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Abstract

We study popular local search and greedy algorithms for standard machine schedul-
ing problems. The performance guarantee of these algorithms is well understood, but
the worst-case lower bounds seem somewhat contrived and it is questionable whether
they arise in practical applications. To find out how robust these bounds are, we study
the algorithms in the framework of smoothed analysis, in which instances are subject
to some degree of random noise.

While the lower bounds for all scheduling variants with restricted machines are
rather robust, we find out that the bounds are fragile for unrestricted machines. In
particular, we show that the smoothed performance guarantee of the jump and the
lex-jump algorithm are (in contrast to the worst case) independent of the number
of machines. They are Θ(φ) and Θ(log φ), respectively, where 1/φ is a parameter
measuring the magnitude of the perturbation. The latter immediately implies that
also the smoothed price of anarchy is Θ(log φ) for routing games on parallel links.
Additionally, we show that for unrestricted machines also the greedy list scheduling
algorithm has an approximation guarantee of Θ(log φ).

1 Introduction

The performance guarantee of local search and greedy algorithms for scheduling problems
is well studied and understood. For most algorithms, matching upper and lower bounds
on their approximation ratio are known. The lower bounds are often somewhat contrived,
however, and it is questionable whether they resemble typical instances in practical ap-
plications. For that reason, we study these algorithms in the framework of smoothed
analysis, in which instances are subject to some degree of random noise. By doing so, we
find out for which heuristics and scheduling variants the lower bounds are robust and for
which they are fragile and not very likely to occur in practical applications. Since pure
Nash equilibria can be seen as local optima, our results also imply a new bound on the
smoothed price of anarchy, showing that known worst-case results are too pessimistic in
the presence of noise.

∗A preliminary version of this paper appeared in the proceedings of ESA 2011.
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Let us first describe the scheduling problems that we study. We assume that there is
a set J = {1, . . . , n} of jobs each of which needs to be processed on one of the machines
from the set M = {1, . . . ,m}. All jobs and machines are available for processing at
time 0. The goal is to schedule the jobs on the machines such that the makespan, i.e.,
the time at which the last job is completed, is minimized. Each machine i ∈ M has a
speed si and each job j ∈ J has a processing requirement pj . The time pij it takes to
fully process job j on machine i depends on the machine environment. We consider two
machine environments. The first one is the one of uniform parallel machines, also known
as related machines: pij = pj/si. The second machine environment that we consider is
the one of restricted related machines: a job j is only allowed to be processed on a subset
Mj ⊆ M of the machines. The processing time is therefore pij = pj/si if i ∈ Mj and
pij =∞ if i /∈Mj . An instance I of a scheduling problem consists of the machine speeds
s1, . . . , sm, the processing requirements p1, . . . , pn, and in the restricted case the allowed
machine set Mj ⊆M for every job j.

A special case for both machine environments is when all speeds are equal, i.e., si = 1
for all i ∈ M . In this case, we say that the machines are identical. In the notation
of Graham et al. [13] these problems are denoted by Q||Cmax and Q|Mj |Cmax for the
related machine problems and P ||Cmax and P |Mj |Cmax in case of identical machines. In
these problems, makespan minimization is equivalent to minimizing the maximum machine
finishing time. Once the assignment of the jobs to the machines is known, the order in
which the jobs are processed is of no importance to determine the machine finishing times,
as long as the jobs are processed without any idle time in between. Therefore, we assume
that the jobs that are scheduled on a machine i share this processor in such a way that
they all finish at the same time.

Even in the case that all speeds are equal, the problems under consideration are known
to be strongly NP-hard when m is part of the input (see, e.g., Garey and Johnson [10]).
This has motivated a lot of research in the previous decades on approximation algorithms
for scheduling problems. Since some of the theoretically best approximation algorithms
are rather involved, a lot of research has focused on simple heuristics like greedy algorithms
and local search algorithms which are easy to implement. While greedy algorithms make
reasonable ad hoc decisions to obtain a schedule, local search algorithms start with some
schedule and iteratively improve the current schedule by performing some kind of local
improvements until no such is possible anymore. In this article, we consider the following
algorithms that can be applied to all scheduling variants that we have described above:

• List scheduling is a greedy algorithm that starts from an empty schedule and a list of
jobs. Then, it repeatedly selects the next unscheduled job from the list and assigns it
to the machine on which it will be completed the earliest with respect to the current
partial schedule. We call any schedule that can be generated by list scheduling a list
schedule.

• The jump and the lex-jump algorithms are local search algorithms that start with
an arbitrary schedule and iteratively perform a local improvement step. In each
improvement step, one job is reassigned (jumped) from a machine i to a different
machine i′ where it finishes earlier. In the jump algorithm, only jobs on critical
machines i, i.e., machines that have maximum finishing time, are considered to be
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improving. In the lex-jump algorithm, the jobs can be arbitrary. Note that a local
step is lex-jump improving if and only if the sorted vector of machine finishing times
decreases lexicographically, hence the term lex-jump. A schedule for which there is
no jump improvement step or no lex-jump improvement step is called jump optimal
or lex-jump optimal, respectively.

For each of these three algorithms, we are interested in their performance guarantees, i.e.,
the worst case bound on the ratio of the makespan of a schedule to be returned by the
algorithm over the makespan of an optimal schedule. The final schedule returned by a
local search algorithm is called a local optimum. Usually, there are multiple local optima
for a given scheduling instance both for the jump and the lex-jump algorithm with varying
quality. As we do not know which local optimum is found by the local search, we will
always bound the quality of the worst local optimum. Since local optima for lex-jump
and pure Nash equilibria are the same, see e.g. [26], this corresponds to bounding the
price of anarchy in the scheduling game that is obtained if jobs are selfish agents trying
to minimize their own completion time and if the makespan is considered as the welfare
function. Similarly, list scheduling can produce different schedules depending on the order
in which the jobs are inserted into the list. Also for list scheduling we will bound the
quality of the worst schedule that can be obtained.

Notation. Consider an instance I for the scheduling problem and a schedule σ for this
instance. By Ji(σ) ⊆ J we denote the set of jobs assigned to machine i according to σ.
The processing requirement on a machine i ∈ M is defined as

∑
j∈Ji(σ) pj and the load

of a machine is defined by Li(I, σ) =
∑

j∈Ji(σ) pij . The makespan Cmax(I, σ) of σ can be
written as Cmax(I, σ) = maxi∈M Li(I, σ). The optimal makespan, i.e., the makespan of an
optimal schedule is denoted by C∗max(I). By Jump(I), Lex(I), and List(I) we denote the
set of all feasible jump optimal schedules, lex-jump optimal schedules, and list schedules,
respectively, according to instance I.

If the instance I is clear from the context, we simply write Li(σ) instead of Li(I, σ),
Cmax(σ) instead of Cmax(I, σ), and C∗max instead of C∗max(I). If the schedule σ is clear as
well, we simplify our notation further to Li and Cmax and we write Ji instead of Ji(σ). By
appropriate scaling, we may assume w.l.o.g. that the slowest machine has speed smin = 1
and that all processing requirements are bounded by pj ≤ 1. In Appendix A, the notation
is summarized in a table.

Smoothed analysis. As can be seen in Table 1, the worst-case approximation guarantee
of jump and lex-jump is known for all scheduling variants and it is constant only for the
simplest case with unrestricted and identical machines. In all other cases it increases with
the number m of machines. For list scheduling, the case with unrestricted and related
machines has been considered. Cho and Sahni [6] and Aspnes et al. [2] showed that the
performance guarantee of list scheduling is Θ(logm) in this case.

In order to analyze the robustness of the worst-case bounds, we turn to the framework
of smoothed analysis, introduced by Spielman and Teng [24] to explain why certain al-
gorithms perform well in practice in spite of a poor worst-case running time. Smoothed
analysis is a hybrid of average-case and worst-case analysis: First, an adversary chooses
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an instance. Second, this instance is slightly randomly perturbed. The smoothed per-
formance is the expected performance, where the expectation is taken over the random
perturbation. The adversary, trying to make the algorithm perform as bad as possible,
chooses an instance that maximizes this expected performance. This assumption is made
to model that often the input an algorithm gets is subject to imprecise measurements,
rounding errors, or numerical imprecision. If the smoothed performance guarantee of an
algorithm is small, then bad worst-case instances might exist, but one is very unlikely to
encounter them if instances are subject to some small amount of random noise.

We follow the more general model of smoothed analysis introduced by Beier and
Vöcking [5]. In this model, the adversary is even allowed to specify the probability distri-
bution of the random noise. The influence he can exert is described by a parameter φ ≥ 1
denoting the maximum density of the noise. This model is formally defined as follows.

Definition 1. In a φ-smooth instance I, the adversary chooses the following input data:

• the number m of machines;

• arbitrary machine speeds smax := s1 ≥ . . . ≥ sm =: smin = 1, in the case of non-
identical machines;

• the number n of jobs;

• an arbitrary set Mj ⊆M for each job j ∈ J, in the case of restricted machines;

• for each pj, a probability density fj : [0, 1] → [0, φ] according to which pj is chosen
independently of the processing requirements of the other jobs.

Note that the only perturbed part of the instance are the processing requirements. Formally,
a φ-smooth instance is not a single instance but a distribution over instances. We write
I ∼ I to denote that the instance I is drawn from the φ-smooth instance I.

The parameter φ specifies how close the analysis is to a worst case analysis. The
adversary can, for example, choose for every pj an interval of length 1/φ from which pj
is drawn uniformly at random. For φ = 1, every processing requirement is uniformly
distributed over [0, 1], and hence the input model equals the average case for uniformly
distributed processing times. When φ gets larger, the adversary can specify the processing
requirements more and more precisely, and for φ→∞ the smoothed analysis approaches
a worst-case analysis.

In this article, we analyze the smoothed performance guarantee of the jump, the lex-
jump, and the list scheduling algorithm. As mentioned above, to define the approximation
guarantee of these algorithms on a given instance, we consider the worst local optimum
(for the jump and the lex-jump algorithm) or the worst order in which the jobs are inserted
into the list (for the list scheduling algorithm). Now, the smoothed performance is defined
to be the worst expected approximation guarantee of any φ-smooth instance.

Our results. Our results for the jump and lex-jump algorithm are summarized in Ta-
ble 1. The first remarkable observation is that the smoothed performance guarantees for
all variants of restricted machines are robust against random noise. We show that even
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worst case φ-smooth
jump lex-jump jump lex-jump

unrestricted
identical

Θ(1) [9, 23] Θ(1) [9, 23] Θ(1) Θ(1)

unrestricted
related

Θ (
√
m) [6, 23] Θ

(
logm

log logm

)
[7] Θ(φ) [2.1] Θ(log φ) [2.2, 2.3]

restricted
identical

Θ (
√
m) [21] Θ

(
logm

log logm

)
[3] Θ (

√
m) [3.1] Θ

(
logm

log logm

)
[3.2]

restricted
related

Θ
(√

m · smax

)
[21] Θ

(
log S

log log S

)
[21] Θ

(√
m · smax

)
[3.1] Ω

(
logm

log logm

)
[3.2]

Table 1: Worst-case and smoothed performance guarantees for jump and lex-jump optimal
schedules. Here, S =

∑m
i=1 si, and we assume w.l.og. that smin = 1. With [X.Y] we refer

to the section in this article where the bound is shown.

for large perturbations with constant φ, the worst-case lower bounds carry over. This can
be seen as an indication that neither the jump algorithm nor the lex-jump algorithm yield
a good approximation ratio for scheduling with restricted machines in practice.

The situation is much more promising for the unrestricted variants. Here, the worst-
case bounds are fragile and do not carry over to the smoothed case. The interesting case
is the one of unrestricted and related machines. Even though both for jump and for lex-
jump the worst-case lower bound is not robust, there is a significant difference between
these two: while the smoothed approximation ratio for jump grows linearly with the per-
turbation parameter φ, it grows only logarithmically in φ for lex-jump optimal schedules.
This proves that also in the presence of random noise lex-jump optimal schedules are
significantly better than jump optimal schedules. As mentioned earlier, this also implies
that the smoothed price of anarchy is Θ(log φ). Additionally, we show that the smoothed
approximation ratio of list scheduling is Θ(log φ) as well, even when the order of the list
may be specified after the realizations of the processing times are known. This indicates
that both the lex-jump algorithm and the list scheduling algorithm should yield good
approximations on practical instances.

Related work. The approximability of Q||Cmax is well understood. Cho and Sahni [6]
showed that list scheduling has a performance guarantee of at most 1 +

√
2m− 2/2

for m ≥ 3 and that it is at least Ω(logm). Aspnes et al. [2] improved the upper bound to
O(logm) matching the lower bound asymptotically. Hochbaum and Shmoys [14] designed
a polynomial time approximation scheme for this problem. Polynomial time approximation
algorithms and polynomial time approximation schemes for special cases of the problem
on restricted related machines are given in, among others, [18, 11, 20]. More work on
restricted related parallel machines is discussed in the survey of Leung and Li [17].

In the last decade, there has been a strong interest in understanding the worst-case
behavior of local optima. We refer to the survey [1] and the book [19] for a comprehensive
overview of the worst-case analysis and other theoretical aspects of local search. It follows
from the work of Cho and Sahni [6] that for the problem on unrestricted related machines
the performance guarantee of the jump algorithm is (1 +

√
4m− 3)/2 and this bound is

tight [23]. For lex-jump optimal schedules, Czumaj and Vöcking [7] showed that the per-
formance guarantee is Θ

(
min

{ logm
log logm , log smax

})
. For the problem on restricted related
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machines, Rutten et al. [21] showed that the performance guarantee of locally optimal
schedules with respect to the jump neighborhood is (1 +

√
1 + 4(m− 1)smax)/2 and that

this bound is tight up to a constant factor. Moreover, they showed that the performance
guarantee of lex-jump optimal schedules is Θ

( logS
log logS

)
, where S =

∑m
i=1 si. When all

speeds are equal, Awerbuch et al. [3] showed that the performance guarantee for lex-jump
optimal schedules is Θ

( logm
log logm

)
.

Up to now, smoothed analysis has been mainly applied to running time analysis (see,
e.g., [25] for a survey). The first exception is the paper by Becchetti et al. [4] who in-
troduced the concept of smoothed competitive analysis, which is equivalent to smoothed
performance guarantees for online algorithms. Schäfer and Sivadasan [22] performed a
smoothed competitive analysis for metrical task systems. Englert et al. [8] considered
the 2-Opt algorithm for the traveling salesman problem and determined, among others,
the smoothed performance guarantee of local optima of the 2-Opt algorithm. Hoefer and
Souza [15] presented one of the first average case analyses for the price of anarchy.

The remainder of this article is organized as follows. In Section 2, we provide asymp-
totically matching upper and lower bounds on the smoothed performance guarantees of
jump optimal, lex-jump optimal, and list schedules in case of unrestricted related ma-
chines. In Section 3, we show that smoothing does not help for the setting of restricted
machines.

2 Unrestricted Related Machines

2.1 Jump Optimal Schedules

We show that the smoothed performance guarantee grows linearly with the smoothing
parameter φ and is independent of the number of jobs and machines. In particular, it is
constant if the smoothing parameter is constant. In proving our results, we make use of
the following proposition which follows from Cho and Sahni [6].

Proposition 2. For any scheduling instance I with m unrestricted related machines and n
jobs

max
σ∈Jump(I)

Cmax(I, σ)

C∗max(I)
≤ 1 +

√
4 min{m,n} − 3

2
≤ 1

2
+
√
n . (1)

Theorem 3. For any φ-smooth instance I with unrestricted and related machines,

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C∗max(I)

]
< 5.1φ+ 2.5 = O(φ) .

Proof. First note that if m > n, then there exist an optimal schedule and a worst jump-
optimal schedule that do not schedule any job on any of the slowest m− n machines. We
ignore these slowest m−n machines, and therefore we assume that m ≤ n. We will prove
an upper bound on the performance guarantee of jump optimal schedules that decreases
when the sum of processing requirements Q =

∑
j∈J pj increases and that is valid for
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every instance. Then, we will argue that for φ-smooth instances Q is usually not too
small, which yields the theorem.

Let σ denote an arbitrary jump optimal schedule for some arbitrary processing require-
ments pj ∈ [0, 1]. Let i be an arbitrary machine, let machine imax be a critical machine in
schedule σ, and let j be a job assigned to machine imax by schedule σ. By jump optimality
of σ it follows that

Cmax(σ) = Limax ≤ Li + pj/si ≤ Li + pmax/si ,

where pmax denotes the processing requirement of the largest job. The previous inequality
yields that si ·Cmax(σ) ≤ si ·Li+pmax for all machines i ∈M . Summing over all machines
from M \ {imax} and adding simax · Limax to both sides of the inequality, we find that∑

i∈M
si · Cmax(σ) ≤

∑
i∈M\{imax}

pmax +
∑
i∈M

si · Li ≤ (n− 1) · pmax +
∑
i∈M

si · Li

since Limax = Cmax(σ). Noting that
∑

i∈M si · Li =
∑

j∈J pj = Q yields the following
upper bound on the makespan of any jump optimal schedule σ:

Cmax(σ) ≤ Q∑
i∈M si

+
n− 1∑
i∈M si

,

where the last inequality follows since pmax ≤ 1. Using the well-known bound C∗max ≥
Q/
∑

i∈M si we obtain

Cmax(σ) ≤ Q∑
i∈M si

+
n− 1∑
i∈M si

≤
(

1 +
n− 1

Q

)
· C∗max .

Hence,

max
σ∈Jump(I)

Cmax(I, σ)

C∗max(I)
≤ 1 +

n− 1

Q
. (2)

The performance guarantee of any jump optimal schedule can only be bad if Q is small.
Since the instance is φ-smooth, the processing requirements are random variables in [0, 1]
with bounded densities. Let F denote the failure event that Q ≤ (n−

√
n lnn)/(2φ). We

define xj to be independent random variables drawn uniformly from [0, 1/φ] for all j ∈ J .
Then, Pr[pj ≥ a] ≥ Pr[xj ≥ a] for any a ∈ [0, 1]. Let X =

∑
j∈J xj . Then, for

any a ∈ [0, n], it follows that Pr[Q ≥ a] ≥ Pr[X ≥ a]. Hence,

Pr [F ] = Pr

[
Q ≤ n−

√
n lnn

2φ

]
≤ Pr

[
X ≤ n−

√
n lnn

2φ

]

= Pr

[
E [X]−X ≥

√
n lnn

2φ

]
≤ e−(lnn)/2 =

1√
n
, (3)

where the last inequality follows from Hoeffding’s bound [16] (see also Theorem 31 in the
appendix). Consider the random variable

Z =

{
1
2 +
√
n if event F occurs ,

1 + n−1
Q otherwise ,
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and let Y = maxσ∈Jump(I)
Cmax(I,σ)
C∗max(I) . Due to Inequalities (1) and (2) we have Y ≤ Z. We

denote by F the complement of F and obtain

E
I∼I

[Y ] ≤ E
I∼I

[Z] ≤ E
I∼I

[
Z| F

]
+ E
I∼I

[Z| F ] · Pr
I∼I

[F ]

(3)

≤
(

1 +
2φ(n− 1)

n−
√
n lnn

)
+

1/2 +
√
n√

n

< 2.5 +
2φ

1−
√

ln(n)/n
< 2.5 + 5.1φ .

For the third inequality, we used Q > (n −
√
n lnn)/(2φ) if event F does not hold. The

last inequality holds since

max
n∈Z+

2

1−
√

ln(n)/n
< 5.1,

where the maximum is attained for n = 3.

Corollary 4. Consider an instance of scheduling with unrestricted and related machines
in which the processing requirement of every job is chosen independently and uniformly
at random from [0, 1]. The expected performance guarantee of the worst jump optimal
schedule is O(1).

Next, we show that the upper bound on the smoothed performance guarantee provided
in Theorem 3 is tight up to constant factor when φ ≥ 2.

Theorem 5. There is a class of φ-smooth instances I with unrestricted and related ma-
chines such that

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C∗max(I)

]
= Ω(φ) .

Proof. For any φ > 2 we construct a φ-smooth instance I with n = d4φ2 + 1e and m = n
machines. Let

s1 =
n− 1

4φ
≥ φ > 2 and s2 = . . . = sn = 1 .

We assume that the processing requirement p1 is chosen uniformly from the interval [1−
1/φ, 1] while the processing requirements of all other jobs are chosen uniformly from the
interval [0, 1/φ]. In an optimal schedule, job 1 is scheduled on machine 1, and all other
machines process exactly one job (see Figure 1). Hence,

C∗max = max

{
p1

s1
, p2, . . . , pn

}
≤ max

{
1

s1
,

1

φ

}
=

1

φ
.

We show that with high probability there exists a jump optimal schedule σ with Cmax(σ) >
1−1/φ. In order to find such a schedule σ, we first schedule job 1 on machine 2. Then, we
consider the remaining jobs one after another and schedule unassigned jobs to machine 1

8



s1 ≈ φ s2 = 1

p1 ≤ 1

sn = 1

p2 ≤ 1
φ

pn ≤ 1
φ

Figure 1: Optimal schedule

s1 ≈ φ s2 = 1

p1 ≈ 1

p2 =
1
2φ

± 1
2φ

≤ 1
φs1

pl =
1
2φ

± 1
2φ

Figure 2: Machines 1 and 2 of sched-
ule σ if event E occurs

until either L1 ∈
[
L2 − 1/(φs1), L2

)
or all jobs are scheduled. Any job that remains

unscheduled is then exclusively assigned to one empty machine. Let E denote the event
that Q2 :=

∑n
j=2 pj ≥ s1. Note that E [Q2] = (n−1)/(2φ) = 2s1. We will see that event E

holds with high probability with respect to φ.
Consider the case that event E occurs. Then, schedule σ is such that L1 ∈

[
L2 −

1/(φs1), L2

)
since Q2/s1 ≥ 1 ≥ p1 = L2 and pj ≤ 1/φ for all jobs j = 2, . . . , n (see

Figure 2). Now, we argue that schedule σ is jump optimal. First observe that machine 2
defines the makespan since L2 > max {L1, p2/1, . . . , pn/1}. Job 1, which is the only job
assigned to that machine, cannot jump to a machine i > 2 because these have the same
speed as machine 2. Furthermore, it cannot jump to machine 1 because

L1 +
p1

s1
≥ L2 −

1

φs1
+

1− 1/φ

s1
= L2 +

1− 2/φ

s1
> L2

as φ > 2. Hence, σ is a jump optimal schedule with

Cmax(σ)

C∗max

>
1− 1/φ

1/φ
= φ− 1 . (4)

It remains to determine the probability of event E . Recalling E [Q2] = 2s1, s1 = (n −
1)/(4φ), and n ≥ 4φ2 + 1, this can be bounded with Hoeffding’s bound [16] (see also
Theorem 31) as follows:

Pr
[
E
]

= Pr [Q2 < s1] = Pr

[
E [Q2]−Q2 > s1

]
≤ exp

( −2s2
1

(n− 1)/φ2

)

= exp

−2
(
n−1
4φ

)2

(n− 1)/φ2

 = exp

(
−n− 1

8

)
≤ exp

(
−φ

2

2

)
.

Let X = maxσ∈Jump(I)
Cmax(I,σ)
C∗max(I) . Applying Inequality (4) the smoothed performance guar-

antee can be bounded from below as follows:

E
I∼I

[X] ≥ E
I∼I

[X| E ] · Pr
I∼I

[E ] ≥ (φ− 1) ·
(

1− exp

(
−φ

2

2

))
9



= (φ− 1)− (φ− 1) · exp

(
−φ

2

2

)
> φ− 1.14 = Ω(φ) ,

where the last inequality follows because (φ− 1) · exp(−φ2/2) < 0.14 for φ > 2.

2.2 Upper Bounds for List Schedules and Lex-jump Optimal Schedules

Although the worst case performance bound on unrestricted related machines for list
scheduling is slightly worse than the one for lex-jump scheduling, we show that the
smoothed performance guarantee of both schedules is O(log φ). In the next subsection,
we show that this bound is asymptotically tight.

Theorem 6. Let α be an arbitrary positive real. For φ ≥ 2 and any φ-smooth instance I
with unrestricted and related machines

Pr
I∼I

[
max

σ∈Lex(I)∪List(I)

Cmax(I, σ)

C∗max(I)
≥ α

]
≤
(

32φ

2α/6

)n/2
and

E
I∼I

[
max

σ∈Lex(I)∪List(I)

Cmax(I, σ)

C∗max(I)

]
≤ 18 log2 φ+ 30 = O(log φ) .

Note that the assumption φ ≥ 2 in Theorem 6 is no real restriction as for φ ∈ [1, 2)
any φ-smooth instance is a 2-smooth instance. Hence, for these values we can apply all
bounds from Theorem 6 when substituting φ by 2. In particular, the expected value is a
constant.

In the remainder of this section, we will use the following notation (see also Ap-
pendix A). Let Ji,j(σ) denote the set of all jobs that are scheduled on machine i and have
index at most j, i.e., Ji,j(σ) = Ji(σ) ∩ {1, . . . , j}. If σ is clear from the context, then we
just write Ji,j . We start with observing an essential property that both lex-jump optimal
schedules and list schedules have in common.

Definition 7. We call a schedule σ on machines 1, . . . ,m with speeds s1, . . . , sm a near
list schedule, if we can index the jobs in such a way that

Li′ +
pj
si′
≥ Li −

∑
`∈Ji,j−1(σ)

p`
si

(5)

for all machines i′ 6= i and all jobs j ∈ Ji(σ). With NL(I) we denote the set of all near
list schedules for instance I.

Inequality (5) can be interpreted as follows. Assume that the jobs are already indexed
correctly and imagine that on each machine the jobs form a stack, ordered from top to
bottom ascendingly according to their index. Now, consider an arbitrary job j on machine i
(see Figure 3a). Inequality (5) states that the completion time of job j after removing
all jobs above j is minimized on machine i in case only job j is allowed to move (see
Figure 3b).

Lemma 8. For any instance I the relation Lex(I) ∪ List(I) ⊆ NL(I) holds.

10



i i′

j

(a) Jobs on machine i, including
job j, visualized as a stack

i i′

j
j≥ 0

(b) Job j does not benefit from jumping
to machine i′

Figure 3: Interpretation of Inequality (5)

Note that in general neither Lex(I) ⊆ List(I) nor List(I) ⊆ Lex(I) holds (see Figure 4).
Moreover, there also exist near list schedules that are neither in Lex(I) nor in List(I) (see
Figure 4c), i.e., near list schedules are a non-trivial generalization of both lex-jump optimal
schedules and list schedules.

s2 = 2

p3 = 1

s1 = 3

p1 = 1

p2 = 3

(a) A list schedule which is
not lex-jump optimal

s2 = 4

p3 = 2

s1 = 7

p1 = 1

p2 = 1

(b) A lex-jump optimal
schedule which is no list
schedule

s2 = 4

p3 = 2

s1 = 7

p2 = 1

p1 = 1

p4 =
1
8

(c) A near list schedule which is
neither lex-jump optimal nor a list
schedule

Figure 4: Relationship between Lex(I), List(I), and NL(I)

Proof of Lemma 8. For any schedule σ ∈ Lex(I), we can index the jobs arbitrarily and,
by definition, even the stronger inequality Li′ + pj/si′ ≥ Li holds. For σ ∈ List(I) we
can index the jobs in reverse order in which they appear in the list that was used for list
scheduling. Consider an arbitrary job j ∈ Ji(σ) and a machine i′ 6= i. Let L′i, L

′
i′ and

Li, Li′ denote the loads of machines i and i′ before assigning job j to machine i and the
loads of i and i′ in the final schedule, respectively. Then, L′i + pj/si ≤ L′i′ + pj/si′ as j
is assigned to machine i according to list scheduling. Since Li = L′i +

∑
`∈Ji,j p`/si and

Li′ ≥ L′i′ , this implies Li′ + pj/si′ ≥ L′i′ + pj/si′ ≥ L′i + pj/si = Li −
∑

`∈Ji,j−1
p`/si.

In the remainder, we fix an instance I and consider an arbitrary schedule σ ∈ NL(I)

11



with appropriate indices of the jobs such that Inequality (5) holds. To prove Theorem 6,
we show that in case the ratio of Cmax(I, σ) over C∗max(I) is large, then instance I needs
to have many very small jobs, see Corollary 17. This holds even when the instance I is
deterministically picked by some adversary. This observation allows us to prove the main
theorem of this subsection by showing that for any φ-smooth instance, there are only
“few” small jobs in expectation. The latter implies that a large ratio only happens with
(exponentially) small probability.

In our proofs, we adopt some of the notation also used by Czumaj and Vöcking [7]
(see also Appendix A). Given a schedule σ, we set c = bCmax(σ)/C∗maxc − 1. Recall
that the machines are ordered such that s1 ≥ . . . ≥ sm. For any integer k ≤ c let
Hk = {1, . . . , ik} where ik = max {i ∈M : Li′ ≥ k · C∗max ∀ i′ ≤ i}. Note that ik = m for
all k ≤ 0 and hence Hk = M for such k (see Figure 5). Further, define Rk = Hk \Hk+1

for all k ∈ {0, . . . , c− 1} and Rc = Hc. Note that this classification always refers to
schedule σ even if additionally other schedules are considered. Some properties follow
straightforwardly.

(c+ 1) · C∗
max

c · C∗
max

(c− 1) · C∗
max

(c− 2) · C∗
max

0 · C∗
max

1 · C∗
max

1 2 3 4 m

Hc = Hc−1

Hc−2

H0 = H−1 = ...

Figure 5: Machine classification by Czumaj and Vöcking

Property 1. For each machine i ∈ Hk, Li ≥ k · C∗max.

Property 2. Machine ik +1, if it exists, is the first machine in M \Hk, i.e., the machine
with the least index, and, hence, a fastest machine in M \Hk.

Property 3. Lik+1 < k · C∗max for all k ∈ {1, . . . , c}, and L1 < (c+ 2) · C∗max.

As mentioned, we need to show that there are many small jobs. To do so, we will show
that the the speeds of the machines in low classes, i.e., R0 and R1, are exponentially small
with respect to the machines in the highest class Rc (Lemma 14) and that the machines
in low classes need to process high volume (Lemma 13). We start by showing that the
highest class is nonempty.

Lemma 9. Machine 1 is in class Rc.

Proof. Let i be a critical machine. If i = 1, then we obtain L1/C
∗
max = Cmax(σ)/C∗max > c.

Otherwise we apply Inequality (5) for the job j = min {` ∈ Ji} with the smallest index

12



on machine i and for machine 1. This yields L1 + pj/s1 ≥ Li. Hence, L1/C
∗
max ≥

Li/C
∗
max − (pj/s1)/C∗max ≥ Cmax(σ)/C∗max − 1 ≥ c, where the second inequality is due to

the fact that any job can contribute at most C∗max to the makespan of a fastest machine.

Let t and k be integers satisfying 0 ≤ t ≤ k ≤ c. Several times we will consider the
first many jobs on some machine i ∈ Hk which contribute at least t · C∗max to the load of
machine i. We denote the set of those jobs by Ji,≥t. Formally,

Ji,≥t = Ji,jti for jti = min
{
j :

∑
`∈Ji,j

p`/si ≥ t · C∗max

}
.

Using this notation, Lemma 10 and Corollary 11 restrict the machines on which a job in
Ji,≥t can be scheduled in an optimal schedule.

Lemma 10. Let k1 > k2 and t ≤ k1 be positive integers, let i1 ∈ Hk1 and i2 ∈M \Hk2 be
machines in Hk1 and not in Hk2, respectively, and let j ∈ Ji1,≥t be a job on machine i1.
Then, the load job j would contribute to machine i2 is bounded from below by pj/si2 >
(k1 − k2 − t) · C∗max.

Proof. We apply Inequality (5) for machine i1, for the first machine i′2 that does not belong
to Hk2 , and for job j to obtain

Li′2 +
pj
si′2
≥ Li1 −

∑
`∈Ji1,j−1

p`
si1

,

which implies

pj
si′2
≥ Li1 − Li′2 −

∑
`∈Ji1,j−1

p`
si1

.

By the choice of the machines i1 and i′2 and Properties 1 and 3 we obtain Li1 ≥ k1 ·C∗max

and Li′2 < k2 · C∗max. Furthermore, j ∈ Ji1,≥t yields
∑

`∈Ji1,j−1
p`/si1 < t · C∗max. Hence,

pj/si′2 > (k1 − k2 − t) · C∗max. The claim follows since si′2 ≥ si2 .

Corollary 11. Let i ∈ Hk be an arbitrary machine and let t ∈ {1, . . . , k} be an integer.
Then, in any optimal schedule any job j ∈ Ji,≥t is assigned to machines from Hk−t−1.

Proof. Assume, for contradiction, that there is a job j ∈ Ji,≥t which is assigned to a
machine i′ ∈M \Hk−t−1 by an optimal schedule. By Lemma 10 this job causes a load of
more than (k− (k− t−1)− t) ·C∗max = C∗max on this machine contradicting the assumption
that the considered schedule is optimal.

Czumaj and Vöcking [7] showed that in a lex-jump optimal schedule the speeds of any
two machines which are at least two classes apart differ by a factor of at least 2. Aspnes
et al. [2] showed a similar property. In general, near list schedules have a slightly weaker
property.

Lemma 12. Let k ∈ {5, . . . , c} and assume Hk 6= ∅. The speed of any machine in class Hk

is at least twice the speed of any machine in M \Hk−4.
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Proof. We may assume that M \Hk−4 6= ∅, since otherwise all machines have a load larger
than C∗max as Hk 6= ∅. Let i0 ∈ Hk and i2 ∈M \Hk−4 be arbitrary machines and consider
the jobs from

⋃
i∈Hk

Ji,≥2. If we would assign only these jobs to machines in Hk, then there
would be a machine with load at least 2 · C∗max. Consequently, in an optimal schedule at
least one job in

⋃
i′∈Hk

Ji′,≥2 is assigned to some machine i∗ ∈M \Hk, say job j ∈ Ji1,≥2.
Since job j contributes at most C∗max to the load of machine i∗ in this optimal schedule,
this implies pj/si∗ ≤ C∗max and, hence,

pj
si0
≤ C∗max (6)

as si0 ≥ si∗ . Due to Lemma 10, the load that would be contributed by job j on machine i2
is bounded by pj/si2 > (k− (k−4)−2) ·C∗max = 2 ·C∗max. Inequality (6) yields si0 ≥ 2 · si2
as claimed in the lemma.

We want to show that machines in low classes, i.e., machines in R0∪R1, have exponen-
tially small speeds (with respect to c) compared to the speeds of the machines in a high
class, i.e., those in Rc. Lemma 12 already implies that the machine speeds would double
every five classes if no class Rk was empty. Although some classes Rk can be empty, we
show that not too many of these machine classes are empty. This is done in Lemma 14
which follows from the next lemma.

The machines i ∈ Hk, k ≥ 2, are overloaded compared to an optimal schedule, even if
we just consider the first few jobs j ∈ Ji,≥t on them (where t ≥ 2). On the other hand,
in Corollary 11 we showed that in any optimal schedule these jobs are not assigned to
machines in much lower classes, i.e., to machines from M \Hk−t−1. Consequently, in any
optimal schedule the machines in Hk−t−1 \Hk consume the current overload of Hk.

Lemma 13. Let t ≤ k be positive integers. In any optimal schedule the total processing
requirement on all machines in Hk−t−1 \Hk is at least

c∑
k′=k

∑
i∈Rk′

(t+ k′ − k − 1) · si · C∗max .

Note that Lemma 13 also holds for the case t = k where Hk−t−1 = H−1 = M .

Proof. Applying Corollary 11 with t′(k′) = t+(k′−k) for arbitrary integers k′ ∈ {k, . . . , c}
yields that in any optimal schedule σ∗ all jobs in

⋃c
k′=k

⋃
i∈Rk′

Ji,≥t′(k′) are assigned to

machines in Hk−t−1 as k′ − t′(k′)− 1 = k− t− 1 for any index k′. Furthermore, in σ∗ the
processing requirement on any machine i ∈ Hk is at most si · C∗max, i.e., the machines in
Hk−t−1 \Hk must consume the remainder. Hence, these machines must process jobs with
total processing requirement at least

c∑
k′=k

∑
i∈Rk′

∑
`∈Ji,≥t′(k′)

p` −
c∑

k′=k

∑
i∈Rk′

si · C∗max ≥
c∑

k′=k

∑
i∈Rk′

(t′(k′)− 1) · si · C∗max .

This yields the claimed bound as t′(k′)− 1 = t+ k′ − k − 1.
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Although some machine classes Rk might be empty, we are able to show that this
cannot be the case for two consecutive classes.

Lemma 14. Hk−2 \Hk 6= ∅ for any k ∈ {1, . . . , c− 1}.

Proof. Let i′ be a slowest machine in Hk. In any optimal schedule σ∗ the processing
requirement on any machine i ∈ Hk−2 \ Hk is at most si · C∗max ≤ si′ · C∗max. Applying
Lemma 13 with t = 1 implies

|Hk−2 \Hk| · si′ ·C∗max ≥
c∑

k′=k

∑
i∈Rk′

(k′ − k) · si ·C∗max ≥
c∑

k′=k

(k′ − k) · si′ ·C∗max · |Rk′ | .

It follows that

|Hk−2 \Hk| ≥
c∑

k′=k

(k′ − k) · |Rk′ | ≥ (c− k) · |Rc| ≥ 1

since k < c and since Rc 6= ∅ due to Lemma 9.

We can now show that machine speeds double every six classes. To be more formal:

Lemma 15. Let 0 ≤ k2 ≤ k1 ≤ c be integers, let i1 be any machine of Rk1 and let i2 ∈ Rk2.
Then, si1 ≥ si2 · 2b∆/6c where ∆ = k1 − k2.

Proof. We prove the claim by induction. For ∆ ∈ {0, . . . , 5}, the claim trivially holds as
si1 ≥ si2 . Assume that the claim holds up to some integer ∆∗ ≥ 5. We show that it is also
true for ∆ = ∆∗ + 1 ≥ 6. Note that for such ∆ we have k1 ≥ 6. According to Lemma 14
the class Hk1−6 \Hk1−4 ⊆M \Hk1−4 contains at least one machine. Let i′ be the fastest
machine in Hk1−6 \Hk1−4. Then si′ ≥ si2 . Lemma 12 and the induction hypothesis imply
si1 ≥ 2si′ and si′ ≥ si2 · 2b(∆−6)/6c, respectively. Hence, si1 ≥ si2 · 2b∆/6c.

Since the machines in low classes are exponentially slower than the machines in high
classes (with respect to c) and as their aggregated total processing requirement in an opti-
mal schedule is large (Lemma 13), it follows that many jobs have processing requirements
exponentially small in c.

Lemma 16. Let i ∈ M \ H2 be an arbitrary machine. Then each job j assigned to
machine i by an optimal schedule has processing requirement at most pj ≤ 2−c/6+2.

Proof. For c ≤ 12 the claim is true since we rescale all processing requirements to be at
most 1. Assume c ≥ 13. Consider an optimal schedule σ∗ and let j be a job processed on
a machine i ∈M \H2 = R1∪R0 according to σ∗. Note that M \H2 6= ∅ due to Lemma 14.
Then, pj/si ≤ C∗max, i.e.,

pj ≤ si · C∗max . (7)

To bound si · C∗max, consider the job j′ = min{` ∈ J1(σ)} with the smallest index on
machine 1 of schedule σ and consider the first machine i′ ∈ Hc−3 \Hc−1 = Rc−3 ∪ Rc−2

which exists due to Lemma 14 and c ≥ 13. Applying Inequality (5), we obtain Li′(σ) +
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pj′/si′ ≥ L1(σ), i.e., pj′ ≥ si′ · (L1(σ) − Li′(σ)). Since machine 1 belongs to Hc due to
Lemma 9 and since machine i′ is the first machine that does not belong to Hc−1, we have
L1(σ) ≥ c · C∗max and Li′(σ) < (c − 1) · C∗max, which implies pj′ ≥ si′ · C∗max. Lemma 15
yields si′ ≥ si · 2b(c−3−1)/6c. Applying Inequality 7 and pj′ ≤ 1 according to our input
model we obtain

pj ≤ si · C∗max ≤ si′ · C∗max · 2−b(c−4)/6c ≤ pj′ · 2−c/6+2 ≤ 2−c/6+2 .

Corollary 17. The processing requirement of at least n/2 jobs is at most 2−c/6+2.

Proof. Lemma 13 for k = t = 2 implies that the total processing requirement of all jobs
assigned to machines from M \H2 = H−1 \H2 according to σ∗ is at least

∑
i∈H2

si ·C∗max

which is an upper bound for the total processing requirement of all jobs assigned to
machines in H2 according to σ∗. Since all jobs assigned to machines from M \H2 by an
optimal schedule have processing requirement at most 2−c/6+2 due to Lemma 16, at least
half of the jobs have processing requirement at most 2−c/6+2.

Since having many so small jobs is unlikely when the processing requirements have
been smoothed, it follows that the smoothed performance guarantee, which is between
c+ 1 and c+ 2, cannot be too high, yielding Theorem 6.

Proof of Theorem 6. If Cmax(σ)/C∗max ≥ α, then at least n/2 jobs have processing require-
ment at most 2−α/6+3 due to Corollary 17 and c = bCmax(σ)/C∗maxc − 1 ≥ α − 2. The
probability that one specific job is that small is bounded by φ · 2−α/6+3 = 8φ · 2−α/6 in
the smoothed input model. Hence, the probability that the processing requirement of at
least n/2 jobs is at most 2−α/6+3, is bounded from above by∑

k≥n
2

(
n

k

)(
8φ · 2−α/6

)k
·
(

1− 8φ · 2−α/6
)n−k

≤
∑
k≥n

2

(
n

k

)(
8φ · 2−α/6

)n/2
≤ 2n ·

(
8φ · 2−α/6

)n/2
=
(

32φ · 2−α/6
)n/2

.

Note that the first inequality holds if 8φ · 2−α/6 < 1. Otherwise, the bound is trivially
true. This yields

Pr
I∼I

[
max

σ∈NL(I)

Cmax(I, σ)

C∗max(I)
≥ α

]
≤
(

32φ

2α/6

)n/2
.

As for n = 1 any schedule σ ∈ NL(I) is optimal, we just consider the case n ≥ 2. For
k ≥ 1 let αk = αk(φ) = 6k log2 φ+ 30, i.e., 2αk/6 = 32φk. If α ≥ αk, then we obtain

Pr
I∼I

[
max

σ∈NL(I)

Cmax(I, σ)

C∗max(I)
≥ α

]
≤ Pr

I∼I

[
max

σ∈NL(I)

Cmax(I, σ)

C∗max(I)
≥ αk

]
≤
(
φ1−k

)n/2
≤ φ1−k ≤ 21−k

as φ ≥ 2. Since αk+1 − αk = 6 log2 φ we obtain

E
I∼I

[
max

σ∈NL(I)

Cmax(I, σ)

C∗max(I)

]
=

∫ ∞
0

Pr
I∼I

[
max

σ∈NL(I)

Cmax(I, σ)

C∗max(I)
≥ α

]
dα
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≤ α1 +
∞∑
k=1

∫ αk+1

αk

Pr
I∼I

[
max

σ∈NL(I)

Cmax(I, σ)

C∗max(I)
≥ α

]
dα

≤ α1 + 6 log2 φ ·
∞∑
k=1

21−k = 18 log2 φ+ 30 .

2.3 Lower Bounds for List Schedules and Lex-jump Optimal Schedules

In this subsection, we show that the upper bound, given in Theorem 6, on the smoothed
performance guarantee on lex-jump optimal as well as list schedules is tight up to a
constant factor. We provide a φ-smooth instance such that the worst lex-jump optimal
schedule as well as the worst schedule that can be obtained by list scheduling has a lower
bound on the performance guarantee of Ω(log φ), for any realization of the processing
times.

Theorem 18. There is a class of φ-smooth instances I with unrestricted and related
machines such that, for any I ∈ I,

max
σ∈Lex(I)

Cmax(I, σ)

C∗max(I)
= Ω(log φ) and max

σ∈List(I)

Cmax(I, σ)

C∗max(I)
= Ω(log φ) .

To prove this theorem, we first present a φ-smooth instance and in Algorithm 1, we
implicitely give a permutation of the jobs such that list scheduling using this permutation
results in a schedule σ which we will show is also lex-jump optimal. The schedule σ
resembles the worst case example constructed by Czumaj and Vöcking [7]: Machines are
partitioned into classes indexed by 0, 1, . . . , r. We will show that in σ, each machine in
class i has a load of approximately i, whereas the optimal makespan is bounded by 3.
Hence, we can lower bound the performance guarantee in the order of the number of
classes. Whereas Czumaj and Vöcking needed Θ(logm/ log logm) classes, we only need
Θ(log φ) classes.

As scaling of all processing requirements does not change the approximation ratio, for
sake of simplicity we do not consider probability densities fj : [0, 1] → [0, φ] but scaled
densities f ′j : [0, 2r+1]→ [0, φ/2r+1] for an appropriate integer r.

Let φ ≥ 4 and consider an integer r = blog4 φc ≥ 1, i.e., φ ≥ 4r = 22r. The machines
are partitioned into machine classes Mk for k = 0, . . . , r, such that machine class Mk

contains r!/k! machines of speed 2k. Also the jobs are partitioned into job classes J` for
` = 1, . . . , r such that a job class J` contains r!/(` − 1)! jobs each having a processing
requirement uniformly drawn from

[
2`, 2` + 2r+1/φ

)
⊆ (0, 2r+1). Note that the density of

this instance is bounded by φ/2r+1 which is valid in the variant of our model that we use
in this subsection. The permutation of the jobs is such that list scheduling constructs the
schedule σ in the following way:

Algorithm 1:
1. for k = 1 to r do
2. for ` = r down to k do
3. Schedule r!/`! arbitrary jobs of class J` according to list scheduling.
4. end for
5. end for
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Note that for any job class J` all ` · r!/`! = r!/(`− 1)! jobs have been scheduled. Let σ be
the resulting schedule. First, we show a key property of σ.

Lemma 19. For any index ` = 1, . . . , r each machine in M` is assigned exactly ` jobs of
job class J` and no other jobs. The machines in M0 remain empty.

Proof. Let σ(k, `) denote the partial schedule after processing line 3 of iteration (k, `) of
Algorithm 1. Within the (k, `)th iteration, we call a machine i ∈ M` used if a job of
class J` has already been assigned to i during that iteration. Otherwise, we call machine i
unused. We show the two claims below inductively and simultaneously. The lemma then
follows straightforwardly from the second claim since the last iteration is (r, r).

Claim 1. During iteration (k, `), r!/`! jobs of class J` are assigned to r!/`! distinct ma-
chines (i.e. all machines) of class M`.

Claim 2. In the partial schedule σ(k, `) each machine in class M`′ is assigned

k′ =

{
k : `′ ≥ ` ,

min {k − 1, `′} : `′ < ` ,

jobs of class J`′ and no other jobs.

Figure 6 visualizes the partial schedule σ(k, `). Machine i with speed si = 2i is a
representative for all machines in class Mi. With Li we refer to the current load of
machine i and with L′i to the load of machine i at the end of iteration (k, k), i.e., in the
partial schedule σ(k, k). In phase (k, `), r!/`! jobs of size roughly 2` are being assigned to
the r!/`! machines in M`. All machines in M`′ for `′ > ` just received a job of roughly
size 2`

′
. All machines in M`′ for `′ ∈ {k, . . . , `− 1} will still receive a single job of size

roughly 2`
′

during iteration k of the outer loop. Figure 6 follows from the observations.

≈ 2r

≈ 2l

≈ 2l−1 ≈ 2k

r l l − 1 k k − 1 k − 2 1 0

Li ≈ (k−1)·2i+2i

2i
= k

L′i ≈ (k−1)·2i+2i

2i
= k

Li ≈ (k−1)·2i
2i

= k − 1

L′i ≈ (k−1)·2i+2i

2i
= k

Li ≈ i·2i
2i

= i

L′i ≈ i·2i
2i

= i

Figure 6: The partial schedule σ(k, `)

First, we validate the claims for the first iteration (1, r). As only r!/r! = 1 job of class Jr
has to be scheduled and since all machines are still empty, the job will be scheduled on
the fastest machine which is the single machine in Mr. Hence, both claims hold true for
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the first iteration. Now, consider an arbitrary iteration (k, `) and assume both claims hold
true for all previous iterations. Consider a job j ∈ J` which needs to be assigned to a
machine during iteration (k, `). We show that job j will always be assigned to an unused
machine i ∈M`. To see this, first note that the previous iteration was either (k, `+ 1) or
(k − 1, k − 1).

Let i ∈ M` be an unused machine. By the second claim, we know that this machine
carries k − 1 jobs of class J`. Consequently, we can upper bound its load by

Li +
pj
si
<
k · (2` + 2r+1/φ)

2`
= k +

k

φ
· 2r+1−` ≤ k +

`

22r
· 2r+1−` ≤ k +

1

2r
,

where we used that k ≤ `, φ ≥ 22r, and `/2` ≤ 1/2 for all integers ` ≥ 1.
Consider a machine machine h which is either used (in that case let `′ = `) or in

class M`′ for some `′ ∈ {`+ 1, . . . , r}. By Claim 2, this machine carries k jobs of class J`′

and thus

Lh +
pj
sh
≥ k · 2`′ + 2`

2`′
= k + 2`−`

′
> k +

1

2r
> Li +

pj
si
.

Finally, consider a machine h ∈M`′ for some `′ ∈ {1, . . . , `− 1}. Again by Claim 2, it
carries min {k − 1, `′} jobs of class J`′ and thus

Lh +
pj
sh
≥ min {k − 1, `′} · 2`′ + 2`

2`′
= min

{
k − 1, `′

}
+ 2`−`

′

≥ (k −max
{
k − `′, 1

}
) + 2max{k−`′,1} ≥ k + 1 > Li +

pj
si
,

where the second inequality follows from ` ≥ max {k, `′ + 1} and the third inequality
follows from 2i − i ≥ 1 for all positive integers i.

With this complete case analysis we have shown that job j will be assigned to an
unused machine i ∈ M`. We conclude that during iteration (k, `), each of the r!/`! jobs
to be assigned will be assigned to an unused machine in M`. Note that |M`| = r!/`!, and
hence for each job there always exists such an unused machine. The first claim and the
second claim follow immediately.

Lemma 20. Schedule σ is lex-jump optimal.

Proof. It follows from Lemma 19 that the load of any machine i ∈M` can be bounded by

` ≤ Li ≤ `+ ` · 2r+1

2`φ
≤ `+

`

2`
· 2r+1

22r
≤ `+

1

2
· 2r+1

22r
< `+ 1 .

If a job j assigned to machine i ∈M` would jump to another machine i′ ∈M`′ , then

Li′ +
pj
si′
≥ `′ + 2`

2`′
= `− (`− `′) + 2`−`

′ ≥ `+ 1 > Li ,

where the last inequality follows from 2k−k ≥ 1 for all integers k. Thus, any job would be
worse off by jumping to another machine, and hence schedule σ is lex-jump optimal.
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We conclude this subsection by proving Theorem 18.

Proof of Theorem 18. We consider schedule σ constructed above which is both a list sched-
ule and a lex-jump optimal schedule. By Lemma 19 the load of the single machine in Mr

is at least r. Hence, Cmax(σ) ≥ r. Now, consider a schedule σ′ in which each machine
in M` processes a single job from job class J`+1, ` = 0, . . . , r − 1. The single machine
in Mr remains empty. Then, the load of any machine i ∈ M` with job j assigned to it is
bounded as follows:

Li = pj/si ≤ (2`+1 + 2r+1/φ)/2` ≤ 2 + 2r+1/(22r · 21) = 2 + 2−r < 3 .

Hence, C∗max(I) ≤ Cmax(I, σ′) < 3 and the theorem follows: Cmax(σ)/C∗max(I) ≥ r/3 =
Ω(r) = Ω(log φ).

3 Restricted Machines

In this section, we provide lower bound examples showing that the worst-case performance
guarantees for all variants of the restricted machines are robust against random noise. Our
lower bounds are in the order of the worst-case bounds and hold in particular for φ = 2. In
our lower bound constructions all processing requirements are chosen uniformly at random
from intervals of length 1/2. This means that even with large perturbations the worst-case
lower bounds still apply.

3.1 Jump Neighborhood on Restricted Machines

Rutten et al. [21] showed that the makespan of a jump optimal schedule is at most a factor
of 1/2 +

√
m− 3/4 away from the optimal makespan on restricted identical machines. On

restricted related machines they showed that the makespan of a jump optimal schedule
is not more than a factor of 1/2 +

√
(m− 1) · smax + 1/4 away from the makespan of an

optimal schedule, assuming that smin = 1. They provided two examples showing that
the bound on identical machines is tight and the one on related machines is tight up to
a constant factor. We show that even on φ-smooth instances these bounds are tight up
to a constant factor. As in [21], we construct an example with two job classes and three
machine classes. The first machine class consists of only one machine and this machine is
the slowest among all machines. The first class of jobs can only be scheduled on machines
in the first two classes, whereas the jobs in the second class are allowed on all machines.
To construct a bad example, we schedule all jobs in the first class on the slowest machine
and use the jobs of the second class to fill the machines in the second machine class so
that the schedule will be jump optimal, with high probability.

Theorem 21. For every φ ≥ 2 there exists a class of φ-smooth instances I on restricted
related machines such that

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C∗max(I)

]
= Ω (

√
m · smax) ,

assuming without loss of generality that smin = 1.
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Proof. It suffices to show the theorem for φ = 2 and m ≥ 3. W.l.o.g. we assume smin = 1
and set s := smax/smin = smax. Let z > 2 be an arbitrary integer, let

m′ = m− 2 ≥ 1 , k′ =

√
m′

s
≤
√
m′ , and k =

⌈
k′
⌉
.

In the remainder we assume that
√
m′s ≥ 17. This is possible because we only want to

derive an asymptotic bound. We consider the following φ-smooth instance I. The set M
of machines is partitioned into three classes M1, M2, and M3 such that

|M1| = 1 , |M2| = k , and |M3| = m′ − (k − 1) > m′ − k′ ≥ 0 .

The machine in M1 has speed 1, the machines in M2 have speed

s′ = max

{
1, s · k

′

k

}
∈ [1, s] ,

and the machines in M3 have speed s. Let the set J of jobs be partitioned into two
subsets J1 and J2, consisting of

|J1| =
⌊
2zsk′

⌋
and |J2| =

⌈
32zs · (m′ − k′)

⌉
≤ d32zs · |M3|e

jobs whose processing requirements are independently and uniformly drawn from [1/2, 1]
and from [0, 1/2], respectively. The jobs in J1 are only allowed to be scheduled on the
machines in M1∪M2, whereas the jobs in J2 are allowed to be scheduled on any machine.

First, we construct a schedule σ′ to bound the optimal makespan: Use the list schedul-
ing algorithm to schedule all jobs in J1 on the machines in M2, and all jobs in J2 on
the machines in M3. Figure 7 depicts schedule σ′. Machine i is a representative for all
machines in class Mi.

. 2zsk′
k

s2 ≥ s · k′k

. 32zs·|M3|·12
|M3|

s3 = ss1 = 1

J1 J2

Figure 7: Schedule σ′

Along the same lines as in [12], it follows that for all machines i ∈M2

Li ≤

∑
j∈J1

pj

|M2| + max
j∈J1

pj

s′
≤
|J1|·1
|M2| + 1

s′
≤

2zsk′

k + 1

s′
≤

2zsk′

k

s · k′k
+

1

1
= 2z + 1 .
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Similarly, for all machines i ∈M3

Li ≤

∑
j∈J2

pj

|M3| + max
j∈J2

pj

s
≤
|J2|· 12
|M3| + 1

2

s
≤

32zs·|M3|
2·|M3| + 1

s
≤ 16z + 1 .

Hence, C∗max ≤ Cmax(σ′) ≤ 17z. Before we proceed with constructing a ‘bad’ jump
optimal schedule σ, we observe that

s′ ≤ 2s · k′/k (8)

due to 1 ≤ (
√
m′ + 1)/k ≤ 2

√
m′s/k = 2s · k′/k.

We construct a jump optimal schedule σ on the φ-smooth instance I such that the
corresponding makespan exceeds zsk′ with high probability: Schedule all jobs in J1 on the
single machine in M1. Then, zsk′ − 1 ≤ L1 ≤ 2zsk′. Next, start assigning jobs from J2

to the machines in M2 according to the list scheduling algorithm with an arbitrary job
permutation, until

(a) either J2 becomes empty, or until

(b) Li ∈
[
L1 − 1

2s′ , L1

)
for all i ∈ M2. If there remain unscheduled jobs in J2, then we

assign them to the machines in M3 using list scheduling.

Let Q =
∑

j∈J2 pj and let E denote the event that Q > 4z(sk′)2. If E occurs, then

∑
i∈M2

s′ · L1 ≤ |M2| ·
(

2s · k
′

k

)
· 2zsk′ = 4z(sk′)2 < Q

due to Inequality (8), i.e., the algorithm will end up in case (b) as pj ≤ 1/2 for any
job j ∈ J2. This shows that no machine i ∈ M2 is critical. Using the same argument as
for the analysis of σ′ we can show that the load of any machine i ∈ M3 is bounded from
above by 16z + 1 < 17z − 1 ≤ z ·

√
m′ · s − 1 = zsk′ − 1 ≤ L1, i.e., the machine in M1 is

the unique critical machine. As each job on this machine has processing requirement at
least 1/2 and due to the property of the loads of the machines in M2 in case (b), schedule σ
is jump optimal and Cmax(σ) = L1 ≥ zsk′ − 1.

It remains to determine the probability Pr[E ]. For this, note that

E[Q] =
|J2|

4
≥ 8zs · (m′ − k′) = 8zsm′ ·

(
1− k′

m′

)
= 8zsm′ ·

(
1− 1√

m′s

)
> 6zsm′

as
√
m′s ≥ 17 by our initial assumption. On the other hand, 4z(sk′)2 = 4zsm′. Applying

Hoeffding’s Inequality [16] (see also Theorem 31), we obtain

Pr
[
Ē
]

= Pr
[
Q ≤ 4zsm′

]
≤ Pr

[
Q−E[Q] ≤ −2zsm′

]
≤ exp

(
−2 · (2zsm′)2

|J2| ·
(

1
2

)2
)
≤ exp

(
− 32z2s2m′2

32zsm′ + 1

)
,
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which becomes arbitrarily close to 0 when z increases. Hence, for sufficiently large inte-
gers z

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C∗max(I)

]
≥ E

I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C∗max(I)

∣∣∣∣ E] · Pr
I∼I

[E ]

≥ zsk′ − 1

17z
· 17

18
≥
√

(m− 2) · smax − 1
z

18
.

Corollary 22. For every φ ≥ 2 there exists a class of φ-smooth instances I on restricted
identical machines such that

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C∗max(I)

]
= Ω(

√
m) .

Remark. In the proof of Theorem 21 we introduce an arbitrary integer z. We argue that
there exists a sufficiently large value for z such that the desired result follows. Choosing
an even larger value for z implies that the results above not only hold in expectation but
also with high probability.

3.2 Lex-jump Optimal Schedules on Restricted Identical Machines

In this subsection, we show that there exist instances with φ ≥ 8 such that the smoothed
performance guarantee for lex-jump optimal schedules in the restricted setting is in the
same order as the worst case performance guarantee.

As in Section 2.3, we construct an instance with several job classes and machine classes
and the loads of the machines are gradually decreasing with increasing machine class. By
setting the sets Mj of allowed machines equal to the union of only one or two machine
classes and choosing to schedule the jobs on the wrong machines, we can enforce that
jobs cannot leave the machine class on which they are scheduled in the lex-jump optimal
solution, whereas the optimal makespan is still small.

Theorem 23. For every φ ≥ 8 there exists a class of φ-smooth instances I on restricted
identical machines such that

E
I∼I

[
max

σ∈Lex(I)

Cmax(I, σ)

C∗max(I)

]
= Ω

(
logm

log logm

)
.

First, we introduce the φ-smooth instance I for φ ≥ 8. Given an integer k ≥ 68,
consider the following recurrence formula:

a0 = k2 , a1 = k3 , and ah =

⌈(
ah−1

ah−2
− 7

15

)
· ah−1

⌉
for h ≥ 2 .

Starting with a1/a0 = k, the fraction ah/ah−1 decreases with increasing index h until it is
less or equal 1. To see this, note that ah/ah−1 ≥ 1 implies that ah−1 ≥ ah−2. Therefore, we
know that ah ≥ ah−1 ≥ . . . ≥ a0 = k2 > 15. Furthermore, we can bound the ratio ah/ah−1

from above by ah/ah−1 ≤ ah−1/ah−2 − 7/15 + 1/ah−1 < ah−1/ah−2 − 6/15 < ah−1/ah−2.
Let zk be the smallest integer h such that ah/ah−1 ≤ 1. Hence, a0, a1, . . . , azk−1 is a strictly
increasing sequence. We will bound the number zk from above later in the analysis.
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We consider zk job classes J1, . . . ,Jzk and as many machine classes M1, . . . ,Mzk . Each
machine class Mh contains mh = ah−1 machines with speed 1. Each job class Jh consists
of two subclasses J Ah and J Bh of size ah and of size bh = 17mh, respectively. The jobs in
class J Ah are called type A jobs, have processing requirements independently and uniformly
distributed in [7/8, 1], and can be processed on machines in Mh ∪Mh+1. As a convention
let Mzk+1 = ∅. Jobs in class J Bh are called type B jobs, have processing requirements
independently and uniformly distributed in [0, 1/8], and can only be processed on machines
in Mh.

The schedule σ = σ(I) for an instance I ∈ I is obtained by scheduling the jobs
in Jh on the machines in Mh using LPT (longest processing time) scheduling, i.e., list
scheduling with a list in which the jobs are ordered according to non-increasing processing
requirements. Note that the LPT algorithm first schedules all type A jobs and then all
type B jobs. Schedule σ(I) is visualized in Figure 8. Machine h represents all machines
in class Mh.

1 2 zk

J1 JzkJ2

≈ 15
16

a1
a0
+ 17

16

≥ 15
16k

≈ 15
16

a2
a1
+ 17

16

≈ 15
16

azk
azk−1

+ 17
16

Figure 8: Schedule σ(I)

We show that schedule σ is lex-jump optimal with high probability. To be more specific,
we show lex-jump optimality when the values QAh =

∑
j∈JA

h
pj and QBh =

∑
j∈JB

h
pj are

close to their expectations for all h = 1, . . . , zk. Let EAh and EBh denote the events that∣∣QAh −E
[
QAh
] ∣∣ ≤ mh

16
and

∣∣QBh −E
[
QBh
] ∣∣ ≤ mh

32
, respectively .

Moreover, let E denote the event that the events EAh and EBh are simultaneously true for
all h = 1, . . . , zk. By ĒAh , ĒBh , and Ē we refer to the complement of EAh , EBh , and E .

First, we analyze the sequence a0, a1, . . . , azk to obtain bounds for the number zk of
machine and job classes and for the number m of machines.

Lemma 24. For any h = 1, . . . , zk the following inequality holds:

ah
ah−1

≤ k − (h− 1) · 2

5
.

Proof. The claim is true for h = 1. By definition of ah,

ah
ah−1

≤

(
ah−1

ah−2
− 7

15

)
· ah−1 + 1

ah−1
≤ ah−1

ah−2
− 6

15
=
ah−1

ah−2
− 2

5
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for any h = 2, . . . , zk as ah−1 ≥ a0 = k2 ≥ 15. The claim follows by induction.

Now, we can bound the number zk of job classes.

Corollary 25. The number zk of machine classes and job classes is bounded by 5k/2.

Proof. Applying Lemma 24 for h = zk − 1 we obtain

1 <
azk−1

azk−2
≤ k − (zk − 2) · 2

5
.

Hence,

zk < (k − 1) · 5

2
+ 2 <

5k

2
.

Lemma 26. The number m of machines is bounded by Γ(k′ + 3) where Γ denotes the
gamma function and where k′ = d5k/2e.

Proof. By induction we show that

ah ≤ k2 ·
(

2

5

)h
· k′!

(k′ − h)!

for any h = 0, . . . , zk − 1. Note that zk ≤ 5k/2 ≤ k′ due to Corollary 25. For h = 0 the
claim holds since a0 = k2. For h ≥ 1 we apply Lemma 24 to get

ah
ah−1

≤ k − (h− 1) · 2

5
≤ 2

5
· (k′ − (h− 1)) .

The induction hypothesis for ah−1 yields

ah ≤
2

5
· (k′ − (h− 1)) · k2 ·

(
2

5

)h−1

· k′!

(k′ − (h− 1))!
= k2 ·

(
2

5

)h
· k′!

(k′ − h)!
.

Recalling mh = ah−1 we can bound the number m of machines by using

m

k2
=

zk∑
h=1

mh

k2
=

zk−1∑
h=0

ah
k2
≤

zk−1∑
h=0

k′!

(k′ − h)!
≤ k′! · e .

Hence, m ≤ e · k2 · k′! ≤ (k′ + 2)! = Γ(k′ + 3).

Lemma 27. Event Ē occurs with probability at most 10k · exp(−k/2).

Proof. We bound the probability for the events ĒAh and ĒBh to occur. Recalling mh =
ah−1 ≥ a0 = k2, ah ≤ k · ah−1 (see Lemma 24), bh = 17mh, and k ≥ 68 we obtain

Pr
[
ĒAh
]

= Pr
[∣∣∣QAh −E[QAh ]

∣∣∣ > mh

16

]
≤ 2 exp

(
− 2

(
mh
16

)2
ah ·

(
1
8

)2
)

= 2 exp

(
−ah−1

ah
· ah−1

2

)
≤ 2 exp

(
−ah−1

2k

)
≤ 2 exp

(
−k

2

)
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and

Pr
[
ĒBh
]

= Pr
[∣∣∣QBh −E[QBh ]

∣∣∣ > mh

32

]
≤ 2 exp

(
− 2

(
mh
32

)2
bh ·

(
1
8

)2
)

= 2 exp

(
− mh

17mh
· ah−1

8

)
≤ 2 exp

(
− k2

136

)
≤ 2 exp

(
−k

2

)
.

Each of the first inequalities stems from Hoeffding’s bound [16] (see also Theorem 31). A
union bound yields

Pr
[
Ē
]

= Pr

[
zk⋃
h=1

(
ĒAh ∪ ĒBh

)]
≤ 2zk · 2 exp

(
−k

2

)
≤ 10k · exp

(
−k

2

)
due to Corollary 25.

As event E occurs with high probability and as

E
I∼I

[
max

σ∈Lex(I)

Cmax(I, σ)

C∗max(I)

]
≥ E

I∼I

[
max

σ∈Lex(I)

Cmax(I, σ)

C∗max(I)

∣∣∣∣ E] · Pr
I∼I

[E ] ,

to prove Theorem 23 it suffices to bound the expected value conditioned on event E by
Ω
( logm

log logm

)
. Therefore, in the remainder of this section we assume that event E happens.

Lemma 28. The loads of the machines within the same class differ only slightly. In
particular, |Li − Li′ | ≤ 1/8 for any machines i, i′ ∈Mh.

Proof. Suppose to the contrary that there exist two machines i, i′ ∈Mh such that Li−Li′ >
1/8. Recall that according to the LPT rule all type A jobs will be assigned to the machines
before the type B jobs are assigned. After all type A jobs have been assigned to the
machines in Mh, the difference in load between any two machines in Mh is at most 1
since pj ≤ 1 for all jobs j.

Since the processing time of all type B jobs is bounded by 1/8, Li −Li′ > 1/8 implies
that no type B job is assigned to machine i nor to any machine that has load at least Li.
Hence, all type B jobs are assigned to the machines that have load less than Li. Note that
there are at most mh − 1 such machines.

As the difference in load between machine i and any other machine in Mh is at most 1,
the total amount of processing requirements of type B jobs in class Mh is bounded by
QBh ≤ (mh − 1) · 1 < 17mh/16 −mh/32 = E[QBh ] −mh/32 contradicting the assumption
that event EBh holds.

Lemma 29. For any machine i ∈Mh the inequality∣∣∣∣Li − 1

mh

(
E
[
QAh
]

+ E
[
QBh
])∣∣∣∣ ≤ 7

32

holds, i.e., the load of machine i is close to the expected average machine load in class Mh.
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Proof. By applying the triangle inequality we obtain

∣∣∣∣∣∣Li −
E
[
QAh
]

+ E
[
QBh
]

mh

∣∣∣∣∣∣ ≤
∣∣∣∣Li − QAh +QBh

mh

∣∣∣∣+

∣∣∣∣QAh −E
[
QAh
]∣∣∣∣

mh
+

∣∣∣∣QBh −E
[
QBh
]∣∣∣∣

mh

≤

∣∣∣∣∣∣∣Li −
∑

i′∈Mh

Li′

|Mh|

∣∣∣∣∣∣∣+
1

16
+

1

32
≤ 7

32
,

where the second inequality holds since EAh and EBh are true. The last inequality is due to
Lemma 28.

Lemma 30. Schedule σ is lex-jump optimal.

Proof. We need to show that Li′ + pj ≥ Li holds for any machine i ∈Mh, any job j ∈ Ji,
and any machine i′ ∈ Mj . Let i ∈ Mh be an arbitrary machine. First, consider the last
job j that has been assigned to i. Then, Li′ + pj ≥ Li for any machine i′ ∈ Mh as this
job was assigned to machine i by list scheduling. Furthermore, job j is a smallest job on
machine i due to the LPT rule. Hence, Li′ + pj′ ≥ Li for any machine i′ ∈ Mh and any
job j′ ∈ Ji assigned to machine i.

For type B jobs on machine i the set of allowed machines equals Mh. It just remains to
show that Li′+pj ≥ Li for any machine i′ ∈Mh+1 and any type A job j ∈ Ji with i ∈Mh.
Recalling ah = d(ah−1/ah−2)− 7/15) · ah−1e for h ≥ 2, mh = ah−1, and bh/mh = 17 we
observe that

E
[
QAh+1

]
+ E

[
QBh+1

]
mh+1

=
15
16ah+1 + 1

16bh+1

mh+1
=

15

16
· ah+1

ah
+

1

16
· bh+1

mh+1

≥ 15

16
·
(

ah
ah−1

− 7

15

)
+

1

16
· bh
mh

=
E
[
QAh
]

+ E
[
QBh
]

mh
− 7

16

for any h = 1, . . . , zk − 1. This implies

Li′ + pj ≥
E
[
QAh+1

]
+ E

[
QBh+1

]
mh+1

− 7

32
+

7

8

≥
E
[
QAh
]

+ E
[
QBh
]

mh
− 7

16
+

21

32

=
E
[
QAh
]

+ E
[
QBh
]

mh
+

7

32
≥ Li ,

where the first and the last inequality are due to Lemma 29.

Finally, we can prove Theorem 23.
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Proof of Theorem 23. As mentioned before, due to Lemma 27 it suffices to bound the
expected value conditioned on event E . If event E holds, then schedule σ = σ(I) is lex-
jump optimal (see Lemma 30), i.e., σ ∈ Lex(I), and has makespan

Cmax ≥ max
i∈M1

Li ≥
QA1 +QB1

m1
≥ E[QA1 ] + E[QB1 ]

m1
−

m1
16 + m1

32

m1

=
15
16k

3 + 1
16 · 17k2

k2
− 3

32
≥ 15

16
k ,

where the third inequality is due to the occurrence of EA1 and EB1 . Now, consider the
following schedule σ′:

• For h = 1, . . . , zk − 1 spread the jobs of class J Ah evenly among the machines in
class Mh+1. As |J Ah | = ah = mh+1 = |Mh+1|, each machine is assigned exactly one
type A job.

• Spread the jobs of class J Azk evenly among the machines in class Mzk . As |J Azk | =
azk ≤ azk−1 = mzk = |Mzk |, each machine is assigned at most one type A job.

• For h = 1, . . . , zk spread the jobs of class J Bh evenly among the machines in class Mh.
As |J Bh | = 17mh = 17 · |Mh|, each machine is assigned exactly 17 type B jobs.

Note that with ‘evenly’ we refer to the number of jobs on each machine and not to the
load. Figure 9 shows schedule σ′ where each machine h is a representative for all machines
in class Mh.

1 2 zk−1

J B
1 J B

zk−1J B
2

≤ 17
8

zk

J B
zk

≤ 1 ≤ 1 ≤ 1

≤ 1
≤ 17

8 ≤ 17
8

≤ 17
8

J A
2J A

1 J A
zk−1 J A

zk
J A
zk−2

Figure 9: Schedule σ′

As each machine contains at most 2 type A jobs and 17 type B jobs, the makespan of
schedule σ′ and hence C∗max is bounded by 2·1+17·1/8 ≤ 5. This implies Cmax(σ)/C∗max ≥
3k/16 = Ω(Γ−1(m)) due to Lemma 26. Hence,

E
I∼I

[
max

σ∈Lex(I)

Cmax(I, σ)

C∗max(I)

∣∣∣∣ E] ≥ E
I∼I

[
Cmax(I, σ(I))

C∗max(I)

∣∣∣∣ E] = Ω

(
logm

log logm

)
.

Remark. The worst case upper bound on the performance guarantee for lex-jump optimal

schedules on restricted related machines is O
(

logS
log logS

)
, where S =

∑
i si/sm [21]. As for
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identical machines S = m, i.e., each machine has speed 1, the upper bound matches the
lower bound of Theorem 23 up to a constant factor and smoothing does also not improve
the performance guarantee for the worst lex-jump optimal schedules on restricted related
machines.

Lemma 27 established that E occurs with high probability. Hence, if we choose k suitably
large, the stated results not only hold in expectation, but also with high probability.

4 Concluding Remarks

We have proven that the lower bounds for all scheduling variants with restricted ma-
chines are rather robust against random noise, not only in expectation but even with high
probability. We have also shown that the situation looks much better for unrestricted
machines where we obtained performance guarantees of Θ(φ) and Θ(log φ) for the jump
and lex-jump algorithm, respectively. The latter bound also holds for the price of anarchy
of routing on parallel links and for the list scheduling algorithm, even when the order in
which the jobs are presented to the algorithm can be chosen by the adversary when the
realization of the processing times are known.

There are several interesting directions of research and we view our results only as a first
step towards fully understanding local search and greedy algorithms in the framework of
smoothed analysis. For example, we have only perturbed the processing requirements, and
it might be the case that the worst-case bounds for the restricted scheduling variants break
down if also the setsMj are to some degree random. In general it would be interesting to
study different perturbation models where the setsMj and/or the speeds si are perturbed.
Lemma 15 and Corollary 17 indicate that there need to exist many machines having
exponentially small speeds. We conjecture that if speeds are being smoothed, then the
smoothed performance guarantee of near list schedules on restricted related machines is
Θ(log φ) as well.

Another interesting question is the following: since we do not know which local opti-
mum is reached, we have always looked at the worst local optimum. It might, however,
be the case that the local optima reached in practice are better than the worst local op-
timum. It would be interesting to study the quality of the local optimum reached under
some reasonable assumptions on how exactly the local search algorithms work. An exten-
sion in this direction would be to analyze the quality of coordination mechanisms under
smoothing.
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A Table of notation

In the table below, the notation used in this paper is summarized.

J set of jobs 1, . . . , n
M set of machines 1, . . . ,m
pj processing requirement of job j
si speed of machine i
Mj set of machines on which job j can be scheduled
smax maximum speed of the machines
smin = 1 minimum speed of the machines;

by scaling we assume w.l.o.g. it to be 1.
C∗max optimal makespan
Cmax(σ) makespan of schedule σ
Ji(σ) set of jobs scheduling on machine i in schedule σ
Li(σ) =

∑
j∈Ji(σ) pj/si

load of machine i in schedule σ.
Ji,j(σ) = Ji(σ) ∩ {1, . . . , j}
jti = min

{
j :

∑
`∈Ji,j(σ) p`/si ≥ t · C∗max

}
Ji,≥t(σ) = Ji,jti (σ)

c =
⌊
Cmax(σ)
C∗max

⌋
− 1

ik = max {i ∈M : Li′ ≥ k · C∗max ∀ i′ ≤ i},
assuming s1 ≥ s2 ≥ . . . ≥ sm

Hk = {1, . . . , ik}
Rk = Hk \Hk+1 for k = 0, 1, . . . , c− 1
Rc = Hc.

B Hoeffding’s bound

On several occasions in this paper we use Hoeffding’s bound [16] to bound tail probabilities.
For completeness, we state the bound in the following theorem.

Theorem 31. Let X1, . . . , Xn be independent random variables. Define X :=
∑n

j=1Xj

and µ = E[X]. If each Xj ∈ [aj , bj ] for some constants aj and bj, j = 1, . . . , n, then for
any t > 0

Pr [X ≤ E[X]− t] ≤ exp

(
−2t∑

j(bj − aj)2

)
, and,

Pr [X ≥ E[X] + t] ≤ exp

(
−2t∑

j(bj − aj)2

)
.
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