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Abstract

The problem of minimizing a continuously differentiable convex function over an intersection of 

closed convex sets is ubiquitous in applied mathematics. It is particularly interesting when it is 

easy to project onto each separate set, but nontrivial to project onto their intersection. Algorithms 

based on Newton’s method such as the interior point method are viable for small to medium-scale 

problems. However, modern applications in statistics, engineering, and machine learning are 

posing problems with potentially tens of thousands of parameters or more. We revisit this convex 

programming problem and propose an algorithm that scales well with dimensionality. Our 

proposal is an instance of a sequential unconstrained minimization technique and revolves around 

three ideas: the majorization-minimization principle, the classical penalty method for constrained 

optimization, and quasi-Newton acceleration of fixed-point algorithms. The performance of our 

distance majorization algorithms is illustrated in several applications.
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1 Introduction

A wide spectrum of problems in applied mathematics and statistics can be formulated as an 

instance of the convex programming problem

(1)

where ℓ(x) is continuously differentiable and convex and the Ci are closed convex sets in 

. At one extreme, problem (1) includes classical least squares. At the other, it includes 
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finding a feasible point in the intersection of several closed convex sets. In between, the 

formulation covers a variety of shape restricted regression problems such as fitting a support 

vector machine (SVM) and projecting an exterior point onto a complicated convex set. Great 

progress has been made in attacking specific incarnations of problem (1). The projected 

gradient algorithm and its Newton and quasi-Newton extensions have been very successful 

when constraints are simple, for example box constraints, and admit a correspondingly 

simple projection operator [5,28,42,44]. However, there is still room for improvement. In 

the current paper we present a unified approach to solving a smoothed relaxation of problem 

(1) via the majorization-minimization (MM) principle [29]. This approach is especially 

attractive when it is easy to project onto each separate set Ci but nontrivial to project onto 

their intersection.

Problem (1) can be written as the unconstrained optimization problem

(2)

where the indicator function δC(x) equals 0 if x ∈ C and ∞ if not. Although problem (2) is 

now unconstrained, the indicator functions introduce two challenges. The new objective 

function takes on infinite values and is non-differentiable. This prompts us to replace δC(x) 

by a finite valued smooth approximation , where ∥ · ∥2 

denotes the standard Euclidean norm. Further progress can be made by solving the related 

problem

(3)

where μ is a positive parameter that penalizes deviation from the original feasible region. 

The smooth approximation introduced in formulation (3) is an example of the quadratic 

penalty method [4,38,43]. Problem (3) has many appealing features. The problem is 

unconstrained with an objective function that is convex and differentiable when ℓ(x) is 

convex and differentiable. Consequently optimality conditions can be readily identified. The 

distance function is closely tied to the projection PC(x) of x onto C; specifically dist(x, C) = 

∥x − PC(x)∥2, and ▿dist(x, C)2 = 2[x − PC(x)]. Thus, a point x solves problem (3) if and only 

if it satisfies the stationarity condition

Of course finding such an x is often analytically intractable due to the projection term. To 

solve (3) iteratively, we resort to the MM principle. Because we rely on majorizing dist(x, 

C), we call our approach distance majorization. A key step in solving the subproblems will 

be calculating projection operators. Fortunately, many useful projection operators are easy to 

compute. The best known examples include projection onto: (a) a closed Euclidean ball, (b) 

a closed rectangle, (c) a hyperplane, (d) a closed halfspace, (e) a vector subspace, (f) the set 

of positive semidefinite matrices, (g) the unit simplex, (h) a closed ℓ1 ball, and (i) an isotone 
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convex cone. While there are no analytic solutions for the last three projections, there are 

efficient algorithms for computing them [1,20,33,40,46].

The rest of the paper is organized as follows. After a brief review of the MM principle and 

its place among related iterative minimization schemes, we illustrate the virtues of distance 

majorization in five different problem areas: (a) finding a point in the intersection of a finite 

collection of closed convex sets, (b) projection of a point onto the closest point in the 

intersection of a finite collection of closed convex sets, (c) convex regression, (d) 

classification via support vector machines, and (e) the facilities location problem. The 

literature on some of the examples is enormous, so we apologize in advance for omitting 

relevant references and slighting the ramifications of the various models. After our tour of 

examples, we present relevant convergence theory in a general algorithmic framework. Our 

concluding discussion indicates a few extensions and limitations of distance majorization.

2 The MM principle and distance majorization

Although first articulated by the numerical analysts Ortega and Rheinboldt [39], the MM 

principle currently enjoys its greatest vogue in computational statistics [3,31]. The basic idea 

is to convert a hard optimization problem (for example, non-differentiable) into a sequence 

of simpler ones (for example, smooth). The MM principle requires majorizing the objective 

function f(y) by a surrogate function g(y ∣ x) anchored at the current point x. Majorization is 

a combination of the tangency condition g(x ∣ x) = f(x) and the domination condition g(y ∣ x) 

≥ f(y) for all . The iterates of the associated MM algorithm are defined by

(4)

Because

(5)

the MM iterates generate a descent algorithm driving the objective function downhill. Strict 

inequality usually prevails unless xn is a stationary point of f(x).

The most useful majorization of dist(x, C) follows immediately from the observations

Algorithm 1

Distance majorization

1: Given μ0 > 0 and a starting point x0.

2: k ← 0

3: repeat

4:    y ← xk

5:    repeat
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6:      fori = 1, … ,mdo

7:        pi ← PCi (y)

8:      end for

9:   y ← arg min
u

ℓ(u) + μk∑i=1
m ∣ ∣ u − pi ∣ ∣

2
2

10:    until convergence

11:    Choose new penalty parameter μk+1 > μk

12:    k ← k + 1

13:    xk ← y

14: until convergence

for all pairs x and xn. In practice, majorizing dist(x, C)2 by  leads to more 

convenient updates than majorizing dist(x, C) by ∥x − PC(xn)∥2. Most of our applications 

can be phrased as minimizing the criterion

(6)

for a convex loss ℓ(x), a collection {C1, … , Cm} of closed convex sets, a positive 

penalization parameter μ, and a corresponding set of positive weights γ1, … , γm. Without 

loss in generality, we can require γi to sum to one, since scaling of the weights can be 

absorbed into the overall penalty parameter μ. Uniform weights equally penalize an iterate’s 

violation of each constraint. Nonuniform weights will penalize constraint violations 

differently. This can be a useful mechanism if it is more important to satisfy some 

constraints over others in an application. In this paper we consider examples where 

constraints are all equally important and consequently employ uniform weights. For 

notational simplicity, we drop the weights from the remainder of our exposition but note that 

they can be employed in all the examples we cover. The introduction of weights also leaves 

the convergence analysis presented later untouched. Algorithm 1 shows the pseudocode for 

the distance majorization algorithm.

We highlight the fact that the algorithm does not require the projection onto the intersection 

but rather only the projection onto each of the constituent sets Ci. As we will see in our first 

example, distance majorization can be considered a generalization of the simultaneous 

projection algorithm for finding a point in the intersection of a collection of closed convex 

sets. We note, however, that distance majorization is not unique in this regard. For 

comparison’s sake, we will also present a dual ascent algorithm at the end of the next section 

that employs projections onto the constituent sets. Although the two methods exhibit 

comparable empirical performance, the distance majorization algorithm is guaranteed to 

converge under weaker conditions than the dual ascent algorithm.

Finally, we note that MM algorithms are often plagued by a slow rate of convergence in a 

neighborhood of the minimum point. To remedy this situation, we employ quasi-Newton 

acceleration. MM algorithms can be accelerated via Newton’s method just as the classic 

gradient descent algorithm. Adjusting the direction of steepest descent to account for the 
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curvature in the objective yields more efficient step directions, and the number of iterations 

to a minimum can be drastically reduced. Newton’s method, however, requires computing 

and storing a full Hessian matrix, a demanding task in high-dimensional problems. To ease 

the computational burden, quasi-Newton methods obtain curvature information by 

approximating the Hessian with secants or differences between successive iterates. Using 

more secants leads to better approximations of the Hessian initially, but using too many 

secants can actually lead to a poorer approximation as a smaller collection of secants can 

adapt more dynamically to changes in the curvature as the iterations proceed. Moreover, 

using more secants entails additional storage and computation. In the following examples, 

we use either two or five secants. Using a handful of secants is a modest additional burden 

in computation and storage but leads to noticeable acceleration in our MM algorithm. For 

details on the scheme we employed as well as comparisons with alternative acceleration 

schemes, we direct readers to our earlier paper [49].

2.1 Sequential unconstrained minimization

During the review of this paper, a referee brought to our attention that the MM algorithm is 

an instance of a broad class of methods termed sequential unconstrained minimization [22]. 

Consider minimizing f(x):  over a closed, non-empty set . In sequential 

unconstrained minimization, we generate a sequence of iterates that minimize an 

unconstrained surrogate

where the auxiliary functions hn(x) encode information about the constraint set C.

When hn(x) is chosen so that hn(x) ≥ 0 for all x and hn(xn−1) = 0, then

This is a restatement of the descent property of an MM algorithm. In fact, we can identify 

Gn(x) = g(x ∣ xn−1) and hn(x) = g(x ∣ xn−1) − f(x). The tangency and domination conditions 

of the MM principle can be expressed alternatively as

where hn(x) ≥ 0 and hn(xn−1) = 0.

Byrne [13] introduced an important subset of sequential unconstrained minimization 

methods in which the auxiliary functions hn(x) satisfy

(7)

Methods satisfying (7) are examples of sequential unconstrained minimization algorithms 

(SUMMA) and generate iterates for which f(xn) converges to infx∈Cf(x). The SUMMA class 

includes a wide range of general iterative methods including barrier and penalty function 
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methods, forward-backward splitting methods, and instances of the expectation 

maximization (EM) algorithm to name a few. Readers can consult the references [10,13,14] 

to learn more about the breadth and applicability of the SUMMA class.

Given that examples of the EM algorithms have been shown to belong to the SUMMA class 

[14] and that EM algorithms are a special case of the MM algorithm [48], it is natural to 

wonder if MM algorithms, which have now been shown to be SUMMA, belong to the 

SUMMA class. The answer to this question is not immediately obvious. It is possible to 

concoct majorizations that fail to meet the SUMMA condition. Rewriting the SUMMA 

condition (7) in terms of majorizations yields

(8)

for all x. Roughly speaking, (8) says that a sequence of majorizations should be hugging f(x) 

uniformly more closely as the iterations proceed. While this is intuitively desirable, it is not 

necessary to ensure convergence of an MM algorithm.

Nonetheless, it can be non-trivial to declare an iterative algorithm to be outside the SUMMA 

class, since we must prove that the resulting iterative algorithm could not be derived from 

some sequence of auxiliary functions that do obey (7). Although majorizations chosen may 

violate the SUMMA condition, the resulting iterative algorithm may ultimately belong to the 

SUMMA class. In the “Appendix” we give an example of a convergent MM algorithm with 

a surrogate function that fails condition (8) globally. Locally the algorithm does belong to 

the SUMMA class. The ambiguity about the proper domain of an algorithm spills over into 

selection of starting points and highlights the practical benefits of the MM principle, which 

leaves the door ajar to less restrictive auxiliary functions. Fortunately, the qualitative 

features of convergence carry over to this broader set of auxiliary functions.

3 Examples of distance majorization

3.1 Finding a feasible point

When the intersection  is nonempty, majorization can be employed to locate a 

point in C. The general idea is to drive the convex combination

(9)

to 0. Minimization of the surrogate function

leads to the well-known simultaneous projection algorithm
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The earliest version of this algorithm is attributed to Cimmino [17]. It does not necessarily 

find the closest point in C to x. The evidence suggests that simultaneous projection 

converges more slowly than alternating projection [15,24]. However, simultaneous 

projection enjoys the advantage of being parallelizable. One can invoke the theory of 

paracontractive operators to prove the convergence of both simultaneous and alternating 

projections [11].

The alternating projection algorithm can also be derived by distance majorization. The least 

distance between two closed convex sets C1 and C2 can be found by minimimizing dist(x, 

C2)2 over x ∈ C1. If we majorize dist(x, C2) by the surrogate function ∥x − yn∥2, where yn = 

PC2(xn), then the minimum of the surrogate occurs at PC1(yn) = PC1[PC2(xn)]. When the two 

sets intersect, the least distance of 0 is achieved at any point in the intersection. Thus, the 

MM principle provides very simple and direct derivations of the simultaneous and 

alternating projection algorithms.

Distance majorization can be generalized by replacing Euclidean distances with Bregman 

divergences. For simplicity we limit our discussion to Bregman divergences generated by 

strictly convex twice differentiable functions ϕ(x). The Bregman divergence

is a convex function of y anchored at x and majorizing 0. For instance, the four convex 

functions ϕ1(y) = ∥y∥2, ϕ2(y) = − ∑i log yi, ϕ3(y) = ∑iyi ln yi, and ϕ4(y ∣ x) = ytM y generate 

the Bregman divergences

The matrix M in the definition of ϕ4(y) is assumed positive definite.

The Bregman projection  onto a closed convex set C is defined as
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Under suitable additional hypotheses, the Bregman projection exists. It is unique because 

ϕ(x) is strictly convex. Moreover,  (equivalently ) exactly 

when x ∈ C. The analogue of the proximity function (9) is the proximity function

(10)

If we abbreviate , then the function

majorizes f (x). The MM principle suggests that we minimize ϕ(x ∣ xn). A brief calculation 

produces the stationarity condition

where ▿2ϕi(x) denotes the Hessian of ϕi(x). Readers can consult [12] for a more in depth and 

thorough treatment of minimizing the proximity function (10).

3.2 Projection onto the intersection of closed convex sets

We next consider how distance majorization can be used to find the closest point in the 

intersection C to a point y. This involves minimizing the strictly convex function

for μ large. The solution x(μ) tends to the optimal point as μ tends to ∞. The MM update for 

minimizing the surrogate function

is the convex combination

(11)

The corresponding algorithm map ψ(x) = arg minugμ(u ∣ x) is strictly contractive with 

contraction constant c = μ/(1 + μ). According to the contraction mapping theorem, the 

iterates converge to the unique fixed point at geometric rate c. This fixed point coincides 

with the minimum point of the function fμ(x). Indeed, fμ(x) is differentiable with gradient
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Rearrangement of the stationarity condition ▿fμ(x) = 0 gives the fixed point condition

One can generalize these results in various ways. For instance, if we replace Euclidean loss 

by weighted Euclidean loss , then the MM update of the penalized loss 

has components

The quadratic penalty method suffers from roundoff errors and numerical instability for 

large μ. These are mitigated in the MM algorithm since its updates (11) rely on stable 

projections and avoid matrix inversion. The slow rate μ/(1 + μ) of convergence for large μ is 

an issue. In practice one can improve the rate of convergence by starting μ small and 

gradually increasing it to its target value. For a fixed μ one can also accelerate the MM 

iterates by systematic extrapolation. For instance, our quasi-Newton acceleration [49] often 

reduces the required number of iterations by one or two orders of magnitude.

3.2.1 Projection as a dual program—For the sake of comparison, we describe a dual 

algorithm for solving the projection problem. This alternative algorithm can be accelerated 

by Nesterov’s method [2,37]. The unaccelerated dual algorithm is a variation of Dykstra’s 

algorithm [21], which solves the dual problem by block descent.

To derive the dual problem, we first observe that the primal problem consists of minimizing

subject to x1 = x, … , xm = x. The Lagrangian for the primal problem is

If z = (z1, … , zm) denotes the concatenation of the dual variables zi, then the dual function
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reduces to

where . The dual function can be maximized by the proximal gradient algorithm

For the sake of clarity, we have adopted novel notation in this derivation;  and  denote 

the nth iterate of the ith primal and dual variables respectively.

Derivation of this algorithm and its Nesterov acceleration (FISTA) appear in the 

“Appendix”. The dual updates, which are essentially projection steps, can be computed in 

parallel. Thus, the dual algorithm matches the MM algorithm in this regard.

3.2.2 Projecting onto the set of doubly nonnegative matrices—As a numerical 

example, consider the problem of projecting a symmetric matrix onto the set of doubly 

nonnegative matrices, namely the intersection of the set of nonnegative matrices with the set 

of positive semi-definite matrices. Many covariance matrices – for example, kinship 

matrices in statistical genetics – have nonnegative entries. Projection onto each of the 

component sets is relatively easy while projection onto the intersection is not. Projecting 

onto the set of nonnegative matrices is accomplished by setting all negative entries of a 

matrix to zero. Projecting onto the set of positive semi-definite matrices is accomplished by 

truncating the eigenvalue decomposition of the matrix and rejecting all outer products with 

negative eigenvalues.

As a test case, we generated a 200-by-200 matrix with independent and identically 

distributed (i.i.d.) entries drawn from a standard normal distribution. After projecting the 

simulated matrix onto the space of symmetric matrices, we compared the distance 

majorization algorithm to its quasi-Newton acceleration (2 secants), the dual proximal 

gradient algorithm, and its FISTA acceleration. We implemented the MM algorithm with the 

geometrically increasing sequence μi = 2i − 1 of penalty constants μ. The decision to switch 

to the next larger μ was based on the ratio

(12)
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Whenever this ratio fell below ρ = 10−4, we updated μ. To track the progress of each 

algorithm, we calculated two measures of constraint violation by the current matrix: (a) the 

absolute value of the most negative eigenvalue, and (b) the absolute value of the most 

negative entry. Figure 1 plots the maximum of the two constraint violations on a log scale at 

each iteration. The abrupt transitions in the MM and quasi-Newton MM paths reflect the 

switch points for the penalty constant μ. Obviously, the amount of work done in each iterate 

varies across the methods. For a more direct comparison, Table 1 records several statistics, 

including run times in seconds. In the table, the distance column conveys the Frobenius 

norm of the difference between the simulated matrix and the fitted matrix. The two featured 

algorithms perform about equally well. As expected, their accelerated versions do much 

better.

3.2.3 Shape-restricted regression—Isotone regression minimizes the least squares 

criterion  subject to the isotonic constraint x1 ≤ … ≤ xn. This problem is 

readily amenable to the projection algorithm. Projection onto the isotone convex cone

is rapidly accomplished by the pool adjacent violators algorithm [1,40,46]. More 

complicated order restrictions such as xi ≤ xj for all arcs (i, j) in a directed graph can be 

handled as well. In this setting all components of a vector x projected on the convex set Cij = 

{x : xi ≤ xj} are left untouched except components xi and xj, These are left untouched when 

xi ≤ xj. Both xi and xj are replaced by their average when xi > xj.

We considered the problem of fitting a nondecreasing function to the data shown in Fig. 2 

(black dots). Each observed pair (xi, yi) was generated as follows. The xi are equally spaced 

points between 1 and 3, and the yi satisfy

where the ∊i are i.i.d. standard normal deviates. For the MM algorithms we used the 

geometrically increasing sequence of penalty constants μi featured in the previous example 

and two secant conditions for the quasi-Newton acceleration. We switched to the next value 

of μ whenever the stopping criterion (12) fell below ρ 10−6. A looser threshold ρ = 10−4 

resulted in unacceptably poor fits for these data.

To track the progress of each algorithm, we measured the constraint violation of an iterate as 

the maximum absolute constraint violation between two successive parameters. Figure 2 

shows that all four algorithms return similar solutions under the specified stopping rule. 

Figure 3 plots the constraint violation for each method on a log scale. Table 2 compares 

timing results and constraint violations at convergence. In the table the distance column 

conveys the Euclidean norm of the difference between observed points and fitted points. 

Compared to the previous example, we see an even greater improvement in the performance 

in the accelerated versions of the two algorithms. In general, it is safe to conclude that 
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distance majorization is a viable alternative to its most likely fastest competitor in non-

smooth convex optimization.

3.2.4 Least squares fitting with convex functions—Given responses yi, predictor 

vectors xi in , and case weights wi, convex regression seeks to minimize the sum of 

squares of residuals

subject to the constraints  for every ordered pair (i, j) [9]. In effect, θi 

is viewed as the value of the regression function θ(x) at the point xi. The unknown vector 

 serves as a subgradient of θ(x) at xi. Because convexity is preserved by maxima, the 

formula

defines a convex function with value θi at x = xi. In concave regression the opposite 

constraint inequalities are imposed. Interpolation of predicted values in this model is 

accomplished by simply taking minima or maxima. Estimation reduces to a positive 

semidefinite quadratic program involving n(p + 1) variables and n(n − 1) inequality 

constraints. Note that the feasible region is nontrivial because it contains the point (θ,Ξ) = 

(0, 0), where Ξ = [ξ1, … , ξn].

The penalized objective function is

where . Let PCjk(θ, Ξ)i and PCjk(θ, Ξ)ℓ denote the 

components of PCjk(θ, Ξ) relevant to θi and ξl, respectively. The surrogate function

admits the minimizer
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The projection operator PCjk is easy to compute because Cjk is a half-space. Furthermore, if 

we define the quantities

then the sums entering the MM updates reduce to

evaluated at θ = θm and Ξ = Ξm.

Figure 4 displays a randomly generated data set with 51 data points and the corresponding 

least squares fit with convexity constraints. We employed the same geometrically increasing 

sequence of μ used earlier, took five secant conditions for the quasi-Newton acceleration, 

and set the stopping criterion (12) to ρ = 10−8. The MM algorithm requires 8,940 iterations 

and 4.12s in total to achieve the objective value of 1.0709 and the maximal constraint 

violation at order of 7 × 10−9.

3.2.5 Support vector machine—Given data (yi, xi), i = 1, … , n, where yi ∈ {−1, 1} and 

, the goal of discriminant analysis is to choose classification labels yi using the p-

dimensional predictor xi. The SVM [47] is one of the most popular classifiers and 

potentially benefits from distance penalization. Here the problem is to minimize the 

quadratic loss function

subject to the inequality constraints

using slack variables ∊i ≥ 0. See Example 15.5.2 of the book [30] for further details about 

problem formulation and passing to the dual. In the following we assume that the first 

element of xi is 1, and thus the intercept b is absorbed in the parameter θ. Then the penalized 

objective function is
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where . Minimizing the surrogate function

subject to the non-negativity of ∊i yields the next iterate

Because Cj is a half-space,

where the vector ej has all entries equal to 0 except for a 1 at entry j.

We report the results on an example SVM problem with a training data set of n = 1, 371 

observations and p = 7 features. We employed the same geometrically increasing sequence 

of μ and the same stopping criterion ρ used in the previous example. At λ = 10, the MM 

algorithm takes 14,432 iterations and 2.69s to achieve the objective value 489.0058 and the 

maximal constraint violation 8.6 × 10−9.

As a generalization, consider the kernel SVM [45] attractive in handling p ⪢ n problems. 

The optimization problem is to minimize

subject to

Common choices of kernels include the polynomial kernel

and the Gaussian kernel
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Since K is positive semi-definite, it can be expressed in terms of a Cholesky decomposition 

K = LLt. With reparameterization α = Ltθ, the problem transforms to

subject to

which is essentially the same as the original SVM. The Cholesky decomposition costs n3/6 

flops and might be a concern for data with huge number of observations. Some kernels used 

in genomics are naturally low rank with trivial Cholesky factors ℓ and Lt. Even for a full-

rank kernel K , one can resort to the fast Lanczos algorithm [23] to extract its top r eigen-

pairs  and set , an n × r matrix.

3.3 The fire station problem

Finally, we give another example that distance majorization need not be fettered to 

Euclidean distances. Indeed, Euclidean distances may be inappropriate in some problems. 

Consider the problem of determining the optimal location of a new fire station in a city 

where the streets occur on a rectangular grid. The station should be situated to guarantee the 

shortest routes to several major buildings spread throughout the city. This is just the 

generalized Heron problem with the ℓ1 norm substituting for the Euclidean norm [16]. More 

general treatment of the problem under arbitrary norms and infinite dimensions can be found 

in [34–36]. Here we are concerned with efficient computation with a particular norm. The 

projection operators  are now harder to calculate. Indeed, they are often sets rather 

than points. Fortunately, when C is a rectangle [a, b] with sides parallel to the standard axes, 

 is a point with components

To minimize the objective function, we minimize the surrogate function
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Because the ℓ1 norm separates variables, we obtain a very simple update formula.

Consider the example where the buildings have centers (−7, 0.5), (−5, −8), (4, 7), (5, 2), and 

(−4, 6) and half-side lengths of 0.5. Minimizing the sum of ℓ1 and ℓ2 distances yields the 

results shown in Fig. 5. The optimal position clearly depends on the underlying norm. For 

more general ℓ1 problems, the solution may not be unique because the projection operator 

does not reduce to a single point.

4 Convergence analysis

We now prove convergence of the distance majorization algorithm under conditions 

pertinent to Euclidean distances. For broader impact, we relax the convexity requirement on 

ℓ(x). For example, in statistics, the objective function corresponding to many widely used 

robust estimators are often not-convex [26]. Some of our convergence results hold for such 

objective functions. When ℓ(x) is convex, it is possible to prove stronger results, and we 

comment on what changes when convexity is assumed. Let us first consider the convergence 

of the MM algorithm for solving subproblem (3). The convergence theory of MM 

algorithms hinges on the properties of the algorithm map ψ(x) ≡ arg minyg(y ∣ x). For easy 

reference, we state a simple version of Meyer’s monotone convergence theorem [32] 

instrumental in proving convergence in our setting.

Proposition 1

Let f(x) be a continuous function on a domain S and ψ(x) be a continuous algorithm map 

from S into S satisfying f(ψ(x)) < f(x) for all x ∈ S with ψ(x) ≠ x. Suppose for some initial 

point x0that the set

is compact. Then (a) limm→∞∥xm+1 − xm∥ = 0, (b) all cluster points are fixed points of ψ(x), 

and (c) xm converges to one of the fixed points if they are finite in number.

The function f(x) is the objective to be minimized. In our context, the objective function is 

. We make the following assumptions: (a) ℓ(x) is 

continuously differentiable and  is convex for some constant κ > 0, (b) fκ(x) is 

coercive in the sense that lim∥x∥→∞fκ(x) = ∞, and (c) μ > κ. Note that fμ(z) inherits 

coerciveness from fκ(z). Assumption (b) is met in several different scenarios, for example, if 

at least one of the Ci is bounded or if ℓ(x) itself is coercive. When ℓ(x) is convex, 
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 is convex for any κ > 0. Consequently, assumption (c) holds for any positive 

μ. If f(x) is non-convex, but the smallest eigenvalue of the Hessian d2f(x) is bounded below 

by λ, then one can take κ = −λ. As a rule, it can be challenging to identify κ in advance, and 

consequently in practice we would not know how large to choose μ to ensure the conditions 

for convergence when κ is unknown. Nonetheless, κ can be explicitly determined in many 

useful cases. In the “Appendix”, we derive κ for the classic Tukey biweight of robust 

estimation.

Proposition 2

The cluster points of the MM iterates for solving subproblem (3) are stationary points of 

fμ(x) under assumptions (a) through (c) above. If the number of stationary points is finite, 

then the MM iterates converge. Finally, if fμ(x) has a unique stationary point, then the MM 

iterates converge to that stationary point, which globally minimizes fμ(x).

Proof—We first argue that the surrogate function gμ(y ∣ x) is strongly convex, a crucial fact 

invoked later. For all x, y, and z, Assumption (a) implies

which in turn entails

(13)

The quadratic expansion

(14)

also holds. Combining inequality (13) with equality (14) leads to

which is equivalent to the strong convexity of y ↦ gμ(y ∣ y). In view of this result, y ↦ gμ(y 
∣ x) has a single stationary point, which is also its unique global minimizer.

We now proceed to check the conditions given in Proposition 1. It is easy to verify that fμ(x) 

is continuous. We must also show that the algorithm map ψ(x) is continuous. Take an 

arbitrary convergent sequence xn that tends to the limit x. It suffices to prove that the 

sequence yn = ψ(xn) tends to y = ψ(x). Now there exists a constant b such that
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for all xn. In view of the descent property, we have fμ(yn) ≤ fμ(x) + b as well. Hence, 

coerciveness implies yn is bounded. Consider any convergent subsequence ynk with limit z. 

The points ynk and xnk are related through the stationarity condition

Since ℓ(x) is continuously differentiable and Euclidean projections are continuous functions, 

taking limits gives,

Because the surrogate function z ↦ gμ(z ∣ x) possesses a unique stationary point y, the 

subsequence ynk converges to y. Given this conclusion for all subsequences of the bounded 

sequence yn, the sequence yn in fact converges to y.

The strict descent property of ψ(x) follows from the uniqueness of the global minimizer of 

gμ(y ∣ x). Because fμ(x) is coercive and continuous (in fact, continuously differentiable), the 

set  is compact for any initial point x0. Therefore, Proposition 1 implies that all 

cluster points of the sequence xn+1 = ψ(xn) are fixed points. Since ▿fμ(x) = ▿gμ(x ∣ x), fixed 

points coincide with stationary points of fμ(x). If fμ(x) has finitely many stationary points, 

conclusion (c) of Proposition 1 implies that the iterates converge to one of the stationary 

points. If the coercive function fμ(x) possesses a single stationary point, then that point 

represents a global minimum, and the MM iterates xn converge to it.

Observe that Proposition 2 does not explicitly require the loss function ℓ(x) to be convex. 

This is in sharp contrast to the strong convexity condition on ℓ(x) needed to ensure the 

global convergence of the dual ascent algorithm. The convergence of the dual ascent method 

is discussed further in the “Appendix”. For a sequence of penalization parameters μk ↑ ∞, 

we intuitively expect the solutions to the penalized problems to approach a solution to the 

original problem. Indeed, this is the case. We restate Theorem 17.1 in [38] in our notation.

Proposition 3

Suppose each x(μk) exactly solves subproblem (3), and that μk ↑ ∞. Then every cluster point 

of the sequence x(μk) is a global solution to the original problem (1).

When ℓ(x) is coercive and possesses a unique minimizer subject to the constraints, one can 

justify the stronger claim that the sequence x(μk) converges to the minimizer. Under these 

assumptions the sequence x(μk) is bounded and possesses exactly one cluster point. 

Therefore, the sequence x(μk) converges to that cluster point. Boundedness of x(μk) follows 

from the inequalities
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for any feasible point y.

5 Discussion

The MM principle is a versatile tool. Here we demonstrate how majorizing a distance 

function can be leveraged to solve a variety of optimization problems with non-trivial 

convex constraints. The resulting MM algorithms have simple update formulas that open the 

door to straightforward parallelization and graceful handling of large data sets. In the case of 

projection onto an intersection of closed convex sets, we have demonstrated that accelerated 

variants of the MM algorithm are competitive with the current state-of-the-art algorithms for 

solving non-smooth convex programs.

Several of our examples rely on the classical penalty method. This raises the questions of 

how to select the ultimate penalty constant and how fast to increase it from a low starting 

value. The quality of our solutions and the rate of convergence of the MM algorithms 

depend on these choices. We have given some rough guidelines that work well in practice, 

but more theoretical and empirical insight would be helpful. We have not encountered 

disastrous numerical instabilities in using the penalty method, partially because all of our 

computations were carried out in double precision.

Distance majorization works best for Euclidean distance. This follows from the fact that 

explicit formulas are available for several important projection operators. For others, such as 

projection onto the unit simplex, fast algorithms have been devised. Nonetheless, as the 

feasible point and fire station examples show, distance majorization can be applied to non-

Euclidean distances. Is it possible to devise fast MM algorithms for computing non-

Euclidean distances? This is an problem area deserving more thorough study.

In the examples we considered here all constraint violations were equally weighted. In 

problems where some constraints are softer than others, employing nonuniform weights on 

the penalty terms in the objective function (6) may be advantageous. Introducing 

nonuniform weights does not change our qualitative conclusions about convergence but may 

improve the numerical performance of the algorithm if constraint violations are weighted 

differently.

Another intriguing issue is the application of distance majorization to minimization of non-

convex loss functions ℓ(x) over the intersection of convex sets. In statistics, many useful 

robust parameter estimates employ non-convex ℓ(x), for example Tukey’s biweight function 

and more generally M-estimators [26]. Although the strongest convergence guarantees 

require the uniqueness of a global solution, much of the convergence theory remains intact if 

convexity is no longer assumed. Our convergence theory shows that the convexity 

assumption on ℓ(x) can be relaxed. Extending these results and constructing new practical 

examples are worthy targets of future research.
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Appendix

Dual ascent algorithm

We derive a modest generalization of an iterative algorithm for the dual of the projection 

problem [19]. Because constructing the dual program and the associated projected gradient 

algorithm are exercises in modern convex analysis, we first review a few key facts from this 

discipline. Readers can consult the references [6,8,25,41,43] for proofs and further 

background material.

The Fenchel conjugate f⋆(y) of a function f(x) is defined as

When f(x) is convex and lower semicontinuous, it satisfies the biconjugate relation f⋆⋆(x) = 

f(x). In particular, the conjugate of the indicator function δC(x) of a set C is the support 

function

of C. When C is closed and convex, .

Recall that a function f(x) is strongly convex with parameter η > 0 if the difference 

 is convex. Thus, a strongly convex function has a curvature bounded away 

from zero. If f(x) is strongly convex, then the value f⋆(y) is attained at a single point x. In 

this case, f⋆(y) is differentiable with gradient ▿f⋆(y) = x. Furthermore, ▿f⋆(y) satisfies the 

Lipschitz inequality

Lipschitz continuity ensures global convergence of the proximal gradient algorithm for 

solving the dual problem. The proximity-operator proxh(z) associated with a function h(x) is 

defined as

Here the right hand side has a unique minimizer whenever h(x) is convex and lower 

semicontinuous. The proximal gradient method [37] is guaranteed to minimize the function 

f(x)+g(x) when f(x) is differentiable, convex, and has a Lipschitz continuous gradient, and 
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g(x) is lower-semicontinuous and convex. The proximal gradient method iterates according 

to

where σ denotes a step size and xn the nth iterate. We recover the classic gradient descent 

method when g(x) is the zero function, and we recover the projected gradient algorithm 

when g(x) = δC(x) is the indicator of a closed convex set C. Thus, the proximal gradient 

algorithm generalizes two important algorithm classes.

We are now ready to derive an iterative algorithm for solving the dual program of interest. 

Consider the slightly more general problem of minimizing a strongly convex function f(x) 

over the intersection of a finite collection of closed convex sets C1, … , Cm. This problem 

can be reposed as minimizing the function

subject to the constraints x1 = x, … , xm = x. The Lagrangian for this problem

gives rise to the dual function

where z = (z1, … , zm) denotes the concatenation of the dual variables zi and hi(zi) is the 

support function of the set Ci at −zi. Thus, the dual problem of maximizing  is 

equivalent to minimizing . Given that f(x) is strongly 

convex, f⋆(z) is differentiable and in fact ▿f⋆(z) is Lipschitz continuous. Therefore, the dual 

is a prime candidate to be solved via the proximal gradient method. Since 

separates the variable zi, the dual proximal gradient step can be computed blockwise as

(15)

where σ denotes a step size. The algorithm simplifies further by applying the Moreau 

decomposition [18, Lemma 2.10].

(16)
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Note that  and ▿f⋆(s) is a minimizer of the convex function 

f(x)−stx. Combining these identities with (15) and (16) gives the algorithm

Convergence is assured by setting the step length σ = η, where 1/η is the Lipschitz constant 

of ▿f⋆(z). Thus, the strong convexity condition on f(x) is actually required for convergence, 

since a closed, convex function f is Lipschitz continuous if and only if its conjugate function 

is strongly convex [27].

The Nesterov acceleration mentioned earlier requires just a minor adjustment. The first two 

iterates are computed as above; subsequent updates use the following extrapolation steps.

An MM formulation that fails the SUMMA condition

Consider minimizing the univariate function f(x) = cos(x). According to the quadratic upper 

bound principle [7], the function

majorizes f(y). The MM algorithm xn = ψ(xn−1) employs the iteration map

(17)

Figure 6b depicts the first two majorizations starting x0 = 1. The global SUMMA condition 

requires that

(18)

for all x, but Fig. 6b shows that this inequality fails for some x. Restricted to the interval 

, however, the MM algorithm does belong to the SUMMA class. It is 

geometrically obvious that all iterates reside in C when iteration commences there. 

Furthermore, the objective function is convex, and the MM algorithm reduces to gradient 

descent with a fixed step size that is no greater than twice the inverse of the Lipschitz 

constant of f’(x). In these circumstances Byrne [13] verifies the SUMMA condition.
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On the other hand, one can prove convergence without invoking the SUMMA machinery. 

The MM algorithm has fixed points at integer multiples of π. Even multiples correspond to 

maxima and odd multiples to minima. The maxima are repelling, and the minima are 

attracting. If the algorithm starts on the interval [2kπ, 2(k + 1)π], then it remains there. 

Hence, the hypotheses of Proposition 1 are met. Although the SUMMA condition is helpful 

in forcing convergence and understanding the rate of convergence, there is no need to 

compel majorization to satisfy it.

Tukey’s Biweight

In robust linear regression, outliers are a major concern. In standard regression one 

minimizes the squared error loss

with , where yi is the response of case i, xi is the predictor vector for case i, and β 

is the vector of regression coefficients. One can moderate the influence of outliers by 

substituting Tukey’s biweight [26]

(19)

for . The new loss determined by the function (19) discounts the contribution of 

residuals  whose absolute value exceeds c. To calculate a global lower bound λ on 

the eigenvalues of d2f(x), we note that

where

The function ϕ”(t) achieves a minimum of  at . It follows that we can take
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where X is the matrix with columns xi and ρ(M) denotes the largest eigenvalue of the 

symmetric matrix M. Interestingly, κ does not depend on c. Similar calculations can be 

carried out for other robust choices of ϕ(t).
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Fig. 1. 
A comparison of the MM algorithm, its quasi-Newton acceleration, the dual proximal 

gradient algorithm, and its FISTA acceleration applied to the problem of projecting a 200 × 

200 matrix onto the set of doubly nonnegative matrices
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Fig. 2. 
Fitted data for isotonic regression
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Fig. 3. 
A comparison of the MM algorithm, its quasi-Newton acceleration, the dual proximal 

gradient algorithm, and its FISTA acceleration applied to a univariate isotonic regression 

problem
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Fig. 4. 
Fitted data for convex regression
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Fig. 5. 
Optimal location for the fire station
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Fig. 6. 
An example of an MM algorithm whose auxiliary functions fail the SUMMA condition
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Table 1

Timing comparisons and constraint violations for projecting onto the set of doubly nonnegative matrices

Method Time (s) Iterations Distance Constraint violation

MM 16.526 290 120.9110 −0.0048710012

MM-QN 11.098 98 120.9131 −0.0007433297

Dual 19.882 144 120.9131 −0.0009122053

Dual (Acc.) 13.926 99 120.9136 −0.0009862162
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Table 2

Timing comparisons and constraint violations for the isotonic regression example

Method Time (s) Iterations Distance Constraint violation

MM 24.45 19,651 9.633144 −1.330351e–02

MM-QN 3.27 863 9.677731 −4.869077e–05

Dual 12.70 6,526 9.637778 −1.525531e–02

Dual (Acc.) 5.46 2,578 9.677847 −4.104088e–05
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