
ar
X

iv
:1

20
6.

32
09

v1
 [

m
at

h.
O

C
]

 1
4

Ju
n

20
12

Performance of first-order methods for smooth convex

minimization: a novel approach

Yoel Drori and Marc Teboulle∗

June 15, 2012

Abstract

We introduce a novel approach for analyzing the performance of first-order black-

box optimization methods. We focus on smooth unconstrained convex minimization

over the Euclidean space Rd. Our approach relies on the observation that by definition,

the worst case behavior of a black-box optimization method is by itself an optimization

problem, which we call the Performance Estimation Problem (PEP). We formulate and

analyze the PEP for two classes of first-order algorithms. We first apply this approach

on the classical gradient method and derive a new and tight analytical bound on its

performance. We then consider a broader class of first-order black-box methods, which

among others, include the so-called heavy-ball method and the fast gradient schemes.

We show that for this broader class, it is possible to derive new numerical bounds on

the performance of these methods by solving an adequately relaxed convex semidefinite

PEP. Finally, we show an efficient procedure for finding optimal step sizes which results

in a first-order black-box method that achieves best performance.

Keywords: Performance of First-Order Algorithms, Rate of Convergence, Complex-

ity, Smooth Convex Minimization, Duality, Semidefinite Relaxations, Fast Gradient

Schemes, Heavy Ball method.

1 Introduction

First-order convex optimization methods have recently gained in popularity both in theoret-

ical optimization and in many scientific applications, such as signal and image processing,

communications, machine learning, and many more. These problems are very large scale,

and first-order methods, which in general involve very cheap and simple computational itera-

tions, are often the best option to tackle such problems in a reasonable time, when moderate

accuracy solutions are sufficient. For convex optimization problems, there exists an exten-

sive literature on the development and analysis of first-order methods, and in recent years,

∗School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv 69978, Israel

(dyoel@post.tau.ac.il, teboulle@math.tau.ac.il)

1

http://arxiv.org/abs/1206.3209v1

this has been revitalized at a quick pace due to the emergence of many fundamental new

applications alluded above, see e.g., the recent collections [15, 18] and references therein.

This work is not on the development of new algorithms, rather it focuses on the theoretical

performance analysis of first order methods for unconstrained minimization with an objective

function which is known to belong to a given family F of smooth convex functions over the

Euclidean space Rd, the function itself is not known.

Following the seminal work of Nemirovski and Yudin [12] in the complexity analysis

of convex optimization methods, we measure the computational cost based on the oracle

model of optimization. According to this model, a first-order black-box optimization method

is an algorithm which has knowledge of the underlying space Rd and the family F , the

function itself is not known. To gain information on the function to be minimized, the

algorithm queries a first order oracle, that is, a subroutine which given as input a point in

Rd, returns the value of the objective function and its gradient at that point. The algorithm

thus generates a finite sequence of points {xi ∈ Rd : i = 0, . . . , N}, where at each step the

algorithm can depend only on the previous steps, their function values and gradients via

some rule

x0 ∈ R
d, xi+1 = A(x0, . . . , xi; f(x0), . . . , f(xi); f

′(x0), . . . , f
′(xi)), i = 0, . . . , N − 1,

where f ′(·) stands for the gradient of f(·). Note that the algorithm has another implicit

knowledge, i.e., that the distance from its initial point x0 to a minimizer x∗ ∈ X∗(f) of f is

bounded by some constant R > 0, see more precise definitions in the next section.

Given a desired accuracy ε > 0, applying the given algorithm on the function f in the

class F , the algorithm stops when it produces an approximate solution xε which is ε-optimal,

that is such that

f(xǫ)− f(x∗) ≤ ǫ.

The performance (or complexity) of a first order black-box optimization algorithm is then

measured by the number of oracle calls the algorithm needs to find such an approximate

solution. Equivalently, we can measure the performance of an algorithm by looking at the

absolute inaccuracy

δ(f, xN) = f(xN)− f(x∗),

where xN is the result of the algorithm after making N calls to the oracle. Throughout this

paper we will use the latter form to measure the performance of a given algorithm.

Building on this model, in this work we introduce a novel approach for analyzing the

performance of a given first order scheme. Our approach relies on the observation that by

definition, the worst case behavior of a first-order black-box optimization algorithm is by

itself an optimization problem which consists of finding the maximal absolute inaccuracy

over all possible inputs to the algorithm. Thus, with xN being the output of the algorithm

after making N calls to the oracle, we look at the solution of the following Performance

2

Estimation Problem (PEP):

max f(xN)− f(x∗)

s.t. f ∈ F ,
xi+1 = A(x0, . . . , xi; f(x0), . . . , f(xi); f

′(x0), . . . , f
′(xi)), i = 0, . . . , N − 1,

x∗ ∈ X∗(f), ‖x∗ − x0‖ ≤ R

x0, . . . , xN , x∗ ∈ R
d.

(P)

At first glance this problem seems very hard or impossible to solve. We overcome this

difficulty through an analysis that relies on various types of relaxations, including duality

and semi-definite relaxation techniques. The problem and setting, and an outline of the

underlying idea of the proposed approach for analyzing (P) are described in Section 2. In

order to develop the basic idea and tools underlying our proposed approach, we first focus on

the fundamental gradient method (GM) for smooth convex minimization, and then extend

it to a broader class of first order black box minimization methods. Obviously, the gradient

method is a particular case of this broader class that will be analyzed below. However,

it is quite important to start with the gradient method for two reasons. First, it allows

to acquaint the reader in a more transparent way with the techniques and methodolgy we

need to develop in order to analyze (PEP), thus paving the way to tackle more general

schemes. Secondly, for the gradient method, we are able to prove a new and tight bound on

its performance which is given analytically, see Section 3. Capitalizing on the methodology

and tools developed in the past section, in Section 4, we consider a broader class of first-

order black-box methods, which among others, is shown to include the so-called heavy-ball

[16] and fast gradient schemes [14]. Although an analytical solution is not available for this

general case, we show that for this broader class of methods, it is always possible to compute

numerical bounds for an adequate relaxation of the corresponding PEP, allowing to derive

new bounds on the performance of these methods. We then derive in Section 5 an efficient

procedure for finding optimal step sizes which results in a first-order method that achieves

best performance. Our approach and analysis give rise to some interesting problems leading

us to suggest some conjectures. Finally, an appendix includes the proof of a technical result.

Notation. For a differentiable function f , its gradient at x is denoted by f ′(x). The

Euclidean norm of a vector x ∈ Rd is denoted as ‖x‖. The set of symmetric matrices in

Rn×n is denoted by Sn. For two symmetric matrices A and B, A � B, (A ≻ B) means

A − B � 0 (A − B ≻ 0) is positive semidefinite (positive definite). We use ei for the i-th

canonical basis vector in RN , which consists of all zero components, except for its i-th entry

which is equal to one, and use ν to denote a unit vector in Rd. For an optimization problem

(P), val(P) stands for its optimal value.

3

2 The Problem and the Main Approach

2.1 The Problem and Basic Assumptions

Let A be a first-order algorithm for solving the optimization problem

(M) min{f(x) : x ∈ R
d}.

Throughout the paper we make the following assumptions:

• f : Rd → R is a convex function of the type C1,1
L (Rd), i.e., continuously differentiable

with Lipschitz continuous gradient:

‖f ′(x)− f ′(y)‖ ≤ L‖x− y‖, ∀x, y ∈ R
d,

where L > 0 is the Lipschitz constant.

• We assume that (M) is solvable, i.e., the optimal set X∗(f) := argmin f is nonempty,

and for x∗ ∈ X∗(f) we set f ∗ := f(x∗).

• There exists R > 0, such that the distance from x0 to an optimal solution x∗ ∈ X∗(f)

is bounded by R.1

Given a convex function f in the class C1,1
L (Rd) and any starting point x0 ∈ Rd, the

algorithm A is a first-order black box scheme, i.e., it is allowed to access f only through the

sequential calls to the first order oracle that returns the value and the gradient of f at any

input point x. The algorithm A then generates a sequence of points xi ∈ Rd, i = 0, . . . , N .

2.2 Basic Idea and Main Approach

We are interested in measuring the worst-case behavior of a given algorithm A in terms of

the absolute inaccuracy f(xN)− f(x∗), by solving problem (P) defined in the introduction,

namely

max f(xN)− f(x∗)

s.t. f ∈ C1,1
L (Rd), f is convex,

xi+1 = A(x0, . . . , xi; f(x0), . . . , f(xi); f
′(x0), . . . , f

′(xi)), i = 0, . . . , N − 1,

x∗ ∈ X∗(f), ‖x∗ − x0‖ ≤ R,

x0, . . . , xN , x∗ ∈ R
d.

(P)

To tackle this problem, we suggest to perform a series of relaxations thereby reaching a

tractable optimization problem.

A main difficulty in problem (P) lies in the functional constraint (f is a convex function

in C1,1
L (Rd)), i.e., we are facing an abstract hard optimization problem in infinite dimension.

1In general, the terms L and R are unknown or difficult to compute, in which case some upper bound

estimates can be used in place. Note that all currently known complexity results for first order methods

depend on L and R.

4

To overcome this difficulty, the approach taken in this paper is to relax this constraint so

that the problem can be reduced and formulated as an explicit finite dimensional problem

that can eventually be adequately analyzed.

An un-formal description of the underlying idea consists of two main steps as follows:

• Given an algorithm A that generates a finite sequence of points, to build a problem in

finite dimension we replace the functional constraint f ∈ C1,1
L in (P) by new variables in

Rd. These variables, are the points {x0, x1, . . . xN , x∗} themselves, the function values

and their gradients at these points. Roughly speaking, this can be seen as a sort of

discretization of f at a selected set of points.

• To define constraints that relate the new variables, we use relevant/useful properties

characterizing the family of convex functions in C1,1
L , as well as the rule(s) describing

the given algorithm A.
This approach can, in principle, be applied to any optimization algorithm. Note that

any relaxation performed on the maximization problem (P) may increase its optimal value,

however, the optimal value of the relaxed problem still remains a valid upper bound on

f(xN)− f ∗.

A formal description on how this approach can be applied to the gradient method is

described in the next section, which as we shall see, allows us to derive a new tight bound

on the performance of the gradient method.

3 An Analytical Bound for the Gradient Method

To develop the basic idea and tools underlying the proposed approach for analyzing the

performance of iterative optimization algorithms, in this section we focus on the simplest

fundamental method for smooth convex minimization, the Gradient Method (GM). It will

also pave the way to tackle more general first-order schemes as developed in the forthcoming

sections.

3.1 A Performance Estimation Problem for the Gradient Method

Consider the gradient algorithm with constant step size, as applied to problem (M), which

generates a sequence of points as follows:

Algorithm GM

0. Input: f ∈ C1,1
L (Rd) convex, x0 ∈ Rd.

1. For i = 0, . . . , N − 1, compute xi+1 = xi − h
L
f ′(xi).

Here h > 0 is fixed. At this point, we recall that for h = 1, the convergence rate of the

GM algorithm can be shown to be (see for example [14, 4]):

f(xN)− f ∗ ≤ L‖x0 − x∗‖2
2N

, ∀x∗ ∈ X∗(f). (3.1)

5

To begin our analysis, we first recall a fundamental well-known property for the class of

convex C1,1
L functions, see e.g., [14, Theorem 2.1.5].

Proposition 3.1. Let f : Rd → R be convex and C1,1
L . Then,

1

2L
‖f ′(x)− f ′(y)‖2 ≤ f(x)− f(y)− 〈f ′(y), x− y〉, for all x, y ∈ R

d. (3.2)

Let x0 ∈ Rd be any starting point, let {x1, . . . , xN} be the points generated by Algorithm

(GM) and let x∗ be a minimizer of f . Applying (3.2) on the points {x0, . . . , xN , x∗}, we get:

1

2L
‖f ′(xi)− f ′(xj)‖2 ≤ f(xi)− f(xj)− 〈f ′(xj), xi − xj〉, i, j = 0, . . . , N, ∗. (3.3)

Now define

δi :=
1

L‖x∗ − x0‖2
(f(xi)− f(x∗)), i = 0, . . . , N, ∗

gi :=
1

L‖x∗ − x0‖
f ′(xi), i = 0, . . . , N, ∗

and note that we always have δ∗ = 0 and g∗ = 0.

In terms of δi, gi, condition (3.3) becomes

1

2
‖gi − gj‖2 ≤ δi − δj −

〈gj, xi − xj〉
‖x∗ − x0‖

, i, j = 0, . . . , N, ∗, (3.4)

and the recurrence defining (GM) reads:

xi+1 = xi − h‖x∗ − x0‖gi, i = 0, . . . , N − 1.

Problem (P) can now be relaxed by discarding the underlying function f ∈ C1,1
L in

(P). That is, the constraint in the function space f ∈ C1,1
L with f convex, is replaced by

the inequalities (3.4) characterizing this family of functions and expressed in terms of the

variables x0, . . . , xN , x∗ ∈ Rd, g0, . . . , gN ∈ Rd and δ0, . . . , δN ∈ R generated by (GM). Thus,

an upper bound on the worst case behavior of f(xN) − f(x∗) = L‖x∗ − x0‖2δN can be

obtained by solving the following relaxed PEP:

max
x0,...,xN ,x∗∈R

d,

g0,...,gN∈Rd,
δ0,...,δN∈R

L‖x∗ − x0‖2δN

s.t. xi+1 = xi − h‖x∗ − x0‖gi, i = 0, . . . , N − 1,

1

2
‖gi − gj‖2 ≤ δi − δj −

〈gj, xi − xj〉
‖x∗ − x0‖

, i, j = 0, . . . , N, ∗,

‖x∗ − x0‖ ≤ R.

6

Simplifying the PEP The obtained problem remains nontrivial to tackle. We will now

perform some simplifications on this problem that will be useful for the forthcoming analysis.

First, we observe that the problem is invariant under the transformation g′i ← Qgi,

x′
i ← Qxi for any orthogonal transformation Q. We can therefore assume without loss of

generality that x∗ − x0 = ‖x∗ − x0‖ν, where ν is any given unit vector in Rd. Therefore, for

i = ∗ the inequality constraints reads

1

2
‖g∗ − gj‖2 ≤ δ∗ − δj −

〈gj, ‖x∗ − x0‖ν + x0 − xj〉
‖x∗ − x0‖

, j = 0, . . . , N.

Secondly, we consider (3.4) for the four cases i = ∗, j = ∗, i < j and j < i, and use the

equality constraints

xi+1 = xi − h‖x∗ − x0‖gi, i = 0, . . . , N − 1

to eliminate the variables x1, . . . , xN . After some algebra, we reach the following form for

the PEP:

max
x0,x∗,gi∈Rd,δi∈R

L‖x∗ − x0‖2δN

s.t.
1

2
‖gi − gj‖2 ≤ δi − δj − 〈gj,

j
∑

t=i+1

hgt−1〉, i < j = 0, . . . , N,

1

2
‖gi − gj‖2 ≤ δi − δj + 〈gj,

i
∑

t=j+1

hgt−1〉, j < i = 0, . . . , N,

1

2
‖gi‖2 ≤ δi, i = 0, . . . , N,

1

2
‖gi‖2 ≤ −δi − 〈gi, ν +

i
∑

t=1

hgt−1〉, i = 0, . . . , N,

‖x∗ − x0‖ ≤ R,

where i < j = 0, . . . , N is a shorthand notation for i = 0, . . . , N − 1, j = i+ 1, . . . , N .

Finally, we note that the optimal solution for this problem is attained when ‖x∗−x0‖ = R,

and hence we can also eliminate the variables x0 and x∗. This produces the following PEP

for the gradient method, a nonconvex quadratic minimization problem:

max
gi∈Rd,δi∈R

LR2δN

s.t.
1

2
‖gi − gj‖2 ≤ δi − δj − 〈gj,

j
∑

t=i+1

hgt−1〉, i < j = 0, . . . , N,

1

2
‖gi − gj‖2 ≤ δi − δj + 〈gj,

i
∑

t=j+1

hgt−1〉, j < i = 0, . . . , N,

1

2
‖gi‖2 ≤ δi, i = 0, . . . , N,

1

2
‖gi‖2 ≤ −δi − 〈gi, ν +

i
∑

t=1

hgt−1〉, i = 0, . . . , N.

7

This problem can be written in a more compact and useful form. Let G denote the

(N + 1)× d matrix whose rows are gT0 , . . . g
T
N , and for notational convenience let ui ∈ RN+1

denote the canonical unit vector

ui = ei+1, i = 0, . . . , N.

Then for any i, j, we have

gi = GTui, tr(G
Tuiu

T
j G) = 〈gi, gj〉, and 〈GTui, ν〉 = 〈gi, ν〉.

Therefore, by defining the following (N + 1)× (N + 1) symmetric matrices

Ai,j =
1

2
(ui − uj)(ui − uj)

T +
1

2

j
∑

t=i+1

h(uju
T
t−1 + ut−1u

T
j),

Bi,j =
1

2
(ui − uj)(ui − uj)

T − 1

2

i
∑

t=j+1

h(uju
T
t−1 + ut−1u

T
j),

Ci =
1

2
uiu

T
i ,

Di =
1

2
uiu

T
i +

1

2

i
∑

t=1

h(uiu
T
t−1 + ut−1u

T
i),

(3.5)

we can express our nonconvex quadratic minimization problem in terms of δ := (δ0, . . . , δN) ∈
RN+1 and the new matrix variable G ∈ R(N+1)×d as follows

max
G∈R(N+1)×d,δ∈RN+1

LR2δN

s.t. tr(GTAi,jG) ≤ δi − δj , i < j = 0, . . . , N,

tr(GTBi,jG) ≤ δi − δj , j < i = 0, . . . , N,

tr(GTCiG) ≤ δi, i = 0, . . . , N,

tr(GTDiG+ νuT
i G) ≤ −δi, i = 0, . . . , N.

(G)

Problem (G) is a nonhomogeneous Quadratic Matrix Program, a class of problems recently

introduced and studied by Beck [3].

3.2 A Tight Performance Estimate for the Gradient Method

We now proceed to establish the two main results of this section. First, we derive an upper

bound on the performance of the gradient method, this is accomplished via using duality

arguments. Then, we show that this bound can actually be attained by applying the gradient

method on a specific convex function in the class C1,1
L .

In order to simplify the following analysis, we will remove some constraints from (G) and

consider the bound produced by the following relaxed problem:

max
G∈R(N+1)×d,δ∈RN+1

LR2δN

s.t. tr(GTAi−1,iG) ≤ δi−1 − δi, i = 1, . . . , N,

tr(GTDiG+ νuT
i G) ≤ −δi, i = 0, . . . , N.

(G′)

8

As we shall show below, it turns out that this additional relaxation has no damaging effects

and produces the desired performance bound when 0 < h ≤ 1.

We are interested in deriving a dual problem for (G′) which is as simple as possible,

especially with respect to its dimension. As noted earlier, problem (G′) is a nonhomogeneous

quadratic matrix program, and a dual problem for (G′) could be directly obtained by applying

the results developed by Beck [3]. However, the resulting obtained dual will involve an

additional matrix variable Φ ∈ Sd, where d can be very large. Instead, here by exploiting the

special structure of the second set of nonhomogeneous inequalities given in (G′), we derive

an alternative dual problem, but with only one additional variable t ∈ R.

To establish our dual result, the next lemma shows that a dimension reduction is possible

when minimizing a quadratic matrix function sharing the special form as the one that appears

in problem (G′).

Lemma 3.1. Let f(X) = tr(XTQX + 2baTX) be a quadratic function, where X ∈ R
n×m,

Q ∈ Sn, a ∈ Rn and 0 6= b ∈ Rm. Then

inf
X∈Rn×m

f(X) = inf
ξ∈Rn

f(ξbT).

Proof. First, we recall (this can be easily verified) that inf{f(X) : X ∈ Rn×m} > −∞ if and

only if Q � 0, and there exists at least one solution X̄ such that

QX̄ + abT = 0 ⇔ X̄TQ+ baT = 0, (3.6)

i.e., the above is just ∇f(X) = 0 and characterizes the minimizers of the convex function

f(X). Using (3.6) it follows that infX f(X) = f(X̄) = tr(baT X̄). Now, for any ξ ∈ Rn, we

have f(ξbT) = ‖b‖2(ξTQξ + 2aT ξ). Thus, likewise, inf{f(ξbT) : ξ ∈ Rn} > −∞ if and only

if Q � 0 and there exists ξ̄ ∈ R
n such that

Qξ̄ + a = 0, (3.7)

and using (3.7) it follows infξ f(ξb
T) = f(ξ̄bT) = ‖b‖2aT ξ̄ = tr(baT ξ̄bT). Now, using (3.6)-

(3.7), one obtains X̄TQ = −baT and Q(X̄ − ξ̄bT) = 0, and hence it follows that

f(X̄)− f(ξ̄) = tr(baT (X̄ − ξ̄bT))

= tr(−X̄TQ(X̄ − ξ̄bT) = 0.

Equipped with Lemma 3.1, we now derive a Lagrangian dual for problem (G′).

Lemma 3.2. Consider problem (G′) for any fixed h ∈ R and L,R > 0. A Lagrangian dual

of (G′) is given by the following convex program:

min
λ∈RN ,t∈R

{1
2
LR2t : λ ∈ Λ, S(λ, t) � 0}, (DG′)

9

where Λ := {λ ∈ R
N : λi+1−λi ≥ 0, i = 1, . . . , N−1, 1−λN ≥ 0, λi ≥ 0, i = 1, . . . , N},

the matrix S(·, ·) ∈ SN+2 is given by

S(λ, t) =

(

(1− h)S0 + hS1 q

qT t

)

,

with q = (λ1, λ2 − λ1, . . . , λN − λN−1, 1 − λN)
T and where the matrices S0, S1 ∈ SN+1 are

defined by:

S0 =





















2λ1 −λ1

−λ1 2λ2 −λ2

−λ2 2λ3 −λ3

.

.

.

.

.

.

.

.

.

−λN−1 2λN −λN

−λN 1





















(3.8)

and

S1 =

















2λ1 λ2 − λ1 . . . λN − λN−1 1− λN

λ2 − λ1 2λ2 λN − λN−1 1− λN

.

.

.

.

.

.

.

.

.

λN − λN−1 λN − λN−1 2λN 1− λN

1− λN 1− λN . . . 1− λN 1

















. (3.9)

Proof. For convenience, we recast (G′) as a minimization problem, and we also omit the

fixed term LR2 from the objective. That is, we consider the equivalent problem (G′′) defined

by

min
G∈R(N+1)×d,δ∈RN+1

− δN

s.t. tr(GTAi−1,iG) ≤ δi−1 − δi, i = 1, . . . , N,

tr(GTDiG+ νuT
i G) ≤ −δi, i = 0, . . . , N.

(G′′)

Attaching the dual multipliers λ = (λ1, . . . , λN) ∈ R
N
+ and τ := (τ0, . . . , τN)

T ∈ R
N+1
+ to

the first and second set of inequalities respectively, and using the notation δ = (δ0, . . . , δN),

we get that the Lagrangian of this problem is given as a sum of two separable functions in

the variables (δ, G):

L(G, δ, λ, τ) = −δN +

N
∑

i=1

λi(δi − δi−1) +

N
∑

i=0

τiδi

+

N
∑

i=1

λi tr(G
TAi−1,iG) +

N
∑

i=0

τi
(

tr(GTDiG+ νuT
i G)

)

≡ L1(δ, λ, τ) + L2(G, λ, τ).

The dual objective function is then defined by

H(λ, τ) = min
G,δ

L(G, δ, λ τ) = min
δ

L1(δ, λ, τ) + min
G

L2(G, λ, τ),

10

and the dual problem of (G′′) is then given by

max{H(λ, τ) : λ ∈ R
N
+ , τ ∈ R

N+1
+ }. (DG′′)

Since L1(·, λ, τ) is linear in δ, we have minδ L1(δ, λ, τ) = 0 whenever

− λ1 + τ0 = 0,

λi − λi+1 + τi = 0 (i = 1, . . . , N − 1), (3.10)

−1 + λN + τN = 0,

and −∞ otherwise. Invoking Lemma 3.1, we get

min
G∈R(N+1)×d

L2(G, λ, τ) = min
w∈RN+1

L2(wν
T , λ, τ).

Therefore for any (λ, τ) satisfying (3.10), we have obtained that the dual objective reduces

to

H(λ, τ) = min
w∈RN+1

{wT

(

N
∑

i=1

λiAi−1,i +

N
∑

i=0

τiDi

)

w + τTw}

= max
t∈R
{−1

2
t : wT

(

N
∑

i=1

λiAi−1,i +
N
∑

i=0

τiDi

)

w + τTw ≤ −1
2
t, ∀w ∈ R

N+1}

= max
t∈R

{

−1
2
t :

(

∑N

i=1 λiAi−1,i +
∑N

i=0 τiDi
1
2
τ

1
2
τT 1

2
t

)

� 0

}

.

where the last equality follows from the well known lemma [6, Page 163]2.
Now, recalling the definition of the matrices Ai−1,i, Di (see (3.5)), we obtain

N
∑

i=1

λiAi−1,i =
1

2





















λ1 (h− 1)λ1

(h− 1)λ1 λ1 + λ2 (h− 1)λ2

(h− 1)λ2 λ2 + λ3 (h− 1)λ3

. . .
. . .

. . .

(h− 1)λN−1 λN−1 + λN (h− 1)λN

(h− 1)λN λN





















and

N
∑

i=0

τiDi =
1

2

















τ0 hτ1 . . . hτN−1 hτN

hτ1 τ1 hτN−1 hτN
...

. . .
...

hτN−1 hτN−1 τN−1 hτN

hτN hτN . . . hτN τN

















.

Finally, using the relations (3.10) to eliminate τi, and recalling that val(G′′) was defined as

−LR2 val(G′), the desired form of the stated dual problem follows.

2Let M be a symmetric matrix. Then, xTMx+2bTx+ c ≥ 0, ∀x ∈ Rd if and only if the matrix

(

M b

bT c

)

is positive semidefinite.

11

The next lemma will be crucial in invoking duality in the forthcoming theorem. The

proof for this lemma is quite technical and appears in the appendix.

Lemma 3.3. Let

λi =
i

2N + 1− i
, i = 1, . . . , N,

then the matrices S0, S1 ∈ SN+1 defined in (3.8)–(3.9) are positive definite for every N ∈ N.

We are now ready to establish a new upper bound on the complexity of the gradient

method for values of h between 0 and 1. To the best of our knowledge, the tightest bound

thus far is given by (3.1).

Theorem 3.1. Let f ∈ C1,1
L (Rd) and let x0, . . . , xN ∈ Rd be generated by Algorithm GM

with 0 < h ≤ 1. Then

f(xN)− f(x∗) ≤
LR2

4Nh + 2
. (3.11)

Proof. First note that both (G) and (G′) are clearly feasible and val(G) ≤ val (G′). Invoking

Lemma 3.2, by weak duality for the pair of primal-dual problems (G′) and (DG′), we thus

obtain that val (G′) ≤ val (DG′) and hence:

f(xN)− f ∗ ≤ val(G) ≤ val (G′) ≤ val (DG′). (3.12)

Now consider the following point (λ, t) for the dual problem (DG′):

λi =
i

2N + 1− i
, i = 1, . . . , N,

t =
1

2Nh+ 1
.

Assuming that this point is (DG′)-feasible, it follows from (3.12) that

f(xN)− f ∗ ≤ val (DG′) ≤ LR2

4Nh + 2
,

which proves the desired result. Thus, it remains to show that the above given choice (λ, t)

is feasible for (DG′). First, it is easy to see that all the linear constraints of (DG′) on the

variables λi, i = 1, . . . , N described through the set Λ hold true. Now we prove that the

matrix S ≡ S(λ, t) is positive semidefinite. From Lemma 3.3, with h ∈ [0, 1], we get that

(1 − h)S0 + hS1 is positive definite, as a convex combination of positive definite matrices.

Next, we argue that the determinant of S is zero. Indeed, take u := (1, . . . , 1,−(2Nh+1))T ,

then from the definition of S and the choice of λi and t it follows by elementary algebra that

Su = 0. To complete the argument, we note that the determinant of S can also be found

via the identity (see, e.g., [7, Section A.5.5]):

det(S) = (t− qT ((1− h)S0 + hS1)
−1q) det((1− h)S0 + hS1).

Since we have just shown that (1 − h)S0 + hS1 ≻ 0, then det((1 − h)S0 + hS1) > 0 and we

get from the above identity that the value of t− qT ((1− h)S0 + hS1)
−1q, which is the Schur

complement of the matrix S, is equal to 0. By a well known lemma on the Schur complement

[6, Lemma 4.2.1], we conclude that S is positive semidefinite.

12

The next theorem gives a lower bound on the complexity of Algorithm GM for all values

of h. In particular, it shows that the bound (3.11) is tight and that it can be attained by a

specific convex function in C1,1
L .

Theorem 3.2. Let L > 0, N ∈ N and d ∈ N. Then for every h > 0 there exists a convex

function ϕ ∈ C1,1
L (Rd) and a point x0 ∈ Rd such that after N iterations, Algorithm GM

reaches an approximate solution xN with following absolute inaccuracy

ϕ(xN)− ϕ∗ =
LR2

2
max

(

1

2Nh+ 1
, (1− h)2N

)

.

Proof. We will describe two functions that attain the two parts of the max expression in

the above claimed statement. For the sake of simplicity we will assume that L = 1 and

R = ‖x∗ − x0‖ = 1. Generalizing this proof to general values of L and R can be done by an

appropriate scaling.

To show the first part of the max expression, consider the function

ϕ1(x) =

{

1
2Nh+1

‖x‖ − 1
2(2Nh+1)2

‖x‖ ≥ 1
2Nh+1

1
2
‖x‖2 ‖x‖ < 1

2Nh+1

.

Note that this function is nothing else but the Moreau proximal envelope of the function
1

2Nh+1
‖x‖, [11]. It is well known that this function is convex, continuously differentiable with

Lipschitz constant L = 1, and that its minimal value ϕ(x∗) = 0, see e.g., [11, 17]. Applying

the gradient method on ϕ1(x) with x0 = ν where, as before, ν is a unit vector in Rd, we

obtain that for i = 0, . . . , N :

ϕ′
1(xi) =

1

2Nh + 1
ν; xi =

(

1− ih

2Nh + 1

)

ν,

and ϕ1(xi) =
1

2Nh + 1

(

1− hi

2Nh + 1

)

− 1

2(2Nh+ 1)2

=
1

4Nh + 2

(

4Nh+ 1− 2hi

2Nh+ 1

)

.

Therefore,

ϕ1(xN)− ϕ1(x∗) = ϕ1(xN) =
1

4Nh + 2
.

To show the second part of the max expression, we apply the gradient method on

ϕ2(x) =
1

2
‖x‖2

with x0 = ν. We then get that for i = 0, . . . , N :

ϕ′
2(xi) = xi; xi = (1− h)iν; ϕ2(xi) =

1

2
(1− h)2i,

and hence

ϕ2(xN)− ϕ2(x∗) = ϕ2(xN) =
1

2
(1− h)2N

and the desired claim is proven.

13

Numerical experiments we have performed on problem (G) suggest that the lower com-

plexity bound given by Theorem 3.2 is in fact the exact complexity bound on the gradient

method with 0 < h < 2.

Conjecture 3.1. Suppose the sequence x0, . . . , xN is generated by the gradient method GM

with 0 < h < 2, then

f(xN)− f(x∗) ≤
LR2

2
max

(

1

2Nh + 1
, (1− h)2N

)

.

We now turn our attention to the problem of choosing the step size, h. Assuming the

above conjecture holds true, the optimal step size (i.e., the step size that produces the best

complexity bound) for the gradient method with constant step size is given by the unique

positive solution to the equation

1

2Nh + 1
= (1− h)2N .

The solution of this equation approaches 2 as N grows. Therefore, assuming the conjecture

holds true and N is large enough, the complexity of the gradient method with the optimal

step size approaches LR2

8N+2
. This represents a significant improvement, by the factor of 4,

upon the best known bound on the gradient method (3.1), and also supports the observation

that the gradient method often performs better in practice than in theory.

4 A Class of First-Order Methods: Numerical Bounds

The framework developed in the previous sections will now serve as a basis to extend the

performance analysis for a broader class of first-order methods for minimizing a smooth

convex function over Rd. First, we define a general class of first-order algorithms (FO)

and we show that it encompasses some interesting first-order methods. Then, following our

approach, we define the corresponding PEP associated with the class of algorithms (FO).

Although for this more general case, an analytical solution is not available for determining

the bound, we establish that given a fixed number of steps N , a numerical bound on the

performance of (FO) can be efficiently computed. We then illustrate how this result can be

applied for deriving new complexity bounds on two first-order methods, which belong to the

class (FO).

4.1 A General First-Order Algorithm: Definition and Examples

As before, our family F is the class of convex functions in C1,1
L (Rd), and {d,N, L,R} are

fixed. Consider the following class of first-order methods:

Algorithm FO

0. Input: f ∈ C1,1
L (Rd), x0 ∈ Rd.

1. For i = 0, . . . , N − 1, compute xi+1 = xi − 1
L

∑i

k=0 h
(i+1)
k f ′(xk).

14

Here, h
(i)
k ∈ R play the role of step-sizes, which we assume to be fixed and determined

by the algorithm.

The interest in the analysis of first-order algorithms of this type is motivated by the

fact that it covers some fundamental first-order schemes beyond the gradient method. In

particular, to motivate (FO), let us consider the following two algorithms which are of

particular interest, and as we shall see below can be seen as special cases of (FO).

We start with the so-called Heavy Ball Method (HBM). For earlier work on this method

see Polyak [16], and for some interesting modern developments and applications, we refer

the reader to Attouch et al. [2, 1] and references therein.

Example 4.1. The Heavy Ball Method (HBM)

Algorithm HBM

0. Input: f ∈ C1,1
L (Rd), x0 ∈ Rd,

1. x1 ← x0 − α
L
f ′(x0)

2. For i = 1, . . . , N − 1 compute: xi+1 = xi − α
L
f ′(xi) + β(xi − xi−1)

Here the step sizes α and β are chosen such that 0 ≤ β < 1 and 0 < α < 2(1 + β), see

[16].

By recursively eliminating the term xi − xi−1 in step 2 of HBM, we can rewrite this step

as

xi+1 = xi −
1

L

i
∑

k=0

αβi−kf ′(xk), i = 1, . . . , N − 1.

Therefore, the heavy ball method is a special case of Algorithm FO with the choice

h
(i+1)
k = αβi−k, k = 0, . . . , i, i = 0, . . . N − 1.

The next algorithm is Nesterov’s celebrated Fast Gradient Method [13].

Example 4.2. The fast gradient method (FGM)

Algorithm FGM

0. Input: f ∈ C1,1
L (Rd), x0 ∈ Rd,

1. y1 ← x0, t1 ← 1,

2. For i = 1, . . . , N compute:

(a) xi ← yi − 1
L
f ′(yi),

(b) ti+1 ←
1+
√

1+4t2
i

2
,

(c) yi+1 ← xi +
ti−1
ti+1

(xi − xi−1).

15

A major breakthrough was achieved by Nesterov in [13], where he proved that the FGM,

which requires almost no increase in computational effort when compared to the basic gra-

dient scheme, achieves the improved rate of convergence O(1/N2) for function values. More

precisely, one has3

f(xN)− f ∗ ≤ 2L‖x0 − x∗‖2
(N + 1)2

, ∀x∗ ∈ X∗(f). (4.1)

The order of complexity of Nesterov’s algorithm is also optimal, as it is possible to show that

there exists a convex function f ∈ C1,1
L (Rd) such that when d ≥ 2N + 1, and under some

other mild assumptions, any first-order algorithm that generates a point xN by performing

N calls to a first-order oracle of f satisfies [14, Theorem 2.1.7]

f(xN)− f ∗ ≥ 3L‖x0 − x∗‖2
32(N + 1)2

, ∀x∗ ∈ X∗(f).

This fundamental algorithm discovered about 30 years ago by Nesterov [13] has been recently

revived and is currently subject of intensive research activities. For some of its extensions

and many applications, see e.g., the recent survey paper Beck-Teboulle [5] and references

therein.

At first glance, Algorithm FGM seems different than the scheme FO defined above.

Here two sequences are defined: the main sequence x0, . . . , xN and an auxiliary sequence

y1, . . . , yN . Observing that the gradient of the function is only evaluated on the auxiliary

sequence of points {yi}, we show in the next proposition that FGM fits in the scheme FO

through the following algorithm:

Algorithm FGM′

0. Input: f ∈ C1,1
L (Rd), x0 ∈ R

d,

1. y1 ← x0,

2. For i = 1, . . . , N − 1 compute:

(a) yi+1 ← yi − 1
L

∑i

k=1 h
(i+1)
k f ′(yk),

3. xN ← yN − 1
L
f ′(yN),

with

h
(i+1)
k =















ti−1
ti+1

h
(i)
k k + 2 ≤ i,

ti−1
ti+1

(h
(i)
i−1 − 1) k = i− 1,

1 + ti−1
ti+1

k = i

(i = 1, . . . , N − 1, k = 1, . . . , i). (4.2)

and

ti =







1 i = 1
1+
√

1+4t2i−1

2
i > 1.

3The bound given here, which improves the original bound derived in [13], was recently obtained in

Beck-Teboulle [4].

16

Proposition 4.1. The points y1, . . . , yN , xN generated by Algorithm FGM′ are identical to

the respective points generated by Algorithm FGM.

Proof. We will show by induction that the sequence yi generated by Algorithm FGM′ is

identical to the sequence yi generated by Algorithm FGM, and that the value of xN generated

by Algorithm FGM′ is equal to the value of xN generated by Algorithm FGM.

First note that the sequence ti is defined by the two algorithms in the same way. Now let

{xi, yi} be the sequences generated by FGM and denote by {y′i}, x′
N the sequence generated

by FGM′. Obviously, y′1 = y1 and since t1 = 1 we get using the relations 4.2:

y′2 = y′1 −
1

L
h
(2)
1 f ′(y′1) = y1 −

1

L

(

1 +
t1 − 1

t2

)

f ′(y1) = y1 −
1

L
f ′(y1) = x1 = y2.

Assuming y′i = yi for i = 1, . . . , n, we then have

y′n+1 = y′n −
1

L
h(n+1)
n f ′(y′n)−

1

L
h
(n+1)
n−1 f ′(y′n−1)−

1

L

n−2
∑

k=1

h
(n+1)
k f ′(y′k)

= yn −
1

L
(1 +

tn − 1

tn+1

)f ′(yn)−
1

L

tn − 1

tn+1

(h
(n)
n−1 − 1)f ′(yn−1)−

1

L

n−2
∑

k=1

tn − 1

tn+1

h
(n)
k f ′(y′k)

= yn −
1

L
f ′(yn) +

tn − 1

tn+1

(

− 1

L
f ′(yn) +

1

L
f ′(yn−1)−

1

L

n−1
∑

k=1

h
(n)
k f ′(y′k)

)

= xn +
tn − 1

tn+1

(

− 1

L
f ′(yn) +

1

L
f ′(yn−1) + y′n − y′n−1

)

= xn +
tn − 1

tn+1
(xn − xn−1)

= yn+1.

Finally,

x′
N = y′N −

1

L
f ′(y′N) = yN −

1

L
f ′(yN) = xN .

4.2 A Numerical Bound for FO

To build the performance estimation problem for Algorithm FO, from which a complexity

bound can be derived, we follow the approach used to derive problem (G) for the gradient

method. The only difference being that here, of course, the relation between the variables xi

is derived from the main iteration of Algorithm FO. After some algebra, the resulting PEP

for the class of algorithms (FO) reads

max
G∈R(N+1)×d,δi∈R

LR2δN

s.t. tr(GT Ãi,jG) ≤ δi − δj, i < j = 0, . . . , N,

tr(GT B̃i,jG) ≤ δi − δj, j < i = 0, . . . , N,

tr(GT C̃iG) ≤ δi, i = 0, . . . , N,

tr(GT D̃iG+ νuT
i G) ≤ −δi, i = 0, . . . , N,

(Q)

17

where Ãi,j, B̃i,j, C̃i and D̃i are defined, similarly to (3.5), by

Ãi,j =
1

2
(ui − uj)(ui − uj)

T +
1

2

j
∑

t=i+1

t−1
∑

k=0

h
(t)
k (uju

T
k + uku

T
j),

B̃i,j =
1

2
(ui − uj)(ui − uj)

T − 1

2

i
∑

t=j+1

t−1
∑

k=0

h
(t)
k (uju

T
k + uku

T
j),

C̃i =
1

2
uiu

T
i ,

D̃i =
1

2
uiu

T
i +

1

2

i
∑

t=1

t−1
∑

k=0

h
(t)
k (uiu

T
k + uku

T
i)

(4.3)

and we recall that ν ∈ Rd is a given unit vector, ui = ei+1 ∈ RN+1 and the notation

i < j = 0, . . . , N is a shorthand notation for i = 0, . . . , N − 1, j = i+ 1, . . . , N .

In view of the difficulties in the analysis required to find the solution of (G), an analytical

solution to this more general case seems unlikely. However, as we now proceed to show, we

can derive a numerical bound on this problem that can be efficiently computed.

Following the analysis of the gradient method, (cf.(G′) in §3.2) we consider the following
simpler relaxed problem:

max
G∈R(N+1)×d,δi∈R

LR2δN

s.t. tr(GT Ãi−1,iG) ≤ δi−1 − δi, i = 1, . . . , N,

tr(GT D̃iG+ νuT
i G) ≤ −δi, i = 0, . . . , N.

(Q′)

With the same proof as given in Lemma 3.2 for problem (Q′), we obtain that a dual

problem for (Q′) is given by the following convex semidefinite optimization problem:

min
λ,τ,t

1

2
t

s.t.

(

∑N

i=1 λiÃi−1,i +
∑N

i=0 τiD̃i
1
2
τ

1
2
τT 1

2
t

)

� 0,

(λ, τ) ∈ Λ̃,

(DQ′)

where

Λ̃ = {(λ, τ) ∈ R
N
+×RN+1

+ : τ0 = λ1, λi−λi+1+τi = 0, i = 1, . . . , N−1, λN+τN = 1}. (4.4)

Note that the data matrices of both primal-dual problems (Q′) and (DQ′) depend on

the step-sizes h
(i)
k . To avoid a trivial bound for problem (Q′), here we need the following

assumption on the dual problem (DQ′):

Assumption 1 Problem (DQ′) is solvable, i.e., the minimum is finite and attained for

the given step-sizes h
(i)
k .

Actually, the attainment requirement can be avoided if we can exhibit a feasible point

(λ, τ, t) for the problem (DQ′). As noted earlier, given the difficulties already encountered for

18

the simpler gradient method, finding explicitly such a point for the general class of algorithms

(FO) is unlikely. However, the structure of problem (DQ′) will be very helpful in the analysis

of the next section which further addresses the role of the step-sizes.

The promised numerical bound now easily follows showing that a complexity bound for

(FO) is determined by the optimal value of the dual problem (DQ′) which can be computed

efficiently by any numerical algorithm for SDP (see e.g., [6, 10, 19]).

Proposition 4.2. Fix any N, d ∈ N. Let f ∈ C1,1
L (Rd) be convex and suppose that x0, . . . , xN ∈

R
d are generated by Algorithm FO, and that assumption 1 holds. Then,

f(xN)− f ∗ ≤ LR2 val (DQ′).

Proof. Follows from weak duality for the pair of primal-dual problems (Q′)-(DQ′)

4.3 Numerical Illustrations

We apply Proposition 4.2 to find bounds on the complexity of the heavy ball method (HBM)

with4 α = 1 and β = 1
2
and on the fast gradient method (FGM) with h

(i)
k as given in (4.2),

which as shown earlier, can both be viewed as particular realizations of (FO).

The resulting SDP programs were solved for different values of N using CVX [9, 8]. These

results, together with the classical bound on the convergence rate of the main sequence of

the fast gradient method (4.1), are summarized in Figures 1 and 2.

0 5 10 15
10

−3

10
−2

10
−1

10
0

N

P
er

fo
rm

an
ce

 e
st

im
at

e
(lo

g
sc

al
e)

Heavy ball method, α=1 β=0.5
FGM − main sequence
FGM − auxiliary sequence
Known bound on FGM (4.1)

Figure 1: The new bounds on the heavy ball and fast gradient methods.

Note that as far as the authors are aware, there is no known convergence rate result for

the HBM on the class of convex functions in C1,1
L . As can be seen from the above results, the

numerical bound for HBM behaves slightly better than the gradient method (compare with

4According to our simulations, this choice for the values of α, β produce results that are typical of the

behavior of the algorithm.

19

N Heavy Ball FGM, main FGM, auxiliary Known bound on FGM (4.1)

1 LR2/6.00 LR2/6.00 LR2/2.00 LR2/2.0=2LR2/(1+1)2

2 LR2/7.99 LR2/10.00 LR2/6.00 LR2/4.5=2LR2/(2+1)2

3 LR2/9.00 LR2/15.13 LR2/11.13 LR2/8.0=2LR2/(3+1)2

4 LR2/12.35 LR2/21.35 LR2/17.35 LR2/12.5=2LR2/(4+1)2

5 LR2/16.41 LR2/28.66 LR2/24.66 LR2/18.0=2LR2/(5+1)2

10 LR2/39.63 LR2/81.07 LR2/77.07 LR2/60.5=2LR2/(10+1)2

20 LR2/89.45 LR2/263.65 LR2/259.65 LR2/220.5=2LR2/(20+1)2

40 LR2/188.99 LR2/934.89 LR2/930.89 LR2/840.5=2LR2/(40+1)2

80 LR2/387.91 LR2/3490.22 LR2/3486.22 LR2/3280.5=2LR2/(80+1)2

160 LR2/785.68 LR2/13427.43 LR2/13423.43 LR2/12960.5=2LR2/(160+1)2

500 LR2/2476.11 LR2/127224.44 LR2/127220.32 LR2/125500.5=2LR2/(500+1)2

1000 LR2/4962.01 LR2/504796.99 LR2/504798.28 LR2/501000.5=2LR2/(1000+1)2

Figure 2: The new bounds for HBM and FGM versus the classical bound on Nesterov’s

algorithm.

the explicit bound given in Theorem 3.1), but remains much slower than the fast gradient

scheme (FGM).

Considering the results on the FGM, note that the numerical bounds for the main se-

quence of point xi and the corresponding values at the auxiliary sequence yi of the fast

gradient method are very similar and perform slightly better than predicted by the classical

bound (4.1). To the best of our knowledge, the complexity of the auxiliary sequence is yet

unknown, thus these results encourage us to raise the following conjecture.

Conjecture 4.1. Let x0, x1, . . . and y1, y2, . . . be the main and auxiliary sequences defined

by FGM (respectively), then {f(xi)} and {f(yi)} converge to the optimal value of the problem

with the same rate of convergence.

5 A Best Performing Algorithm: Optimal Step Sizes

for The Algorithm Class FO

We now consider the problem of finding the “best” performing algorithm of the form FO

with respect to the new bounds. Namely, we consider the problem of minimizing val (Q′), the

optimal value of (Q′), with respect to the step sizes h := (h
(i)
k)0≤k<i≤N defining the algorithm

FO, and which are now considered as unknown variables in FO.
We denote by Ãi,j(h) and D̃i(h), the matrices given in (4.3), which are functions of the

algorithm step sizes h. The resulting bound derived in Proposition 4.2 is thus a function of
h, and the problem of minimizing val (DQ′) with respect to the step sizes h thus consists of
solving the following bilinear problem:

min
h,λ,τ,t

{

1

2
t :

(

∑N
i=1 λiÃi−1,i(h) +

∑N
i=0 τiD̃i(h)

1
2τ

1
2τ

T 1
2t

)

� 0, (λ, τ) ∈ Λ̃

}

, (BIL)

20

with Λ̃ defined as in (4.4).

Note that the feasibility of (BIL) follows from the proof of Theorem 3.2, where an explicit

feasible point is given to (DG′), which is a special instance of (BIL) when the steps (h
(i)
k)

are chosen as in the gradient method.

From the definition of the matrices Ãi,j(h) and D̃i(h), we get

N
∑

i=1

λiÃi−1,i(h) +

N
∑

i=0

τiD̃i(h) =
1

2

N
∑

i=1

λi(ui−1 − ui)(ui−1 − ui)
T +

1

2

N
∑

i=0

τiuiu
T
i

+
1

2

N
∑

i=1

i−1
∑

k=0

(

λih
(i)
k + τi

i
∑

t=k+1

h
(t)
k

)

(uiu
T
k + uku

T
i).

Introducing the new variables:

ri,k = λih
(i)
k + τi

i
∑

t=k+1

h
(t)
k , i = 1, . . . , N, k = 0, . . . , i− 1 (5.1)

and denoting r = (ri,k)0≤k<i≤N , we obtain the following linear SDP relaxation of (BIL):

min
r,λ,τ,t

{

1

2
t :

(

S(r, λ, τ) 1
2
τ

1
2
τT 1

2
t

)

� 0, (λ, τ) ∈ Λ̃

}

, (LIN)

where

S(r, λ, τ) =
1

2

N
∑

i=1

λi(ui−1 − ui)(ui−1 − ui)
T +

1

2

N
∑

i=0

τiuiu
T
i +

1

2

N
∑

i=1

i−1
∑

k=0

ri,k(uiu
T
k + uku

T
i).

This convex SDP can now be efficiently solved by numerical methods. As the following

theorem shows, its solution can be used to construct a solution for (BIL) with optimal step

sizes h.

Theorem 5.1. Suppose (r∗, λ∗, τ ∗, t∗) is an optimal solution for (LIN), then (h, λ∗, τ ∗, t∗) is

an optimal solution for (BIL), where h = (h
(i)
k)0≤k<i≤N is defined by the following recursive

rule

h
(i)
k =







τ∗i
∑i−1

t=k+1 h
(t)
k

−r∗
i,k

λ∗

i

λ∗
i 6= 0

0 λ∗
i = 0

, i = 1, . . . , N, k = 0, . . . , i− 1. (5.2)

Proof. As (LIN) is a relaxation of (BIL), it is enough to show that (BIL) can achieve the

same objective value. Let (r∗, λ∗, τ ∗, t∗) be an optimal solution for (LIN). If λ∗
i 6= 0 for all

1 ≤ i ≤ N , then (5.2) satisfies all the equations in (5.1) and therefore (h, λ∗, τ ∗, t∗) is feasible

for (BIL).

Suppose λ∗
m = 0 for some 1 ≤ m ≤ N and that m is the maximal index with this

property. Then by the equality and non-negativity constraints in (LIN), we get that λ∗
1 =

λ∗
2 = · · · = λ∗

m = 0 and τ ∗0 = τ ∗1 = · · · = τ ∗m−1 = 0. Let S := S(r, λ∗, τ ∗), then by the positive

semidefinite constraint in (LIN), we have S � 0. From the linear equalities connecting λ

and τ it follows that

Si,i =

{

1
2
(λ∗

1 + τ ∗0) = λ∗
1, i = 1

1
2
(λ∗

i + λ∗
i−1 + τ ∗i−1) = λ∗

i , i = 2, . . . , N
,

21

and we get that S1,1 = · · · = Sm,m = 0. By the properties of positive semidefinite matrices

we now get that r∗i,k = 0 for i = 1, . . . , m and k = 0, . . . , i − 1, hence the set of equations

(5.1) with the chosen values of h
(i)
k is consistent.

The optimal value of (LIN) for various values of N is summarized in Figure 3. The

resulting new algorithm with the computed optimal step sizes h
(i)
k is illustrated for N = 5

and given in Figure 4. As can be seen from these results, (compare with Figure 2) the

performance of the new algorithm is almost exactly two times better than the performance

of the fast gradient method.

N val(LIN)

1 LR2/8.00

2 LR2/16.16

3 LR2/26.53

4 LR2/39.09

5 LR2/53.80

10 LR2/159.07

20 LR2/525.09

40 LR2/1869.22

80 LR2/6983.13

160 LR2/26864.04

500 LR2/254482.61

1000 LR2/1009628.17

Figure 3: The value of the optimal value of (LIN) for various values of N .

x1 ← x0 +
1.6180

L
f ′(x0)

x2 ← x1 +
0.1741

L
f ′(x0) +

2.0194
L

f ′(x1)

x3 ← x2 +
0.0756

L
f ′(x0) +

0.4425
L

f ′(x1) +
2.2317

L
f ′(x2)

x4 ← x3 +
0.0401

L
f ′(x0) +

0.2350
L

f ′(x1) +
0.6541

L
f ′(x2) +

2.3656
L

f ′(x3)

x5 ← x4 +
0.0178

L
f ′(x0) +

0.1040
L

f ′(x1) +
0.2894

L
f ′(x2) +

0.6043
L

f ′(x3) +
2.0778

L
f ′(x4)

Figure 4: A first-order algorithm with optimal step-sizes for N = 5.

6 Acknowledgements

This work was initiated during our participation to the “Modern Trends in Optimization

and Its Application” program at IPAM, (UCLA), September-December 2010. We would

like to thank IPAM for their support and for the very pleasant and stimulating environment

provided to us during our stay. We would also like to thank Simi Haber, Ido Ben-Eliezer

and Rani Hod for their help in the proof of Lemma 3.3.

22

A Proof of Lemma 3.3

We now establish the positive definiteness of the matrices S0 and S1 given in (3.8) and (3.9),

respectively.

A.1 S0 ≻ 0

We begin by showing that S0 is positive definite. Recall that

S0 =





















2λ1 −λ1

−λ1 2λ2 −λ2

−λ2 2λ3 −λ3

. . .
. . .

. . .

−λN−1 2λN −λN

−λN 1





















for

λi =
i

2N + 1− i
, i = 1, . . . , N.

Let us look at xTS0x for any x = (x0, . . . , xN)
T :

xTS0x =

N−1
∑

i=0

2λi+1x
2
i − 2

N−1
∑

i=0

λi+1xixi+1 + x2
N

=

N−1
∑

i=0

λi+1(xi+1 − xi)
2 + λ1x

2
0 +

N−1
∑

i=1

(λi+1 − λi)x
2
i + (1− λN)x

2
N

which is always positive for x 6= 0. We conclude that S0 is positive definite.

A.2 S1 ≻ 0

We will show that S1 is positive definite using Sylvester’s criterion5.

Recall that

S1 =















2λ1 λ2 − λ1 . . . λN − λN−1 1− λN

λ2 − λ1 2λ2 λN − λN−1 1− λN

...
. . .

...

λN − λN−1 λN − λN−1 2λN 1− λN

1− λN 1− λN . . . 1− λN 1















for

λi =
i

2N + 1− i
, i = 1, . . . , N.

5Despite the interesting structure of the matrix S1, this proof is quite involved. A simpler proof would

be most welcome!

23

A recursive expression for the determinants We begin by deriving a recursion rule

for the determinant of matrices of the following form:

Mk =





















d0 a1 a2 . . . ak−1 ak
a1 d1 a2 ak−1 ak
a2 a2 d2 ak−1 ak
...

. . .
...

ak−1 ak−1 ak−1 dk−1 ak
ak ak ak . . . ak dk





















.

To find the determinant of Mk, subtract the one before last row multiplied by ak
ak−1

from

the last row: the last row becomes

(0, . . . , 0, ak −
ak
ak−1

dk−1, dk −
ak
ak−1

ak).

Expanding the determinant along the last row we get

detMk = (dk −
ak
ak−1

ak) detMk−1 − (ak −
ak
ak−1

dk−1) det(Mk)k,k−1

where (Mk)k,k−1 denotes the k, k − 1 minor:

(Mk)k,k−1 =





















d0 a1 a2 . . . ak−2 ak
a1 d1 a2 ak−2 ak
a2 a2 d2 ak−2 ak
...

. . .

ak−2 ak−2 ak−2 dk−2 ak
ak−1 ak−1 ak−1 ak−1 ak





















.

If we multiply the last column of (Mk)k,k−1 by ak−1

ak
we get a matrix that is different from

Mk−1 by only the corner element. Thus by basic determinant properties we get that

ak−1

ak
det(Mk)k,k−1 = detMk−1 + (ak−1 − dk−1) detMk−2.

Combining these two results, we have found the following recursion rule for detMk, k ≥ 2:

detMk = (dk −
ak
ak−1

ak) detMk−1

− (ak −
ak
ak−1

dk−1)

(

ak
ak−1

detMk−1 + (ak −
ak
ak−1

dk−1) detMk−2

)

=

(

(dk −
ak
ak−1

ak)− (ak −
ak
ak−1

dk−1)
ak
ak−1

)

detMk−1 −
(

ak −
ak
ak−1

dk−1

)2

detMk−2

or

detMk =

(

dk −
2a2k
ak−1

+
a2kdk−1

a2k−1

)

detMk−1 − a2k

(

1− dk−1

ak−1

)2

detMk−2. (A.1)

Obviously, the recursion base cases are given by

detM0 = d0,

detM1 = d0d1 − a21.

24

Closed form expressions for the determinants Going back to our matrix, S1, by

choosing

di = 2
i+ 1

2N − i
, i = 0, . . . , N − 1

dN = 1

ai =
i+ 1

2N − i
− i

2N + 1− i
, i = 1, . . . , N − 1

aN = 1− N

N + 1
=

1

N + 1
,

we get that Mk is the k + 1’th leading principal minor of the matrix S1. The recursion

rule (A.1) can now be solved for this choice of ai and di. The solution is given by:

detMk =
(2N + 1)2

(2N − k)2

(

1 +

k
∑

i=0

2N − 2k − 1

2N + 4Ni− 2i2 + 1

)

k
∏

i=0

2N + 4Ni− 2i2 + 1

(2N + 1− i)2
, (A.2)

for k = 0, . . . , N − 1, and

detMN = detL1 =
(2N + 1)2

(N + 1)2

N−1
∏

i=0

2N + 4Ni− 2i2 + 1

(2N + 1− i)2
. (A.3)

Verification We now proceed to verify the expressions (A.2) and (A.3) given above. We

will show that these expressions satisfy the recursion rule (A.1) and the base cases of the

problem. We begin by verifying the base cases:

detM0 =
(2N + 1)2

(2N)2

(

1 +
2N − 1

2N + 1

)

1

2N + 1
=

1

N
= d0,

detM1 =
(2N + 1)2

(2N − 1)2

(

1 +
2N − 3

2N + 1
+

2N − 3

6N − 1

)

1

2N + 1

6N − 1

(2N)2

=
28N2 − 20N − 1

4N2(2N − 1)2
=

4

N(2N − 1)
−
(

2

2N − 1
− 1

2N

)2

= d0d1 − a21.

Now suppose 2 ≤ k ≤ N . Denote

αk = dk −
2a2k
ak−1

+
a2kdk−1

a2k−1

=

{

4 (2N+1)k−k2−1
(2N−k)2

, k < N

32N2+2N−1
(2N+1)2

, k = N

βk = a2k

(

1− dk−1

ak−1

)2

=

{

(4kN−2N−2k2+4k−1)2

(2N−k)2(2N−k+1)2
, k < N

(2N2+2N−1)2

(N+1)2(2N+1)2
, k = N

,

25

then the recursion rule (A.1) can be written as

detMk = αk detMk−1 − βk detMk−2.

Further denote

fi =
(2N + 1)2

(2N − i)2
, i = 0, . . . , N − 1,

gi = 2N − 2i− 1, i = 0, . . . , N − 1,

xi =
1

2N + 4Ni− 2i2 + 1
, i = 0, . . . , N − 1,

yi =
2N + 4Ni− 2i2 + 1

(2N + 1− i)2
, i = 0, . . . , N − 1,

then the solution (A.2) becomes

detMk =fk

(

1 + gk

k
∑

i=0

xi

)

k
∏

i=0

yi,

and (A.3) becomes

detMN =
(2N + 1)2

(N + 1)2

N−1
∏

i=0

yi.

Substituting (A.2) in the RHS of (A.1) we get that for k = 2, . . . , N

αk detMk−1 − βk detMk−2

= αkfk−1

(

1 + gk−1

k−1
∑

i=0

xi

)

k−1
∏

i=0

yi − βkfk−2

(

1 + gk−2

k−2
∑

i=0

xi

)

k−2
∏

i=0

yi

=

(

αkfk−1

(

1 + gk−1xk−1 + gk−1

k−2
∑

i=0

xi

)

− βk

yk−1

fk−2 −
βk

yk−1

fk−2gk−2

k−2
∑

i=0

xi

)

k−1
∏

i=0

yi

=

(

αkfk−1(1 + gk−1xk−1)−
βk

yk−1
fk−2 +

(

αkfk−1gk−1 −
βk

yk−1
fk−2gk−2

) k−2
∑

i=0

xi

)

k−1
∏

i=0

yi.

It is straightforward (although somewhat involved) to verify that for k < N

αkfk−1(1 + gk−1xk−1)−
βk

yk−1
fk−2 = fkyk(1 + gkxk−1 + gkxk),

and

αkfk−1gk−1 −
βk

yk−1
fk−2gk−2 = fkgkyk.

26

We therefore get

αk detMk−1 − βk detMk−2

=

(

fkyk(1 + gkxk−1 + gkxk) + fkgkyk

k−2
∑

i=0

xi

)

k−1
∏

i=0

yi

= fk

(

1 + gk

k
∑

i=0

xi

)

k
∏

i=0

yi

= detMk,

and thus (A.2) satisfies (A.1). It is also possible to show that

αNfN−1(1 + gN−1xN−1)−
βN

yN−1
fN−2 =

(2N + 1)2

(N + 1)2
,

αNfN−1gN−1 −
βN

yN−1
fN−2gN−2 = 0,

thus, for k = N

αN detMN−1 − βN detMN−2

=
(2N + 1)2

(N + 1)2

N−1
∏

i=0

yi

= detMN ,

and the expression (A.3) is also verified.

To complete the proof, note that the closed form expressions for detMk consist of sums

and products of positive values, hence detMk is positive, and thus follows from Sylvester’s

criterion that S1 is positive definite.

References

[1] H. Attouch, J. Bolte, and P. Redont. Optimizing properties of an inertial dynami-

cal system with geometric damping. Link with proximal methods. Control Cybernet.,

31(3):643–657, 2002. Well-posedness in optimization and related topics (Warsaw, 2001).

[2] H. Attouch, X. Goudou, and P. Redont. The heavy ball with friction method. I. The

continuous dynamical system: global exploration of the local minima of a real-valued

function by asymptotic analysis of a dissipative dynamical system. Commun. Contemp.

Math., 2(1):1–34, 2000.

[3] A. Beck. Quadratic matrix programming. SIAM J. Optim., 17(4):1224–1238, 2006.

[4] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM J. Img. Sci., 2:183–202, March 2009.

27

[5] A. Beck and M. Teboulle. Gradient-based algorithms with applications to signal-

recovery problems. In Convex optimization in signal processing and communications,

pages 42–88. Cambridge Univ. Press, Cambridge, 2010.

[6] A. Ben-Tal and A. S. Nemirovskii. Lectures on modern convex optimization. Siam, 2001.

[7] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

March 2004.

[8] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In

V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Con-

trol, Lecture Notes in Control and Information Sciences, pages 95–110. Springer-Verlag

Limited, 2008. http://stanford.edu/~boyd/graph_dcp.html.

[9] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,

version 1.21. http://cvxr.com/cvx, April 2011.

[10] C. Helmberg, F. Rendl, R. Vanderbei, and H. Wolkowicz. An interior-point method for

semidefinite programming. SIAM J. Optim., 6:342–361, 1996.

[11] J. J. Moreau. Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France,

93:273–299, 1965.

[12] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in opti-

mization. A Wiley-Interscience Publication. John Wiley & Sons Inc., New York, 1983.

Translated from the Russian and with a preface by E. R. Dawson, Wiley-Interscience

Series in Discrete Mathematics.

[13] Yu. Nesterov. A method of solving a convex programming problem with convergence

rate O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[14] Yu. Nesterov. Introductory lectures on convex optimization: a basic course. Applied

optimization. Kluwer Academic Publishers, 2004.

[15] D. P. Palomar and Y. C. Eldar, editors. Convex Optimization in Signal Processing and

Communications. Cambridge University Press, 2010.

[16] B. T. Polyak. Some methods of speeding up the convergence of iteration methods.

USSR Comp. Math. Math. Phys., 4(5):1–17, 1964.

[17] R. T. Rockafellar and J. B. W. Roger. Variational analysis, volume 317 of Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-

ences]. Springer-Verlag, Berlin, 1998.

[18] S. Sra, S. Nowozin, and S. J. Wright, editors. Optimization for Machine Learning. MIT

Press, Cambridge, MA., 2011.

[19] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Rev., 38(1):49–95,

1996.

28

http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx

	1 Introduction
	2 The Problem and the Main Approach
	2.1 The Problem and Basic Assumptions
	2.2 Basic Idea and Main Approach

	3 An Analytical Bound for the Gradient Method
	3.1 A Performance Estimation Problem for the Gradient Method
	3.2 A Tight Performance Estimate for the Gradient Method

	4 A Class of First-Order Methods: Numerical Bounds
	4.1 A General First-Order Algorithm: Definition and Examples
	4.2 A Numerical Bound for FO
	4.3 Numerical Illustrations

	5 A Best Performing Algorithm: Optimal Step Sizes for The Algorithm Class FO
	6 Acknowledgements
	A Proof of Lemma ??
	A.1 S0 0
	A.2 S1 0

