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Abstract

This paper provides a rigorous asymptotic analysis and justification of upper and
lower confidence bounds proposed by Dantzig and Infanger (1995) for an iterative
sampling-based decomposition algorithm, introduced by Dantzig and Glynn (1990) and
Infanger (1992), for solving two-stage stochastic programs. Extensions of the theory
to cover use of variance reduction, different iterative sampling sizes, and the dropping
of cuts are also presented. An extensive empirical investigation of the performance of
these bounds establishes that the bounds perform reasonably on realistic problems.
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1 Introduction
Consider the two-stage stochastic linear program (with recourse) given by
min cx + FE z*(z;A)
s/t Ax b (1)

z > 0,

where z*(z; A) is the minimum of the second-stage linear program

min vy
oy = p+px
y = 0,

and A = (v,3,0, ) is random. When the sample space corresponding to A contains a
large number of outcomes (or is countably infinite or continuous), use of sampling-based
algorithms for solving (1) becomes attractive. Of course a key element in the reliable
application of every numerical method is the ability to accurately assess its error. For a
sampling-based procedure, such an assessment typically comes in the form of confidence
statements. Such confidence statements have been previously proposed for the class of
sampling-based procedures based on “sample-average approximation” (SAA). Mak, Morton,
and Wood (1999) show, for example, how upper and lower one-sided confidence intervals for
the minimal objective value can be calculated (that are asymptotically valid as the sample
size tends to infinity). Their approach actually applies to much more general stochastic
programs than (1). On the other hand, Shapiro and Homem-de-Mello (1998) propose a
stopping criterion for SAA, as applied to (1), that is based on the asymptotic behavior of
confidence regions related to the first-order optimality conditions for two-stage stochastic
programs with recourse.

This paper’s main contribution is the rigorous development of upper and lower one-
sided confidence intervals for the minimum objective value of (1), when the underlying
solution algorithm is not SAA but is instead the iterative sampling-based decomposition
approach introduced by Dantzig and Glynn (1990) and Infanger (1992). Iterative sampling-
based decomposition is an appealing algorithm because it lends itself better than does
SAA to applications that demand that one iterate until a reasonable error tolerance has
been achieved. These confidence intervals provide a useful indicator of the quality of the
final solution at algorithmic termination, and were first proposed in a technical report by
Dantzig and Infanger (1995) that lacked a complete theoretical justification. The current
paper provides the theory necessary to make these confidence bounds rigorous and covers
both discrete and continuous distributions on A.

This paper is organized as follows. In Section 2, we carefully describe the iterative
sampling-based decomposition algorithm and the prove the asymptotic validity (as the
number of samples per iteration goes to infinity) of our upper and lower confidence bounds
on the minimum of z* of (1). Section 3 is concerned with extending our results to modified
versions of our basic algorithm (to cover use of variance reduction, different iterative sample



sizes, and to allow the dropping of cuts). We conclude in Section 4 with an extensive
empirical investigation of the accuracy of our confidence bounds in the context of a suite of
test problems.

2 Confidence Bounds for Iterative Sampling-based Decom-
position

We start by describing the iterative sampling-based decomposition algorithm that we shall
study. A key feature is its reliance on the dual linear program (LP), denoted L (x;A),
given by
max 7(pu + Bx)
T < v

that is dual to the (primal) subproblem L”(z;A) associated with (1), namely

min vy
oy = p+pz
y > 0.

We assume throughout this paper that:

Al.Foreachx € H={x: Az =b, >0}, LT (x;A) and LP(z; A) are almost surely (a.s.)
feasible LP’s.

Let y*(x; A) be the minimizer of L (x;A) and let 7*(x; A) be the maximizer of L (z;A)
(both assumed to be measurable selections in A; see Kall (1976) for details of the exis-
tence of such a measurable selection). An important parameter in the specification of the
algorithm is the number n of primal subproblems that are sampled at every iteration of
the decomposition algorithm. We denote the master solution associated with performing m
iterations, each based on n subproblem samples, by X, .

Algorithm

1. Set Xo,, = z9 € H as our initial guess at some minimizer z* of (1).
2. m« 1.

3. Generate n independent realizations of A = (v, 3,0, i), call them
Ay = (Vl’ b1, 61’ Ml)’ ) A, = (Vna Bns 5717 Nn)~

4. Solve the n LP’s LD(Xm_Ln;Al), e ,LD(Xm_Ln;An) for the corresponding maxi-
mizers 7 (X155 A1), -, T (Xn—1,n; An).



5. Compute the sample means

1,
Gm,n = ﬁ Z"T (Xm—l,n;Aj)ﬁ]ﬁ
j=1

1
Immnm = E Z 7T*<Xm—1,n; Aj)/J’j’
=1

6. Solve the LP
mincx + 0

Ax = b
—Gipx + 0 > gin, 1<i<m
T > 0,

for the minimizer X, ,,. (Note that this LP is computing the minimizer of

cx + maxi<i<m|Gin® + gin) over z € H.)

7. m < m -+ 1 and return to 3.

The above algorithm produces a sequence of iterative approximations Xi, ..., X,
to the solution of (1). The associated sequence of approximating optimal objective val-
ues is given by ((c¢X;, + maxi<i<;j[GinXjn + gin]) : j > 1). Note that the family
of n independent realizations of A that we generate at the m-th iteration are different
from those generated at previous iterations. To make this difference notationally clear,
we henceforth denote the n realizations of A = (v, 3,0, u) generated at iteration i by
Ai,l = (Vi,lwgi,laai,lvui,l): N 7Ai,n = (Vi’n,ﬂim,(si,n). Relative to this notation, Step 3 of
the algorithm is requiring that (A;; : ¢ > 1,7 > 1) is a collection of independent and iden-
tically distributed (iid) replicates (copies) of A. Let Fppp = 0(Aj; : 1 <j<m,1<i<n)
(with Fo,, = {0,Q}) be the o-algebra generated by the A; ;’s that are needed by the first
m iterations of the algorithm when sample size n is used at each iteration.

Our first result is an upper bound that is widely used in the setting of sampling-based
optimization algorithms; see Asmussen and Glynn (2007). Let z(z) = cx + E 2*(x; A) and
note that because z* is a minimizer of (1), it follows that 2(X,, ) > z(z*) = 2*. Hence
2(Xym,n) is an upper bound on the minimum z* of (1). Because E z*(.;A) is not typically
available in closed form (for otherwise one would not be applying sampling to solve (1)),
2(Xym,n) must be computed by sampling. Suppose that we generate ¢ iid copies of A,
independently of the previous realizations used to compute X, ,. More precisely, suppose

that we generate Ap,41,1,. .., Apq1,0; these random variates are clearly independent of 7, .
Then,
1 ¢
CXm,n + z Z Z* (Xm,n; Am+1,j) (2)
=1



is an estimator for z(X,,,). If we set o%(z) = var z*(z; A) and

| =

2
sj(x) = -1 > (Z (3 A1) — 5 > 2 (CL“;Am+1,k)) ;
i=1 =1

we note that £~1s%(X,, ) is an unbiased estimator for the conditional variance £~107(X.»)
of the estimator (2) (conditional on F, ). The following upper (conditional) confidence
bound on z* thus follows easily from the central limit theorem (CLT).

Proposition 1. Assume Al. Suppose that varz*(z; A) < oo for all x € H. If 5 is chosen
so that P(N(0,1) > n) = «a, then

Sz(Xm,n)

7 | Frnn) > 1—a as.

l—00

4
1
lim inf P(* < Xy + 5 Y 2 (Xomns Amr1g) +1
j=1

(with equality when z*(z,A) > 0).
The more subtle and difficult issue is that of a lower confidence bound on z*. Our next
result is the main theoretical contribution of this paper.

Theorem 1. Assume Al. If 0%(z*) < 0o, then

liminf P(2* > ¢X,,n + max (GinXmn + Gin) — 1
1<i<m

n—oo
provided that 7 is selected so that P(N(0,1) <n) = (1 — a)¥/™.
Proof. Because X, ;, is a minimizer of

ggg[cm + 12&2};(@@% + gin)l,

it follows that
cXmn + 1r§nz‘a§)7(n(Gi’nXm’" +gin) < cx® + 1212;%)%(6’2-,”:16* + Gin)-

Hence,

> P(max (Ginr™ + gin) < 2°(27) +

= M<i<m - Vn

= Pl Gun” +0) — 7)) < 200D 3)



Recall that 7*(z; A; ;) is a maximizer of L (x;A; ), so
T (Xions Nig) (pig + Bige) < 7 (w; Aij) (pij + Pijv)
because 7*(X;_1,; A; ;) is feasible for LP(z; A; ;). By duality,
T (@5 i) (g + Bigw) = vigy™ (@5 A j)-

Hence,
T Xic1ns Nig) (pig + Bigx) < vijy™(z; A ) as
We conclude that
GinT+ gin < — Zz x; N j) as
s
for x € H, so that

—_

n
GinZ" + gin — =3 2@ Aiyy) — 2 (2Y) aus.
=1

3

The probability (3) may therefore be lower bounded by
1 n
P( max n'/?( Zz* —2"(z")) < o(z¥)n) (4)

Note that the above probability is 1 if o2(z*) = 0. On the other hand, if o2(z*) > 0,
then {z*(2*; A; ;) — 2" (2*)) : 1 <i <m,1 < j < n}is a collection of iid mean zero random
variables with finite variance o?(x*). Hence,

1/2 1 " * (% 1/ 1 . * * (¥
7 227 5 a) 2 (i () 3 @A) = )
: ]:1
= (N1(0,1),..., Ny (0,1))
as n — oo where (N1(0,1),...,N;,(0,1)) are iid normal random variables with mean zero

and unit variance. In view of (4), it follows that when o?(z*) > 0,

hnIr_l)g.}fP(Can—f— max Gmen—{—g,n) <ecx'+z2"(x )—i—%

> P(1I£I?<XnN (0,1) <n)

o(x*)

= P(N(O,1) <n)" =1—a,

proving the theorem. //



Theorem 1 provides the key lower bound. Note that the lower bound involves one
quantity, namely o?(2*), that is not computed during the course of our algorithm. Theorem
1 effectively reduces the problem of obtaining a lower bound on z* to computing o2(z*) or
(at least) to computing an upper bound on o?(z*).

Since z* is unknown, ¢?(2*) can not be estimated via the conditional sample variance
s2(z*). While the question of computing an upper bound on o?(z*) deserves further atten-
tion, we suggest here three different ways of bounding o2 (z*).

Method 1: We bound ¢?(z*) by 02 = sup{c?(z) : * € H} and estimate 2. To estimate

o2, we sample r points X1, ..., X, at random from within H, compute 5% (Xz) at each of the

r points and bound o2 via the sample-based quantity

67(r,6) = max s7(x:)- ()

1<e<r

An alternative is to generate independent A realizations of the second-stage subproblems
at each of the r points, thereby calculating

2

i 1<
Sg(Xi)—“Z(Z Xis Amij) EZ (xis m—l—zk))

=1 k=1

for 1 <i <r, and then compute

~2
04 (Ta 6) - 11’2?‘<XT Sf (XZ)

Note that because s7(x;) < maxj<g<, s7(X), it follows that

UQ(Xi) < E [&3(7‘76”){1, .. 'aXT]

for 1 < ¢ < r. Furthermore if o(.) is continuous over H and if the sequence x1, x2, ... is a.s.
asymptotically dense in H, then maxi<j<, o (Xz) — 02 a.s. as r — oo. It follows under
these conditions, that 62(r, ) is biased high for o2. In addition, P(52(r,f) < 02 —¢) — 0
as r — oo for each € > 0, so that

62(r, 0)

n

liminf P(z* > cXpp + ax (GinXmm + Gin) — 1 >1-—q, (6)
m

n—0o0,r—00

provided that 7 is selected so that P(N(0,1) < n) = (1 — a)'/™. An identical conclusion
follows for ¢2(r,£). An implementation of this method requires specifying 7, ¢, and the
algorithm used to generate the x’s.

Method 2: The second method uses the fact that 02 < sup{E z*(z;A)?:x € H}. But

Z(2;M)? < E sup 2*(z;A)? = E w(A)2
xeH

7



Assuming that z*(z; A) is non-negative a.s., the random variable w(A) can be computed as
the (random) solution of the optimization problem

maxy , m(p + fz)
T < v
Ar = b
z > 0

It follows that ,
1
7 > w(Ami1,)® — Ew(A)?® > 02 as.
i=1
as £ — oo, so that £=1 S5 w(Ay11.4)? is an estimator of an upper bound on o2(z*), which

can be used to implement a lower bound on z* (as in (2) of Method 1).

Method 3: Method 3 works with the variance o?(x; A) directly, rather than the second
moment bound E z(x; A)2. We start by observing that

1. \
o?(z) = 5E (2" (23 Amr1,1) — 2%(@5 Ams,2))°

But 2*(2; Amy1,) is a maximizer of LY (z; Ayi1))-

Assume that 0,,41; = D is deterministic. The feasible region of both dual linear pro-
grams are then contained in F' = {7 : 7D < (U111 V Um+12)}, where (Vma11 V Vmt1,2) 18
the component-wise maximum of v,11,1 and vp,412. Note that

12" (; Apg1,1) — 27 (25 Apg1,2)| < sup{|m(Um1,1 + Bmt1,12) — T(Uimg1,2 + Bmg122)| : m € F'}
= sup{|T(Vm+1,1 — Vm+1,2) + T(Bm+1,1 — Bm+1,2)x)| 1 ™ € F}.

So,

1
o?(z*) < o Sug{(W(Vm—s—l,l — Umt1.2) + T(Bmy11 — Bmr12)z)? i 7 € F}
BAS

1
< §E sup{(T(Vm+1.1 — Vm+1.2) + T(Bmi11 — Bnrr2)r)’ :m€ Fa € HY =W

Note that W is the maximum of a quadratic objective over a linear feasible set (with
the feasible set having a “size” equal to that of a master plus a single subproblem). Let
W1,..., Wy be £ iid replicates of W. Then,

¢
1
ZZWZ — EW > o*(z*) a.s.,
i=1

yielding an upper bound on ¢?(z*). This method avoids sampling over H, as does method
2.



We conclude this section by noting that Proposition 1 provides an upper bound on
z* that involves a confidence statement that is conditional on F, ,, whereas Theorem 1
offers a lower bound on z* relative to the unconditional distribution. A typical user of
such confidence bounds prefers that either both statements be conditional or that both be
unconditional.

The argument underlying Theorem 1 fails badly, when one conditions on F,, ,, (because,
in that case, the A; ;’s with i« < m and j < n are no longer iid). As a consequence, we now
offer a version of the upper bound (Proposition 1) that is unconditional.

Proposition 2. Assume Al and that E z*(x; A)¥ is finite and continuous on H for 1 <
k < 4. If 0%(.) is positive and H is compact, then

3? (Xm,n)

7 )>1—a.

hmmfP(z <cXmn+ - Zz (X A1) +1
] 1

Proof. Because E |2*(z; A)[3/o(x) is bounded over H, the Berry-Esséen theorem (Feller
(1971)) implies that

61/2 L
P(—=z < — Zz* (2 Amg15) —2%(2))) = 1 —« (7)
j:1

as £ — oo uniformly in z € H. Also Chebyshev’s inequality guarantees that for each € > 0,

3%,2(1’)
o?*(x)

as ¢ — oo, uniformly in x € H. Relations (7) and (8) clearly imply the result. //

(] —1[>e) =0 (8)

3 Extensions

We present here several extensions to our key lower bound result, namely Theorem 1.

Extension 1: Different sample sizes at each iteration

In using an iterative sampling-based algorithm, it is natural to consider a modified version
in which the sample size n; describing the number of independent subproblems sampled at
iteration 7 is permitted to depend on i. For example, as the number of iterations increases,
we may wish to increase the sample size in order to improve the accuracy as the iterative
scheme closes in on the optimizer.

Let the sequence (n; : i > 1) be a (deterministic) sequence of integers corresponding to
the successive sample sizes used at the different iterations. In this setting, the cut generated
at iteration ¢ has an associated sample size n;, so we write it as (Gjp,, gin,). Assume that



for i > 1, n; = ¢n(1 + o(1)), as n — oo, where o(1) is a sequence that tends to zero
as n — o0o. Then, a slight adaptation of the proof in Theorem 1 shows that under the
conditions stated there,

. . o?(z*)
liminf P(2* > ¢Xpp,, + max (Gin, Xmnm, + Ging) — 0
n— o0 1<i<m ni

21—04,

where 7 is chosen so that [[;_y P(N(0,1) < ,/&n) = (1 — ). Such a value for 1 can easily
be computed numerically, at least when n is not too large.

Extension 2: Importance sampling

Suppose that we use a sample distribution P (rather than the original P) from which to
sample A, so as to concentrate more realizations of A in those regions that are most critical
to determining the (expected) second-stage cost. We assume that P satisfies

P(¢ € dx) = I(x)P(€ € dx),

where P is the nominal distribution at & associated with the original probability distribution.
The use of P rather than P to generate outcomes of & is known as importance sampling.
When ¢ has densities p and p under P and P, respectively, [(.) can be expressed as I(z) =
p(z)/p(x) and is known as the likelihood ratio of P relative to P.

Because of the presence of importance sampling, we modify the i’th cut (Gjp, gin) to

- 1 n N
Gin = — D o m (Xicrms Nig)Bigl(Aiy),
j=1

~ 1 - *
Gin =~ 2 7 (Xivtn; Ai )i l(Ai)-
i=1

and execute the algorithm with these modified cuts. The proof of Theorem 1 goes through
with minor changes, namely z*(z; A; ;) must be replaced by z*(z; A; ;)I(A; ;), so that o%(z*)
is replaced by var z*(z; A)I(A) (where var (.) denotes the variance operator associated with
distribution P).

When P is chosen well, use of the sampling distribution P rather than P can produce
significant variance reductions, particularly in settings where there are second-stage out-
comes that occur rarely but have a big effect in the decisions to be made; see pp. 127-129
of Asmussen and Glynn (2007) for further detail.

Extension 3: Control Variates

In virtually all real-world applications of sampling-based methods for solving (1), a wide
variety of expectations of the form E g(A) for g R-valued) can be computed either analyt-
ically in closed form or numerically to high precision (e.g., the mean of the right-hand side

10



variables p and ). Let C' = g(\) — E g(A) and note that £ C' = 0. Such a random variable
C is called a control variate and, when intelligently used, can be used to induce a vari-
ance reduction in our sampling-based procedure. The idea is to replace the cut estimators
(Gim, 9in) generated at iteration i by

1 n
Gin=" > (T (Xicini Mig)Biy — MCiyg),
j=1
1 n
Gin = = 2 (0 (Kicini Mig)ptig = AaCij).
j=1
where C; ; = g(Ai;) — E g(A) and A\, Ay are (deterministic) matrices (of row and column
dimensions appropriate to make sense of the above expressions). One then executes the
algorithm with these modified cuts.
As for importance sampling, the proof of Theorem 1 again goes through with minor
changes. The key observation is to note that z*(z; A; ;) is replaced by

Z*(.%', Am‘) — /\101-7311: — )\gci’j
and o?(x*) is replaced by
var (Z*(I‘*, Ai,j) — )\102',]'.%'* — )\Qqu’j).

When A; and A are chosen so that var (2*(z*, A; ;) — A1 C; ja* —A2C; ;) is smaller that o2(z*),
the lower bound is tightened (in the sense that the length of the associated confidence
interval for z* is reduced). Note that a variance-minimizing choice of A\; and A2 (so as to
minimize var (2*(z*, A; ;) — M Cj j2* — X\2C; j)) requires knowledge of x*, complicating the
statistical estimation of the optimal control coefficient matrices A7 and A3. This represents
an interesting opportunity for future research.

Extension 4: Dropping Cuts

In large-scale problems, it is often the case that the number of iterations required to accu-
rately compute z* is large. Our iterative algorithm can be slowed significantly when one
insists on keeping all m cuts. Instead, one may prefer on iteration m to (deterministically)
retain the last j,, cuts (with 1 < j,, < m), so that step 6 of our algorithm is implemented
by solving

mincr + 0

Azx = b
—Ginz + 0 > gin, m—jm+1<i<m
z > 0,

for the minimizer X,,,. Our proof goes through without change to this setting. Note,
however, that if the retained cuts are not deterministically specified (as would be the case
if we were to choose to retain the “best” j,, cuts), our proof fails to be valid and a more
sophisticated analysis would be required.

11



4 Numerical Results

We tested the confidence bounds methods described earlier in this paper on the following
test problems: APL1P (Infanger (1992)) and PGP2 (Louveaux and Smeers (1988)) are
electric power planning problems, CEP1 (Higle and Sen (1994)) is a machine capacity ex-
pansion planning problem, STORM (Mulvey and Ruszczynski (1992)) and STORMG2, a
variant of STORM, are freight scheduling problems, SCTAP1 (Ho (1980)) is a traffic as-
signment problem, and SNL and SNS are variants of the problem SSN (Sen, Doverspike and
Cosares (1994)), a large telecomunications planning problem. Table 1 summarizes the size
characteristics of each of the above problems. The table also includes the optimal objective
value z* for each problem, as computed by solving the problems exactly using decomposi-
tion without any sampling. Because our lower bound confidence interval procedure involves
bounding the second-stage standard deviation o* = o(x*), we also report the exact value
of o* for each problem.

l Problem H Size Master [ Size Sub [ RV [ Scenarios “ z* [ o* ‘
APL1P 3,3 6,9 5 1280 24642.3 4808.8
PGP2 2,4 4,16 3 576 447.3 77.6
CEP1 9,8 7,15 3 216 355159.5 420458.4

STORM 1290, 122 527,1259 1 40 15.569 x 10% | 0.2819 x 10°

STORMG2 186, 122 529, 1259 1 1000 15.580 x 10% | 1.3295 x 10°
SCTAP1 31,49 61,96 480 248.5 24.01
SNS 2,8 18, 58 10 2560000 3.6121 1.7863
SNL 2,8 2,8 14 | 40960000 7.7727 9.9475

Table 1: Test data, problem dimensions (rows, columns), number of (independent) random
variables, number of universe scenarios, optimal objective z* and standard deviation of the
optimal second-stage cost o*

We slightly modified the above problems by adding box constraints (where necessary)
to our first-stage feasible region, in particular lower and upper bounds to each first stage
variable. As we shall see below, the box bounds both make the first stage region compact
(which is convenient theoretically) and permit us to sample points within the first-stage
region as required by Method 1 in Section 3. The box bounds were set reasonably wide, in
particular, for APL1P and PGP2 the lower/upper box bounds were 0/5000; for CEP1 the
bounds were set at 0/1000; for STORM, STORMG2 and SCTAP1, the bounds were 0/100;
and for SNS and SNL the lower/upper bounds were 0/10.

In implementing our confidence bounds, we chose estimator (5) to upper bound the
second-stage variance o2(x*). As just noted, this estimator requires sampling a sequence
of points within the first-stage feasible region. There are many such procedures that have
been proposed for generating such a sequence; see, for example, Smith (1984).

Our approach starts by sampling a point uniformly within the box. If the sampled point
falls within the feasible region H = {z : Ax = b,z > 0}, we add it to the sample of feasible
points. If the sampled point turns out infeasible, we project the point onto the feasible

12



region H by solving the problem:
min ||z — ¥, s/t z € H

to obtain as its optimal solution a feasible boundary point ai"g € H. In order to obtain a
feasible point in the interior of H, we compute a random convex combination of consecutive
feasible boundary points as

TFeqs = aki‘lg +(1- ak)a%’g_l,

where each o is an independently distributed uniform random parameter between 0 and 1
and a?'}eas, k=1,... are feasible points with respect to H that are added to the sample of
feasible points. We call this the projection algorithm and used this to generate r = 30 and
r = 50 points within the feasible region. Of course, one obtains different lower bounds for
these two different values of the parameter r. We used the projection algorithm rather than
Smith (1984) because the projection algorithm could be very easily implemented within
the framework of the stochastic programming software (Infanger (1997)) used for obtaining
the numerical results of this paper (because solving the projection problem merely involves
adding a quadratic term to the objective of the master problem).

The upper bound and lower bound results (for » = 30) are provided in Table 2, along
with empirical coverages (based on running the sampling-based algorithm on each test
problem 100 independent times) for the confidence intervals. The lower and upper bounds
are reported as a (signed) percentage of the true objective value, so that a lower bound
of -2% means that the computed lower bound was 2% lower than the true value, while
an upper bound of 5% means that it was 5% above the true value. We note that the

Lower Bound Upper Bound
Model Iteration n Mean | Coverage || Mean | Coverage

% % % %

APL1P 20 100 || -3.97 100 3.96 97
PGP2 20 100 || -16.57 100 3.50 90
CEP1 6 100 || -21.04 99 25.38 92
STORM 20 20 -1.19 100 0.97 100
STORMG?2 30 100 || -1.63 100 1.92 100
SCTAP1 3 100 || -1.60 95 1.66 94
SNS 20 500 || -5.23 98 5.58 100
SNL 20 500 || -6.65 100 5.67 99

Table 2: Summary Results, lower (for » = 30) and upper bound estimates and coverage;
based on 100 replications each.

upper and lower confidence bound estimate are reasonably small for all problems, and the
coverage results for the lower and upper bound estimates are good. The coverage of the
lower bound estimate is nearly always close to 100%, indicating that the estimates of the
optimal standard deviation at the optimal solution via the its maximum over the first-stage
feasible region is a numerically valid approach.
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Table 3 gives the upper bound mean values and coverage results for various sample sizes
n. The sample spaces for problems SNS and SNL are rather large, with a total number of
universe scenarios of 2.56 million and 40.96 million outcomes, respectively. Both problems
have a large standard deviation of the second-stage cost and therefore command a large
sample size for obtaining reasonably small confidence bounds. We therefore include results
for n = 500 as part of the analysis. It is important to note that even when the confidence
intervals are wide, the coverage is still (as predicted) around 95%, confirming the theory.

95% upper bound
Problem n avg value | coverage
% %
30 6.97 97
APL1P 50 4.90 93
100 3.96 97
30 9.38 92
PGP2 50 6.52 92
100 3.50 90
30 33.54 92
CEP1 50 25.38 92
100 19.18 96
STORM 20 0.97 100
30 3.32 96
STORMG2 | 50 2.36 95
100 1.92 100
30 3.20 94
SCTAP1 50 2.71 100
100 1.66 94
30 18.33 94
SNS 50 17.24 100
100 10.49 97
500 5.58 100
30 19.37 99
SNL 50 16.28 100
100 11.94 100
500 5.67 99

Table 3: Upper bound average value and coverage

Table 4 gives the results for the lower bound estimate for various sample sizes £ and for
sample sizes 7 = 30 and r = 50. The table also presents the average percentage value (over
100 replications) of (64(r,¢) — 0*)/o* in percent of the standard deviation at the optimal
solution o* as well as the coverage (the fraction of instances where . (r, £) was greater than
o*).

As expected, the coverage of our upper bound estimate (G,(r, ) is almost always 100%.
We also note that the lower confidence bound estimate are reasonably tight for all problems,
and the coverage results for the lower bound estimates are always close to 100%, for all
sample sizes n tested. Using sample size r = 30 resulted in good lower bounds for all
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r =30 r =50
G4(r, 0) 95% lower bound G4(r, 0) 95% lower bound
Problem l avg value | covg || avg value | covg || avg value | covg || avg value | covg
% % % % % % % %
30 27.23 100 -8.02 100 32.73 100 -8.37 100
APL1P 50 21.03 100 -5.94 100 23.82 100 -5.98 100
100 15.43 100 -3.97 100 17.12 100 -4.06 100
30 299.14 98 -33.96 100 374.05 99 -40.77 100
PGP2 50 294.36 99 -25.66 100 344.40 100 -29.44 100
100 265.75 100 -16.57 100 321.37 100 -19.46 100
30 30.05 100 -41.65 100 32.42 100 -44.04 100
CEP1 50 23.65 100 -31.49 99 24.71 100 -32.12 98
100 16.28 100 -21.04 99 17.98 100 -19.81 98
STORM 20 32.58 100 -1.19 100 33.17 100 -2.22 100
30 15.72 100 -3.08 100 17.68 100 -3.23 100
STORMG2 | 50 11.99 100 -2.22 100 13.87 100 -2.46 100
100 8.48 100 -1.63 100 9.56 100 -1.65 100
30 23.64 100 -3.12 100 25.60 100 -3.04 98
SCTAP1 50 17.80 100 -2.31 98 19.83 100 -2.27 98
100 12.87 100 -1.60 95 14.43 100 -1.44 94
30 28.78 100 -25.21 100 31.69 100 -26.70 100
SNS 50 21.28 100 -18.20 99 23.24 100 -18.69 100
100 15.12 100 -12.20 99 17.42 100 -13.21 100
500 6.31 100 -5.23 98 7.56 100 -5.14 98
30 25.52 100 -22.78 100 28.27 100 -23.40 100
SNL 50 20.40 100 -17.45 100 23.54 100 -18.39 100
100 15.18 100 -13.11 100 18.76 100 -13.45 100
500 9.78 95 -6.65 100 10.59 100 -6.73 99

Table 4: Average value and coverage of the standard deviation of second-stage cost, lower
bound average value and coverage, each for sample sizes r = 30 and r = 50

problems. As expected, choosing r = 50 leads to a larger upper bound estimate for the
standard deviation at the optimal solution and thus to a weaker (but more reliable) lower
bound estimate.

For problem PGP2 the lower bound results reflect a large variation of the variance of the
optimal second-stage cost over different feasible first-stage solutions. For example, using a
sample size of r = 30, and a sample size of n = 100 the estimated maximum second-stage
standard deviation is 265.75% larger than the true optimal variance of the second-stage cost,
with a coverage of 100%. The corresponding average lower bound is 16.57% smaller than the
true objective of the problem, with a coverage of also 100%. The standard deviation of the
second-stage cost at the optimal first-stage solution is overestimated by using our procedure.
Our computational experience indicates that typically the variance turns out to be large at
feasible points having a large cost, at which a significant penalty cost for unserved demand
needs to be paid. One could further restrict the feasible region for the first-stage problem
by rejecting points that have an expected cost that are, with high probability, larger than
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the best upper bound estimate. A statistical test could be used to help to decide which
such points to reject. How to best reject based on objective estimates is subject to further
research.

Tables 5 and 6 present statistics for the upper and lower bound estimates as a function of
the number of iterations. Because this set of experiments was intended to offer insight into
the question of iterative convergence of the bounds, we selected STORM2 (due to its large
size) and SNL (because of its large sample space) as candidate problems. As one might
expect, the results demonstrate that the bounds have excellent coverage characteristics.
They also make clear that if the number of iterations is large, eventually the noise associated
with the fixed sample size n used at every iteration dominates the accuracy and no further
iterative improvement can be gained.

For both problems the upper and lower bounds exhibit excellent coverage at every
iteration, with the lower bound coverage almost always at 100%. We note that choosing a
reasonable number of iterations is important. For example, the initial choices of 30 and 20
observations, respectively, is not quite sufficient for obtaining the best solution possible.

Lower Bound Upper Bound Lower Bound | Upper Bound
Tteration | 95% | Mean | Median || Median | Mean | 95% Coverage Coverage

% % % % % % % %
5 -3.80 | -3.00 -2.98 3.10 3.22 | 4.83 100 100
10 -2.79 | -2.15 -2.14 2.04 2.01 | 3.50 100 98
15 -2.39 | -1.88 -1.86 1.96 2.03 | 3.51 100 100
20 -2.30 | -1.73 -1.77 1.95 1.90 | 3.72 98 98
25 -2.32 | -1.70 -1.70 2.06 1.98 | 3.31 100 99
30 -2.19 | -1.63 -1.66 1.98 1.96 | 3.38 100 100
35 -2.19 | -1.62 -1.65 1.72 1.80 | 3.64 100 99
40 -2.05 | -1.60 -1.59 1.84 1.90 | 3.50 100 100
45 -2.02 | -1.57 -1.59 1.79 1.86 | 3.43 100 98
50 -1.95 | -1.52 -1.57 1.58 1.72 | 3.54 100 98
55 -1.93 | -1.47 -1.53 1.96 1.84 | 3.37 100 98
60 -1.97 | -1.51 -1.55 1.77 1.78 | 3.24 100 100
65 -1.84 | -1.46 -1.50 1.77 1.71 | 3.02 100 98
70 -1.83 | -1.43 -1.43 1.88 1.80 | 3.35 100 98
75 -1.92 | -1.40 -1.45 1.74 1.69 | 2.97 100 96
80 -1.92 | -1.40 -1.45 1.74 1.69 | 2.97 100 96

Table 5: Model STORMG?2, statistics for upper bound and lower bound estimates as a
function of iterations; sample size n = 100, r = 30, £ = 100, 100 replications each.
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Lower Bound Upper Bound Lower Bound | Upper Bound
Iteration | 95% Mean | Median || Median | Mean | 95% Coverage Coverage

%o %o % % %o %o %o %o
5 -25.84 | -23.42 | -23.67 43.80 43.56 | 47.84 100 100
10 -15.09 | -11.94 | -12.16 5.41 590 | 11.83 100 99
15 -9.93 -8.32 -8.55 5.72 5.55 9.68 100 99
20 -8.15 -6.63 -6.69 5.84 5.98 | 10.55 100 99
25 -6.67 | -5.58 -5.60 5.30 5.28 9.74 100 100
30 -5.86 -5.03 -4.99 4.78 5.07 8.88 100 100
35 -5.52 -4.63 -4.76 5.16 4.98 8.26 100 99
40 -5.39 -4.34 -4.33 4.82 5.00 8.56 100 100
45 -4.98 -4.25 -4.34 4.46 4.47 7.23 100 99
50 -5.07 | -4.07 -4.09 4.36 4.48 8.79 100 100
55 -4.76 -3.92 -3.89 4.44 4.49 7.68 100 98
60 -4.72 -3.85 -3.87 4.14 4.41 8.29 100 100
65 -4.54 | -3.77 -3.83 4.48 4.72 8.42 100 98
70 -4.51 -3.74 -3.79 4.45 4.44 8.22 100 98

Table 6: Model SNL, statistics for upper bound and lower bound estimates

iterations; sample size n = 500, r = 30, £ = 500, 100 replications each.
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