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Abstract In this paper, we propose a duality theory for semi-in�nite lin-
ear programming problems under uncertainty in the constraint functions,
the objective function, or both, within the framework of robust optimiza-
tion. We present robust duality by establishing strong duality between the
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timistic counterpart of its uncertain Lagrangian dual. We show that robust
duality holds whenever a robust moment cone is closed and convex. We then
show that the closed-convex robust moment cone condition in the case of
constraint-wise uncertainty is in fact necessary and su¢ cient for robust du-
ality in the sense that robust moment cone is closed and convex if and only
if robust duality holds for every linear objective function of the program.
In the case of uncertain problems with a¢ nely parameterized data uncer-
tainty, we establish that robust duality is easily satis�ed under a Slater type
constraint quali�cation. Consequently, we derive robust forms of the Farkas
lemma for systems of uncertain semi-in�nite linear inequalities.
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1 Introduction

Duality theory has played a key role in the study of semi-in�nite program-
ming [13,15,16,22] which traditionally assumes perfect information (that is,
accurate values for the input quantities or system parameters), despite the
reality that such precise knowledge is rarely available in practice for real-
world optimization problems. The data of real-world optimization problems
more often than not are uncertain (that is, they are not known exactly at
the time of the decision) due to estimation errors, prediction errors or lack
of information [3�6].
Robust optimization [2] provides a deterministic framework for study-

ing mathematical programming problems under uncertainty. It is based on
a description of uncertainty via sets, as opposed to probability distributions
which are generally used in stochastic approaches [7,24]. A successful treat-
ment of robust optimization approach for linear programming problems as
well as convex optimization problems under data uncertainty has been given
by Ben-Tal and Nemirovski [3�5], and El Ghaoui [12].
The present work was motivated by the recent development of robust

duality theory [1,21] for convex programming problems in the face of data
uncertainty. To set the context of this work, consider a standard form of
linear semi-in�nite programming (SIP) problem in the absence of data un-
certainty:

(SP ) inf hc; xi
s.t. hat; xi � bt; 8t 2 T;

where T is an arbitrary (possible in�nite) index set, c; at 2 Rn, and bt 2
R; t 2 T . The linear SIP problem in the face of data uncertainty in the
constraints can be captured by the parameterized model problem

(USP ) inf hc; xi
s.t. hat(vt); xi � bt(wt); 8t 2 T;

where at : Vt ! Rn; bt : Wt ! R; Vt � Rq1 ; Wt � Rq2 ; q1; q2 2 N:
The uncertain set-valued mapping U : T � Rq; q = q1 + q2; is de�ned
as Ut := Vt � Wt for all t 2 T: We represent by ut := (vt; wt) 2 Vt �
Wt an arbitrary element of Ut or a variable ranging on Ut: So, gphU =
f(t; ut) : ut 2 Ut; t 2 Tg : Throughout the paper, u 2 U means that u is a
selection of U ; i.e., that u : T ! Rq and ut 2 Ut for all t 2 T (u can be
also represented as (ut)t2T ). In stochastic programming [7,24] each set Ut is
equipped with a probability distribution and each selection of U determines
a scenario for (SP ).
As an illustration of the model, consider the uncertain linear SIP prob-

lem:

inf
(x1;x2)2R2

fx1 : a1tx1 + a2tx2 � bt; t 2 Tg
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where the data a1t ; a
2
t are uncertain, and for each t 2 T := [0; 1], a1t 2

[�1 � 2t;�1 + 2t], a2t 2 [1=(2 + t); 1=(2 � t)] and bt � �1. Then, this
uncertain problem can be captured by our model as

inf x1

s.t. (�1 + 2v1t )x1 +
�

1
2+v2t

�
x2 � �1; 8t 2 T;

where ut = (v1t ; v
2
t ; wt) 2 R3 is the uncertain parameter and ut 2 Ut :=

Vt �Wt with Vt := [�t; t]� [�t; t] and Wt = f0g. In this case, at(v1t ; v2t ) =�
�1 + 2v1t ; 1=(2 + v2t )

�
and bt(wt) � �1.

The robust counterpart of (USP ) [1,3,5] is

(RSP ) inf hc; xi (1)

s.t. hat(vt); xi � bt(wt); 8 (t; ut) 2 gphU :

The problem (RSP) is indeed a linear SIP problem. We assume that (RSP )
is a consistent problem with a closed and convex feasible set

F := fx : hat(vt); xi � bt(wt); 8 (t; ut) 2 gphUg 6= ;:

Now, for each �xed selection u 2 U , the Lagrangian dual of (USP ) is

(DP ) sup
�2R(T )+

(X
t2T

�tbt(wt) : �c+
X
t2T

�tat(vt) = 0

)
;

where R(T )+ denotes the set of mappings � : T ! R+ (also denoted by
(�t)t2T ) such that �t = 0 except for �nitely many indexes, and sup ; = �1
by convention.
The optimistic counterpart [1,21] of the Lagrangian dual of (DP ) is

given by

(ODP ) sup
u=(vt;wt)t2T2U

�2R(T )+

(X
t2T

�tbt(wt) : �c+
X
t2T

�tat(vt) = 0

)
:

By construction,
inf(RSP ) � sup(ODP ):

If inf(RSP ) = �1, then (ODP ) has no feasible solution, i.e.

c =2
[

u=(vt;wt)t2T2U

co conefat(vt); t 2 Tg;

where co conefat(vt); t 2 Tg denotes the convex cone generated by fat(vt); t 2
Tg:We say that robust duality holds whenever inf(RSP ) = max(ODP ), i.e.

inffhc; xi : x 2 Fg = max
u=(vt;wt)t2T2U

�2R(T )+

(X
t2T

�tbt(wt) : �c+
X
t2T

�tat(vt) = 0

)
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whenever inf(RSP ) is �nite.
In this paper, we make the following key contributions: Firstly, we es-

tablish that robust duality holds for (USP) whenever the robust moment
cone,

M :=
[

u=(vt;wt)t2T2U

co conef(at(vt); bt(wt)); t 2 T ; (0n;�1)g;

is closed and convex. We further show that the closed-convex robust moment
cone condition in the case of constraint uncertainty is in fact necessary and
su¢ cient for robust duality in the sense that robust moment cone is closed
and convex if and only if robust duality holds for every linear objective
function of the program.
We also derive strong duality between the robust counterpart (RSP) and

its standard (or Haar) dual problem [15] in terms of a robust characteristic
cone, illustrating the link between the Haar dual and the optimistic dual.
Secondly, for the important case of a¢ nely parametrized data uncer-

tainty [2], we show that the convexity of the robust moment cone always
holds and that it is closed under a robust Slater constraint quali�cation
together with suitable topological requirements on the index set and the
uncertainty set of the problem.
Thirdly, we derive robust forms of Farkas�lemma [10,11,17] for systems

of uncertain semi-in�nite linear inequalities in terms of the robust moment
cone and the robust characteristic cones.
Finally, we extend our results to deal with uncertain linear SIP problems

where data uncertainty occurs at both objective function and at constraints.
The organization of the paper is as follows. Section 2 provides robust

duality theorems under geometric conditions in terms of robust moment
and characteristic cones. Section 3 shows that these cone conditions are
satis�ed if and only if robust duality holds for every linear objective function.
Section 4 presents robust Farkas� lemma for uncertain semi-in�nite linear
inequalities. Section 5 extends the results to deal with uncertain linear SIP
problems where data uncertainty occurs at both objective function and
constraints.

2 Robust Duality

Let us introduce the necessary notation. We denote by k�k and Bn the
Euclidean norm and the open unit ball in Rn: By 0n we represent the null
vector of Rn. For a set C � Rn; we de�ne its convex hull coC and conical
hull coneC as coC = f

Pm
i=1 �ici : �i � 0;

Pm
i=1 �i = 1; ci 2 C;m 2 Ng and

coneC =
S
��0 �C; respectively. The topological closure of C is cl C: Given

h : Rn ! R [ f+1g; such that h 6= +1, the epigraph of h is

epih := f(x; r) 2 Rn+1 : h(x) � rg
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and the conjugate function of h is h� : Rn ! R [ f+1g such that
h�(v) := supfhv; xi � h(x) j x 2 domhg:

The indicator and the support functions of C are denoted respectively by
�C and �

�
C :

Let C � Rn be a convex set and h : C ! R: Identifying h with its
extension to Rn by de�ning h (x) := +1 for any x =2 C; h is called convex
when epih is convex, concave when �h is convex, and a¢ ne when it is both
convex and concave on C:
We de�ne the robust moment cone of (RSP ) as

M =
[

u=(vt;wt)t2T2U

co conef(at(vt); bt(wt)); t 2 T ; (0n;�1)g: (2)

The next academic example shows thatM can be neither convex nor closed.

Example 1 Consider the simple uncertain linear SIP problem

(SP ) inf �x1 � x2
s.t. hat; xi � bt; 8t 2 T;

where T = [0; 1]; a0 is uncertain on the set

V0 = f(cos�; sin�) : � 2 [0; 2�] \Qg
(a dense subset of the circle fx : kxk = 1g) whereas the remaining data are
deterministic: b0 = �1 and (at; bt) = (02;�1) for t 2 ]0; 1] : This uncertain
problem can be modeled as

(USP ) inf �x1 � x2
s.t. hat(vt); xi � bt(wt); 8t 2 T;

with uncertain mapping U such that U0 = V0 � f�1g and Ut = f(0; 0;�1)g
for all t 2 ]0; 1] ; and associated functions a0 (v0) = �v0; at(vt) = vt = 02;
for all t 2 ]0; 1] ; and bt(wt) = wt = �1, for all t 2 [0; 1]: Observe that
there exists a one-to-one correspondence between the selections of U and
the elements of V0 because the unique uncertain constraint is ha0; xi � b0:
So, the robust counterpart and the robust moment cone are

(RSP ) inf �x1 � x2
s.t. �hv0; xi � �1;8v0 2 V0;

h02; xi � �1;8t 2 ]0; 1] ;
and

M =
S
v02V0 co conef(�v0;�1) ; (02;�1)g;

respectively. Thus M is the union of countable many 2-dimensional convex
cones having a common edge on the vertical axis. Obviously, M is neither
convex nor closed. As F = clB; the unique optimal solution is

�p
2=2;

p
2=2
�

and min(RSP ) = �
p
2: Concerning the robust dual problem (ODP ); it is

inconsistent because (1; 1) =2 co conefv0; 02g = R+fv0g whichever v0 2 V0
we consider (cos� 6= sin� for any � 2 [0; 2�]\Q); so thatmax(ODP ) = �1
by convention, i.e., there is an in�nite duality gap.
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Theorem 1 If the robust moment cone M is closed and convex, then

inf(RSP ) = max(ODP ):

Proof. Let � := inf(RSP ) 2 R. It follows that

[hat(vt); xi � bt(wt); 8 (t; ut) 2 gphU ] ) hc; xi � � � 0; (3)

where ut = (vt; wt): De�ne g : Rn ! R by

g(x) = sup
(t;ut)2gphU

f� hat(vt); xi+ bt(wt)g:

As g is supremum of a collection of a¢ ne functions, g is convex, F = fx :
g(x) � 0g; and (3) is equivalent to

g(x) � 0 ) hc; xi � � � 0:

Let f(x) := hc; xi + �F (x). This implies that f(x) � � for all x 2 Rn. So,
we have (see, e.g., [9] and [23])

(0;��) 2 epif� = cl(epi(hc; :i)� + epi��F )
= epi(hc; :i)� + epi��F
=
�
fcg � R+

�
+ epi��F :

Note that �[g�0] = sup��0(�g) and

epi

�
sup
i2I

fi

��
= cl co

 [
i2I
epif�i

!
(4)

(see, e.g., [14, (2.3)]). It follows that

epi��F = epi

�
sup
��0

(�g)

��
= cl co

0@[
��0

epi(�g)�

1A :
As �g = sup(t;ut)2gphUfh��at(vt); xi+�bt(wt)g, we have by applying again
(4)

epi(�g)� = cl co

0@ [
(t;ut)2gphU

[(��at(vt);��bt(wt)) + f0ng � R+]

1A :
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This gives us that

epi��F = cl co

0@[
��0

epi(�g)�

1A
= cl co

0@[
��0

8<:cl co
0@ [
(t;ut)2gphU

[��(at(vt); bt(wt)) + f0ng � R+]

1A9=;
1A

= cl co

0@[
��0

[
(t;ut)2gphU

[��(at(vt); bt(wt)) + f0ng � R+]

1A (5)

= � cl co

0@[
��0

[
(t;ut)2gphU

[�(at(vt); bt(wt)) + f0ng � R�]

1A :
On the other hand, Lemma 5.1 of Appendix shows that

co

0@[
��0

[
(t;ut)2gphU

[�(at(vt); bt(wt)) + f0ng � R�]

1A = coM;

and hence
epi��F = � cl coM: (6)

As M is closed and convex by our assumption, we have epi��F = �M , and
so,

(0;��) 2 (fcg � R+)�M:

This implies that there exists bu = (bvt; bwt)t2T 2 U and b� 2 R(T )+ such that

c =
X
t2T

b�tat(bvt) and � � � �
X
t2T

b�tbt( bwt):
So, we see that � �

P
t2T �tbt(wt) � max(ODP ). Thus the conclusion

follows from the weak duality, and we also conclude that (bu; b�) is optimal
for (ODP ). �
Observe that (ODP ) is more easily manageable than the ordinary (or

Haar) dual problem of (RSP ):

(DRSP ) sup
�2R(gphU)+

P
(t;ut)2gphU �(t;ut)b(t;ut)(w(t;ut))

s.t. �c+
P

(t;ut)2gphU �(t;ut)a(t;ut)(v(t;ut)) = 0:
(7)

Now consider the so-called characteristic cone of (RSP )

K = co conef(at(vt); bt(wt)); (t; ut) 2 gphU ; (0;�1)g: (8)

Then (DRSP ) is equivalent to sup f
 : (c; 
) 2 Kg in the sense that both
problems have the same optimal value and are simultaneously solvable or
not. It is worth observing that K = coM: In fact, coM � K because
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M � K trivially and K is convex. To show the reverse inclusion, take an
arbitrary generator of K di¤erent of (0;�1) 2M; say (as(vs); bs(ws)); with
(s; us) 2 gphU : As

(as(vs); bs(ws)) 2 co conef(at(vt); bt(wt)); t 2 T ; (0;�1)g;

we have (as(vs); bs(ws)) 2M: Thus, K � coM and so K = coM:
From the linear SIP strong duality theorem, inf(RSP ) = max(DRSP )

whenever K is closed (see, e.g., [15, Chapter 8]). If M is closed and convex,
then K = coM =M is closed and so

inf(RSP ) = max(DRSP )
= max f
 : (c; 
) 2 Kg
= max f
 : (c; 
) 2Mg
= max(ODP ):

Thus, we have obtained an alternative proof of Theorem 1 appealing to
linear SIP machinery.
In Example 1, the characteristic cone

K = co conef(�v0;�1) ; v0 2 V0; (0;�1)g
=
n
x 2 R3 : x3 < �

p
x21 + x

2
2

o
[ cone fV0 � f�1gg

is not closed, (DRSP ) is not solvable and

inf(RSP ) = �
p
2 = sup(DRSP ) > sup(ODP ) = �1:

(The equality inf(RSP ) = sup(DRSP ) comes from [15, Theorem 8.1(v)].)

3 Robust Moment Cones: Convexity and Closure

We say that (RSP ) satis�es the convexity condition if for every t 2 T;
at(�) is a¢ ne, i.e., at(vt) = (a1t (vt); : : : ; a

n
t (vt)) and each a

j
t (�) is an a¢ ne

function, j = 1; : : : ; n, and bt(�) is concave.

Proposition 1 Let U be convex-valued. Suppose that (RSP ) satis�es the
convexity condition. Then the robust moment cone M is convex.

Proof. Let a1; a2 2M and � 2 [0; 1]. Let a := �a1+(1��)a2 and denote
a = (z; 
) 2 Rn�R, with a1 = (z1; 
1) 2 Rn�R and a2 = (z2; 
2) 2 Rn�R.
Then, there exist u1 = (v1t ; w

1
t )t2T 2 U ; �1 = (�1t )t2T 2 R

(T )
+ , and �1 � 0

such that
(z1; 
1) =

X
t2T

�1t (at(v
1
t ); bt(w

1
t )) + (0; �1):

Similarly, there exist u2 = (v2t ; w
2
t )t2T 2 U ; �2 = (�2t )t2T 2 R

(T )
+ and �2 � 0

such that
(z2; 
2) =

X
t2T

�2t (at(v
2
t ); bt(w

2
t )) + (0; �2):
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Then, we have

�z1 + (1� �)z2 =
X
t2T

�
��1tat(v

1
t ) + (1� �)�2tat(v2t )

�
and

�
1 + (1� �)
2 =
X
t2T

�
��1t bt(w

1
t ) + (1� �)�2t bt(w2t )

�
+ ��1 + (1� �)�2:

We associate with t 2 T the scalar �t := ��1t + (1� �)�2t and the vector

(vt; wt) :=

(
(v1t ; w

1
t ); if �t = 0;

��1t
�t
(v1t ; w

1
t ) +

(1��)�2t
�t

(v2t ; w
2
t ); if �t > 0:

Then (vt; wt) 2 Ut and

��1t (v
1
t ; w

1
t ) + (1� �)�2t (v2t ; w2t ) = �t(vt; wt):

By our convexity assumption, we see that, for each t 2 T ,

��1tat(v
1
t ) + (1� �)�2tat(v2t ) = �tat(vt); (9)

and
��1t bt(w

1
t ) + (1� �)�2t bt(w2t ) � �tbt(wt): (10)

Then, there will exist � � 0 such that

a = (z; 
) = �(z1; 
1) + (1� �)(z2; 
2)
= (�z1 + (1� �)z2; �
1 + (1� �)
2)

=

 X
t2T

�tat(vt);
X
t2T

�tbt(wt)

!
+ (0n; ��1 + (1� �)�2 + �)

=
X
t2T

�t(at(vt); bt(wt)) + (���1 � (1� �)�2 � �)(0n;�1);

and this implies that a = (z; 
) 2M: �
In particular, the robust moment cone M is convex in the important

a¢ nely data parametrization case [2], i.e.

Ut = f(at; bt) = (a0t ; b0t ) +
qX
j=1

ujt (a
j
t ; b

j
t ) : (u

1
t ; : : : ; u

q
t ) 2 Ztg;

where Zt is closed and convex for each t 2 T . In this case, U is convex-valued
and the convexity condition holds with bt(�) being also a¢ ne.
It is easy to see from Example 1 that M may not be convex when U

is not convex-valued. In fact, in this example, U0 = V0 � f0g is not even
connected.
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The set-valued mapping U : T � Rq; with (T; d) being a metric space,
is said to be (Hausdor¤) upper semicontinuous at t 2 T if for any � > 0
there exists � > 0 such that

Us � Ut + �Bq 8 s 2 T with d(s; t) � �:

In particular, U is uniformly upper semicontinuous on T if for any � > 0
there exists � > 0 such that

Us � Ut + �Bq 8 s; t 2 T with d(s; t) � �:

If, additionally, T is compact, then there exists a �nite set ft1; :::; tmg � T
such that d (t; ft1; :::; tmg) < � for all t 2 T: Then, Us �

S
i=1;:::;m (Uti + �Bq)

8 s 2 T; so that gphU is bounded whenever U is compact-valued, i.e., for
each t 2 T , Ut is a compact set.

We say that (RSP ) satis�es the Slater condition when there exists x0 2
Rn (called Slater point) such that hat(vt); x0i > bt(wt) for all (t; ut) 2 gphU ;
i.e. when there exists a strict solution of the constraint system of (RSP ):

Proposition 2 Suppose that the following three assumptions hold :
(i) T is a compact metric space;
(ii) U is compact-valued and uniformly upper semicontinuous on T ;
(iii) the mapping

gphU 3 (t; ut) 7! (at (vt) ; bt(wt)) 2 Rn+1 (11)

is continuous on gphU ;
(iv) (RSP ) satis�es the Slater condition.
Then, the robust moment cone M is closed.

Remark (before the proof) (ii) and (iii) conjointly imply that at (Vt)
and bt(Wt) are compact. From now on we shall call (iii) continuity condition.
Proof. Let

(zk; rk) 2M =
[
u2U

co conef(at(vt); bt(wt)) [ (0n;�1) : t 2 Tg; k = 1; 2; :::;

such that (zk; rk) ! (z; r). Then, for each k, there exists uk 2 U ; with
ukt = (v

k
t ; w

k
t ) 2 Ut for all t 2 T , such that

(zk; rk) 2 co conef(at(vkt ); bt(wkt )) [ (0n;�1) : t 2 Tg:

From the Carathéodory theorem, we can �nd �ki � 0, i = 1; : : : ; n + 2,
�k � 0, ftk1 ; : : : ; tkn+2g � T and (vki ; wki ) 2 Utki , i = 1; : : : ; n+ 2, such that

(zk; rk) =
n+2X
i=1

�ki (atki (v
k
i ); btki (w

k
i )) + �k(0n;�1): (12)

As T is compact, we may assume that tki ! ti 2 T , i = 1; : : : ; n+ 2.
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Fix i = 1; : : : ; n + 2. Since we are assuming that U is uniformly upper
semicontinuous and so, for any � > 0, there exists � > 0 such that

Ut � Uti + �Bq; for all t such that d(t; ti) � �:

It follows that

d((vki ; w
k
i );Uti)! 0 as k !1:

Since Uti is compact, we may assume the existence of (vi; wi) 2 Uti such
that

(vki ; w
k
i )! (vi; wi) as k !1: (13)

As (RSP ) satis�es (iii)

(atki (v
k
i ); btki (w

k
i ))! (ati(vi); bti(wi)) as k !1:

Now, we show that lk :=
Pn+2

i=1 �
k
i +�

k is bounded. Granting this, by passing
to subsequence if necessary, we may assume that

�ki ! �i 2 R+ and �k ! � 2 R+;

as each �ki and �k are non-negative. Then, passing to the limit in (12) we
have

(z; r) =
n+2X
i=1

�i(ati(vi); bti(wi)) + �(0n;�1) 2M:

Therefore, the robust moment cone M is closed.
To show the boundedness of lk, we proceed by the method of contradic-

tion and assume without loss of generality that lk :=
Pn+2

i=1 �
k
i +�

k ! +1:
By passing to subsequence if necessary, we may assume that �

k
i

lk
! �i 2 R+,

�k

lk
! � 2 R+ and

n+2X
i=1

�i + � = 1: (14)

Dividing by lk both members of (12) and passing to the limit, we obtain
that

(0n; 0) =
n+2X
i=1

�i(ati(vi); bti(wi)) + �(0n;�1):

So, we have
Pn+2

i=1 �iati(vi) = 0n and
Pn+2

i=1 �ibti(wi) = � and so, taking a
Slater point x0; we have

n+2X
i=1

�i(hati(vi); x0i � bti(wi)) = �� � 0:
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On the other hand, since (vi; wi) 2 Uti , assumption (iii) implies that hati(vi); x0i�
bti(wi) > 0 for all i = 1; : : : ; n+ 2. Note that (�1; : : : ; �n+2) 6= 0n+2 (other-
wise, � =

Pn+2
i=1 �iri = 0 and so, (�1; : : : ; �n+2; �) = 0n+3 which contradicts

(14)). This implies that

n+2X
i=1

�i(hati(vi); x0i � bti(wi)) > 0:

This is a contradiction and so, flkg is a bounded sequence. �
Example 1 violates assumptions (ii) and (iii) in Proposition 2 because

U0 is neither compact nor convex, U is not upper semicontinuous at 0;
and the function in (11) is not continuous. In fact, if we consider the se-
quence (tk; utk) = (1=k; (02;�1)) which converges to (0; (02;�1)); we have
(atk (vtk) ; btk(wtk)) = (02;�1) which does not converge to (a0 (v0) ; b0(w0))
as v0 = 02 =2 V0:
As an immediate consequence of the previous results, we obtain the

following su¢ cient condition for robust duality. In the special case when
jT j < +1, this result collapses to the robust strong duality result for linear
programming problems in [1].

Corollary 1 Suppose that the following assumptions hold :
(i) T is a compact metric space;
(ii) U is compact-convex-valued and uniformly upper semicontinuous on

T ;
(iii) (RSP ) satis�es the convexity, the continuity and the Slater condi-

tions.
Then, the robust duality holds, i.e. inf(RSP ) = max(ODP ).

Proof. The conclusion follows from Theorem 1, Proposition 1, and Propo-
sition 2. �
We now present an example verifying Corollary 1.

Example 2 Let T = [0; 1] and consider the following uncertain linear SIP
problem:

inf x

s.t. atx � bt; t 2 T;

where the data at; bt are uncertain, at 2 [�1 � 2t;�1 + 2t] and bt � �1.
This uncertain problem can be captured by our model as

inf x

s.t. at(vt)x � bt(wt); t 2 T;

where (vt; wt) are the uncertain parameter, at(vt) := �1 + 2vt, vt 2 Vt :=
[�t; t] and bt(wt) := �1. Let Ut := Vt�f0g: Then the robust counterpart is

inf x

s.t. at(vt)x � bt(wt); 8 (t; ut) 2 gphU :
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It can be veri�ed that the feasible set is [�1; 1=3] : So, the optimal value
of the robust counterpart is �1. The optimistic counterpart of the dual
problem is

(ODP ) sup
�2R(T )+ ; u2U

f�
X
t2T

�t : �1 +
X
t2T

�t(�1 + 2vt) = 0g:

Let � 2 R(T )+ such that �1 = 1 and �t = 0 for all t 2 Tnf1g. Let u = (v; 0) 2
U such that v1 = 1: Then �1+

P
t2T �t(�1+2vt) = �1+�1(�1+2v1) = 0

and �
P

t2T �t = �1: So, max(ODP ) = �1 and the robust strong dual-
ity holds. In fact, M = co cone f(�3;�1) ; (�1;�1)g is closed and convex.
Finally, one can see that all the conditions in the preceding corollary are
satis�ed.

The following theorem shows that our assumption is indeed a charac-
terization for robust strong duality in the sense that �the convexity and
closedness of the robust moment cone�hold if and only if the robust strong
duality holds for each linear objective function of (RSP ).

Theorem 2 The following statements are equivalent to each other :
(i) For all c 2 Rn,

inffhc; xi : x 2 Fg = max
�2R(T )+ ; u2U

(X
t2T

�tbt(wt) : �c+
X
t2T

�tat(vt) = 0

)
:

(ii) The robust moment cone M is closed and convex.

Proof. [(ii)) (i)] It follows by Theorem 1.
[(i)) (ii)] We proceed by contradiction and let

(c0; r0) 2 (cl coM ) nM:

So, (6) implies that (�c0;�r0) 2 epi��F where F := fx : g(x) � 0g and

g(x) = sup
(t;ut)2gphU

f� hat(vt); xi+ bt(wt)g:

Thus, we have
��F (�c0) � �r0:

So, for every x 2 F ,
hc0; xi � r0:

It follows that

r0 � inffhc0; xi : hat(vt); xi � bt(wt); 8 (t; ut) 2 gphUg:

Thus, the statement (i) gives that

r0 � max
�2R(T )+ ;u2U

(X
t2T

�tbt(wt) : �c0 +
X
t2T

�tat(vt) = 0

)
:
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and so, there exists � 2 R(T )+ and (vt; wt) 2 Ut for all t 2 T; with �c0 +P
t2T �tat(vt) = 0 and such that

r0 �
X
t2T

�tbt(wt):

This shows that

(z0; r0) 2 co conef(at(vt); bt(wt)); t 2 T ; (0;�1)g �Mg;

which constitutes a contradiction. �

4 Robust Semi-in�nite Farkas�Lemma

In this Section, as consequences of robust duality results of previous Sec-
tions, we derive two forms of robust Farkas�lemma for a system of uncertain
semi-in�nite linear inequalities. Related results may be found in [8,18�21].

Corollary 2 (Robust Farkas�Lemma: Characterization I) The fol-
lowing statements are equivalent to each other :
(i) For all c 2 Rn, the following statements are equivalent :

1) [hat(vt); xi � bt(wt); 8 (t; ut) 2 gphU ]) hc; xi � r
2) 9� = (�t)t2T 2 R(T )+ and (vt; wt) 2 Ut; t 2 T;

such that
�
�c+

P
t2T �tat(vt) = 0

and
P

t2T �tbt(wt) � r

(ii) The robust moment cone M is closed and convex.

Proof. The conclusion follows immediately from Theorem 2. �
Next we compare the previous results with similar ones involving the

characteristic cone K de�ned in (8) and the standard dual (DRSP ) intro-
duced in (7) instead of M and (ODP ), respectively.
Recall that, the assumptions in Proposition 1 and 2 guarantee that the

robust moment cone M is convex and closed (and so, the characteristic
cone K is also closed). In the following, we show that the assumptions in
Proposition 2 alone ensure that the characteristic cone K is closed.

Proposition 3 Under the same assumptions as in Proposition 2, the char-
acteristic cone K is closed and inf(RSP ) = max(DRSP )

Proof. We �rst prove that the characteristic cone K of the robust linear
SIP problem is closed. Condition (ii) in Proposition 2 guarantees the closed-
ness of the index set gphU : In fact, let f(tr; vr; wr)g � gphU be a sequence
such that (tr; vr; wr) ! (t; v; w) 2 T � Rq1+q2 : Then (vr; wr) 2 Utr for all
r 2 N; tr ! t; and (vr; wr)! (v; w) : Assume that (t; v; w) =2 gphU ; i.e. that
(v; w) =2 Ut: Since Ut is closed, there exists � > 0 such that (v; w) =2 Ut+�Bq:
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Let � > 0 be such that Us � Ut + �
2Bq for any s 2 T with d(s; t) � �: We

have d(tr; t) � � and d ((vr; wr) ; (v; w)) < �
2 for su¢ ciently large r; so that

(vr; wr) 2 Utr � Ut + �
2Bq and (v; w) 2 Ut + �Bq (contradiction). We have

also seen that condition (ii) implies the boundedness of gphU ; which turns
out to be compact. On the other hand, condition (iii) states that the map-
ping from gphU to Rn+1 such that (t; ut) 7! (at (vt) ; bt(wt)) is continuous
and so, the set

f(at(vt); bt(wt)); (t; ut) 2 gphUg
is compact. As we are assuming that the Slater condition holds, K is closed
by [15, Theorem 5.3 (ii)]. Finally, the closedness of K and [15, (8.5)-(8.6)]
imply inf(RSP ) = max(DRSP ): �
We have seen that, under the assumptions of Proposition 2, the charac-

teristic cone K is closed, and this entails that any Slater point is an interior
point of F ([15, Theorem 5.9 (iv)]). Thus, F is full dimensional.

Proposition 4 The following statements are equivalent to each other :
(i) For all c 2 Rn,

inffhc; xi : x 2 Fg = max
�2R(gphU)+

nP
(t;ut)2gphU �(t;ut)b(t;ut)(w(t;ut)) :

�c+
P

(t;ut)2gphU �(t;ut)a(t;ut)(v(t;ut)) = 0
o
:

(ii) The characteristic cone K is closed.

Proof. It is straightforward consequence of [15, Theorem 8.4]. �
Corollary 3 (Robust Farkas�Lemma: Characterization II) The fol-
lowing statements are equivalent to each other :
(i) For all c 2 Rn, the following statements are equivalent :

1) [hat(vt); xi � bt(wt); 8 (t; ut) 2 gphU ]) hc; xi � r:
20) 9� = (�t)t2T 2 R(gphU)+

such that

8><>:
�c+

P
(t;ut)2gphU

�(t;ut)a(t;ut)(v(t;ut)) = 0;

and
P

(t;ut)2gphU
�(t;ut)b(t;ut)(w(t;ut)) � r:

(ii) The characteristic cone K is closed.

Proof. It is straightforward consequence of Proposition 4. �

5 Uncertainty in all the data

In this section, we consider linear SIP problems where uncertainty occurs
in both objective function and in the constraints. This situation can be
modeled as the parameterized linear SIP problem

(]USP ) infx2Rn hc (vs) ; xi
s.t. hat(vt); xi � bt(wt); 8t 2 T;

(15)
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where the uncertain parameter vs ranges on some set Z � Rq3 and c : Z !
Rn. For convenience, we always assume that s =2 T . The problem (]USP )
can be equivalently rewritten as

inf(x;y)2Rn�R y
s.t. hat(vt); xi � bt(wt); 8t 2 T;

y � hc (vs) ; xi � 0
(16)

So, the robust (or pessimistic) counterpart of (]USP ) can be formulated as

(]RSP ) inf(x;y)2Rn�R y
s.t. hat(vt); xi � bt(wt); 8 (t; ut) 2 gphU ;

y � hc (vs) ; xi � 0;8vs 2 Z;
(17)

whose decision space is R� Rn: In other words, the robust counterpart
(]RSP ) is indeed a linear SIP problem with n+1 decision variables y; x1; :::; xn
and deterministic objective function as follows:

(]RSP ) inf(x;y)2Rn�R h(1; 0n) ; (y; x)i
s.t. heat(vt); (y; x)i � ebt(wt); 8 (t; ut) 2 gph eU ; (18)

where x = (x1; :::; xn) ; eT := T [fsg (as s =2 T ), q := q1+q2+q3; eU : eT � Rq

is the extension of U : T � Rq to eT which results of de�ning eUs := Z�f1g ;
and the functions eat : Vt ! Rn+1 and ebt :Wt ! R are

eat (vt) := � (1;�c (vs)) ; if t = s;(0; at(vt)) ; otherwise,

and ebt(wt) := �0; if t = s;
bt(wt); otherwise.

The constraint system of the optimistic counterpart for (]RSP ), say
(ÔDP ), is X

t2T
�t

�
0

at(vt)

�
+ �

�
1

�c (vs)

�
=

�
1
0

�
;

where vt 2 Vt; t 2 T; vs 2 Z; � 2 R(T )+ ; and � 2 R+: Eliminating � = 1 we
get

(ÔDP ) sup
u2U;vs2Z;�2R(T )+

(X
t2T

�tbt(wt) : �c (vs) +
X
t2T

�tat(vt) = 0

)
:

Finally, the robust moment cone of (]RSP ) isfM =
S
u2eU co conef(eat(vt);ebt(wt)); t 2 eT ; (0;�1)g

=
S

u=(vt;wt)t2T2U
vs2Z

co conef(0; at(vt); bt(wt)); t 2 T ; (1;�c (vs) ; 0) ; (0; 0;�1)g:
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Proposition 5 Suppose that U is convex-valued, that Z is a convex set,
and that all the components of c (�) and of at(�), t 2 T; are a¢ ne whereas
the functions bt(�); t 2 T; are concave. Then the robust moment cone fM is
convex.

Proof. By assumption, eUt = Ut is convex for all t 2 T and eUs = Z � f1g
is a convex too, so that eU is convex-valued. Moreover, (]RSP ) satis�es the
convexity condition. The conclusion follows from Proposition 1. �
It easily follows from Proposition 5 that the robust moment cone fM is

convex in the case where the data (at; bt; c) are a¢ ne.

Proposition 6 Suppose that the following assumptions hold :
(i) T is a compact metric space;
(ii) U is compact-valued and uniformly upper semicontinuous on T , and

Z is compact ;
(iii) c : Z ! Rn is continuous and the mapping from gphU in Rn+1

such that (t; ut) 7! (at (vt) ; bt(wt)) 2 Rn+1 is continuous on gphU ;
(iv) there exists x0 2 Rn such that hat(vt); x0i > bt(wt) for all (t; ut) 2

gphU :
Then, the robust moment cone fM is closed.

Proof. By assumption (i), we can take a scalar � greater than the diam-
eter of T: We extend the distance d to eT by de�ning d (s; t) = d(t; s) = �

for all t 2 T and d (s; s) = 0: Obviously, ( eT ; d) is a compact metric space.
By assumption (ii), eU is compact-valued since U is compact-valued andeUs = Z � f1g. Given � > 0; there exists � > 0 such that Ut0 � Ut + �Bq for

all t0; t 2 T with d(t0; t) � � < �: So, if t0; t 2 eT are such that t0 6= s 6= t; we
have eUt0 � eUt + �Bq: Otherwise, d(t0; t) < � implies that t0 = t = s; so thateUt0 � eUt + �Bq trivially holds. So, eU is uniformly upper semicontinuous oneT :
By (iii), and by the isolation of s in eT ; the mapping

gph eU 3 (t; ut) 7! (eat (vt) ;ebt(wt)) 2 Rn+2
is continuous on gph eU :Moreover, (y0; x0) is a Slater point for (]RSP ) when-
ever y0 > maxvs2Z hc (vs) ; x0i :
The conclusion follows from Proposition 2 applied to (]RSP ) and fM: �

Theorem 3 Suppose that the following assumptions hold :
(i) T is a compact metric space;
(ii) U is compact-convex-valued and uniformly upper semicontinuous on

T; and Z is a compact and convex subset of Rq3 ;
(iii) c : Z ! Rn is continuous and the mapping from gphU in Rn+1

such that (t; ut) 7! (at (vt) ; bt(wt)) 2 Rn+1 is continuous;
(iv) The components of c (�) and of at(�), t 2 T; are a¢ ne whereas the

functions bt(�); t 2 T; are concave;
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(v) There exists x0 2 Rn such that hat(vt); x0i > bt(wt) for all (t; ut) 2
gphU :
Then, the robust duality holds, i.e. inf(]RSP ) = max(ÔDP ):

Proof From Proposition 5 and Proposition 6, we see that the robust moment
cone ~M is closed convex. Thus the conclusion follows from Theorem 1.

Uncertainty in the objective function

In the particular case of uncertainty in the objective and deterministic con-
straints, the parameterized associated problem is

([USP ) inf hc(vs); xi
s.t. hat; xi � bt; 8t 2 T;

where c : Z ! Rn; Z � Rq3 ; and at 2 Rn; bt 2 R for all t 2 T , s =2 T: Its
robust counterpart is the particular case of (]RSP ) in (18) in which

eUt = �Z � f1g ; if t = s;ftg � ftg ; otherwise,

(so that Vt = ftg and Wt = ftg),

eat (vt) := � (1;�c (vs)) ; if t = s;(0; at) ; otherwise,

ebt(wt) := �0; if t = s;bt; otherwise,

the robust moment cone isfM =
S

vs2Z
co conef(0; at; bt); t 2 T ; (1;�c (vs) ; 0) ; (0; 0;�1)g;

and �nally, the optimistic counterpart is

(ÔDP ) sup
vs2Z;�2R(T )+

(X
t2T

�tbt : �c (vs) +
X
t2T

�tat = 0

)
:

As a consequence of Proposition 5 and 6, we obtain robust duality for
([USP ).

Corollary 4 Suppose that the following assumptions hold :
(i) T is a compact metric space and the functions t 7! at and t 7! bt are

continuous on T ;
(ii) Z is compact and convex, and c : Z ! Rn is continuous;
(iii) all the components of c (�) are a¢ ne;
(iv) there exists x0 2 Rn such that hat; x0i > bt for all t 2 T:
Then, the robust duality holds, i.e. inf(]RSP ) = max(ÔDP ):

Proof The conclusion follows from Proposition 4.1, Proposition 4.2 and The-
orem 3.
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6 Appendix

In this Section, we provide a technical lemma which is used in the proof of
Theorem 1. This lemma provides a characterization for the convex hull of
the robust moment cone.

Lemma 1 Let T be an arbitrary index set, at : Vt ! Rn; bt : Wt ! R;
Vt � Rq1 ; Wt � Rq2 , t 2 T and q1; q2 2 N: Let ut = (vt; wt), t 2 T , and let
the robust moment cone M be de�ned as in (2). Then, we have

coM = co

0@[
��0

[
(t;ut)2gphU

�
(�at(vt); �bt(wt)) + f0g � (�1; 0]

�1A :
Proof. [�] Let (z; r) 2

[
��0

[
(t;ut)2gphU

�
(�at(vt); �bt(wt))+f0g�(�1; 0]

�
.

Then, there exists � � 0, s 2 T and (vs; ws) 2 Us such that

(z; r) 2 (�as(vs); �bs(ws)) + f0g � (�1; 0]:

So,
z = �as(vs) and r � �bs(ws):

Letting � = �bs(ws)� r � 0, this implies that

(z; r) =
�
(�as(vs); �bs(ws)) + �(0;�1)

2
[

u=(vt;wt)t2T2U

co conef(at(vt); bt(wt)); t 2 T ; (0;�1)g:

Thus, the de�nition of M gives us that[
��0

[
(t;ut)2gphU

�
(�at(vt); �bt(wt)) + f0g � (�1; 0]

�
�M;

and so,

co

0@[
��0

[
(t;ut)2gphU

�
(�at(vt); �bt(wt)) + f0g � (�1; 0]

�1A � coM:

[�] Let (z; r) 2M . Then, there exists u = (vt; wt)t2T 2 gph U such that

(z; r) 2 co conef(at(vt); bt(wt)); t 2 T ; (0;�1)g:

Note that

conef(at(vt); bt(wt)) [ (0;�1) : t 2 Tg
�
[
��0

[
(t;ut)2gphU

�
(�at(vt); �bt(wt)) + f0g � (�1; 0]

�
:



20 Goberna M.A. et al.

This gives us that

(z; r) 2 co

0@[
��0

[
(t;ut)2gphU

�
(�at(vt); �bt(wt)) + f0g � (�1; 0]

�1A :
Thus, we have

M � co

0@[
��0

[
(t;ut)2gphU

�
(�at(vt); �bt(wt)) + f0g � (�1; 0]

�1A :
and so,

coM � co

0@[
��0

[
(t;ut)2gphU

�
(�at(vt); �bt(wt)) + f0g � (�1; 0]

�1A :
�
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