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Convex sweeping process in the framework of measure 
differential inclusions and evolution variational 
inequalities

Samir Adly · Tahar Haddad · Lionel Thibault

Abstract In this paper, we analyze and discuss the well-posedness of two new variants
of the so-called sweeping process, introduced by Moreau in the early 70s (Moreau
in Sém Anal Convexe Montpellier, 1971) with motivation in plasticity theory. The
first new variant is concerned with the perturbation of the normal cone to the moving
convex subset C(t), supposed to have a bounded variation, by a Lipschitz mapping.
Under some assumptions on the data, we show that the perturbed differential measure
inclusion has one and only one right continuous solution with bounded variation. The
second variant, for which a large analysis is made, concerns a first order sweeping
process with velocity in the moving set C(t). This class of problems subsumes as a
particular case, the evolution variational inequalities [widely used in applied mathe-
matics and unilateral mechanics (Duvaut and Lions in Inequalities in mechanics and
physics. Springer, Berlin, 1976]. Assuming that the moving subset C(t) has a contin-
uous variation for every t ∈ [0, T ] with C(0) bounded, we show that the problem has
at least a Lipschitz continuous solution. The well-posedness of this class of sweeping
process is obtained under the coercivity assumption of the involved operator. We also
discuss some applications of the sweeping process to the study of vector hysteresis
operators in the elastoplastic model (Krejčı in Eur J Appl Math 2:281–292, 1991), to
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the planning procedure in mathematical economy (Henry in J Math Anal Appl 41:179–
186, 1973 and Cornet in J. Math. Anal. Appl. 96:130–147, 1983), and to nonregular
electrical circuits containing nonsmooth electronic devices like diodes (Acary et al.
Nonsmooth modeling and simulation for switched circuits. Lecture notes in electrical
engineering. Springer, New York 2011). The theoretical results are supported by some
numerical simulations to prove the efficiency of the algorithm used in the existence
proof. Our methodology is based only on tools from convex analysis. Like other papers
in this collection, we show in this presentation how elegant modern convex analysis
was influenced by Moreau’s seminal work.

Keywords Differential inclusion · Moreau’s sweeping process · Normal cones ·
Evolution variational inequality · Convex integral functional

Mathematics Subject Classification 49J53 · 34G25 · 58E35

1 Introduction

In the seventies Moreau introduced and thoroughly studied the sweeping process,
which is a particular differential inclusion. As a partial viewpoint, consider a time-
moving closed convex set C(t) which drags a point u(t), so this point must stay in
C(t) at every time t , and the opposite of its velocity, say − du

dt (t), has to be normal to
the set C(t). To take into account the nonsmoothness of the boundary of the convex
set C(t), the law of motion is formulated as

⎧
⎨

⎩

− du
dt (t) ∈ N (C(t); u(t))

u(0) = u0 ∈ C(0)
u(t) ∈ C(t) ∀t,

(1.1)

where N (C(t); u(t)) is the (outward) normal cone to the set C(t) at the point u(t) in
the sense of Modern Convex Analysis. The following interpretation arises (see [45])
for the way how the point u(t) is “sweept”: as long as the point u(t) happens to be in
the interior of C(t), the normal cone N (C(t); u(t)) is reduced to zero, so u(t) does not
move. When the point is “caught up with” by the boundary of C(t) it moves, subject to
an inward normal direction, as if pushed by this boundary. Concrete original motiva-
tions of the sweeping process by Moreau are: quasi-static evolution in elastoplasticity,
contact dynamics, friction dynamics, granular material (see [43,47] and the references
therein). The sweeping process model is also of great interest in nonsmooth mechan-
ics, convex optimization, mathematical economics and more recently in the modeling
and simulation of switched electrical circuits [1,2,4,6,12]. Existence and uniqueness
results when the convex sets C(t) are absolutely continuous or have bounded retraction
are provided in [45]. Those results will be discussed in Sect. 3.1. Moreau [45] also
introduced the second order sweeping process for the study of Lagrangian mechanical
systems subject to frictionless unilateral constraints. For such systems the velocity
may be discontinuous at the impact time. In this case, the acceleration can be defined
as a measure. This kind of problems fall within the formalism of measure differential
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inclusions. For the sweeping process with nonconvex sets C(t), we refer the reader to
[7,9,13,16,18–20,26,58–60] and the references therein.

A natural variant of the sweeping process is the differential inclusion

⎧
⎨

⎩

− du
dt (t) ∈ N (C(t); u(t))+ F(t, u(t))

u(0) = u0 ∈ C(0)
u(t) ∈ C(t), ∀t ∈ [0, T ],

(1.2)

where F is a set-valued mapping from [0, T ] × H into weakly compact convex sets
of a Hilbert space H . The particular case where all the sets C(t) are equal to a fixed
convex set K is related to the Henry’s mathematical model of planning procedure, see
[29] and Sect. 3.3 for more details; this model has been largely developed by Cornet
[21]. For the existence of solutions with time-varying convex/nonconvex sets C(t)we
refer the reader to [9,14–16,25–28,32–34,37,58]. Applications to the crowd motion
modeling have been realized in [36].

From a numerical point of view, the time-integration (also known as time-stepping)
schemes have been applied to find an approximation of the solution to the sweeping
process. The so called “catching-up” algorithm was introduced by Moreau [40,45,46]
to prove the existence of a solution to (1.1) and is defined by

u0 ∈ H, (uk+1 − uk) ∈ −N
(
C(tk+1); uk+1

)
, (1.3)

where uk stands for an approximation of u at the time tk . Using the fact that [I +
N (C ; ·)]−1 = projC (the metric projection operator onto C), one sees that (1.3) is
equivalent to

u0 ∈ H, uk+1 = projC(tk+1)
(uk). (1.4)

When the time step goes to zero, under various assumptions on the variation of C(t), the
approximation constructed via (uk)k in (1.4) contains a subsequence which converge
weakly in H to some u satisfying (1.1) a.e. (see [34,45]).

Another interesting mathematical formalism, called Differential Variational
Inequalities (DVI), was introduced by Pang and Stewart [50]. It is a combination
of an ordinary differential equation with a variational inequality or a complementarity
constraint. A DVI consists to find trajectories t �→ x(t) and t �→ u(t) such that

{
dx
dt (t) = f (t, x(t), u(t))
〈F(t, x(t), u(t)), v − u(t)〉 ≥ 0, ∀v ∈ K , a.e. t ∈ [0, T ],

where K is a closed convex subset of H , f and F are given mappings. The DVI
formalism unifies several known mathematical problems such as: ordinary differen-
tial equations with discontinuous right-hand term, differential algebraic equations,
dynamic complementarity problems etc . . . (see [50] for more details). The DVI for-
malism was proved to be powerful for the treatment of many problems in science
and engineering such as: unilateral contact problems in mechanics, finance, traffic
networks, electrical circuits etc . . .

The main aim of the present paper is to analyze two variants of the sweeping process
and to establish existence results for them. The first new variant is concerned with the
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case where the sweeping process (1.1) is perturbed by a Lipschitz mapping and where
the moving convex set C(t) has a bounded variation. The mathematical formulation
is then a measure differential inclusion (see Sect. 4).

The second variant is of the form

{
A1

du
dt (t)+ A0u(t)− f (t) ∈ − N

(
C(t); du

dt (t)
)

u(0) = u0 ∈ H,
(1.5)

where A0, A1 : H → H are two linear bounded, symmetric and semidefinite oper-
ators, f : [0, T ] → H is a bounded continuous mapping and C(t) is a nonempty
closed and convex set of H for every t ∈ [0, T ]. Problem (1.5) includes as a special
case the following evolution variational inequality:

⎧
⎨

⎩

Find u : [0, T ] −→ H, with u(0) = u0 ∈ H,
such that u̇(t) ∈ C(t) a.e. t ∈ [0, T ] and

a0(u(t), v − u̇(t))+ a1(u̇(t), v − u̇(t)) ≥ 〈l(t), v − u̇(t)〉 for all v ∈ C(t).
(1.6)

Here a0(·, ·) and a1(·, ·) are real bilinear, bounded and symmetric forms, l ∈
W 1,2([0, T ], H) and u̇(t) := du

dt (t).
The evolution variational inequalities of type (1.6) are widely used in applied math-

ematics, unilateral mechanics and various fields of sciences and engineering such as
for instance traffic networks, energy market, transportation, elastoplasticity etc …(see
e.g. [24]).

The remainder of this manuscript is organized as follows. Section 2 is devoted to
several results of convex analysis which are used throughout the paper; in particular,
Rockafellar’s theorem on the Legendre–Fenchel conjugate of a convex integral func-
tional on a functional space is stated in Sect. 2.2. In Sect. 3 we review the significance
of the differential measure formulation of (1.1) where C(t) has a bounded variation
and state Moreau’s theorem on existence and uniqueness of solution; various known
variants in the literature with applications to hysteresis phenomena, planning proce-
dures and electrical circuits are also briefly described. The first new variant presented
above of the perturbation with a Lipschiz mapping of the sweeping process involving
convex set C(t) with bounded variation is studied in great detail in Sect. 4; a theorem
of existence and uniqueness is established. Section 5 is dedicated to the second variant
(1.5), for which a large analysis is made and an existence theorem is provided; under
the coercivity of the linear operator A0 the uniqueness is also obtained. Section 6 is
devoted to some illustrative numerical simulations.

2 Notation and preliminaries

This section is devoted to concepts and preliminary results which will be used in the
paper.

4



2.1 Subdifferential, normal cone, conjugate

Given a normed space X with topological dual X∗ and a convex function ϕ : X →
R ∪ {−∞,+∞}, the subdifferential of ϕ at a point x ∈ X with |ϕ(x)| < +∞ is
defined as

∂ϕ(x) := {x∗ ∈ X∗ : 〈x∗, x ′ − x〉 ≤ ϕ(x ′)− ϕ(x), ∀x ′ ∈ X
}
,

and the effective domain of ϕ is dom ϕ := {x ′ ∈ X : ϕ(x ′) < +∞}; the function ϕ
is said to be proper whenever dom ϕ �= ∅ and ϕ does not take on the value −∞. The
subdifferential is related to the directional derivative ϕ′(x; ·) in the sense that

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, z〉 ≤ ϕ′(x; z), ∀z ∈ X
}
,

where

ϕ′(x; z) := inf
τ>0

τ−1(ϕ(x + τ z)− ϕ(x)
) = lim

τ↓0
τ−1(ϕ(x + τ z)− ϕ(x)

)
.

This characterization shows, for any convex function ϕ0 Gâteaux differentiable at x ,
that

∂ϕ0(x) = {Dϕ0(x)} and ∂(ϕ0 + ϕ)(x) = Dϕ0(x)+ ∂ϕ(x). (2.1)

Through the directional derivative and the Hahn-Banach theorem, one also sees that,
whenever ϕ is finite and continuous at x , the set ∂ϕ(x) is nonempty and weakly∗
compact in X∗ and

ϕ′(x; z) = max
{〈x∗, z〉 : x∗ ∈ ∂ϕ(x)}. (2.2)

Concerning the continuity, we recall (see, e.g., [51,56]) that a lower semicontinuous
convex function on a Banach space is continuous on the interior of its effective domain.

Three particular convex functions arise in general in many problems involving Mod-
ern Convex Analysis (see [8,30,48,54,56,57,62]). Given a nonempty closed convex
set C of X , those functions correspond to the indicator and support functions ıC and
σC [or σ(C, ·)] of C respectively, and to the distance function dC from the set C ,
defined by

ıC : X → R ∪ {+∞} with ıC (x) = 0 if x ∈ C and ıC (x) = +∞ if x �∈ C,

σC : X∗ → R ∪ {+∞} with σC (x
∗) := sup

x∈C
〈x∗, x〉,

dC : X → R with dC (x) := inf
y∈C

‖x − y‖.

From the definition of σC , we see that σC coincides with the Legendre–Fenchel conju-
gate of ıC , that is, σC = (ıC )

∗ where, for the above function ϕ, its Legendre–Fenchel
conjugate is defined as

ϕ∗ : X∗ → R ∪ {−∞,+∞} with ϕ∗(x∗) := sup
x∈X

(〈x∗, x〉 − ϕ(x)
)
.
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The Legendre–Fenchel conjugate is also related to the subdifferential. Indeed, for ϕ(x)
finite, one has

x∗ ∈ ∂ϕ(x) ⇔ ϕ∗(x∗)+ ϕ(x) = 〈x∗, x〉,

so, provided the convex function ϕ is proper and lower semicontinuous, the set-valued
operator ∂ϕ∗ : X∗ ⇒ X is the inverse of the set-valued operator ∂ϕ; this ensures,
in particular when the Banach space X is reflexive, that the set-valued operator ∂ϕ :
X ⇒ X∗ is surjective if and only dom ϕ∗ = X∗. Hence in particular

{
∂ϕ is surjective whenever dom ϕ is bounded and
ϕ is bounded from below.

(2.3)

Indeed, these boundedness properties taken together clearly imply that ϕ∗ is finite on
X∗, so ϕ∗ is continuous on X∗ (by the continuity property recalled above) and hence
Dom ∂ϕ∗ = X∗ according to (2.2), which is equivalent (by a property recalled above)
to the surjectivity of ∂ϕ. (Above, Dom ∂ϕ∗ denotes the effective domain of ∂ϕ∗, where
Dom M := {s ∈ S : M(s) �= ∅} for any set-valued mapping M : S ⇒ Y between two
sets S and Y ).

Forϕ = ıC and x ∈ C , it is readily seen that x∗ ∈ ∂ıC (x) if and only if 〈x∗, x ′−x〉 ≤
0, for all x ′ ∈ C , so ∂ıC (x) is the set N (C; x) of outward normals of the convex set
C at the point x ∈ C ; the latter inequality characterization also says that

x∗ ∈ N (C; x) if and only if σ(C, x∗) = 〈x∗, x〉 and x ∈ C. (2.4)

When X is a Hilbert space H , it is also clear from the inequality characterization above
that

y − proj C (y) ∈ N (C; proj C (y)) for all y ∈ H, (2.5)

where proj C (y)denotes the nearest point of y in C , hence proj C is the metric projection
onto C . For the normed space X , it is known and not difficult to see, for x ∈ C , that

N (C; x) ∩ BX∗ = ∂dC (x) and σ(∂dC (x), z) = d ′
C (x; z), ∀z ∈ X, (2.6)

where BX∗ := {x∗ ∈ X : ‖x∗‖ ≤ 1} (resp. BX := {x ∈ X : ‖x‖ ≤ 1}) denotes the
closed unit ball of X∗ (resp. X ) centered at the origin.

The fundamental concepts of subdifferential or normal cone, directional derivative
and Legendre–Fenchel conjugate will be at the heart of our present paper. From the
definitions it directly follows the monotonicity property of the subdifferential of the
convex function ϕ (resp. normal cone of the convex set C) (property crucial for the
paper), say

〈
x∗

1 − x∗
2 , x1 − x2

〉 ≥ 0 for all x∗
i ∈ ∂ϕ(xi )

(
resp. x∗

i ∈ N (C; xi )
)
.

It is worth mentioning that the converse (which is not obvious) also holds true, that
is, a lower semicontinuous function ψ on a Banach space X is convex if and only if
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∂0ψ is monotone, where ∂0 is any subdifferential with appropriate fuzzy sum rule (see
[22,52]) on the Banach space X . Another deep important property of the subdifferential
in Convex Analysis (established in the Hilbert setting by Moreau [39, Proposition
12.b] and in the Banach setting by Rockafellar [53, Theorem A, p. 210] concerns the
maximal monotonicity[10]):

Theorem 2.1 (Moreau in Hilbert spaces and Rockafellar in Banach spaces) Let X be
a Banach space. Then, the subdifferential of a proper lower semicontinuous convex
function ϕ on X is maximal monotone in the sense that there is no monotone set-valued
operator from X into X∗ whose graph is larger than the graph of ∂ϕ.

2.2 Normal convex integrand

Assume that the normed space X is separable and complete; a set-valued mapping M
from a measurable space (S,S) into closed subsets of X is S-measurable provided
that, for each open set U of X , one has M−1(U ) ∈ S. So, following Rockafellar
[55], an extended real-valued function ϕ : S × X → R ∪ {+∞} is called a normal
integrand whenever ϕ(s, ·) is proper and lower semicontinuous for all s ∈ S and
the (epigraphical) set-valued mapping s �→ epi ϕ(s, ·) (from S into X × R) is S
measurable. As usual, B(X) denotes the Borel σ -field of X . When, in addition ϕ(s, ·)
is convex for all s ∈ S, one says that ϕ is a normal convex integrand. For a set-
valued mapping M : S ⇒ X with Dom M �= ∅, it is readily seen that the function
(s, x) �→ ıM(s)(x) is a normal (convex) integrand if and only if the set-valued mapping
M is measurable and takes on closed (convex) values. For a normal integrand, it is
known (see, for example, [17,55]) that, for any measurable mapping u(·) : S → X ,
the function s �→ ϕ(s, u(s)) is measurable. Furthermore, (s, x∗) �→ ϕ∗(s, x∗) is a
normal convex integrand, where by convenience of notation

ϕ∗(s, x∗) := (ϕ(s, ·))∗(x∗) for all x∗ ∈ X∗.

Suppose that the separable Banach space X is reflexive and μ is a σ -finite mea-
sure on S. For any p ∈ [1,+∞] denote by L p

μ(S, X) the vector space of classes of
measurable mappings u(·) : S → X such that the function s �→ ‖u(s)‖ belongs to
the standard space L p

μ(S,R) and denote by ‖u‖p the norm of u in L p
μ(S, X) given

by the norm of s �→ ‖u(s)‖ in L p
μ(S,R), so ‖u‖p = ( ∫

S ‖u(s)‖p dμ(s)
)1/p for

1 ≤ p < +∞, and similarly for p = +∞. For any real p ∈ [1,+∞[, taking q such
that 1

p + 1
q = 1, the topological dual of L p

μ(S, X) is identified with Lq
μ(S, X∗) through

the standard pairing. When μ is the Lebesgue measure λ on some interval I of R and
there is no risk of confusion, we will just write L p(I, X).

With any p ∈ [1,+∞] and any normal integrand ϕ : S × X → R∪{+∞} one can
associate the integral functional Iϕ : L p

μ(S, X) → R ∪ {−∞,+∞} with

Iϕ(u) :=
∫

S

ϕ(s, u(s)) dμ(s) for all u(·) ∈ L p
μ(S, X);
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we recall that, for a measurable function ψ : S → R ∪ {−∞,+∞}, the extended
real

∫

S ψ(s) dμ(s) is the infimum of integrals
∫

S ρ(s) dμ(s) of integrable real-valued
functions ρ : S → R such that ψ(s) ≤ ρ(s) for μ-almost every s ∈ S (with the
standard convention inf ∅ = +∞). One of the key results concerning normal convex
integrand is the following theorem due to Rockafellar (see [55,56]). For various exten-
sions outside the reflexive setting, we refer the reader to Castaing and Valadier [17].

Theorem 2.2 (Rockafellar theorem on conjugate integrand) Let X be a separable
reflexive Banach space and let p ∈ [1,+∞[. Let ϕ : S × X → R ∪ {+∞} be a
normal convex integrand such that Iϕ is finite at some point in L p

μ(S, X). Then, the
Legendre–Fenchel conjugate of Iϕ coincides with Iϕ∗ , that is,

(Iϕ)
∗(u∗) = Iϕ∗(u∗) :=

∫

S

ϕ∗(s, u∗(s)) dμ(s) for all u∗(·) ∈ Lq
μ(S, X∗).

Although the above concepts and results are recalled in the context of normed
spaces for completeness of their statements, the framework of the rest of the paper is
that of a Hilbert space H .

3 Convex sweeping process and some variants in the literature

3.1 Convex sweeping process

In 1971, Moreau [41,42] introduced the “sweeping process” (in the absolutely con-
tinuous framework) as the evolution differential inclusion

du

dt
(t) ∈ − N (C(t); u(t)) for a.e. t ∈ C(t), with u(T0) = u0 ∈ C(T0), (3.1)

where 0 ≤ T0 < T < +∞; for convenience, we will write sometimes, as usual, u̇(t)
in place of du

dt (t). In an earlier paper [40], Moreau showed how such an evolution
equation arises in the theory of elastic mechanical systems submitted to nonsmooth
efforts as dry friction; note that the velocity in such cases may present discontinuity
in time. He also provided later in a 1973 paper [43] more details on applications to
elasticity and other fields of mechanics.

The paper [41] is concerned with the situation where the discontinuity of the velocity
is exhibited by an absolute continuity property of the state of the system. The main
result of that paper [41] can be stated as follows.

Theorem 3.1 (Moreau’s theorem for absolutely continuous convex sweeping process)
Assume that the sets C(t) of the Hilbert space H are nonempty closed convex sets for
which there is a nondecreasing absolutely continuous function v(·) : [T0, T ] →
R+ := [0,+∞[ such that, for each y ∈ H,

d(y,C(t)) ≤ d(y,C(s))+ v(t)− v(s) for all T0 ≤ s ≤ t ≤ T .
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Then, the evolution equation (3.1) admits one and only one absolutely continuous
solution.

To take into account the more general situation where there are jumps, Moreau
transformed the above model into a measure differential inclusion and proved in [45]
an existence result that we give in the following form.

Theorem 3.2 (Moreau’s theorem for convex sweeping process with bounded varia-
tion) Assume that the sets C(t) of the Hilbert space H are nonempty closed convex sets
for which there is a positive Radon measure μ on [T0, T ] such that, for each y ∈ H,

d(y,C(t)) ≤ d(y,C(s))+ μ(]s, t]), for all T0 ≤ s ≤ t ≤ T .

Then, the measure differential evolution inclusion

{
du ∈ − N (C(t); u(t))
u(T0) = u0 ∈ C(T0)

(3.2)

admits one and only one right continuous solution with bounded variation.

A mapping u(·) : [T0, T ] → H is a solution of the measure differential inclusion in
the theorem provided that it is right continuous with bounded variation with u(T0) = u0
and u(t) ∈ C(t) for all t ∈ [T0, T ] and the differential measure du associated with u
admits the derivative measure du

dμ (see the next section for the meaning) as a density
relative to μ and

du

dμ
(t) ∈ − N (C(t); u(t)) for μ− a.e. t ∈ [T0, T ].

In [26] it is shown that u(·) is a solution if and only if the latter inclusion is fulfilled
with some positive Radon measure ν on [T0, T ] in place of μ.

3.2 An elasto-plastic model and hysteresis

Many problems from thermo-plasticity, phase transition (etc) in the literature lead
to variational inequalities in the form below. Consider, for example, the following
elasto-plastic one (see, e.g. [31]). Let Z be a closed convex set of the 1

2 N (N + 1)-
dimensional vector space E of symmetric tensors N × N . Assume that the interior of
Z is nonempty, so int Z �= ∅ corresponds to the elasticity domain and bdry Z to the
plasticity. Write the strain tensor ε = (ε)i, j (depending on time t) as ε := εe + ε p,
where εe is the elastic strain and ε p the plastic strain. The elastic strain εe is related
to the stress tensor σ = (σ )i, j linearly, that is, εe = A2σ , where A is a (constant)
symmetric positive definite matrix. The system is then subjected to the variational
inequality:

〈ε̇ p(t), z〉 ≤ 〈ε̇ p(t), σ (t)〉, ∀z ∈ Z : principle of maximal dissipation
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and to the region constraint σ(t) ∈ Z for all t ∈ [0, T ]; in this system, the tensor strain
ε is supposed to be given as an absolutely continuous mapping and the initial tensor
stress σ0 is given in Z . Observing that the above inequality can be written as

〈
−Aσ̇ (t)+ A−1ε̇(t), Aσ(t)− Az

〉
≥ 0,

Setting

ζ(t) := Aσ(t)− A−1ε(t),

yields to the equivalent inequality

〈
−ζ̇ (t), ζ(t)−

(
Az − A−1ε(t)

)〉
≥ 0 for all z ∈ Z . (3.3)

By setting,

C(t) := −A−1ε(t)+ A(Z),

problem (3.3) is reduced to the convex sweeping process

{
ζ̇ (t) ∈ −N (C(t); ζ(t))
ζ(0) = Aσ0 − A−1ε(0) ∈ C(0).

Clearly, we have

d(x,C(t)) ≤ d(x,C(s))+ ‖A−1‖
t∫

s

‖ε̇(r)‖ dr.

This provides according to Theorem 3.1 above (besides to [31, Proposition 2.2])
another proof of existence and uniqueness of solution for that system.

This defines a mapping Φ : W 1,1([0, T ], E) assigning to each absolutely con-
tinuous mapping ε ∈ W 1,1([0, T ], E) the solution Φ(ε) := σε of the system. This
mapping Φ enjoys two particular properties:
• Rate independence
Denoting by σε the solution associated with ε and taking any absolutely continu-
ous increasing bijection θ : [0, T ] → [0, T ], for almost every t ∈ [0, T ], we have
〈−A2σ̇ε(θ(t))+ ε̇(θ(t)), σε(θ(t))− z〉 ≥ 0 hence

〈
−A2σ̇ε(θ(t))θ̇(t)+ ε̇(θ(t))θ̇(t)), σε(θ(t))− z

〉
≥ 0

(since θ̇ (t) ≥ 0 a.e.), from which it can be obtained, for almost every t ∈ [0, T ],
{ 〈−A2 d

dt (σε ◦ θ)(t)+ d
dt (ε ◦ θ)(t), (σε ◦ θ)(t)− z

〉 ≥ 0

(σε ◦ θ)(0) = σ0 ∈ C(0).

10



The uniqueness property guarantees that σε ◦ θ is the solution associated with ε ◦ θ ,
otherwise stated, Φ(ε ◦ θ) = Φ(ε) ◦ θ . The latter equality is known in the literature
as the rate independence property (see, e.g., [11,31,61]).
• Causality
For each τ ∈ [0, T ] and ε ∈ W 1,1([0, T ], E), denoting by σε the solution on [0, T ]
of the system above, the restriction of σ |[0,τ ] to [0, τ ] coincides with the solution on
[0, τ ] of the system associated with ε|[0,τ ] according to the same uniqueness property
above. Then, for εi ∈ W 1,1([0, T ], E) (i = 1, 2), we have

ε1|[0,τ ] = ε2|[0,τ ] ⇒ σε1(t) = σε2(t) ∀t ∈ [0, τ ],

otherwise stated

ε1|[0,τ ] = ε2|[0,τ ] ⇒ Φ(ε1)(t) = Φ(ε2)(t) ∀t ∈ [0, τ ];

this is generally called the causality property (see, e.g., [31]).
Both rate independence and causality properties translate that Φ is an hysteresis

operator according to [11,31,61] where those properties are brought to light with
various physical examples with hysteresis phenomena.

For several other models, we refer the reader to [11]. Of course, by Theorem 3.1
the mathematical features and properties above still hold in the context of a Hilbert
space H with any closed convex set Z (without any condition on its interior) and any
coercive bijective bounded symmetric linear operator A : H → H .

3.3 Planning procedure

In mathematical economy, Henry [29] introduced, as mathematical model for the
planning procedure, the differential inclusion

ẋ(t) ∈ proj TK (x(t))F(x(t)) a.e. t ∈ [0, T ], x(0) = x0 ∈ K ,

where K is a closed convex set of R
N , F : R

N ⇒ R
N is an upper semi-continuous set-

valued mapping with nonempty compact convex values, and TK (y) denotes the tangent
cone of K at y. This differential inclusion is known (see [21,29]) to be completely
linked to the following system

ẋ(t) ∈ −N (x(t); K )+ F(x(t)), x(0) = x0 ∈ K ,

which enters in the following class of perturbed sweeping processes

{
ẋ(t) ∈ −N (C(t); x(t))+ F(x(t)) a.e. t ∈ [0, T ]
x(0) = x0 ∈ C(0),

where C(t) is, as in Sect. 3.1, a closed convex set moving in an absolutely continuous
way. Existence results for such perturbed sweeping process are established in finite

11



Fig. 1 Ideal diode model

Fig. 2 Resistor–inductor–diode model (RLD, left) and resistor–capacitor–diode model (RCD, right)

dimensions in [14,37,58], and in [9,37] for the Hilbert setting under compactness
growth conditions for the set-valued mapping F . Under compactness growth assump-
tions on F , existence of solution has been proved in [26] when the set C(t) moves
with a bounded variation, and also in [37] when the set C(t) has a bounded retraction
and F is weakly-norm upper semicontinuous.

3.4 Non-regular electrical circuits

The aim of this section is to illustrate the sweeping process in the theory of non-regular
electrical circuits. Electrical devices like diodes are described in terms of Ampere–Volt
characteristic (I, V) which is (possibly) a multifunction expressing the difference of
potential VD across the device as a function of current i going through the device. The
diode is a device that constitutes a rectifier which permits the easy flow of charges in
one direction but restrains the flow in the opposite direction. Figure 1 illustrates the
ampere–volt characteristic of an ideal diode model.

Let us consider the left circuit depicted in Fig. 2 involving a load resistance R > 0,
an inductor L > 0, a diode (assumed to be ideal) and a current source c(t). Using
Kirchhoff’s laws, we have

VR + VL + VD = 0.

12



Hence,
Lẋ(t)+ Rx(t) ∈ −N (R+; x(t)− c(t)). (3.4)

We have

N (R+; x(t)− c(t)) = ∂ıR+(x(t)− c(t)) = ∂ı[c(t),+∞[(x(t))
= N (C(t); x(t)), with C(t) = [c(t),+∞[.

Therefore, the inclusion (3.4) is equivalent to

Lẋ(t)+ Rx(t) ∈ −N (C(t); x(t)), with C(t) = [c(t),+∞[, (3.5)

which is of the form (1.2).

The right circuit depicted in Fig. 2 involves a load resistance R ≥ 0, a capacitor
C > 0, a diode (assumed to be ideal) and a current source c(t). Using Kirchhoff’s
laws, we have

VR + VC = −VD.

Therefore,

Rx(t)+ 1

C

∫

x(t)dt ∈ −N (R+; x(t)− c(t)). (3.6)

If the charge on the capacitor is q and the current flowing in the circuit is x , then
x(t) = dq

dt (t) = q̇(t). Hence (3.6) is equivalent to

Rq̇(t)+ 1

C
q(t) ∈ −N (C(t); q̇(t)), (3.7)

which is of the form (1.5).
Let us consider now the electrical system shown in Fig. 3 that is composed of two

resistors R1 ≥ 0, R2 ≥ 0 with voltage/current laws VRk = Rk xk (k = 1, 2), three

Fig. 3 Electrical circuit with resistors, capacitors and ideal diodes (RCD)

13



Fig. 4 Electrical circuit with resistors, inductors and ideal diodes (RLD)

capacitors C1 > 0, C2 > 0 with voltage/current laws VCk = 1
Ck

∫
xk(t)dt, k = 1, 2

and two ideal diodes with characteristics 0 ≤ −VDk ⊥ ik ≥ 0. Using Kirchhoff’s
laws, we have

{
VR1 + VC1 + VC2 = −VD1 ∈ −N (R+; x1 − c)
VR2 + VC1 − VC2 = −VD2 ∈ −N (R+; x2).

Therefore the dynamics of this circuit is given by

A1
︷ ︸︸ ︷(

R1 0
0 R2

)
q̇

︷ ︸︸ ︷(
q̇1
q̇2

)

+

A0
︷ ︸︸ ︷(

1
C1

+ 1
C2

− 1
C2− 1

C2

1
C1

+ 1
C2

)
q

︷ ︸︸ ︷(
q1
q2

)

∈ −N (C(t); q̇(t)), (3.8)

with C(t) = [c(t),+∞[×[0,+∞[ and q̇i (t) = xi (t), i = 1, 2. We observe that if
R1 > 0 and R2 > 0, then (3.8) is equivalent to

q̇(t) = projC(t)
(
−A−1

1 A0q(t)
)
,

which is an ordinary differential equation (see Remark 1, Sect. 5 for more detail). If
R1 = 0 or R2 = 0, then the operator [A1 + N (C(t); ·)]−1 may be set-valued (see
Example 1) and (3.8) is of the form (1.5). The same analysis holds for the dynamics
(3.7) while R > 0.

In the same way, we can show that the dynamical behavior of the circuit depicted
in Fig. 4 is given by the following sweeping process

A1
︷ ︸︸ ︷(

L1 0
0 L2

)
ẋ

︷ ︸︸ ︷(
ẋ1
ẋ2

)

+

A0
︷ ︸︸ ︷(

R1 + R2 −R2
−R2 R1 + R2

)
x

︷ ︸︸ ︷(
x1
x2

)

∈ −N (C(t); x(t)), (3.9)

with C(t) = [c(t),+∞[×[0,+∞[. It is clear that (3.9) is of the form of the perturbed
sweeping process (1.2).
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Fig. 5 Comparison of the exact and the approximate solution of Example 2

Some other circuits containing Zener diodes, transistors, rectifier–stabilizer circuits,
DC–DC Buck and Boost converters can be analyzed in the same way [1–6]. The usage
of tools from Modern Convex Analysis (and particularly the notion of Moreau’s convex
superpotential) in electronics for the study of electrical circuits is fairly recent. It is
a quite promising topic of research which may help engineers for the simulation of
complicated electrical circuits. Due to the lack of smoothness in some circuits, most
used softwares like Simulation Program with Integrated Circuits Emphasis (SPICE)
can not simulate non-regular circuits without approximation of i–v characteristic of
the involved nonlinear electrical devices (Fig. 5).

In the next sections we study and prove existence of solutions of two new variants
of Moreau’s sweeping process.

4 Lipschitz single-valued perturbation variant of BV sweeping process

In this section we are concerned with the differential inclusion

{
du ∈ −N (C(t); u(t))+ f (t, u(t)),
u(0) = u0 ∈ C(0)

(4.1)

where f : I × H → H is a Carathéodory mapping and where the variation of C(t)
is expressed by a given positive Radon measure μ on I as in the line of Theorem
3.2. The case of a set-valued mapping F : I × H ⇒ H (in place of f ) has been
studied in [15,16] in the finite dimensional setting and in [26] under the assumption
F(t, x) ⊂ β(t)(1 +‖x‖)K where K is a fixed normed compact subset of H . Our aim
here is to study in the Hilbert setting the new variant where f satisfies a Lipschitz
condition and no compactness condition is assumed.
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Before defining the concept of solution of the measure differential inclusion (4.1),
some preliminaries are necessary. Throughout the rest of this section, all the measures
on a compact interval I = [T0, T ] of R will be Radon measures.

We start this section by recalling some results from vector measures. For two pos-
itive Radon measures ν and ν̂ on I and for I (t, r) := I ∩ [t − r, t + r ], it is known
(see, e.g., [35, Theorem 2.12]) that the limit

d ν̂

dν
(t) := lim

r↓0

ν̂(I (t, r))

ν(I (t, r))

(with the convention 0
0 = 0) exists and is finite for ν-almost every t ∈ I and it defines

a Borel function of t , called the derivative of ν̂ with respect to ν. Furthermore, the
measure ν̂ is absolutely continuous with respect to ν if and only if d ν̂

dν (·) is a density

of ν̂ relative to ν, or otherwise stated, if and only if the equality ν̂ = d ν̂
dν (·)ν holds

true. Under such an absolute continuity assumption, a mapping u(·) : I → H is
ν̂-integrable on I if and only if the mapping t �→ u(t) d ν̂

d ν̂ (t) is ν-integrable on I ;
furthermore, in that case,

∫

I

u(t) d ν̂(t) =
∫

I

u(t)
d ν̂

dν
(t) dν(t). (4.2)

When ν and ν̂ are each one absolutely continuous with respect to the other, we will
say that they are absolutely continuously equivalent.

Now suppose that the mapping u(·) : I → H has bounded variation and denote
by du the differential measure associated with u (see [23,44]); if in addition, u(·) is
right continuous, then

u(t) = u(s)+
∫

]s,t]
du for all s, t ∈ I with s ≤ t.

Conversely, if there exists some mapping û(·) ∈ L1
ν(I, H) such that u(t) = u(T0)+∫

]T0,t] û dν for all t ∈ I , then u(·) is of bounded variation and right continuous and
du = û dν; so û(·) is a density of the vector measure du relative to ν. Then, putting
I −(t, r) := [t − r, t] and I +(t, r) := [t, t + r ], according to Moreau and Valadier
[49], for ν-almost every t ∈ I , the following limits exist in H and

û(t) = du

dν
(t) := lim

r↓0

du(I (t, r))

dν(I (t, r))
= lim

r↓0

du(I −(t, r))
dν(I −(t, r))

= lim
r↓0

du(I +(t, r))
dν(I +(t, r))

. (4.3)

In particular, the last equality ensures that

du

dν
(t) = du({t})

dν({t}) and
dλ

dν
(t) = 0, whenever ν({t}) > 0. (4.4)

Above and in the rest of the paper λ denotes the Lebesgue measure.
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Definition 1 A mapping u : I → H is a solution of the measure differential inclusion
(4.1) if:

(i) u(·) is of bounded variation, right continuous, and satisfies u(T0) = u0 and u(t) ∈
C(t) for all t ∈ I ;

(ii) there exists a positive Radon measure ν absolutely continuously equivalent to
μ+ λ and with respect to which the differential measure du of u(·) is absolutely
continuous with du

dν (·) as an L1
ν(I, H)-density and

du

dν
(t)+ f (t, u(t))

dλ

dν
(t) ∈ −N (C(t); u(t)) ν − a.e. t ∈ I.

The following proposition concerning a particular chain rule for differential mea-
sures will be needed. Its statement is a consequence of a more general result from
Moreau [44].

Proposition 1 Let H be a Hilbert space, ν be a positive Radon measure on the closed
bounded interval I , and u(·) : I → H be a right continuous with bounded variation
mapping such that the differential measure du has a density du

dν relative to ν. Then,
the function Φ : I → R with Φ(t) := ‖u(t)‖2 is a right continuous with bounded
variation function whose differential measure dΦ satisfies, in the sense of ordering of
real measures,

dΦ ≤ 2

〈

u(·), du

dν
(·)
〉

dν.

The next result is a substitute of Grownwall’s lemma relative to Radon measures.
We refer, for example, to [37] for its statement (see also [38]).

Lemma 1 Let ν be a positive Radon measure on [T0, T ] and let g(·) ∈ L1
ν([T0, T ],

R+). Assume that, for a fixed real number θ ≥ 0, one has, for all t ∈]T0, T ],

0 ≤ g(t)ν({t}) ≤ θ < 1.

Let ϕ ∈ L∞
ν ([T0, T ],R+) and let some fixed real number α ≥ 0 satisfying, for all

t ∈ [T0, T ],

ϕ(t) ≤ α +
∫

]T0,T ]
g(s)ϕ(s) dν(s).

Then, for all t ∈ [T0, T ],

ϕ(t) ≤ α exp

⎧
⎪⎨

⎪⎩

1

1 − θ

∫

]T0,t]
g(s)ϕ(s) dν(s)

⎫
⎪⎬

⎪⎭
.
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We establish now a stability property of the subdifferential of the distance function
from a continuous moving set.

Proposition 2 Let E be a metric space, C : E ⇒ H be a set-valued mapping with
nonempty closed convex sets of a normed space X, and let t0 ∈ cl Q with Q ⊂
E. Assume that there exists a non-negative real-valued function η : Q → R with
limQ�t→t0 η(t) = 0 such that, for all t ∈ Q,

d(x,C(t)) ≤ d(x,C(t0))+ η(t) for all x ∈ X.

Let (tn)n be a sequence in Q tending to t0 and let (xn)n be a sequence in H converging
to some x ∈ C(t0) with xn ∈ C(tn) for all n. Then, for all z ∈ X,

lim sup
n→∞

d ′
C(tn)(xn; z) ≤ d ′

C(t0)(x; z).

Proof Let (tn)n and (xn)n be as in the statement. Fix any z ∈ X . Then, for each real
τ > 0, we have, for all n,

d ′
C(tn)(xn; z) ≤ τ−1[dC(tn)(xn + τ z)− dC(tn)(xn)] = τ−1dC(tn)(xn + τ z)

≤ τ−1[dC(t0)(x + τ z)+ ‖xn − x‖ + η(tn)],

which gives

lim sup
n→∞

d ′
C(tn)(x,; z) ≤ τ−1dC(t0)(x + τ z) = τ−1[dC(t0)(x + τ z)− dC(t0)(x)].

This justifies the desired inequality

lim sup
n→∞

d ′
C(tn)(x,; z) ≤ d ′

C(t0)(x; z).

��
We can now prove, using some ideas from [26], the theorem concerning the above

measure differential inclusion. The case of prox-regular sets C(t) will be treated
elsewhere.

Theorem 4.1 Let H be a Hilbert space and C(·) : [T0, T ] ⇒ H be a set-valued
mapping from [T0, T ] into the nonempty closed convex subsets of H for which there
exists a positive Radon measure μ on I := [T0, T ] such that for all s, t ∈ I with
s ≤ t

|d(y,C(t))− d(y,C(s))| ≤ μ(]s, t]) for all y ∈ H.

Let f : I × H → H be a mapping such that
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(i) there exists a non-negative function β(·) ∈ L1
λ(I,R) such that

‖ f (t, x)‖ ≤ β(t)(1 + ‖x‖) for all x ∈
⋃

t∈I

C(t);

(ii) for each real r > 0, the functions ( f (·, x))x∈rBH are equicontinuous and there
exists some non-negative function Lr (·) ∈ L1

λ(I,R) such that

‖ f (t, x)− f (t, y)‖ ≤ Lr (t)‖x − y‖ for all t ∈ I, x, y ∈ rBH .

Then, for each u0 ∈ C(T0), the following perturbed sweeping process

{−du ∈ N (C(t); u(t))+ f (t, u(t))
u(T0) = u0

has one and only one right continuous with bounded variation solution.

Proof I- First, let us suppose that

T∫

T0

(β(s)+ 1) dλ(s) ≤ 1/4, (4.5)

and let us construct a sequence of appropriate right continuous with bounded variation
mappings.

Put

l := 2
(
μ(]T0, T ])+ ‖u0‖ + 1

)
,

and consider on I the positive Radon measure

ν := μ+ (l + 1)(β(·)+ 1)λ. (4.6)

As in Moreau [45] and Castaing and Monteiro Marques [16], consider the function
v(·) : I → R defined by

v(t) := ν(]T0, t])

and set

V := v(T ) = ν(]T0, T ]).

The function v(·) is increasing and right continuous with v(T0) = 0. Let (εn)n be a
sequence of positive real numbers with εn ↓ 0. For each n ∈ N, let 0 = V n

0 < V n
1 <

· · · < V n
qn

= V be a partition such that

Vj+1 − Vj ≤ εn∀ j =0, . . . , qn − 1, and
{

V n
0 , . . . , V n

qn

}
⊂
{

V n+1
0 , . . . , V n+1

qn+1

}
.

(4.7)
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Put V n
1+qn

:= V + εn . For each n ∈ N, consider the partition of I associated with the
subsets

J n
j := v−1

(
[V n

j , V n
j+1[

)
, j = 0, 1, . . . , qn,

and note that (J m
j )

qm
j=0 is a refinement of (J n

j )
qn
j=0 whenever m ≥ n. Since v(·) is

increasing and right continuous, it is easy to see that, for each j = 0, 1, . . . , qn , the
set J n

j is either empty or an interval of the form [r, s[ with r < s. Furthermore, we
have J n

qn
= {T }. This produces an integer p(n) ∈ N and a finite sequence

T0 = tn
0 < tn

1 < · · · < tn
p(n) = T

such that, for each i ∈ {0, . . . , p(n)− 1}, there is some j ∈ {0, . . . , qn − 1} for which
[tn

i , tn
i+1[= J n

j . It ensues that, for any i ∈ {0, . . . , p(n)− 1},

ν(]tn
i , t]) = v(t)− v(tn

i ) ≤ εn for all t ∈ [tn
i , tn

i+1[, (4.8)

which entails
ν(]tn

i , tn
i+1[) ≤ εn, (4.9)

hence (since λ ≤ ν)
tn
i+1 − tn

i ≤ εn . (4.10)

For each i ∈ {0, . . . , p(n)− 1}, put

σ n
i := (l + 1)

tn
i+1∫

tn
i

(β(s)+ 1) dλ(s) and ηn
i := tn

i+1 − tn
i , (4.11)

and observe that ηn
i → 0 as n → ∞. For each i ∈ {0, . . . , p(n) − 1}, choose some

sn
i ∈ [tn

i , tn
i+1[ such that

β(sn
i ) ≤ inf

s∈[tn
i ,t

n
i+1[

β(s)+ 1, (4.12)

and define the function ρn : I → I by ρn(T ) := sn
p(n)−1 and

ρn(t) := sn
i if t ∈ [tn

i , tn
i+1[ (0 ≤ i ≤ p(n)− 1). (4.13)

Now, put un
0 := u0, yn

0 := f (ρn(tn
0 ), un

0) and un
1 := proj C(tn

1 )
(un

0 − ηn
0 yn

0 ), and
define by induction {un

i : i = 0, . . . , p(n)} and {yn
i : i = 0, . . . , p(n)− 1} such that

yn
i := f

(
ρn(t

n
i ), un

i

)
and un

i+1 := proj C(tn
i+1)

(
un

i − ηn
i yn

i

)
. (4.14)
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Fix any i ∈ {0, . . . , p(n) − 1}. From (4.14) we have, by the variation assumption
of C(·),
∥
∥un

i+1 − un
i + ηn

i yn
i

∥
∥ = dC

(
tn
i+1

)
(
un

i − ηn
i yn

i

) ≤ dC(tn
i )

(
un

i − ηn
i yn

i

)+ μ(]tn
i , tn

i+1])
≤ μ(]tn

i , tn
i+1])+ ηn

i

∥
∥yn

i

∥
∥ , (4.15)

which implies

∥
∥un

i+1

∥
∥ ≤ ∥∥un

i

∥
∥+ μ(]tn

i , tn
i+1])+ 2ηn

i

∥
∥yn

i

∥
∥ ,

and hence
∥
∥un

i+1

∥
∥ ≤ ∥∥un

0

∥
∥+

i∑

k=0

(
μ(]tn

k , tn
k+1])+ 2ηn

k

∥
∥yn

k

∥
∥
)
. (4.16)

On the other hand, from assumption (i),

∥
∥yn

i

∥
∥ ≤ β

(
ρn
(
tn
i

)) (
1 + ‖un

i ‖) ≤ β
(
ρn(t

n
i )
)
(

1 + max
0≤k≤p(n)

‖un
k‖
)

, (4.17)

and this latter inequality combined with (4.16) yields

∥
∥un

i+1

∥
∥ ≤ ∥∥un

0

∥
∥+

i∑

k=0

μ(]tn
k , tn

k+1])+ 2

(

1 + max
0≤k≤p(n)

∥
∥un

k

∥
∥

) i∑

k=0

ηn
kβ
(
ρn
(
tn
k

))
.

Noting by (4.12) that

i∑

k=0

ηn
kβ
(
ρn
(
tn
k

)) =
i∑

k=0

tn
k+1∫

tn
k

β
(
ρn
(
tn
k

))
dλ(s) ≤

tn
i+1∫

T0

(β(s)+ 1) dλ(s),

we obtain

∥
∥un

i+1

∥
∥ ≤ ∥∥un

0

∥
∥+ μ(]T0, T ])+ 2

(

1 + max
0≤k≤p(n)

∥
∥un

k

∥
∥

) T∫

T0

(β(s)+ 1) dλ(s).

Thanks to (4.5) it results that

max
0≤k≤p(n)

∥
∥un

k

∥
∥ ≤ ∥∥un

0

∥
∥+ μ(]T0, T ])+ 1

2

(

1 + max
0≤k≤p(n)

∥
∥un

k

∥
∥

)

,

which, according to the definition of l, gives

max
0≤k≤n

∥
∥un

k

∥
∥ ≤ 2

(

μ(]T0, T ])+ ‖u0‖ + 1

2

)

≤ l. (4.18)
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The latter inequality, combined with (4.12), yields

ηn
i

∥
∥yn

i

∥
∥ ≤ ηn

i β
(
ρn(t

n
i )
) (

1 + ∥∥un
i

∥
∥
) ≤ (l + 1)

tn
i+1∫

tn
i

(β(s)+ 1) dλ(s) = σ n
i . (4.19)

Consequently, by (4.15),

dC(tn
i+1)

(
un

i − ηn
i yn

i

) ≤ μ(]tn
i , tn

i+1])+ ηn
i

∥
∥yn

i

∥
∥ ≤ μ(]tn

i , tn
i+1])+ σ n

i , (4.20)

and hence by (4.6) and (4.11) [since un
i+1 = proj C(tn

i+1)
(un

i − ηn
i yn

i )]

∥
∥un

i+1 − un
i + ηn

i yn
i

∥
∥ ≤ μ(]tn

i , tn
i+1])+ σ n

i ≤ ν(]tn
i , tn

i+1]). (4.21)

Step 1. Construction of the sequence (un(·)).
Following [16,45], define the mapping un(·) : I → H by un(T ) := un

p(n) and

un(t) = un
i + ν(]tn

i , t])
ν(]tn

i , tn
i+1])

(
un

i+1 − un
i + ηn

i yn
i

)− (t − tn
i )y

n
i if t ∈ [tn

i , tn
i+1

]
.

(4.22)
We observe that un(·) is well defined on I and it is right continuous with bounded
variation on each interval [tn

i , tn
i+1], so it is right continuous with bounded variation

on the whole interval I . Furthermore, the definition of un(·) can be rewritten, for any
t ∈ I , as

un(t) = un(T0)+
∫

]T0,t]
Πn(s) dν(s)−

∫

]T0,t]
f (ρn(s), un(δn(s)) dλ(s),

where

Πn(t) :=
p(n)−1∑

i=0

un
i+1 − un

i + ηn
i yn

i

ν(]tn
i , tn

i+1])
1]tn

i ,t
n
i+1](t),

and δn(s) := tn
i if t ∈ [tn

i , tn
i+1[ and δn(T ) := tn

p(n)−1. Since, by (4.6), the measure

λ is absolutely continuous with respect to ν, it has dλ
dν (·) as a density in L∞

ν (I,R+)
relative to ν and then by (4.2), for every t ∈ I ,

un(t) = un(T0)+
∫

]T0,t]

{

Πn(s)− f
(
ρn(s), un(δn(s))

)dλ

dν
(s)

}

dν(s).
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This tells us that the vector measure dun has the latter integrand as a density in
L∞
ν (I, H) relative to ν, so by the first equality in (4.3)

dun

dν
(·) is a density of dun with respect to ν, (4.23)

and, for ν-almost every t ∈ I ,

dun

dν
(t)+ f

(
ρn(t), un(δn(t))

)dλ

dν
(t) = Πn(t)=

p(n)−1∑

i=0

un
i+1 − un

i + ηn
i yn

i

ν(]tn
i , tn

i+1])
1]tn

i ,t
n
i+1](t).

(4.24)
Taking (4.21) into account, it results that

∥
∥
∥
∥

dun

dλ
(t)+ f

(
ρn(t), un(δn(t))

)dλ

dν
(t)

∥
∥
∥
∥ ≤ 1 ν − a.e. t ∈ I. (4.25)

On the other hand, by (4.6) again, the measure (l + 1)(β(·) + 1)λ is absolutely con-
tinuous with respect to ν, thus it has d((l+1)(β(·)+1)λ)

dν as a density relative to ν with,
for ν-almost every t ∈ I ,

0 ≤ (l + 1)(β(t)+ 1)
dλ

dν
(t) = d

(
(l + 1)(β(·)+ 1)λ

)

dν
≤ 1. (4.26)

Note also, by (4.12) and (4.18), that

∥
∥ f
(
ρn(t), un(δn(t))

)∥
∥ ≤ (l + 1)(β(t)+ 1), for all t ∈ I,

which ensures, for ν-almost every t ∈ I ,

∥
∥
∥
∥ f (ρn(t), un(δn(t)))

dλ

dν
(t)

∥
∥
∥
∥ ≤ (l + 1)(β(t)+ 1)

dλ

dν
(t) ≤ 1, (4.27)

hence ∥
∥
∥
∥

dun

dν
(t)

∥
∥
∥
∥ ≤ 2. (4.28)

Defining the functions θn(·) : I → I by θn(T0) := T0 and

θn(t) := tn
i+1 if t ∈]tn

i , tn
i+1] (0 ≤ i ≤ p(n)− 1), (4.29)

we also see by (2.5) that, for ν-almost every t ∈ I ,

dun

dν
(t)+ f (ρn(t), un(δn(t)))

dλ

dν
(t) ∈ −N

(
C(θn(t)); un(θn(t))

)
,
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and hence according to (2.6) and (4.25)

dun

dν
(t)+ f (ρn(t), un(δn(t)))

dλ

dν
(t) ∈ −∂dC(θn(t))

(
un(θn(t))

)
. (4.30)

Step 2. Cauchy property of (un(·))n .
Consider any integers n,m ∈ N. Since un

0 = u0 ∈ C(tn
0 ) and un

i+1 = proj C(tn
i+1)
(un

i −
ηn

i yn
i ), we note by (4.22) and (4.29) that

un(θn(t)) ∈ C(θn(t)) for all t ∈ I. (4.31)

This allows us to write, for every t ∈ I ,

dC(θn(t))(um(t)) = dC(θn(t))(um(t))− dC(θm (t))
(
um(θm(t))

)

≤ dC(θn(t))(um(t))− dC(θm (t))(um(t))+ ‖um(θm(t))− um(t)‖ ,

and hence, according to the variation assumption on C(·) and to the fact that one of
the partitions (J m

j )
qm
j=0 and (J n

j )
qn
j=0 is a refinement of the other (depending on either

n ≤ m or m < n),

dC(θn(t))(um(t)) ≤ max {μ(]t, θn(t)]), μ(]t, θm(t)])}+‖um(θm(t))−um(t)‖, (4.32)

so we see through (4.28) that

dC(θn(t))(um(t)) ≤ μ(]t, θn(t)])+ μ(]t, θm(t)])+ 2ν(]t, θm(t)]). (4.33)

Putting
γn(t) := μ(]t, θn(t)])+ ν(]t, θn(t)]), (4.34)

we obtain
dC(θn(t))(um(t)) ≤ γn(t)+ 2γm(t). (4.35)

Consequently, by (4.30), we deduce, for ν-almost every t ∈ I ,

〈
dun

dν
(t)+ f

(
ρn(t), un(δn(t))

)dλ

dν
(t), un(θn(t))− um(t)

〉

≤ dC(θn(t))(um(t))

≤ γn(t)+ 2γm(t),

which entails by (4.25) and (4.28)

〈
dun

dν
(t)+ f

(
ρn(t), un(δn(t))

)dλ

dν
(t), un(t)− um(t)

〉

(4.36)

≤ γn(t)+ 2γm(t)+ ‖un(t)− un(θn(t))‖ ≤ γn(t)+ 2γm(t)+ 2ν(]t, θn(t)]).
(4.37)
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On the other hand, for every t ∈ I , write

{
f
(
ρn(t), un(δn(t))

)− f (t, un(t))
} dλ

dν
(t)

= { f
(
ρn(t), un(δn(t))

)− f
(
t, un(δn(t))

)} dλ

dν
(t)

+ { f
(
t, un(δn(t))

)− f (t, un(t))
} dλ

dν
(t),

and observe by the equicontinuity assumption in (ii) that the first expression {·} dλ
dν (t)

in the right-hand side tends to 0 as n → ∞ since there is some real r > 0 such that
‖un(t)‖ ≤ r , for all t ∈ I and n ∈ N, according to (4.18), (4.19) and (4.22). By the
inequality

‖un(δn(t))− un(t)‖ dλ

dν
(t) ≤ 2ν(]δn(t), t])dλ

dν
(t)

[due to (4.28)] and by (4.4), we also see that ‖un(δn(t))− un(t)‖ → 0 and hence the
second expression {·} dλ

dν (t) tends to 0 as n → ∞ according to the Lipschitz property
of f (t, ·) on rBH in the assumption (ii). Consequently,

{
f
(
ρn(t), un(δn(t))

)− f (t, un(t))
} dλ

dν
(t) → 0 as n → ∞, (4.38)

and, for

ϕn,m(t) := dλ

dν
(t)
∥
∥ f
(
ρn(t), un(δn(t))

)− f (t, un(t))
∥
∥ ‖un(t)− um(t)‖ ,

we have
∫

]T0,T ] ϕn,m(t) dν(t) → 0 as n,m → ∞ by the Lebesgue dominated con-
vergence theorem (because ‖un(t)‖ ≤ r as seen above). From this and (4.36), for any
n,m, it ensures that, for ν-almost every t ∈ I ,

〈
dun

dν
(t)− dum

dν
(t), un(t)− um(t)

〉

≤ Lr (t)
dλ

dν
(t)‖un(t)− um(t)‖2 + 4(γn(t)+ γm(t))+ 2ν(]t, θn(t)])

+ 2ν(]t, θm(t)])+ ϕn,m(t)+ ϕm,n(t),

and, for

αn,m :=
∫

]T0,T ]

{
4(γn(t)+ γm(t))+ 2ν(]t, θn(t)])+ 2ν(]t, θm(t)])+ ϕn,m(t)

+ϕm,n(t)
}

dν(t),
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we have αn,m → 0 as n,m → ∞. On the other hand, Proposition 1 says that

d(‖un(·)− um(·)‖2) ≤ 2

〈
dun

dν
(·)− dum

dν
(·), un(·)− um(·)

〉

,

thus, putting ψn,m(t) := ‖un(t) − um(t)‖2 and noting that un(T0) = um(T0), we
deduce that, for all t ∈ I ,

ψn,m(t) ≤
∫

]T0,T ]
2Lr (s)

dλ

dν
(s)ψn,m(s) dν(s)+ αn,m .

Noting that Lr (s)
dλ
dν (s)ν({s}) = 0 for all s (since dλ

dν (s) = 0 if ν(s) > 0 according to
(4.4)) we can apply Lemma 1 and this yields

ψn,m(t) ≤ αn,m exp

⎛

⎜
⎝

∫

]T0,t]
2Lr (s)

dλ

dν
(s) dν(s)

⎞

⎟
⎠ = αn,m exp

⎛

⎜
⎝

∫

]T0,t]
2Lr (s) dλ(s)

⎞

⎟
⎠ ,

thus

sup
t∈I

ψn,m(t) ≤ αn,m exp

⎛

⎜
⎝

∫

]T0,T ]
2Lr (s) dλ(s)

⎞

⎟
⎠ .

This ensures that the sequence (un(·))n satisfies the Cauchy property with respect to
the norm of uniform convergence on the space of all bounded mappings from I into
H . Consequently, this sequence (un(·))n converges uniformly on I to some mapping
u(·). This also tells us that the mapping u(·) does not depend on the partition V n

0 <

· · · < V n
qn

of [0, V ] satisfying (4.7). Furthermore, by (4.28), extracting a subsequence

if necessary, we may suppose that
( dun

dν (·)
)

n converges weakly in L2
ν(I, H) to some

mapping h(·) ∈ L2
ν(I, H), so, for every t ∈ I ,

∫

]T0,t]

dun

dν
(s) dν(s) −→

∫

]T0,t]
h(s) dν(s) weakly in H.

Since dun
dν (·) is, by (4.23), a density of dun relative to ν, we also have un(t) = u0 +

∫

]T0,t]
dun
dν (s) dν(s), thus it ensues that u(t) = u0 + ∫]T0,t] h(s) dν(s), and this tells us

that u(·) is right continuous with bounded variation on I , and the vector measure du
has h(·) ∈ L2

ν(I, H) as a density relative to ν and du
dν (·) = h(·) ν-a.e. We also deduce

that

dun

dν
(·) −→ du

dν
(·) weakly in L2

ν(I, H).
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Step 3. Let us prove that u(·) is a solution.
First, for each t ∈ I , noting by (4.10) that 0 ≤ θn(t)− t ≤ εn , and writing by (4.28)

‖un(θn(t))− u(t)‖ ≤ ‖un(t)− u(t)‖ + 2ν(]t, θn(t)]),

we see that, as n → ∞,

θn(t) ↓ t and un(θn(t)) → u(t).

Furthermore, taking into account the closedness of C(t) and observing, by the variation
assumption, that

dC(t)
(
un(θn(t))

) ≤ dC(δn(t))
(
un(θn(t))

)+ μ(]δn(t), t])
≤ dC(δn(t))

(
un(δn(t))

)+ ‖un(θn(t))− un(δn(t))‖ + μ(]δn(t), t])
= ‖un(θn(t))− un(δn(t))‖ + μ(]δn(t), t]),

we also see (since μ({t}) = ν({t})) that

u(t) ∈ C(t) for every t ∈ I with ν({t}) = 0.

We also know by construction that un(T0) ∈ C(T0) and un(T ) ∈ C(T ), so
u(T0) ∈ C(T0) and u(T ) ∈ C(T ). Consider now any t̄ ∈]T0, T [ with ν({t̄}) > 0.
We may choose the partitions V n

0 < · · · < V n
qn

(satisfying (4.7)) such that v(t̄) ∈
{V n

1 , . . . , V n
qn

}, say v(t̄) = V n
jn(t̄)+1 for some jn(t̄) ∈ {0, . . . , qn − 1}. It follows

that J n
jn(t̄)+1 = v−1([Vjn(t̄)+1, Vjn(t̄)+2[) is of the form [t̄, τ [ with τ > t̄ , thus

t̄ = tn
in(t̄)+1 for some in(t̄) ∈ {0, . . . , p(n) − 1}. It results, for all n, that θn(t̄) = t̄

hence un(t̄) ∈ C(t̄), and this gives u(t̄) ∈ C(t̄), since un(t̄) → u(t̄) as n → ∞
according to the aforementioned independence property of u(·) with respect to the
partition V n

0 < · · · < V n
qn

. So,

u(t) ∈ C(t) for all t ∈ I. (4.39)

Now let us show that

du

dν
(t)+ f (t, u(t))

dλ

dν
(t) ∈ −N (C(t); u(t)) ν − a.e. t ∈ I.

As above, we write by (4.28)

‖un(δn(t))− u(t)‖ ≤ ‖un(t)− u(t)‖ + 2ν(]δn(t), t]),

which entails, for each t ∈ I with ν({t}) = 0, that un(δn(t)) → u(t). Using this and
the assumption (ii), for each t ∈ I with ν({t}) = 0, we can see (as for (4.38)) that
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f
(
ρn(t), un(δn(t))

) dλ
dν (t) → f (t, u(t)) dλ

dν (t) as n → ∞. Moreover, for each t ∈ I

with ν({t}) > 0, we have dλ
dν (t) = 0 by (4.4), so it results, for any t ∈ I , that

en(t) := f
(
ρn(t), un(δn(t))

)dλ

dν
(t) → f (t, u(t))

dλ

dν
(t) =: e(t)

as n → ∞. The Lebesgue dominated convergence theorem then yields that (en(·))n
converges strongly to e(·) in L2

ν(I, H). Putting ζn(t) := dun
dν (t) + en(t) and ζ(t) :=

du
dν (t) + e(t), the sequence (ζn(·))n converges weakly in L2

ν(I, H) to ζ(·) and by
Mazur’s lemma there exists a sequence (ξn(·))n converging strongly in L2

ν(I, H) to
ζ(·) with

ξn(·) ∈ conv{ζk : k ≥ n}, for all n ∈ N.

This sequence (ξn(·))n has a subsequence (that we do not relabel) converging ν-almost
everywhere to ζ(·), hence, there is some Borel set I0 ⊂ I with ν(I \ I0) = 0 such
that, for all t ∈ I0,

ζ(t) ∈
⋂

n

conv{ζk(t) : k ≥ n}.

Fixing any t ∈ I0 and any z ∈ H , it results from (4.30) that

〈−ζ(t), z〉 ≤ inf
n∈N

sup
k≥n

〈−ζk(t), z〉 ≤ lim sup
n→∞

d ′
C(θn(t))

(
un(θn(t)); z

)
,

and, since un(θn(t)) → u(t) with u(t) ∈ C(t) [see (4.39)], Proposition 2 implies that

〈−ζ(t), z〉 ≤ d ′
C(t)

(
u(t); z).

The latter inequality means, for each t ∈ I0, that −ζ(t) ∈ ∂dC(t)(u(t)) hence

du

dν
(t)+ f (t, u(t))

dλ

dν
(t) ∈ −N (C(t); u(t)), (4.40)

which finishes the proof of existence of a solution in the case where
∫ T

T0
(β(s) +

1) dλ(s) ≤ 1/4.

II. Case where
∫ T

T0
(β(s)+ 1) dλ(s) > 1/4.

First, from (4.40), we note that the mapping u(·) in the above case is also a solution
with the measure μ + λ in place of ν therein, since the measure μ + λ is absolutely
continuous with respect to ν and vice versa. Let T0, T1, . . . , Tp be a subdivision of
[T0, T ] such that, for each i = 1, . . . , p,

Ti∫

Ti−1

(β(s)+ 1) dλ(s) ≤ 1

4
.
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For each i = 1, . . . , p, denote by μi the Radon measure induced on [Ti−1, Ti ] by
μ and set νi := μi + λ. Then, the part I provides a right continuous with bounded
variation mapping u1 : [T0, T1] → H such that u1(T0) = u0, u1(t) ∈ C(t) for all
t ∈ [T0, T1], du1 has du1

dν1
as a density in L1

ν1
([T0, T1], H) relative to ν1, and

du1

dν1
(t)+ f (t, u1(t))

dλ

dν1
(t) ∈ −N (C(t); u1(t)) ν1 − a.e. t ∈ [T0, T1].

Similarly, there is a right continuous with bounded variation mapping u2 : [T1, T2] →
H such that u2(T1) = u1(T1), u2(t) ∈ C(t) for all t ∈ [T1, T2], du2 has du2

dν2
as a

density in L1
ν2
([T1, T2], H) relative to ν2, and

du2

dν1
(t)+ f (t, u2(t))

dλ

dν2
(t) ∈ −N (C(t); u2(t)) ν2 − a.e. t ∈ [T1, T2].

So, by induction, we obtain a finite sequence of right continuous with bounded variation
mappings ui : [Ti−1, Ti ] → H (i = 1, . . . , p) such that ui (Ti−1) = ui−1(Ti−1),
ui (t) ∈ C(t) for all t ∈ [Ti−1, Ti ], the vector measure dui has dui

dνi
as a density in

L1
νi
([Ti−1, Ti ], H) relative to νi , and

dui

dνi
(t)+ f (t, ui (t))

dλ

dνi
(t) ∈ −N (C(t); ui (t)) νi − a.e. t ∈ [Ti−1, Ti ].

Then, the mapping u : [T0, T ] → H with u(t) := ui (t) if t ∈ [Ti−1, Ti ]
(i = 1, . . . , p) is well defined and right continuous with bounded variation, and
the inclusions u(t) ∈ C(t), for all t ∈ [T0, T ], along with the equality u(T0) = u0 are
obviously fulfilled. On the other hand, putting

g(t) := 1[t0,T1](t)
du1

dν1
(t)+

p∑

i=2

1]Ti−1,Ti ](t)
dui

dνi
(t) for all t ∈ [T0, T ]

and considering the Radon measure ν0 := μ + λ on [T0, T ], we easily see that
u(t) = u(T0) + ∫]T0,t] g(s) dν0(s) for all t ∈ [T0, T ], so the vector measure du has

g(·) ∈ L1
ν0
([T0, T ], H) as a density relative to ν0

du
dν0
(·) = g(·) ν0-a.e. Furthermore,

for ν0-almost every t ∈ [T0, T ],
du

dν0
(t)+ f (t, u(t))

dλ

dν0
(t) ∈ −N (C(t); u(t)),

so u(·) is a solution on the whole interval [T0, T ].
III. Uniqueness.
Let ui : [T0, T ] → H (i = 1, 2) be two solutions which are right continuous with
bounded variation, so, ui (T0) = u0, ui (t) ∈ C(t) for all t ∈ [T0, T ], and there exist
two Radon measures νi on [T0, T ] (i = 1, 2) absolutely continuously equivalent to
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μ+ λ and such that the vector measure dui has dui
dνi
(·) ∈ L1

νi
([T0, T ], H) as a density

relative to νi and

−dui

dνi
(t)− f (t, ui (t))

dλ

dνi
(t) ∈ N (C(t); ui (t)) for νi − a.e. t ∈ [T0, T ].

With respect to the positive Radon measure ν := ν1 + ν2 absolutely continuously
equivalent toμ+λhence to νi , the measures dui andλhave densities in L1

ν([T0, T ], H)
and L1

ν([T0, T ],R+) respectively, and

dui

dν
(t) = dui

dνi
(t)

dνi

dν
(t) and

dλ

dν
(t) = dλ

dνi
(t)

dνi

dν
(t)

with dνi
dν (t) ≥ 0. Since N (C(t); u(t)) is a cone, it ensues that, for ν-almost every

t ∈ [T0, T ],

−dui

dν
(t)− f (t, u(t))

dλ

dν
(t) ∈ N (C(t); u(t)).

Noting that u1(·) and u2(·) are bounded on [0, T ] as mappings with bounded variation
on [T0, T ], choose a real r > 0 such that ‖ui (t)‖ ≤ r for all i = 1, 2 and t ∈ [T0, T ].
The monotonicity of the normal cone and the Lipschitz property of f (t, ·) on rB yield,
for ν-almost every t ∈ [T0, T ],

〈
du1

dν
(t)− du2

dν
(t), u1(t)− u2(t)

〉

≤ Lr (t)
dλ

dν
(t) ‖u1(t)− u2(t)‖2,

thus Proposition 1 says that, for all t ∈ [T0, T ],

‖u1(t)− u2(t)‖ ≤
∫

]T0,t]
2Lr (s)

dλ

dν
(s) ‖u1(s)− u2(s)‖2 dν(s),

and Lemma 1 entails, for all t ∈ [T0, T ], that ‖u1(t)− u2(t)‖2 ≤ 0, which confirms
the uniqueness of solution and finishes the proof of the theorem. ��

5 A variant with velocity in the moving set

In this section we are interested in the following variant of the sweeping process:

{
A1u̇(t)+ A0u(t)− f (t) ∈ −N (C(t); u̇(t)) a.e. t ∈ [0, T ],
u(0) = u0 ∈ H,

(5.1)

where f : [0, T ] → H is a continuous mapping and A0, A1 : H → H are two
bounded symmetric linear operators which are semi-definite positive in the standard
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sense, that is,

〈Ai x, x〉 ≥ 0, for all x ∈ H and i = 0, 1.

By a solution, we mean an absolutely continuous mapping u(·) : [0, T ] → H with
u(0) = u0 such that the above inclusion is fulfilled for almost every t ∈ [0, T ]. We
have to be careful with such a variant. Indeed, even in the simple case where A0 and
A1 are the null operators, that is, the system is reduced to

f (t) ∈ N (C(t); u̇(t)) with u(0) = u0 ∈ H, (5.2)

a solution does not always exist. Taking, for example, C(t) = [t,+∞[ in R and
f (t) = 1, no solution exists in [0, T ]. However, assuming that C(t) is bounded for
all t ∈ [0, T ], the property (2.3) tells us that the set-valued operator N (C(t); ·) is
surjective and hence (5.2) has at least one solution u(·). Such boundedness condition
of C(t) will be assumed in our analysis below.

Remark 1 Writing the inclusion in (5.1) as

−A0u(t)+ f (t) ∈ ∂(ϕA1 + ıC(t))(u̇(t)),

we see that it is equivalent to

u̇(t) ∈ ∂(ϕA1 + ıC(t))
∗(−A0u(t)+ f (t)).

By setting

g(t, x) := (ϕA1 + ıC(t))
∗(−x), where ϕA1(x) = 1

2
〈A1x, x〉,

it appears that (5.1) is equivalent to the differential evolution inclusion

{
u̇(t)+ ∂g(t,−A0u(t)+ f (t)) � 0
u(0) = u0 ∈ H.

We emphasize that, in the latter differential inclusion, the convex function g(t, ·)
depends on the time t . Instead of continuing in this direction, our aim here is to show
how an adaptation of Moreau’s catching up algorithm leads to a constructive proof of
existence of a solution to (5.1).

5.1 A constructive existence result

Theorem 5.1 Let H be a separable Hilbert space. Let A0, A1 : H → H be two
bounded semi-definite symmetric linear operators and let f : [0, T ] → H be a
continuous mapping which is bounded by a real β ≥ 0, that is,

‖ f (t)‖ ≤ β, for all t ∈ [0, T ].
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Assume that C(0) ⊂ R BH and the nonempty closed sets C(t) of H have a continuous
variation in the sense that there is some nondecreasing continuous function v(·) :
[0, T ] → R with v(0) = 0 and such that

|d(y,C(t))− d(y,C(s))| ≤ |v(t)− v(s)| for all y ∈ H and s, t ∈ [0, T ].

Then, for any initial point u0 ∈ H, the evolution variational inequality (5.1) admits
at least a Lipschitz continuous solution u : [0, T ] → H.

Proof Consider, for each n ∈ N the following partition of the interval I := [0, T ]

tn
i := i

T

n
for 0 ≤ i ≤ n,

I n
i :=]tn

i , tn
i+1] for 0 ≤ i ≤ n − 1. (5.3)

By assumption C(0) ⊂ R BH , hence the continuity of v implies:

C(t) ⊂ ρBH , for all t ∈ [0, T ], with ρ := R + max
t∈[0,T ] |v(t)|. (5.4)

Put un
0 = u0 := T/n and f n

i := f (tn
i ) for all i = 1, . . . , n. Consider the continuous

convex function ϕAk : H → R, k = 0, 1, with

ϕAk (x) := 1

2
〈Ak(x), x〉 for all x ∈ H,

and note by (2.1) that

ηn A0 + A1 + N
(
C(tn

1 ); ·) = ∂(ηnϕA0 + ϕA1 + ıC(tn
1 )
)

with dom (ηnϕA0 + ϕA1 + ıC(tn
1 )
) bounded in H since C(tn

1 ) ⊂ ρ BH . The function
ηnϕA0 + ϕA1 + ıC(tn

1 )
is also bounded from below on ρBH (containing its effective

domain), since the linear operators A0 and A1 are bounded. By (2.3) the set-valued
operator ηn A0 + A1 + N (C(tn

1 ); ·) is surjective, so we can choose some zn
1 ∈ H such

that

f n
1 − A0un

0 ∈ (ηn A0 + A1 + N (C(tn
1 ); ·))(zn

1),

and clearly zn
1 ∈ C(tn

1 ) ⊂ ρBH . Put un
1 = un

0 + ηnzn
1. Now suppose that

un
0, un

1, . . . , un
i , zn

1, zn
2, . . . , zn

i are constructed.
As above, the set-valued operator ηn A0 + A1 + N (C(tn

i+1); ·) is surjective, so we
can find zn

i+1 ∈ C(tn
i+1) such that

f n
i+1 − A0un

i ∈ (ηn A0 + A1 + N (C(tn
i+1); ·))(zn

i+1),
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and we set un
i+1 := un

i +ηnzn
i+1. We then obtain by induction finite sequences (un

i )
n
i=0

and (zn
i )

n
i=1 such that, for all i = 0, . . . , n − 1,

f n
i+1 − A0un

i ∈ (ηn A0 + A1 + N (C(tn
i+1); ·)) (zn

i+1

)
and un

i+1 = un
i +ηnzn

i+1. (5.5)

Through the sequences (un
i )

n
i=0, (zn

i )
n
i=1 and ( f n

i )
n
i=0 in H , we construct two sequences

of mappings (un(·))n from [0, T ] into H and ( fn(·))n from [0, T ] into H as follows:
we set fn(0) := f n

1 and un(0) := un
0, and for each i = 0, . . . , n − 1, we set

fn(t) := f n
i+1 and un(t) := un

i + (t − tn
i )

ηn

(
un

i+1 − un
i

)
for all t ∈]tn

i , tn
i+1].

Clearly, the mapping un(·) is Lipschitz continuous on [0, T ], and ρ is a Lipschitz
constant of un(·) on [0, T ] since for every t ∈]tn

i , tn
i+1[

u̇n(t) =
(
un

i+1 − un
i

)

ηn
= zn

i+1 ∈ C
(
tn
i+1

) ⊂ ρBH .

Furthermore, for every t ∈ [0, T ], one has un(t) = u0 +∫ t
0 u̇n(s) ds, hence ‖un(t)‖ ≤

‖u0‖ + ρT .
Using the linearity of A0 and the definition of un

i+1, we see that

f n
i+1 − A0un

i+1 − A1zn
i+1 ∈ N

(
C
(
tn
i+1

) ; zn
i+1

)
.

So, defining the function θn from [0, T ] to [0, T ] by θn(0) = tn
1 and θn(t) = tn

i+1 for
any t ∈]tn

i , tn
i+1], the latter inclusion becomes

fn(t)− A0un(θn(t))− A1u̇n(t) ∈ N (C(θn(t)); u̇n(t)) a.e. t ∈ [0, T ], (5.6)

and we also note that

sup
t∈[0,T ]

|θn(t)− t | → 0 as n → ∞.

Now, let us prove the convergence of the sequences (un(·))n , (u̇n(·))n and ( fn(·))n .
We have, for all n,

{ ‖un(t)‖ ≤ ‖u0‖ + ρT, ‖ fn(t)‖ ≤ β for all t ∈ [0, T ] and
‖u̇n(t)‖ ≤ ρ for almost all t ∈ [0, T ],

so the sequence of mappings (un(·))n is uniformly bounded in norm and variation.
Hence, (see [[38], Theorem 0.2.1]), we find a mapping u : [0, T ] → H with bounded
variation and a subsequence still denoted (un(·))n , such that

un(t) ⇁ u(t) weakly in H for all t ∈ [0, T ], (5.7)

un(·) ⇁ u(·) in the weak-star topology of L∞([0, T ], H), (5.8)
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and, for some ζ(·) ∈ L2([0, T ], H),

u̇n(·) ⇁ ζ(·) in the weak topology of L2([0, T ], H). (5.9)

In particular, u(0) = u0. The Lipschitz continuity of the mapping un and the weak
lower semicontinuity of the norm give

‖u(t)− u(s)‖ ≤ lim inf
n→∞ ‖un(t)− un(s)‖ ≤ ρ|t − s| for all t, s ∈ [0, T ].

The mapping u(·) is then Lipschitz continuous on [0, T ], and hence the derivative
mapping u̇(·) exists almost everywhere. Fix any t ∈ [0, T ]. For each z ∈ H with
‖z‖ ≤ 1, we can write

|〈z, un(θn(t))− u(t)〉| ≤ |〈z, un(θn(t))− un(t)〉| + |〈z, un(t)− u(t)〉|
≤ ρ|θn(t)− t | + |〈z, un(t)− u(t)〉|,

which entails, according to (5.7), that un(θn(t)) → u(t) weakly in H as n → ∞. On
the other hand,

〈z, un(t)〉 = 〈z, u0〉 +
T∫

0

〈
1[0,t](s)z, u̇n(s)

〉
ds,

and using (5.9) and taking the limit as n → ∞ give

〈z, u(t)〉 = 〈z, u0〉 +
T∫

0

〈1[0,t](s)z, ζ(s)〉 ds =
〈

z, u0 +
t∫

0

ζ(s) ds

〉

.

The latter equality being true for all z ∈ H , we deduce that u(t) = u0 + ∫ t
0 ζ(s) ds,

and this guarantees that u̇(·) = ζ(·) almost everywhere hence

u̇n(·) ⇁ u̇(·) weakly in L2([0, T ], H) (5.10)

according to (5.9) again. Furthermore, since fn(t) = f (θn(t)) and f (·) is continuous,
we have, for every t ∈ [0, T ], that fn(t) → f (t) strongly in H as n → ∞.

Let us prove that u̇(t) ∈ C(t), for almost every t ∈ [0, T ].
First, using the assumption on the variation of C(·), we note that

u̇n(t) = zn
i+1 ∈ C(θn(t)) ⊂ C(t)+ |v(θn(t))− v(t)|BH , for a.e. t ∈]tn

i , tn
i+1],

so
u̇n(t) ∈ C(t)+ |v(θn(t))− v(t)|BH , for a. e. t ∈ [0, T ]. (5.11)
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Fix ε > 0 and let

Dε =
{
φ ∈ L2([0, T ]; H) : φ(t) ∈ C(t)+ εBH a. e. t ∈ [0, T ]

}
.

Then Dε is closed and convex in L2([0, T ], H), hence weakly closed, and u̇n ∈ Dε for
large n, by (5.11) since v(·) is uniformly continuous on [0, T ]. The weak convergence
of u̇n to u̇ in L2([0, T ], H) implies that u̇ ∈ Dε for all ε > 0. Since every C(t) is
closed, the claim follows.

Now let us prove the inclusion in (5.1). Put

ζn(t) := −A0un(θn(t))− A1(u̇n(t))+ fn(t) for all t ∈ [0, T ].

We then note that the inclusion (5.7) is equivalent by (2.4) to the inequality

σ
(
C(θn(t)), ζn(t)

)+ 〈−ζn(t), u̇n(t)〉 ≤ 0, a.e.

since u̇n(t) ∈ C(θn(t)), and integrating on [0, T ] we get

T∫

0

σ
(
C(θn(t)), ζn(t)

)
dt +

T∫

0

〈−ζn(t), u̇n(t)〉 dt ≤ 0. (5.12)

Furthermore, using the strong convergence of fn(t) to f (t) for all t ∈ [0, T ] along with
the inequality‖ fn(t)‖ ≤ β, we see that ( fn(·))n converges strongly in L2([0, T ], H) as
n → ∞. This combined with the weak convergence of (u̇n(·))n to u̇(·) in L2([0, T ], H)
ensures that

T∫

0

〈 f (t), u̇(t)〉 dt = lim
n→∞

T∫

0

〈 fn(t), u̇n(t)〉 dt. (5.13)

On the other hand, we have A0 = ∇ϕ0, for the continuous convex function ϕ0(x) =
1
2 〈A0x, x〉. Therefore, the absolute continuity of ϕ0 ◦ u and ϕ0 ◦ un gives

T∫

0

〈A0u(t), u̇(t)〉 dt =
T∫

0

d

dt
ϕ0(u(t))dt = ϕ0(u(T ))− ϕ0(u(0))

≤ lim inf
n→∞

(
ϕ0(un(T ))− ϕ0(un(0))

)

= lim inf
n→∞

⎛

⎝

T∫

0

d

dt
ϕ0(un(t)) dt

⎞

⎠

= lim inf
n→∞

T∫

0

〈A0un(t), u̇n(t)〉 dt, (5.14)
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where the inequality is due to the weak lower semicontinuity of ϕ0 on H and to the
fact that un(T ) → u(T ) weakly in H as n → ∞. We have also

lim inf
n→∞

T∫

0

〈A0un(t), u̇n(t)〉 dt = lim inf
n→∞

T∫

0

〈A0un(θn(t)), u̇n(t)〉 dt (5.15)

since

T∫

0

|〈A0un(t)− A0un(θn(t)), u̇n(t)〉| dt ≤ ρ2‖A0‖
T∫

0

|t − θn(t)| dt.

From the properties of A1, it is easy to verify that the function x(·) �→
∫ T

0 〈A1x(t), x(t)〉 dt is convex and strongly continuous on L2([0, T ]; H) thus weakly
lower semicontinuous on L2([0, T ], H). Recalling by (5.10) that

u̇n(·) ⇁ u̇(·) weakly in L2([0, T ], H) as n → ∞,

we obtain

T∫

0

〈A1u̇(t), u̇(t)〉 dt ≤ lim inf
n→∞

T∫

0

〈A1u̇n(t), u̇n(t)〉 dt. (5.16)

On the other hand, by Theorem 2.2, the convex function x(·) �→ ∫ T
0 σ(C(t), x(t)) dt

is weakly lower semicontinuous on L2([0, T ], H). Also, the mappings Âi :
L2([0, T ], H) → L2([0, T ], H) (i = 0, 1), with ( Âi x)(t) := Ai x(t) for all
t ∈ [0, T ], satisfy ‖ Âi x‖2 ≤ ‖Ai‖ ‖x‖2; then they are continuous and hence
weakly×weakly continuous from L2([0, T ], H) into itself. Since the sequences
(un(·))n and (u̇n(·))n converge weakly in L2([0, T ], H) to u(·) and u̇(·) respectively,
it results that (recall ζn(t) := −A0un(θn(t))− A1(u̇n(t))+ fn(t)),

T∫

0

σ
(
C(t),−A0u(t)− A1(u̇(t))+ f (t)

)
dt ≤ lim inf

n→∞

T∫

0

σ
(
C(t), ζn(t)

)
dt.

Since C(t) ⊂ C(θn(t))+ |v(θn(t))− v(t)|BH (according to the assumption on C(·)),
we also observe that

T∫

0

σ
(
C(t), ζn(t)

)
dt ≤

T∫

0

σ
(
C(θn(t)), ζn(t)

)
dt +

T∫

0

‖ζn(t)‖ |v(θn(t))− v(t)| dt

≤
T∫

0

σ
(
C(θn(t)), ζn(t)

)
dt +

(
(‖u0‖ + ρT )‖A0‖ + ρ‖A1‖ + β

)
T∫

0

|v(θn(t))−v(t)| dt.
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It is easily seen that
∫ T

0 |v(t)− v(θn(t))| ds → 0 as n → ∞, thus

lim inf
n→∞

T∫

0

σ
(
C(θn(t)), ζn(t)

)
dt ≥ lim inf

n→∞

T∫

0

σ
(
C(t), ζn(t)

)
dt.

We then deduce that

lim inf
n→∞

T∫

0

σ(C(θn(t)), ζn(t)
)

dt ≥
T∫

0

σ
(
C(t),−A0u(t)− A1(u̇(t))+ f (t)

)
dt.

(5.17)
Using all the inequalities (5.12)–(5.17) together, it follows that

T∫

0

〈A0u(t)+ A1u̇(t)− f (t), u̇(t)〉 dt +
T∫

0

σ
(
C(t),−A0u(t)− A1u̇(t)+ f (t)

)
dt ≤ 0,

(5.18)
by taking lim infn→∞ on both sides of (5.12). On the other hand, for almost every
t ∈ [0, T ], the inclusion u̇(t) ∈ C(t) yields

σ
(
C(t),−A0u(t)− A1u̇(t)+ f (t)

) ≥ 〈−A0u(t)− A1u̇(t)+ f (t), u̇(t)〉 ,

or stated differently,

σ
(
C(t),−A0u(t)− A1u̇(t)+ f (t)

)+ 〈A0u(t)+ A1u̇(t)− f (t), u̇(t)〉 ≥ 0.

Taking the latter inequality into account, it results from (5.18) that, for almost every
t ∈ [0, T ],

σ
(
C(t),−A0u(t)− A1u̇(t)+ f (t)

)+ 〈A0u(t)+ A1u̇(t)− f (t), u̇(t)〉 = 0,

which means, according to (2.4),

A0u(t)+ A1u̇(t)− f (t) ∈ −NC(t)(u̇(t)), for a. e. t ∈ [0, T ].

This translates the desired inclusion (5.1) and completes the proof of the theorem. ��
Next is a uniqueness result related to Theorem 5.1 when the linear operator A0 is

coercive.

Theorem 5.2 Assume in addition to the hypotheses in Theorem 5.1, that A0 is coer-
cive, that is, for all x ∈ H,

〈A0x, x〉 ≥ α0‖x‖2,

37



for some real constant α0 > 0. Then, for any initial point u0 ∈ H, there exists one
and only one Lipschitz continuous solution of (5.1).

Proof Suppose that (u1, u2) are two solutions for (5.1) such that u1(0) = u2(0) = u0.
Then, for almost every t ∈ [0, T ], we have

〈A0ui (t)+ A1u̇i (t)− f (t), u̇i (t)− z〉 ≤ 0, for all z ∈ C(t).

Using the fact that u̇i (t) ∈ C(t) a.e., we obtain, for a.e. t ∈ [0, T ],
{ 〈A0u1(t)+ A1u̇1(t)− f (t), u̇1(t)− u̇2(t)〉 ≤ 0,

〈−A0u2(t)− A1u̇2(t)+ f (t), u̇1(t)− u̇2(t)〉 ≤ 0,

and adding both inequalities yields

〈A0u1(t)− A0u2(t)+ A1u̇1(t)− A1u̇2(t), u̇1(t)− u̇2(t)〉 ≤ 0, a.e. t ∈ [0, T ].

Since A1 is monotone, we deduce

〈A0u1(t)− A0u2(t), u̇1(t)− u̇2(t)〉 ≤ 0, a. e. t ∈ [0, T ].

Consequently, for almost every t ∈ [0, T ],

d

dt
〈A0u1(t)−A0u2(t), u1(t)−u2(t)〉 = 2〈A0u1(t)−A0u2(t), u̇1(t)− u̇2(t)〉 ≤ 0.

By integrating, using the equalities u1(0) = u2(0) = u0 and the coerciveness of A0,
we have

α0 ‖u1(t)− u2(t)‖2 ≤ 〈A0u1(t)− A0u2(t), u1(t)− u2(t)〉 ≤ 0, for all t ∈ [0, T ],

which completes the proof of Theorem 5.2. ��

The next example shows that the coerciveness of A0 is essential to have the unique-
ness of solution.

Example 1 Let H = R
2, T = 1, u0 = (0, 0), A0 = A1 =

(
1 0
0 0

)
and C(t) =

[t, 1] × [0, 1] for t ∈ [0, 1]. Here A0 is a symmetric and positive semi-definite matrix
(not coercive). The set-valued mapping C(·) is Lipschitz continuous. Consider f (t) =
(0, 0) for all 0 ≤ t ≤ 1. The first solution is u(t) = ( 1

2 t2, t) for 0 ≤ t ≤ 1, with
u̇(t) = (t, 1) ∈ C(t) for all t ∈ [0, 1], and hence satisfies (5.1), since

N
([t, 1] × [0, 1]; (t, 1)) =

{ ] − ∞, 0] × [0,+∞[ if t ∈ [0, 1[,
R × [0,+∞[ if t = 1.
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We define the second solution as follows u(t) = ( 1
2 t2, 1

2 t) for 0 ≤ t ≤ 1, with
u̇(t) = (t, 1

2 ) ∈ C(t) for t ∈ [0, 1].
A simple computation shows that

N
([t, 1] × [0, 1]; (t, 1

2
)
) =

{ ] − ∞, 0] × {0} if t ∈ [0, 1[,
R × {0} if t = 1.

Therefore, u(t) = ( 1
2 t2, 1

2 t) satisfies (5.1).

5.2 Application

As a direct application of Theorem (5.2) we obtain an existence and uniqueness result
for the evolution variational inequality given in (1.6).

Theorem 5.3 Let ai (·, ·) : H × H −→ R be real bilinear, bounded and symmetric
forms such that for all u ∈ H ; a1(u, u) ≥ 0 and a0(u, u) ≥ α0‖u‖2 for some positive
constant α0 > 0. Let l ∈ W 1,2([0, T ], H) be uniformly bounded, that is, there exists
β > 0 such that ‖l(t)‖ ≤ β for all t ∈ [0, T ]. Assume that C(0) ⊂ R BH and the
nonempty closed sets C(t) of H have a continuous variation in the sense that there is
some nondecreasing continuous function v(·) : [0, T ] → R with v(0) = 0 and such
that

|d(y,C(t))− d(y,C(s))| ≤ |v(t)− v(s)| for all y ∈ H and s, t ∈ [0, T ].

Then, for every u0 ∈ H, there exists one and only one Lipschitz continuous solution
u : [0, T ] → H of (1.6).

Proof For i = 0, 1 we note by Ai the linear, bounded and symmetric operators
associated respectively with ai (·, ·), that is, ai (u, v) = 〈Ai u, v〉 for all u, v ∈ H .
Since C has convex values, the evolution variational inequality of type (1.6) can be
rewritten in the form

{
A1u̇(t)+ A0u(t)− l(t) ∈ −NC(t)(u̇(t)) a.e. t ∈ [0, T ],
u(0) = u0 ∈ H,

(5.19)

By Sobolev embedding theorem, W 1,2([0, T ], H) ⊂ C([0, T ], H), we conclude that
l is continuous. Thus all assumptions of Theorem 5.2 are satisfied and so the proof is
complete. �

6 Numerical experiments

In this section, we will give some numerical simulation to illustrate the theoretical
results discussed in the last sections. In order to solve numerically problem (5.1), we
will use the following algorithm discussed in the proof of Theorem 5.1. Let us suppose
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that the dimension of H is finite, i.e., dimR(H) < +∞. For n ∈ N, let

0 = tn
0 < tn

1 < · · · < tn
i < · · · < tn

n = T,

be a finite partition of the interval [0, T ]. We denote by ηn
i = tn

i+1 − tn
i the length of

the time step.
For simplicity, we will suppose that ηn

i = ηn = T
n , i = 0, 1, . . . , n which means

that tn
i = i T

n .
The approximation of f (tn

i ) will be denoted by f n
i .

Algorithm 1 Fix n ≥ 2 and set ηn = T
n , un

0 = u0 and f n
0 = f (tn

0 ).
For i = 0, 1, . . . , n − 1

– Compute f n
i+1 = f (tn

i+1)

– Solve for zn
i+1 the following variational inequalities (see Remark 2)

f n
i+1 − A0un

i ∈
[
ηn A0 + A1 + NC(tn

i+1)

] (
zn

i+1

)
(6.1)

– Update un
i+1 = un

i + ηnzn
i+1.

end

Remark 2 The discretized variational inclusion (6.1) is equivalent to

zn
i+1 ∈ [ηn A0 + A1 + NC(tn

i+1)

]−1 (
f n
i+1 − A0un

i

)
. (6.2)

Since C(tn
i+1) is bounded, convex and closed in a finite dimensional space, by the

classical result of Stampacchia, the variational inequality (6.1) has a solution. If one
of the matrices A0 or A1 is positive definite, then this solution is unique and the
operator [ηn A0 + A1 + NC(tn

i+1)
]−1 is single valued and non-expansive.

Since A0 and A1 are symmetric, (6.2) is equivalent to solve the following optimization
problem

min
z∈C(tn

i+1)

1

2
〈A1z, z〉 + ηn

1

2
〈A0z, z〉 − 〈A0un

i − f n
i+1, z

〉
. (6.3)

We note that this optimization problem is convex since A1, A0 are positive semidefinite,
ηn > 0 and the set C(tn

k+1) is (closed and) convex.
The choice of the adequate solver for solving the optimization problem (6.3) depends
on the structure of the set C(t). If the set C(t) is polyhedral, i.e., described by linear
inequalities and equalities of the form Ax ≤ b and Cx = d with A ∈ R

m×n , b ∈ R
m ,

C ∈ R
p×n and d ∈ R

p, then it is possible to use any quadratic programming solver
(e.g., quadprog in Matlab).
If the set C(t) is described by finitely many nonlinear inequalities and linear equalities

C(t)= {x ∈ H : g j (t, x) ≤ 0, j=1, 2, . . . ,m and hk(t, x)=0, k = 1, 2, . . . , p
}
,
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then we can use any nonlinear programming solver (e.g., Sequential Quadratic Pro-
gramming, interior point method or fmincon in Matlab).

Example 2 Let H = R
2, T = 1, u0 = (0, 0), A0 =

(
1 0
0 1

)
, A1 =

(
1 0
0 0

)
and

C(t) = {t} × [t, 1] for 0 ≤ t ≤ 1. For f (t) = (0, 1
2 t2), t ∈ [0, 1], it is easy to check

that the unique solution of (5.1) is given by

u(t) =
(

1

2
t2,

1

2
t2
)

, t ∈ [0, 1].

7 By the way of conclusion

In this paper, using tools from convex analysis, we studied the well-posedness of some
variants of the sweeping process within the framework of measure differential inclu-
sions and evolution variational inequalities. We proved that the perturbed measure
differential inclusion (4.1) has a unique right continuous solution with bounded vari-
ation. Under the assumption that the moving set C(t) has a continuous variation for
every t ∈ [0, T ] with C(0) bounded and the coercivity of the linear operator A0, we
proved that the sweeping process (1.5) with velocity in the moving set has a unique
Lipschitz continuous solution. There remain many issues that need answers and fur-
ther investigation. For example, as a consequence of the preceding assumption on C ,
it results that the set C(t) is bounded for every t ∈ [0, T ]. This assumption is essential
in the proof of Theorem 5.1. It would be interesting to extend this result to the case
of unbounded convex moving sets. As shown in the counter-example 1, the sweep-
ing process problem (1.5) generated by an unbounded moving set can fail to have a
solution for some f . We think that some compatibility conditions on f are needed to
prove the existence of at least one solution. In some applications, the assumption of
the convexity of C(t) is not satisfied, it will be also interesting to investigate the case
of prox-regular sets C(t). This is out of the scope of the current manuscript and will
be the aim of a future work.
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