
T. Bonato · M. Jünger · G. Reinelt · G. Rinaldi

Lifting and Separation Procedures for the Cut Polytope

Abstract. The max-cut problem and the associated cut polytope on complete graphs have been extensively studied
over the last 25 years. However, little research has been conducted for the cut polytope on arbitrary graphs. In this
study we describe new separation and lifting procedures for the cut polytope on such graphs. These procedures
exploit algorithmic and structural results known for the cut polytope on complete graphs to generate valid, and
sometimes facet defining, inequalities for the cut polytope on arbitrary graphs in a cutting plane framework. We
report computational results on a set of well-established benchmark problems.
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1. Introduction

Let G = (V, E) be an undirected graph with vertex set V and edge set E. For each, possibly
empty, subset S of V , by δ(S) we denote the set of edges which have exactly one end in S. We
call δ(S) a cut of G with the shores S and V \S. For a single node s we denote the cut δ({s}) just
by δ(s). For two subsets S and T of V , by (S : T ) := δ(S)∩ δ(T ) we denote the set of edges which
have one end in S and the other one in T . Suppose we have edge weights ce for every edge e ∈ E.
Then the max-cut problem consists of finding a node set S ⊆ V such that c(δ(S)) :=

∑

e∈δ(S) ce

is as large as possible.
The cut polytope CUT(G) is the convex hull of the characteristic vectors χδ(S) of all the cuts

of G and is a subset of the |E|-dimensional real space R
E . From a different viewpoint the max-cut

problem can also be seen as the problem of finding a vertex of the cut polytope maximizing a
given linear function.

The max-cut problem is NP-hard and is one of the most studied combinatorial optimization
problems. It is of particular interest because it is the reformulation, in graph theoretical terms, of
the well known unconstrained 0/1 quadratic programming problem, i.e., the problem of optimizing
a quadratic objective function over the set of all 0/1 vectors of fixed dimension.

The max-cut problem has been used in a number of applications such as the optimal design of
VLSI circuits or the study of minimum energy configurations of spin glasses (see, e.g., [?]). The
latter application is one of the most investigated topics in Statistical Physics. Moreover, it is quite
peculiar for an application of Combinatorial Optimization, as in some cases it demands for true
optimal rather than suboptimal solutions (even if very good quality could be certified).

A common technique to solve max-cut problems to optimality is branch-and-cut. The two key
components of a branch-and-cut algorithm are:

(i) a polyhedral relaxation of CUT(G), i.e., a set of linear inequalities describing a polytope P
that contains CUT(G);

(ii) a set of separation procedures that, given a point z outside CUT(G), find one or more valid
inequalities that separate z from P , and thus from CUT(G).
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The effectiveness of the branch-and-cut algorithm strongly depends on how well P approximates
CUT(G) and on how fast the separation procedures are.

An important and widely used polyhedral relaxation of CUT(G) is:

x(F ) − x(C \ F ) ≤ |F | − 1 for all cycles C of G and (1)

all F ⊆ C, |F | odd,

xe ≤ 1 for all e ∈ E, (2)

xe ≥ 0 for all e ∈ E, (3)

where for an edge set S and corresponding variables, x(S) denotes the sum
∑

e∈S xe.
The linear system (??)–(??) describes the so-called semimetric polytope, which we denote by

MET(G). The integral points of MET(G) are exactly the characteristic vectors of the cuts of G.
The cycle inequalities (??) define facets of both CUT(G) and MET(G) if the cycle C is chordless.
The trivial inequalities (??) and (??) define facets of CUT(G) and MET(G) if the edge e does not
belong to a triangle (cycle of length 3) of G. So, in case of the complete graph Kp with p vertices,
only triangles induce facets and each triangle generates four distinct inequalities that correspond
to the four possible ways of choosing the edge set F .

The polytope CUT(Kp) has been extensively studied and a number of families of valid or even
facet defining inequalities have been characterized (see, e.g., the surveys [?] and [?]). For some
of these inequalities separation procedures have been proposed (see, e.g., [?], [?], [?], and [?]).
Unfortunately, after the publication of [?], where the study of a description of CUT(G) by lin-
ear inequalities was initiated and where the inequalities (??) were introduced first along with a
polynomial time separation algorithm, very little effort was devoted to the study of CUT(G) on
arbitrary graphs. Nevertheless, branch-and-cut algorithms have been applied successfully to many
problems, in particular for the solution of spin glass problems on toroidal graphs. Solutions of
instances with size up to 150 × 150 have been reported in [?] and [?]. For a survey on spin glass
computations see [?]. The branch-and-cut algorithms employed were in principle only based on
the inequalities (??), for which very effective separation procedures were designed. However, the
cycle inequalities are far from being sufficient to solve spin glass instances on more complex graphs.
Also some other max-cut instances coming from further real world applications are at present out
of the reach of branch-and-cut algorithms.

Very interesting computational results have been obtained after the introduction of an alter-
native non-polyhedral relaxation of CUT(Kp). The characteristic vectors of the cuts of Kp are
strongly related to certain symmetric positive semidefinite matrices. The set of these matrices is
in a one-to-one correspondence with a convex body Hp that, after a suitable affine transformation,
contains CUT(Kp). In addition, linear functions over Hp can be optimized efficiently using, e.g.,
interior point techniques (see [?]). Using this semidefinite relaxation, an approximation algorithm
that delivers solutions with a guaranteed value of at least 0.87856 times the optimal value (for
non-negative objective functions) could be constructed in [?]. Finally, by strengthening the relax-
ation Hp with linear inequalities, instances with up to 300 vertices could be solved to optimality [?].
But since semidefinite approaches are working with dense matrices, they cannot profit from the
sparsity of the input graph and the number of nodes of a problem is crucial. It therefore seems
that 300 nodes are about the limit for this approach. However, for dense graphs algorithms based
on semidefinite relaxations at present outperform branch-and-cut algorithms by far. For recent
surveys on semidefinite programming see [?] and the book [?].

It is the aim of this paper to show how the efficiency of polyhedral methods for the max-cut
problem can be enhanced for sparse graphs. A central question is whether the current knowledge
about CUT(Kp) can be used when solving the max-cut problem on an arbitrary graph G. One
possibility is to add the missing edges to the graph G and to assign a zero weight to them. This
technique has been successfully used for other combinatorial optimization problems where the
sparse structure of the original graph can be exploited to handle the artificially completed graph
efficiently. An example is the traveling salesman problem (see [?]), where even if the original graph
is not sparse, all computations are carried out on a very sparse subgraph. To do so, it is assumed
that the edges of a suitable large subset have no intersection with an optimal solution and thus
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their corresponding variables are permanently set to zero. A proof that this assumption is correct
is eventually provided by the solution algorithm. To the contrary, for the max-cut problem there
is no obvious way to exploit the sparsity of the original problem or to use a small working subset
of the original edges. Notice that in a dense graph a cut can contain Θ(n2) edges. This means
that if one uses the above technique of completing the graph with edges of zero weight, the exact
solution of the problem on sparse graphs has the same computational difficulties as on complete
graphs.

The following simple observations make it clearer why there is such a fundamental difference
between the traveling salesman and the max-cut problem, as far as the exploitation of the descrip-
tion of their polyhedra associated with complete graphs is concerned.

Consider G and G\e, where G\e is obtained from G by removing edge e. All Hamiltonian cycles
in G that do not contain e are also Hamiltonian cycles in G\e. Hamiltonian cycles containing e will
become infeasible when e is removed. Therefore the traveling salesman polytope TSP(G\e) can be
seen as being obtained simply by intersecting the polytope for G with the hyperplane {x : xe = 0}.
As a consequence, any valid inequality for TSP(G) is also valid for TSP(G \ e) and, by combining
it with the equation xe = 0, can be turned into an equivalent inequality obtained from the original
one by dropping the term in xe. Thus, a linear description of TSP(G \ e) is readily obtained from
a linear description of TSP(G). In contrast with this, a cut of G reduced to the edges of G \ e is
a feasible cut of G \ e in any case whether it contains e or not. So the relation between the two
polytopes is more complicated: CUT(G \ e) is the result of projecting out variable xe. In principle
the linear system of the projection can be obtained via a Fourier-Motzkin procedure. But it would
be extremely complex and it is very unlikely that a general criterion can be devised to describe
it in a compact way. The implication for polyhedral computations is that valid inequalities for
CUT(G) cannot be trivially used for CUT(G\e). The only fortunate (and non trivial) case we are
aware was proved in [?]: The projection of the semimetric polytope of a graph G onto {x : xe = 0}
is again the semimetric polytope of G \ e.

In this paper we want to exhibit a new possibility of how to exploit knowledge about the cut
polytope for complete graphs for the solution of max-cut problems in sparse graphs. A brief outline
of our approach is the following.

Suppose that we are given a point z ∈ R
E that satisfies all the inequalities (??)–(??) but does

not belong to CUT(G) for some arbitrary graph G = (V, E) with n nodes. The central task of a
branch-and-cut algorithm now is to find an inequality valid for CUT(G) (possibly facet defining)

that is not satisfied by z. First, by a sequence of operations z is transformed to a point z ∈ R
E ,

where E is the edge set of a graph G defined on p nodes where p is usually much smaller than n.
The transformation guarantees that z is outside CUT(G) but satisfies all inequalities (??)–(??).
If G = Kp, then z can be seen as a fractional solution of a cutting plane algorithm applied to a
max-cut instance on the complete graph Kp. At this point all the polyhedral machinery available
for the max-cut on complete graphs can be used. Thus, some separation procedures for the cut
polytope on complete graphs are applied to z that (hopefully) generate an inequality ax ≥ a0,
valid for CUT(Kp) and violated by z̄. Finally, a sequence of lifting procedures is applied to ax ≥ a0

that transforms it to an inequality ax ≥ a0 valid for CUT(G) and violated by z. This way, we
can exploit algorithmic and structural results available for CUT(Kp) also for solving the max-cut
problem on sparse graphs.

The paper is organized as follows. In Sections 2 and 3 we introduce a graph contraction tech-
nique that, given a fractional LP solution, contracts all edges with a corresponding integral LP
value. Moreover, we describe how to transform cutting planes for the associated contracted LP so-
lution into cutting planes for the original LP solution. In Section 4 we propose a method for
the artificial completion of a contracted graph in order to be able to apply results for the max-
cut problem on complete graphs. We also explain how, if a cutting plane is found, the respective
variables of the artificially added edges can be projected out. Section 5 discusses the separation
procedures which we use in our algorithm. Finally, in Section 6 we report about computational
results on well-established benchmark problems.
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2. Contraction and lifting

Let x be a vector in R
E and let B be a subset of E. We define the auxiliary vector xB with

xB
e :=

{

−xe if e ∈ B,

xe otherwise.

Consider the mapping sB : R
E → R

E with sB(x) := xB+χB. We refer to this mapping as switching
along B. Let A be an arbitrary subset of E and let A∆B := (A∪B)\(A∩B) denote the symmetric
difference of A and B. Then, it is easy to verify that sB(χA) = χA∆B .

Any cut δ(S) of G is in particular a subset of E. Moreover, the set of cuts of G is closed under
taking the symmetric difference. This means that we can use the switching along a cut to transform
the characteristic vectors of any two cuts into one another. In other words, the switching mapping
along a cut is an automorphism of the cut polytope CUT(G) as well as of the unit hypercube [0, 1]E

(see, e.g., [?] for further details). In addition, if z is a point (vertex) of MET(G) then this property
is preserved when switching z along a cut of G.

Similar to the switching of vectors, we can define a switching operation on inequalities. Consider
an inequality ax ≤ α and a cut δ(S). Let a

(

δ(S)
)

denote the sum
∑

e∈δ(S) ae. We say that the
inequality

aδ(S)x ≤ α − a
(

δ(S)
)

is obtained by switching ax ≤ α along δ(S). If ax ≤ α is valid, or facet defining, for CUT(G)
then this is also true for the switched inequality (see [?]). Moreover, if the inequality switched
along δ(S) is tight at a point z, i.e., it is satisfied at equality by z, then the original inequality
is tight at the switched point sδ(S)(z). As a result, whenever we want to separate a point z from
the cut polytope, we can use sδ(S)(z) instead. Namely, each inequality separating sδ(S)(z) will
separate the original point z, after having been switched along δ(S).

Suppose we are given a point z inside MET(G) but outside CUT(G) for which we want to find
a separating inequality. We define the edge sets E0 := {e ∈ E : ze = 0} and E1 := {e ∈ E : ze = 1}.
Since z belongs to MET(G), there exists a cut δ(W ) such that E1 ⊆ δ(W ) and E0 ∩ δ(W ) = ∅.

The switched point z̃ := sδ(W )(z) is also an element of MET(G). Moreover, due to the special
properties of the cut δ(W ) we have

0 ≤ z̃e < 1 for e ∈ E. (4)

Therefore, from now on we can assume, without loss of generality, that a point z̃, given as an input
to a separation procedure, always satisfies (??). We can now apply the separation procedures to
z̃ rather than to z. If ax ≤ α is a violated inequality for z̃ then the procedure simply returns the
inequality aδ(W )x ≤ α − a(δ(W )) as a result of the separation.

Definition 1. Let G = (V, E) be a graph with edge weights z ∈ R
E such that z ∈ MET(G) and

let e ∈ E0 = {f ∈ E : zf = 0}. The graph G = (V , E) and the vector z ∈ R
E are obtained from G

and z by contracting edge e = st if the following holds:

(i) V = V \ {s, t} ∪ {w} and E = E \ δ(s) \ δ(t) ∪ {wu :u ∈ S ∪ T ∪ B}, where B is the set of
common neighbors of s and t in G, and S and T are the neighbors of s and t, respectively,
that are not contained in B.

(ii) zuv = zuv, for u, v ∈ V \ {s, t},
zuw = zus, for u ∈ S ∪ B ,
zuw = zut, for u ∈ T .

Note again, that for nodes u ∈ B we must have zsu = ztu. If this is not the case and, say,
zsu > ztu, then the inequality xsu − xtu − xts ≤ 0 is violated, contradicting the assumption
z ∈ MET(G). Thus, the contraction operation is well-defined.

Assume now that the edge weights z of a graph G satisfy (??) and that a sequence of applica-
tions of the edge contraction operation has been performed on G and z until such an operation is
no longer applicable. Call G and z the resulting contracted graph and the associated edge weight
vector, respectively.
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Proposition 1. The graph G and the vector z have the following properties:

(i) z has only fractional components,
(ii) z satisfies (??)–(??),

(iii) z is a vertex of MET(G) if and only if z is a vertex of MET(G),
(iv) every cut of G corresponds to a cut of G that is disjoint from E0.

Proof. For a proof of claim (iii), see [?]. All the other claims are easy to verify.

Of course, G will have at most as many nodes or edges as G. An example of the combined switching
and contraction procedure is illustrated in Figure ?? which shows the original graph G in ??, the
graph G̃ that results from switching along the cut δ

(

{c, i}
)

in ??, and the contracted graph G
in ??.

a b c

d e f

g h i

(a)

a b c

d e f

g h i

(b)

ab

dg e cf

hi

(c)

1

2

3

1

3

0

Fig. 1. Switching and contraction of a graph.

Suppose now that a valid inequality for CUT(G) has been found that is violated by z. We want
to lift this inequality to one valid for CUT(G) that is violated by z. To do so, we must reverse
the contraction operation described before. To this end we introduce the following node-splitting
operation.

Definition 2. Given a graph G = (V, E), an inequality ax ≤ α in R
E valid for CUT(G), a node

w ∈ V and a partition (S, T, B) of the neighbors of w. The graph G′ = (V ′, E′) and the inequality
a′x′ ≤ α in R

E′

are obtained from G and a, by splitting node w into s and t with respect to the
partition (S, T, B), if the following holds:

(i) V ′ = V \ w ∪ {s, t} and E′ = E \ δ(w) ∪ (s : S ∪ B) ∪ (t : T ∪ B) ∪ {st};
(ii) the components of a′ are given by

a′
st = −

∑

v∈T

|awv|,

a′
tv = 0 for all v ∈ B,

a′
tv = awv for all v ∈ T ,

a′
sv = awv for all v ∈ S ∪ B,

a′
uv = auv for all uv ∈ E′ \

(

δ(s) ∪ δ(t)
)

,

where we assume, without loss of generality, that
∑

v∈T |awv| ≤
∑

v∈S |awv|.

Theorem 1. If ax ≤ α is valid for CUT(G) and if G′ and a′x′ ≤ α are obtained from G and ax ≤
α by splitting node w into s and t, with respect to the partition (S, T, B), then the inequality a′x′ ≤
α is valid for CUT(G′).

Proof. Clearly, we have a′
(

δ(W )
)

= a
(

δ(W )
)

for any cut δ(W ) which does not contain edge st. So,

assume that st is part of δ(W ). Without loss of generality, let s ∈ W . Suppose that a′
(

δ(W )
)

> α.
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We define the extended node set W ′ = W ∪ {t}. For the corresponding induced cut δ(W ′)

a′
(

δ(W ′)
)

= a′
(

δ(W )
)

− a′
st +

∑

v∈T\W

a′
tv −

∑

v∈T∩W

a′
tv

≥ a′
(

δ(W )
)

− a′
st −

∑

v∈T\W

|a′
tv| −

∑

v∈T∩W

|a′
tv|

≥ a′
(

δ(W )
)

> α.

But δ(W ′) does not contain st, therefore we get a contradiction.

An operation similar to the one of Definition ?? has been described in [?], and it is also called
node splitting. The coefficients of the inequality resulting from node splitting in [?] are the same
as in Definition ??, except for the coefficient of edge st which is given as a′

st = −
∑

v∈T awv. The
two operations, although very similar, have been introduced to accomplish quite different tasks.

The node splitting of [?] is a tool to generate new facet defining inequalities of CUT(G+e),
where G+e := (V, E ∪ {e}) and e is the edge st, starting from a known facet defining inequality of
CUT(G). In other words, it performs what is also called the one variable lifting of an inequality
while preserving the property of being facet defining. The validity of the produced inequality
depends of the choice of the partition (S, T, B). Under some conditions for this partition, it is
proved in [?] that the generated inequality is not only valid, but also facet defining as claimed in
the following theorem restated using the conventions of Definition ??.

Theorem 2 (Theorem 2.6 (a) in [?]). Let G = (V, E) be a graph and ax ≤ α be an inequality
facet defining for CUT(G). Let G′ and a′ be obtained from G and a by splitting node w ∈ V with
respect to a partition (S, T, B) of the neighbors of w in G. Then the inequality a′x′ ≤ α is facet
defining for CUT(G′) if B = ∅ and w belongs to a set W ⊆ V such that aχδ(W ) = α and T is a
nonempty subset of {u ∈ V \ w : uw ∈ E and auw > 0} ∩ W .

For the sake of completeness we have to say that in the original Theorem 2.6 in [?] the graph G′

can also contain any edge tu with a′
tu = 0 for u ∈ V , provided that azu = 0 for each edge zu

incident in u. In other words, node u does not belong to the support graph of vector a, which is
the subgraph of G whose edges have a corresponding nonzero component in a.

In conclusion, Theorem ?? is a tool to prove that some inequalities are facet defining for
CUT(G). For example, in [?] it is used to prove that the general cycle inequalities (??) have this
property, using the fact that the triangle inequalities are facet defining for CUT(K3).

Quite differently, the purpose of the node splitting of Definition ?? is to produce an inequality
valid for CUT(G′) no matter how the sets of the partition (S, T, B) are chosen. As we will show in
the following, edge contraction and node splitting are reverse operations. We use node splitting to
reconstruct the graph modified by edge contraction. The sets of the partition contain the necessary
information for doing so.

One may wonder whether there are conditions for the inequality a′x′ ≤ α of Definition ?? to be
facet defining. While Theorem ?? can only seldomly serve this purpose, we can use the following
generalization instead that applies also to the case when B is not empty.

Theorem 3. Let G = (V, E) be a graph and ax ≤ α be a facet defining inequality for CUT(G). Let
G′ and a′ be obtained from G and a by splitting node w ∈ V with respect to a partition (S, T, B)
of the neighbors of w in G. Then the inequality a′x′ ≤ α is facet defining for CUT(G′) if w belongs
to a set W ⊆ V such that aχδ(W ) = α and:

(i) awv ≥ 0 for all v ∈ T ∩ W ,
(ii) awv ≤ 0 for all v ∈ T \ W ,

(iii) a(v : W ) = a(v : V \ W ) for all v ∈ B.

Proof. Assume f ′x′ ≤ f0 is facet defining for CUT(G′) such that {x′ ∈ CUT(G′) : f ′x′ = f0}
⊇ {x′ ∈ CUT(G′) : a′x′ = α}. Proving the theorem amounts to showing that there exists a scalar
λ > 0 such that f ′ = λa′.
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Based on the tight cuts of ax ≤ α which correspond to tight cuts of a′x′ ≤ α, each of them
induced by a node set Y with {s, t} ⊆ Y or {s, t} ⊆ V ′ \ Y , we can already assume that there
exists a λ > 0 such that f ′

e = λa′
e, for all e ∈ E′ \ (({s, t} : B) ∪ {st}), and that for all u ∈ B we

have f ′
us + f ′

ut = λa′
us, because each of these cuts either contains both edges us and ut or none of

them.

By (i) and (ii), the cut δ(W ′), where W ′ = W \ {z} ∪ {s}, is tight for a′x′ ≤ α because

a′(δ(W ′)) = a(δ(W )) + a′
st + a(z : T ∩ W ) − a(z : T \ W )

= a(δ(W )) + a′
st +

∑

v∈T

|azv|

= a(δ(W )) = α.

Let u ∈ B ∩ W . Then (iii) implies that also the cut δ(W \ {u}) is tight for ax ≤ α and, because
a′

ut = 0, also δ(W ′ \ {u}) is tight for a′x′ ≤ α. Thus, we obtain

0 = f ′(δ(W ′)) − f ′(δ(W ′ \ {u}))

= f ′
ut + f ′(u : V ′ \ W ′) − f ′(u : W ′) = f ′

ut,

since

f ′(u : V ′ \ W ) − f ′(u : W ′) = λ(a′(u : V ′ \ W ′) − a′(u : W ′))

= λ(a(u : V \ W ) − a(u : W )) = 0.

If u ∈ B \ W , then we obtain f ′
ut = 0 in an analogous way. Therefore, for all u ∈ B we have

f ′
us = λa′

us and f ′
ut = 0 = λa′

ut. Finally,

0 = f ′(δ(W ′)) − f ′(δ(W ′ ∪ {t}))

= f ′
st + f ′(t : W ′ \ {s})− f ′(t : V ′ \ W ′) = f ′

st − λa′
st

and we have shown that f ′ = λa′.

Assume now that the inequality a′x′ ≤ α is derived from an inequality violated by a point z
which is obtained by contraction of a point z. We wonder if also a′x′ ≤ α is violated by z. The
following theorem, whose proof comes directly from the definitions ?? and ??, provides an answer.

Theorem 4. Let G = (V, E) be a graph with weights z ∈ R
E on its edges such that z ∈ MET(G)

and let e ∈ E such that ze = 0. Let G = (V , E) be the graph and z ∈ R
E be the vector obtained

from G and z by contracting edge e = st. Let the node w and the sets S, T , B ⊆ V be as in
Definition ??. Let a x ≤ α be an inequality valid for CUT(G) such that a z = α + η, with η > 0.
Then the inequality ax ≤ α in R

E, obtained from G and a by splitting node w into s and t, with
respect to the partition (S, T, B) is valid for G and is such that az = α + η.

An example of a series of node-splitting operations is shown in Figure ??. In Figure ?? the
weighted support graph of a clique inequality is shown that is violated by the fractional point
defined in Figure ??. It is assumed that {cf, dg, ab, hi} is the order of the edges on which the
contraction has been applied to obtain the weighted graph of Figure ??, starting from the one of
Figure ??. The inequality obtained at the end of the sequence of node-splitting operations is shown
in Figure ??; it violates the fractional point shown in Figure ??. Moreover, it is facet defining as
one can verify by applying Theorem ?? at each execution of the node-splitting operation with the
set W defined for each of the figures ??-??. A facet defining inequality that violates the original
fractional point shown in Figure ?? is now easily derived by switching along the cut δ(c, i).
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ab

dg e cf

hi

(a) w = hi, B = {dg},
S = {ab, e}, T = {cf},
W = {cf, hi}.

ab

dg e cf

h i

(b) w = ab, B = {cf},
S = {e, h}, T = {dg},
W = {ab, dg}.

a b

dg e cf

h i

(c) w = dg, B = {a},
S = {e, cf}, T = {h, i},
W = {b, dg, h, i}.

a b

d e cf

g h i

(d) w = cf, B = {i},
S = {d, e}, T = {a, b},
W = {a, b, cf, h}.

a b c

d e f

g h i

(e)

1

0

−1

Fig. 2. Sequential node-splitting.

3. Induced subgraphs and zero lifting

The scheme described in the previous section makes it possible to translate the separation proce-
dure for CUT(G), where G is a graph with n nodes, to the the separation procedure for CUT(G),
where G is a graph with n < n nodes. Such a scheme has the following nice features:

(i) if z /∈ CUT(G), then the sequence of contractions of Definition ?? produces a point z /∈
CUT(G);

(ii) if an inequality ax ≥ a0, valid for CUT(G) and violated by z is identified by a separation
algorithm, then it is always possible to lift it to an inequality ax ≥ a0 valid for CUT(G) and
violated by z;

(iii) the amounts of violation of ax ≥ a0 and of ax ≥ a0, evaluated in z and in z, respectively,
coincide.

A possible disadvantage of this scheme is that the size of the contracted graph G cannot be
kept under control and only depends on the integral components pattern of vector z. Therefore, G
can be too large for some separation procedures to be applied, like, e.g., the one based on target
cuts (see next section).

Another scheme that overcomes this difficulty is the one based on a very simple observation.
Let G = (V , E) be the subgraph of G = (V, E) induced by V ⊂ V , and zE be the restriction
of z to the components indexed by the edges in E. If K is a cut of G, then K ∩ E is a cut of G.
Consequently, if z /∈ CUT(G), then z /∈ CUT(G). Unfortunately, the reverse implication does
not always hold true, as we always assume that z ∈ MET(G) and hence that z ∈ MET(G) for
every induced subgraph G of G. Take, for example, the case when G is planar (or even simply not
contractible to K5). Then CUT(G) = MET(G) and so z ∈ CUT(G).

Once a suitable induced subgraph G has been identified and an inequality ax ≥ a0 valid for
CUT(G) and violated by z has been found, it is very easy to lift ax ≥ a0 to a valid inequality
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of CUT(G) violated by z. It is sufficient to apply the so called zero lifting, i.e., to assign a zero
coefficient to all components of z corresponding to the elements of E \ E and the value of the
coefficient of the corresponding component of z to the others, while keeping the same right hand
side. Moreover, the amount of violation of the two inequalities, evaluated at the corresponding
fractional points, is the same.

This scheme shares the same features mentioned at the beginning of this section, except the
first one, with the scheme of the previous section. But it has the advantage that the node size of
the graph G can be fixed to a sufficiently small number.

The question whether an inequality obtained by zero lifting preserves the property of being
facet defining has been investigated in [?], where a sufficient condition is provided. If the graph G
has a node u adjacent to any other node and if the induced subgraph G contains u, then such
a sufficient condition is always satisfied and the zero lifting of any facet defining inequality for
CUT(G) defines also a facet of CUT(G).

4. Extension and projection

Suppose we are given a contracted graph G = (V, E) with n nodes. Let z be a point inside MET(G)
but outside CUT(G) which is the situation if G was obtained by contracting a larger graph with
respect to some LP solution.

If we want to apply separation routines for complete graphs, we first have to extend z by
introducing artificial values for possibly missing edges. Moreover, the extended point should be
still an element of MET(Kn) but not of CUT(Kn). We first describe the extension for a single
edge.

Let e = uv be a non-edge of G, i.e., u and v are nodes in V which are not adjacent in G. Let
G+e = (V, E∪{e}) denote the extended graph. The following three problems have to be addressed:

(i) extend z to a point (z, ze) ∈ R
E∪{e} inside MET(G+e),

(ii) find an inequality bx ≤ β with b ∈ R
E∪{e} that separates (z, ze) from CUT(G+e),

(iii) transform bx ≤ β into an inequality ax ≤ α with a ∈ R
E that separates z from CUT(G).

The possible extension values ze are in the set {ze :(z, ze) ∈ MET(G+e)}. This set is nonempty
because z is in MET(G) which is a projection of MET(G+e) as noted above. In fact, the above
set is the interval [le, ue] with the bounds le := max {0, Le} and ue := min {Ue, 1}, where

Le := max { z(F ) − z(P \ F ) − |F | + 1 : P is a (u, v)-path of G, F ⊆ P , |F | odd }, (5)

Ue := min {−z(F ) + z(P \ F ) + |F | : P is a (u, v)-path of G, F ⊆ P , |F | even }. (6)

Notice that the additional restriction to the interval [0, 1] is indeed necessary. This is because
a point (z, ze) with ze ∈ [Le, Ue] is only guaranteed to satisfy all cycle inequalities of the extended
graph. However, the linear description of the semimetric polytope also comprises the trivial in-
equalities. Consider for example the graph of Figure ??. For the point z = (0.5, 0.5, 0.5) we obtain
the bounds Le = −0.5 and Ue = 1.5. Thus, extending z with, e.g., Le or Ue would result in a point
outside MET(G+e).

0.5

e

0.5 0.5

Fig. 3. A graph for which Le < 0 and Ue > 1.

We call a cycle or a trivial inequality a lower inequality for e if it is tight at (z, le). More precisely,
the trivial inequality −xe ≤ 0 is a lower inequality for e if Le ≤ 0 and thus le = 0. Otherwise, a
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lower inequality is given by the cycle inequality defining the value L in (??). Analogously, we call
an inequality that is tight at (z, ue) an upper inequality for e. The trivial inequality xe ≤ 1 is an
upper inequality for e if Ue ≥ 1, i.e., if ue = 1. Otherwise, the cycle inequality defining U in (??)
can serve as an upper inequality. We always assume the cycle inequalities to be given in the form
x(F ) − x(C \ F ) ≤ |F | − 1. Therefore, the coefficient of the artificial variable xe is −1 in a lower
inequality and +1 in an upper inequality, respectively.

If the bounds le and ue coincide, i.e., if the extension value ze is uniquely defined, we say that e
is rigid. It is easy to prove the following characterization of rigid edges:

Proposition 2. A non-edge e is rigid if and only if at least one of the following two conditions
holds:

(i) e is a chord of a tight cycle, i.e., a cycle that supports a cycle inequality that is tight at z;
(ii) the end nodes of e are connected by a path whose edges correspond to integral components

of z.

Notice that for every le ≤ ze ≤ ue the extended point (z, ze) is not contained in CUT(G+e)
because z lies outside CUT(G).

Suppose now that we have computed an inequality ax + aexe ≤ α separating (z, ze) from
CUT(G+e) and let az + aeze = α + η.

If ae is zero, then truncating the left hand side (a, ae) to a results in the inequality ax ≤ α,
valid for CUT(G) and violated by z by the same amount η.

Now assume that the coefficient ae is positive. We can derive a valid inequality for CUT(G) by
projecting out the variable xe. To this end we need a valid inequality bx− bexe ≤ β for CUT(G+e)
such that be is a positive number. Let bz − beze = β + θ. The projected inequality is

(a +
ae

be

b)x ≤ α +
ae

be

β (7)

and its value at z is
(a +

ae

be

b)x = α + η +
ae

be

(β + θ).

Because we want (??) to be violated by z, then θ must be as big as possible.
Instead of taking an arbitrary valid inequality bx−bexe ≤ β for CUT(G+e), we restrict ourselves

to cycle or to trivial inequalities. We need a cycle or a trivial inequality with a negative coefficient
for edge e and for which θ is as big as possible. In particular, we take the trivial inequality ze ≥ 0
if Le < 0 or the inequality identified to compute Le in (??), otherwise. Now we have θ = le − ze

and be = −1. Setting η = η0 + ae(ue − ze), we get that the projected inequality is violated by

η − aeθ = η0 − ae(ue − le).

Consequently, the violation of the projected inequality does not depend on which value we choose
for ze in the interval [le, ue].

The case when ae is negative can be treated analogously and gives the same result.
If e is rigid, the violation of the inequality in G+e is preserved. Otherwise, one can choose any

value in the interval [le, ue] for ze. In any case there will be a decrease in the amount of violation,
unless ae = 0.

So, if the support of a separating hyperplane only contains original and rigid edges, then there
will be no loss in violation.

We observe that the intervals [le, ue] cannot be computed independently, because a choice of a
value for ze may affect the bounds of the interval for all the other non-edges. Figure ?? illustrates
this fact. Consider the 5-node cycle and assume that the variables corresponding to the edges of
the cycle have all value 2

3 . The interval for both edges from 1 to 3 and 4 is [0, 2
3 ] if the computation

is done separately with respect to the cycle. However, if we set z14 = 0, then edge 13 becomes
rigid at value 2

3 .
We discuss an example that demonstrates the potential of our new approach to separation.

Figure ?? shows a fractional solution of a (5× 5) grid problem with exterior field discussed in [?].
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1

2

3 4

5

Fig. 4. Example for dependency of interval bounds

For clarity, node 0 representing this field is not shown. Edges connecting a grid node to node 0
appear as short lines pointing downward to the right. The grid is assumed to be embedded on a
torus. So the edges leaving the bottom nodes in a column are the connection between bottom and
top nodes of the same column. Analogously, if the first and the last nodes of the same row are
connected, then the respective edge is emanating from the last node of a row to the right.

1

2

3

4

5

6

7

8

9

10

11
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19

20

21

22

23

24

25

1

3
4

1
2

1
4

0

Fig. 5. The fractional solution for a spin glass problem of [?].

The authors of [?] write that they were not able to produce a separating inequality for this
solution. If we apply our separation approach then we obtain, as a shrunk graph, the left graph
of Figure ??. Addition of the three missing edges yields the graph on the right hand side.

It is easy to verify that in this graph there is a violated clique inequality on the nodes
{1, 2, 3, 6, 7} (and there are some further clique inequalities on five nodes). Moreover, by switching
along the cut defined by the nodes 1 and 5, one can see that there is a violated clique inequality
on all seven nodes. After lifting and switching we obtain the two inequalities shown in Figure ??.
In this figure solid edges correspond to positive and dashed edges to negative coefficients. The
absolute values of the coefficients are given explicitly only if they are not equal to 1.

5. Separation

We now elaborate on two separation procedures that can be used in conjunction with the concepts
introduced in the sections ?? and ??.

First, we consider a class of inequalities known as target cuts [?]. The concept of target cuts per
se is problem-independent. The respective inequalities do not conform to the so-called template
paradigm (see [?], Section 5.6); this means that the inequalities in this class do not share a common
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Fig. 6. Shrunk and extended graph

≤ 2

2
2

2

2
2

3

3

≤ 2

Fig. 7. Inequalities violated by the fractional solution of [?].

support structure. A key feature of the target cut approach is that facet defining inequalities are
generated. Below, we focus on the separation of target cuts for the cut polytope. For more general
information, we refer to [?].

Suppose we are given a point x∗ outside CUT(G). To derive a separating target cut for this
point, we basically have to solve a linear program which comprises one row for each vertex of the
polytope. For technical reasons (see [?]) we also need an interior point q of CUT(G). This could
be, e.g., the barycenter of its vertices. The existence of q is guaranteed since the cut polytope is
full-dimensional. Now, the target cut LP to be solved looks as follows:

max{a(x∗ − q) : a(x − q) ≤ 1, for all vertices x of CUT(G)}. (8)

If the above LP has an optimum value greater than 1 then the corresponding optimum solution a∗

yields the desired separating target cut a∗x ≤ 1 for x∗.
Of course, enumerating all the vertices of the cut polytope and solving the resulting LP is only

viable for small to moderately sized graphs. This restriction can be partly overcome by means of
so-called delayed row generation which starts with a partial target cut LP and then adds rows as
required in the course of the optimization. To do so, one needs an oracle for maximizing a linear
function over the cut polytope. This technique is referred to as delayed column generation in [?],
because the description of the method is based on the dual of (??). The authors state that the
number of rows generated in the course of the above procedure is generally much smaller than
the total number of vertices of the polytope. However, whether or not delayed row generation will
improve the performance ultimately depends on the efficiency of the oracle.

Since target cuts neither require the graph to be complete nor the existence of specific support
structures, they can be separated directly on a contracted LP solution. To obtain reasonable



Lifting and separation procedures for the cut polytope 13

running times, though, target cuts are best applied to small induced subgraphs like the ones
described in Section ??. The resulting separating inequalities can then be zero-lifted.

For the computational tests described in the next section we found that the most effective
stategy was not to use delayed row generation and to keep the size of induced subgraphs below 12
nodes.

The second separation procedure generates clique inequalities. For a clique (W, F ) of order p,
where p ≥ 3, the associated clique- or Kp-inequality is:

x(F ) ≤
⌈p

2

⌉ ⌊p

2

⌋

.

It defines a facet of the cut polytope if and only if p is odd. Any clique inequality remains valid
even if we only consider a subset of its edge set F . It is clear that one has to identify dense
subgraphs in order to have a chance for finding a violated clique inequality. Therefore, this class
of inequalities is particularly interesting in the context of the extension of LP solutions described
in Section ??.

A simple heuristic for the clique separation works as follows. We successively consider each
node in the graph, possibly in random order, as initial node v to build a clique of given order p.
First, we generate the list of all neighbors of v. If there are less than p−1 neighbors, we start over
with the next initial node since we cannot obtain a clique with the desired size. Otherwise, suppose
there are more than p − 1 neighbors, in which case we have to choose the clique’s nodes subject
to maximizing the left hand side value of the associated clique inequality. Initially, we choose the
first p − 1 nodes from the list of neighbors. We then calculate for each neighbor the aggregate
LP value of all the incident edges which lead to clique nodes. Furthermore, we mark the clique
node with minimum aggregate LP value respectively the non-clique node with maximum such
value. Now, we check whether we can increase the left hand side value of the clique inequality by
replacing the former node with the latter one. If so, we perform this swap, recalculate the aggregate
LP values, and mark the new minimum and maximum neighbor, respectively. This procedure is
repeated until the first designated swap occurs that would actually decrease the left hand side
value of the clique inequality. At this point, we generate the associated inequality for the current
clique and start over with the next initial node v.

The heuristic just described only considers clique inequalities with all positive left hand side
coefficients, while the switching of these inequality along any cut of the graph produces clique
inequalities with positive and negative left hand side coefficients that would be useful to separate.
However, the restriction to positive coefficient in the separation algorithm can be overcome by
switching the LP solution x∗ along a suitable cut prior to the separation and then switching the
obtained separating inequalities accordingly at the end. Appropriate cuts for this purpose can be
obtained, e.g., from the best known feasible solution or by maximizing the weight function 0.5−x∗

e

for all e ∈ E. Finally, to obtain reasonable running times, we can restrict the above heuristic to
search for violated cliques of order 5 and 7 only.

6. Computational results

6.1. Test instances

As a basis for our computational experiments we took the following classes of well-established test
instances for both the max-cut problem and unconstrained quadratic 0/1 optimization.

Ising spin glass problems. We considered 2- and 3-dimensional Ising spin glass problems with
nearest neighbor interactions and periodic boundary conditions without external magnetic field.
The respective underlying interaction graphs are toroidal grids, which are square grids with ad-
ditional edges that join the outermost nodes of each row and column, respectively. Similarly, a
3-dimensional toroidal grid is a cubic grid with additional edges such that each horizontal and
vertical layer, respectively, is a 2-dimensional toroidal grid.
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We generated toroidal grids with either uniformly distributed ±1 weights or Gaussian dis-
tributed integral weights. For the ±1 weighted instances we initialized the first and the second
half of the edge weights with −1 and +1, respectively. Then, we computed a random permutation
of the edge weights. We considered toroidal (k×k) grids with k = 30, 35, . . . , 85 and 3-dimensional
toroidal grids with k = 5, . . . , 8, generating 10 random instances for each grid size.

For the instances with Gaussian distributed weights we initialized each edge weight with the
value of a standard normal random variable generated using the Marsaglia polar method [?]. The
initial values were multiplied by 105 and then rounded to the closest integer. Finally, a random
permutation was applied as well. We considered toroidal (k×k) grids with k = 30, 35, . . . , 185 and
3-dimensional toroidal grids with k = 5, . . . , 11, again generating 10 random instances per grid
size.

BiqMac library. We also tested our algorithm on instances from the BiqMac Library [?]. We
considered the three classes of quadratic 0/1 optimization problems, namely the Beasley instances,
the Billionnet and Elloumi instances, and the Glover, Kochenberger, and Alidaee instances, as well
as several max-cut problem instances whose underlying graphs were generated using the graph
generator rudy [?]. For the details on sizes, optimum values, lower/upper bounds and origin of
these instances, we refer to [?].

Frequency assignment instances. These instances were generated from real-world data on radio
frequency interferences between major Italian cities in the context of a frequency assignment
problem. The instances have been made available by C. Mannino [?]. Table ?? gives further details.
Using a custom generator, we also created a set of 91 additional instances with characteristics

Name #Nodes #Edges Density Range of weights Opt

man k48 48 1 128 1.00 [13146, 841699] 252 518 838
man k487a 487 1 435 0.01 [101, 33631] 1 110 926
man k487b 487 5 391 0.05 [5, 176030] 3 655 475
man k487c 487 8 511 0.07 [5, 203785] 8 640 860

Table 1. Properties of frequency assignment instances.

similar to those of the original frequency assignment instances.

6.2. Computational setup and algorithmic strategies

We implemented the algorithm in C++ and embedded it in the branch-and-cut framework ABA-
CUS [?]. The computational experiments were carried out on an Intel Xeon E5450 processor
with 2.5 GHz clock rate, 2 × 6 MB shared L2-Cache and 8 GB RAM. The operating system was
Debian GNU/Linux 4.0. We used ABACUS 2.3 in conjunction with the LP solver CPLEX 8.1.

In addition to the shrink separation, our branch-and-cut solver comprised four separation
procedures for cycle inequalities, namely GEN3CYC (3-cycle enumeration), GEN4CYC (4-cycle
enumeration), SHOC (spanning tree heuristic), and OC (exact cycle separation). The latter three
are identical to the procedures of the same name described in [?].

As a primal heuristic we used a combined rounding and improvement approach. It starts with a
spanning tree rounding heuristic to obtain a feasible solution from the current LP solution and then
applies a Kernighan-Lin type exchange. To avoid spending too much time, the heuristic passes
through alternating active and idle phases. In an active phase, the heuristic is called for every
LP solution until the fifth consecutive failure to improve the best known value. The following idle
phase ignores a certain number of LP solutions before switching back to an active phase. Initially,
the number of ignored LP solutions is set to 100 but doubles each time the preceding active phase
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failed at each of its improvement attempts. After the first successful such attempt, the idle length
is reset.

We used a best-first search strategy for the subproblem selection. Strong branching was done
preferring to branch on variables with current value close to 0.5 and large objective function
coefficient in absolute value. The CPU time per instance was limited to 10 hours. Tailing-off was
deactivated, i.e., we did not enforce early branching but solved the LPs until no further cutting
planes could be found. For test instances with an integral objective function we terminated the
optimization as soon as the duality gap was below 1 (and not below 2 as it could be done for the
±1 weighted 2-dimensional toroidal grids).

The contraction of Definition ?? can also be applied to a point z ∈ R
R for which we do not

know if z ∈ MET(G) is true or not. If during the contraction of edge st we find a node u ∈ B
for which zsu 6= ztu, then the nodes s, t, and u identify a violated triangle inequality that can
be now lifted to a violated cycle inequality by a sequence of node splittings. If, on the other
hand, during all the edge contractions this situation never happens, we can apply an exact cycle
separation procedure to the resulting point z. This procedure is typically quite time consuming,
thus reducing the size of the graph on which it has to be applied may reduce the overall separation
time considerably.

The following four separation scenarios were tested:

(i) CYC: exclusively uses OC. For toroidal grid graphs, however, it is only invoked in case a
preceding call of GEN4CYC failed.

(ii) CON: uses the graph contraction as a heuristic to detect violated cycle inequalities as ex-
plained above. If none are found, we perform an exact cycle separation on the contracted
LP solution.

(iii) CLQ: is initially identical to CON. Yet, if the contracted LP solution does not violate any
cycle inequalities then we extend it and separate 5- and 7-cliques, respectively.

(iv) TC: differs from CLQ in that it separates target cuts (see [?]) on the contracted LP solution
instead of clique inequalities on the extended one. For the frequency assignment instances
and the toroidal grid graphs the target cut separation uses 300 subgraphs with 10 nodes of
the contracted graph. For the remaining instances it uses 600 subgraphs with 8 nodes. Each
subgraph is initialized with a random node and then expanded by adding nodes in a greedy
manner with respect to the fractionality of the edges that join a candidate node with the
already chosen ones. The candidate to be added is the one maximizing the sum of the values
(1
2 − |ze − 1

2 |) over all its joining edges e. For the largest frequency assignment instances,
11-node subgraphs were also tried, but the results were inferior to those with subgraphs of
size 10.

We allowed each separation procedure to add up to 600 cutting planes per separation phase to
a preliminary constraint pool. Yet, only the best 300 inequalities were added to the current LP
where the cutting planes were ranked in decreasing order according to the angle of their gradient
with the objective function gradient.

6.3. Results of experiments

We start with two preliminary observations. Firstly, the scenarios CLQ and TC performed similar
to CON for all 2-dimensional grids: regardless of the scenario, only cycle inequalities were separated
in the course of the optimization. Secondly, CON ran out of memory for every G0.5 graph of order 60
and 80. This is because the cycle inequalities give very poor bounds for these instances and thus
the solver is forced to branch frequently. Technically, this would also have happened in the CYC
scenario. Yet, CYC is generally slower than CON and thus the time limit was reached before the
algorithm could run out of memory. CLQ and TC, on the other hand, were both able to solve
these instances to optimality.

We split the comparison of the performance of the separation scenarios into two parts. The
first one covers those classes in which we could solve (almost) all instances to optimality. In this
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case we use the average CPU time reduction with respect to the CYC scenario to measure the
performance of the remaining ones. For the other classes we use the gap closure with respect to
CYC as measure.

6.3.1. CPU time reduction. Table ?? lists the results on CPU time reduction. The rows refer to
the classes of test instances. The columns are organized as follows:

– ‘Class’ specifies the class of test instances. We considered Beasley instances of size n =
50, 100, 250 (beasley), Billionnet and Elloumi instances of size n = 120, 250 (be), Glover,
Kochenberger, and Alidaee instances with the settings a, b, c, and d (gka), two- and three-
dimensional toroidal grids with uniformly distributed ±1 weights (tpm) and with Gaussian
distributed integral weights (tg), unweighted graphs with edge probability 1

2 and order n = 60
(g05 60), ±1-weighted graphs of order n = 80, 100 and density d = 0.1 (pm1s), graphs of order
n = 100 and density d = 0.1 with weights chosen from the ranges [−10, 10] (w01) and [0, 10]
(pw01), and finally the original frequency assignment instances (man) as well as the artificially
generated ones (pman).

– ‘#Files’ lists the total number of instances in each class.
– ‘#Limit’ gives the number of instances per class that neither scenario could solve to optimality

within ten hours.
– ‘#Wins’ for each separation scenario lists the number of instances per class for which this

scenario took the least time to solve them to optimality. The instances counted by ‘#Limit’ were
excluded from this evaluation. The line total may exceed the number of remaining instances
since different scenarios can have almost identical CPU times. The maximum value over all
scenarios is typeset bold for each class.

– ‘#Add. rejects’ for each of the scenarios CON, CLQ, and TC gives the number of instances
per class that were excluded from the evaluation of the respective average CPU time reduction
in addition to those counted by ‘#Limit’. We rejected an instance if CYC or the respective
scenario exceeded the time limit. Nonzero entries consist of two values. The first one is the total
number of additionally rejected instances. The second value, given in parentheses, specifies how
many of these rejections were caused by a time limit violation of the respective scenario itself.
The difference between first and second value gives the number of instances that could be
solved to optimality by the respective scenario while CYC failed. The nonzero entries with
maximum such difference are typeset bold for each class.

– ‘Avg. CPU time red.’ for each of the scenarios CON, CLQ, and TC lists its respective average
CPU time reduction compared to CYC. The entries specify the reduction averaged over all
instances in a given class except for those counted by ‘#Limit’ and by the respective entry of
‘#Add. rejects’. The maximum average reduction over all scenarios is typeset bold for each
class.

Since CYC exceeded the time limit for all g05 60 instances, we used the ten hour time limit as
lower bound on the computation time. Thus, the average reduction values for this class are to
be understood as lower bounds as well. We see that CON clearly dominates with average time
reductions ranging from 54% to 97% for most of the classes and an average reduction over all
classes except g05 60 of almost 55%. Particularly noteworthy are the results for the 2-dimensional
Ising spin glass problems, even more so since CYC uses the linear time GEN4CYC heuristic. It is
remarkable that the more general shrink separation is able to outperform this specialized heuristic.

CLQ and TC, on the other hand, give mixed results and are sometimes even outperformed by
CYC. CLQ, despite partly good time reductions of up to 97%, is on average approximately 50%
slower than CYC. The results for TC are even worse at first glance, with an average time increase
of 2083%. Yet, this is due to the extremely bad performance on the gka.b instances. If we omit
this class in the evaluation, TC reaches a solid average time reduction of 35% for the remaining
classes.

6.3.2. Gap closure. Table ?? lists the results on the gap closure. Again, the rows refer to the
different instance classes. The columns ‘Class’ and ‘#Files’ are defined as before. The remaining
columns are organized as follows:
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#Wins #Add. rejects Avg. CPU time red. [%]

Class #Files #Limit CYC CON CLQ TC CON CLQ TC CON CLQ TC

beasley50 10 0 0 6 8 8 0 0 0 92 97 97
beasley100 10 0 0 6 6 4 0 0 0 97 97 96
beasley250 10 5 0 5 0 0 2(0) 3(3) 2(0) 59 9 41
be120.3 10 0 0 9 1 0 1(0) 1(1) 1(1) 57 −85 16
be250 10 6 0 4 0 0 0 1(1) 0 54 −23 47
gka.a 8 0 0 4 5 3 0 0 0 93 94 91
gka.b 10 0 0 10 0 0 0 0 4(4) 58 19 −40 215
gka.c 7 0 0 2 3 5 0 0 0 95 95 96
gka.d 10 4 0 6 1 1 1(0) 1(1) 1(1) 67 −1 41
tpm.2d 120 8 0 112 —b —b 18(0) —b —b 96 —b —b

tg.2d 320 0 0 320 —b —b 1(0) —b —b 90 —b —b

tpm.3d 40 5 5 25 4 7 1(0) 5(5) 1(1) 23 −159 −56
tg.3d 70 7 2 39 17 20 4(2) 5(5) 3(0) 44 −40 26
g05 60c 10 0 0 —a 10 0 —a 0 3(3) —a ≥87 ≥ 62
pm1s 20 0 14 6 0 0 0 0 0 −16 −309 −62
w01 10 0 8 1 0 1 0 0 0 −37 −458 −73
pw01 10 0 8 2 0 0 0 0 0 −24 −685 −102
man 4 0 0 3 1 0 2(0) 2(0) 2(0) 71 70 61
pman 57 0 7 23 27 22 9(7) 9(0) 10(3) 67 68 64

a The CON scenario ran out of memory for every instance.
b Equivalent to CON scenario.
c The CYC scenario exceeded the ten hour time limit on all instances. Instead of omitting the entire class, we

used the limit as a lower bound on the computation time of CYC.

Table 2. Statistics on the CPU times of different separation scenarios.

– ‘#Wins’ for each scenario specifies the number of instances per class for which it gave the
smallest relative gap after ten hours of computation. The line total may exceed the number
of instances since different scenarios can result in the same relative gap. The maximum value
over all scenarios is typeset bold for each class.

– ‘Avg. gap cl.’ for each of the scenarios CON, CLQ, and TC, respectively, lists its average
gap closure with respect to the CYC scenario after ten hours of computation. The maximum
average closure over all scenarios is typeset bold for each class.

CON delivered the smallest gaps in most cases; yet, its average gap closure over all classes is
only about 13%. CLQ and TC reach an average gap closure of 20% and 18%, respectively, with
peak values of 89% and 81%. Still, all three scenarios only work well for about one third of the
tested classes.

6.3.3. Frequency assignment instances. As mentioned before, the man instances are based on
real-world data. The underlying graphs are fairly sparse with densities ranging from 1% to 7%.
The only exception is man k48; yet, this instance is easy to solve and is hence omitted.

We performed additional experiments for this interesting set of instances using a variation CYC′

of the CYC scenario without CPU time limit. Also, to accelerate the optimization, it activates
the tailing-off control which enforces a branching step if the minimal change of the objective
function value between the solution of one hundred successive linear programming relaxations in
the subproblem optimization has been below 0.0015%.

Still, even CYC′ could not solve the largest instance man k487c to optimality; it eventually
ran out of memory due to the steadily growing branch-and-cut tree. For the remaining two in-
stances, Table ?? shows that CON was the dominant scenario with an average time reduction of
almost 99% compared to CYC′. CLQ and TC performed slightly worse with average reductions
of 97% and 86%, respectively, yet still being far superior to CYC′.

Table ?? lists the sizes of the branch-and-cut trees at the end of each optimization run. CON
reduced the tree size by 26% on average. Still, the scenario needed to branch, indicating that
cycle inequalities alone are not sufficient to solve these instances at the root node. Here, the
remaining two scenarios are clearly preferable. CLQ reduced the tree size by 74% on average while
TC was even able to solve both instances at the root node.
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#Wins Avg. gap cl. [%]

Class #Files CYC CON CLQ TC CON CLQ TC

beasley500 10 0 8 2 0 68 68 68
be100 10 0 10 0 0 10 4 −18
be120.8 10 0 10 0 0 6 0 −8
be150.3 10 0 9 0 1 29 −23 13
be150.8 10 2 4 3 1 4 4 4
be200.3 10 7 3 0 0 1 −2 1
be200.8 10 6 0 3 1 −17 −5 −20
gka.e 5 3 2 1 2 11 4 10
gka.f 5 3 1 1 0 −4 −5 −5
g05 80 10 0 —a 10 0 —a 89 81
g05 100 10 0 1 7 2 26 59 65
pm1d 20 0 19 1 0 19 11 7
w05 10 0 9 0 1 43 33 41
w09 10 0 10 0 0 19 13 8
pw05 10 0 0 10 0 12 69 56
pw09 10 0 2 8 0 6 8 2
pman 34 5 0 25 4 -12 22 7

a The CON scenario ran out of memory for every instance.

Table 3. Statistics on the gap closure for different separation scenarios.

CPU time [sec]

Instance CYC′ CON CLQ TC

man k487a 209 6 11 58
man k487b 38 167 42 82 243
man k487c —a —a 28 316 31 133

a Out of memory error.

Table 4. CPU times for frequency assignment instances.

#Nodes in B&C-tree

Instance CYC′ CON CLQ TC

man k487a 31 39 11 1
man k487b 41 9 7 1
man k487c —a —a 15 9

a Out of memory error.

Table 5. Number of nodes in the branch-and-cut tree for frequency assignment instances.

On the largest instance man k487c, both CYC′ and CON ran out of memory. CLQ and TC,
on the other hand, were able to solve the instance to optimality within 7 hours 52 minutes and 8
hours 39 minutes, respectively.

In conclusion, the CON scenario, though capable of accelerating the optimization significantly,
may not be sufficient to solve certain problems to optimality. The more difficult problems can be
dealt with by separating additional clique inequalities or target cuts. If a slight increase in CPU
time is not an issue, one can even apply the target cut separation to the easier problem instances,
which allows to solve them at the root node instead of resorting to branching.

6.3.4. Effect of graph shrinking. Finally, we present some statistics on the sizes of the contracted
graphs. In the course of the cutting plane procedure, we consecutively numbered those LP solutions
for which the shrink separation never performed an edge contraction leading to a violated 3-cycle
inequality, i.e., in which the graph contraction was not prematurely aborted. Figure ?? shows the
sizes of the contracted graphs for each of the toroidal (100× 100) grids with Gaussian distributed
weights as well as for the instance man k487b. The horizontal axis is labeled with the above
LP solution numbering and the vertical axis gives the size of the corresponding shrunk graphs.
Figure ?? displays the results, in standard scaling, for the toroidal (100 × 100) grids; here, we



Lifting and separation procedures for the cut polytope 19

superimposed the data of the ten random instances (see Section ??). Figure ?? shows the same
results in logarithmic scaling. Finally, Figure ?? provides the respective data, in standard scaling,
for the instance man k487b.
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Fig. 8. Sizes of contracted graphs.

7. Conclusion

In this paper we have developed a new separation approach for the the max-cut problem in gen-
eral graphs. The idea of shrinking graphs associated with fractional LP solutions has proved to
be successful in many cases. Clearly, the success heavily depends on the max-cut instance. As
a byproduct the shrinking procedure provides a very fast separation heuristic for cycle inequali-
ties which together with an exact separation algorithm constitutes the ideal approach to finding
violated cycle inequalities.
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