P∗

k(A), each summand on the right-hand side of
(18) above satisfies 〈T (ik+1, . . . , id), g

r1 ⊗ · · · ⊗ grk〉 ≥ 0, and so the left-hand side
of (18) is nonnegative as well. Because x ∈ Rn

+ is nonnegative, each summand on
the right-hand side of (17) above is nonnegative, and so the left-hand side of (17) is
nonnegative as well. Because this holds for all 2 ≤ k ≤ d and all I ∈

(

D

k

)

, we obtain
that each summand on the right-hand side of (16) is nonnegative, and so ∆ ≥ 0 as
claimed.

A second key ingredient is the following analogue of Lemma 3.1 which shows that
we can efficiently minimize a given form of any fixed degree d in a given direction.

Lemma 5.3 For every fixed d, there is an algorithm that, given l, u ∈ Zn
∞, z, g ∈ Zn

with l ≤ z ≤ u, and f(x) = 〈F,⊗dx〉 with F ∈ ⊗dZn, solves in polynomial time

min{f(z + µg) : µ ∈ Z+ , l ≤ z + µg ≤ u}. (19)

Proof. Let S := {µ ∈ Z+ : l ≤ z + µg ≤ u}, and let s := supS which is easy to
determine. If s = ∞ then we conclude that S is infinite and stop. Otherwise we need
to minimize the univariate degree d polynomial h(µ) := 〈F,⊗d(z+µg)〉 =

∑d

i=0
hiµ

i,
whose coefficients hi can be easily computed from F , over S = {0, 1, . . . , s}.

Outline: use repeated bisections and Sturm’s theorem which allows us to count
the number of real roots of h in any interval using the Euclidean algorithm on
h(µ) =

∑d

i=0
hiµ

i and its derivative h′(µ) =
∑d−1

i=0
(i + 1)hi+1µ

i, to find intervals
[ri, si], i = 1, . . . , d (possibly with repetitions if h has multiple roots) containing
each real root of h, and such that si − ri < 1 for all i. Then minimizing h over S
reduces to minimizing h over S ∩ {0, ⌈r1⌉, ⌊s1⌋, . . . ⌈rd⌉, ⌊sd⌋, s}.

We can now establish our theorem on polynomial integer minimization.

Theorem 1.4 For every fixed d there is an algorithm that, given integer m×n matrix
A, its Graver basis G(A), b ∈ Zm, and degree d integer homogenous polynomial
f(x) = 〈F,⊗dx〉 with F ∈ Kd(A), solves in polynomial time the polynomial program

min{f(x) = 〈F,⊗dx〉 : x ∈ Zn , Ax = b , x ≥ 0}.

Proof. First, use the algorithm of Lemma 3.6 to either detect that the problem is
infeasible or that the feasible set is infinite and stop, or obtain a feasible point and
continue. Now, apply the algorithm of Lemma 3.5 precisely as it is, using the given
form f(x) instead of a quadratic. Lemmas 5.2 and 5.3 now assure that the analy-
sis of this algorithm in the proof of Lemma 3.5 carries through precisely as before,
and guarantee that the algorithm will find an optimal solution in polynomial time.
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Lectures, ETH Zürich, pp. 1–143.

[5] Schrijver, A.: “Theory of Linear and Integer Programming,” 1986. Wiley.
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