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Abstract We commence an algorithmic study of Bulk-Robustness, a new model of
robustness in combinatorial optimization. Unlike most existing models, Bulk-Robust
combinatorial optimization features a highly nonuniform failure model. Instead of an
interdiction budget, Bulk-Robust counterparts provide an explicit list of interdiction
sets, comprising the admissible set of scenarios, thus allowing to model correlations
between failures of different components in the system, interdiction sets of variable
cardinality and more. The resulting model is suitable for capturing failures of complex
structures in the system. We provide complexity results and approximation algorithms
for Bulk-Robust counterparts of the Minimum Matroid Basis problems and the Short-
est Path problem. Our results rely on various techniques, and outline the rich and
heterogeneous combinatorial structure of Bulk-Robust optimization.
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1 Introduction

This paper studies a natural new robust model for combinatorial optimization. Our
model, called Bulk-Robustness is motivated by systems that feature highly correlated
component failures. Most existing robust counterpart in combinatorial optimization
assume a completely uniform failure model. Concretely, given a certain adversarial
budget k, most models assume that the adversary is able to remove any subset of
resources of total interdiction cost k. In fact, typically, unit interdiction costs are
assumed, meaning that the adversary can simply remove any subset of k resources.
This paper strays from this main line of research, focusing on the opposite end of the
uniformity scale. In our model, the input provides an explicit collection of interdiction
sets, of potentially variable cardinality. Formally, the Bulk-Robust counterpart of a
combinatorial optimization problem is defined as follows.

For a positive integer b let [b] = {1, . . . , b}. We denote the logarithm in base
2 and the natural logarithm functions by log(·) and ln(·), respectively. We model a
combinatorial optimization problem by means of a set system S = (A,X ) (with A
being a finite set of elements—which we also call resources—and X ⊆ 2A comprising
the feasible set of solutions) and a nonnegative cost function w : A → Z+. Given
this input the goal is to find an element X ∈ X of the set system minimizing w(X) =∑

a∈X w(a). We assume that X is up-monotone, namely that for every X1 ⊆ X2 ⊆ A
it holds that X1 ∈ X implies X2 ∈ X . For example, the Minimum Spanning Tree
problem is obtained by taking A to be the edges of the input graph, and X the set of all
subsets of edges connecting all vertices. We note that one could also consider robust
counterparts in our model for non-monotone set systems. The obtained problems are,
however, both harder to motivate and lose a lot of the problem structure exploited
by our algorithms. An instance of the corresponding Bulk-Robust counterpart also
includes a collection � = {F1, . . . , Fm} of interdiction sets with Fi ⊆ A for every
i ∈ [m]. The goal is to find the cheapest set X∗ ⊆ A with the property that X∗\Fi ∈ X
for every i ∈ [m]. Put differently, the Bulk-Robust counterpart asks to solve

z(S, w,�) = min
X⊆A
{w(X) : X\Fi ∈ X ∀i ∈ [m]} .

To illustrate our definitions consider the Bulk-Robust Shortest Path problem. In our
context, we would like to consider the Shortest Path problem as follows. Given a graph
G = (V, E), two vertices s, t ∈ V and a weight function w on the edges, the Shortest
Path problem asks to find the cheapest set P ⊆ E with the property that P connects s
and t . Bulk-Robust Shortest Path additionally supplies a collection � = {F1, . . . , Fm}
of subsets of edges, and asks to find a cheapest subset of edges P with the property
that s and t are connected by P\Fi for every i ∈ [m].

Although for most graph problems, the Bulk-Robust counterpart is defined as having
edge failures, the model also naturally allows for vertex failures. For example, to
simulate a vertex failure in the Bulk-Robust Shortest Path problem, one simply includes
in � an interdiction set that contains all incident edges to this vertex. This outlines
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an important advantage of Bulk-Robust counterparts, namely that the nonuniform
scenario set allows for constructing interdiction sets that target arbitrary structures in
the set system, thus mimicking some dependencies between failures of resources in
the underlying system, or a potential adversarial behavior.

As we mentioned before, our motivation to study Bulk-Robust counterparts comes
from many potential applications. Next, we bring a number of examples of such appli-
cations.

1.1 Motivation

We start with a rather general motivating example. Consider a system composed of n
components and m < n regulators (with n, m ∈ Z+). Each regulator i ∈ [m] controls
the operation of some subset Ci ⊆ [n] of the components, where some components
may be controlled by more than one regulator. A component is active if all regulators
that control it are active. The entire systems’ operational capability is expressed by
a set system S = ([n],X ) (with X ⊆ 2[n]) so that the system is operational if and
only if the set A ⊆ [n] of active components is an element of the set system, namely
A ∈ X . A system is said to be robust if for every regulator i ∈ [m], the system remains
operational if all regulators, but i are active. In other words, the system is robust if
[n]\Ci ∈ X for every i ∈ [m].

The latter definition bears a clear resemblance to Bulk-Robust counterparts. Indeed,
we can identify components with resources of a set system and interdiction sets with
inactive regulators. If a regulator becomes inactive, all components that it regulates get
out of order. At the same time, this definition resembles an inherent structure in many
applications. Concretely, many systems, some examples thereof we bring later, admit
a clear hierarchical structure. While the system is built from a large set of autonomous
components, different subsets of these components are controlled by other elements in
the system. It is then natural to ask—which such elements are critical to the integrity
of the system? Below, we mention some potential application areas, where dependent
failure scenarios—as used in Bulk-Robust optimization—are a natural way to model
failures or malicious attacks.

• Computer Systems. It is common place in computer systems to have certain
machines responsible for some critical functionality of the system. Consider, for
example an important database. Typically, databases are stored on high-performance
designated server machines. Due to the high cost of such machines, most computer
systems allocate a single or few special-purpose machines for this task. Conse-
quently, during down-time of these machines access to the database is disrupted,
keeping a potentially large number of processes in the system stranded.
• Health Care. Health care facilities are typically very large and cost intensive sys-

tems. Here, certain individual components are pivotal for the operations of relatively
large parts of the system. This is true for some individuals in the work force, e.g., if
a specialized surgeon cannot practice, the performance of an entire team decreases.
This also applies to crucial parts of the technical equipment: malfunction of a costly,
and therefore not backed-up, specialized device for diagnoses will inhibit the entire
facility to perform treatments based on these diagnoses.
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• Digitally Controlled Infrastructures. Many important infrastructures are con-
trolled by a collection of central computers. A large number of heterogeneous
components can rely on the operation of one such controller. Examples of such
systems range from electricity grids to railway switching systems.
• Cascades. Many systems feature cascading failures triggered by a failure of a single,

or a small number of critical components. For example in an financial investment
network the bankruptcy of a few important companies can lead to further bank-
ruptcies, eventually resulting in the downfall of large parts of the network. Such
cascading effects were recorded in many other network-centric complex systems.
• Military. Consider a large military unit with a deep hierarchy, composed of many

levels of commanders with various ranks. Each higher officer is responsible for some
part of the entire military personnel available to this unit, potentially deployed over
a large area in a battlefield. With the simplifying assumption that every soldier can
only take commands from his direct commander, it is clear that a sophisticated
enemy will be compelled to target higher officers, in command of a critical part of
the entire force, rather than a simple soldier. In large, this remains true also without
the latter assumption.

The previous examples illustrate that targeting a few critical components of a sys-
tem can lead to the malfunction of large parts of the system. Bulk-Robustness models
attacks of this nature. Note that a nonuniform scenario set arises naturally in this
context, even if we assume that the adversary can choose to attack any one single
component. This implies that from the point of view of many applications, even the
assumption of a uniform scenario set leads to nonuniform failure patterns in the sys-
tem. It is the goal of the current paper to commence a study of such nonuniform models
of robustness.

1.2 Contribution

In this paper we commence an algorithmic study of Bulk-Robust counterparts of
classical combinatorial optimization problems. We present results for Bulk-Robust
counterparts of the Minimum Matroid Basis problem and the Shortest Path problem.
Note that the former problem contains the Bulk-Robust Minimum Spanning Tree
problem as a special case. Hereafter we state our complexity results, as well as our
algorithmic results for the aforementioned problems.
Complexity Results. Our first result states that the Bulk-Robust counterpart of almost
any combinatorial optimization problem contains the Set Cover problem as a special
case. Concretely, we show that a polynomial-time c ln m-approximation algorithm
does not exist for any c < 1 under standard complexity assumptions. For the Bulk-
Robust Minimum Matroid Basis problem, we are able to provide an algorithm with
an approximation guarantee that almost matches this hardness bound.

The Bulk-Robust Shortest Path problem turns out to be considerably harder to
approximate in general. We therefore study a parameterized version of it, that depends
on a critical parameter of the instance, which we call width. The width k of an instance
is the maximum size over all interdiction sets, i.e.,
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k = max
F∈� |F |.

Bulk-Robust Shortest Path restricted to the case k = 1 coincides with a robust path
problem defined in [2], where it was shown to be polynomial-time solvable. We thus
concentrate on the case k ≥ 2. For k = 2 we show that Bulk-Robust Shortest Path is
APX-hard. We remark that in the case k ≥ 3 this problem is APX-hard even when the
input graph is restricted to be Series-Parallel. When k is not bounded we show that
unless NP ⊆ DTIME(nlog log n),1 it is impossible to approximate Bulk-Robust Shortest

Path in polynomial time within a factor of O(2
1
4 k1−ε

), or a factor of O(2log1−ε n) for
any ε > 0.
Bulk-Robust Minimum Matroid Basis. For the Bulk-Robust Minimum Matroid
Basis problem we develop an O(log m + log r)-approximation algorithm, where r is
the rank of the matroid. Our algorithm relies on an approximation algorithm for the
Submodular Function Maximization problem. For the Bulk-Robust Minimum Span-
ning Tree problem this result gives an O(log n + log m)-approximation algorithm,
which is asymptotically optimal in m in view of the hardness results that we provide.
Bulk-Robust Shortest Path. We first propose a simple polynomial O(log m)-
approximation algorithm for instances of Bulk-Robust Shortest Path with fixed width
k. This procedure is inspired by the greedy log-approximation for the Set Cover prob-
lems, and iteratively constructs a solution by solving a sequence of relaxations of the
original problem.

Then, we refine our technique to obtain a constant-factor approximation algorithm
for the case k = 2. The algorithm is based on a linear programming relaxation to
augment an initial solution for the case k = 1 to a feasible solution of the given
instance. We round a solution to this linear program by breaking the LP into at most
4 independent linear programs that are naturally integral, and whose costs can be
bounded in terms of the value of the original LP. This leads to a 13-approximation for
Bulk-Robust Shortest Path for k = 2.

Notice that since we showed this problem to be APX-hard, a constant-factor approx-
imation is the best we can hope for from a qualitative point of view.

1.3 Related work

The field of robust optimization has received significant attention recently. We review
here related work that has been carried out in the last twenty years in the field of
robust discrete and combinatorial optimization. For a comprehensive survey on general
models for robust optimization we refer the reader to the paper of Bertsimas, Brown
and Caramanis [8].

The study of general models of robustness in discrete optimization was initiated
by Kouvelis and Yu [28] and Yu and Yang [41]. The main model considered in the

1 Recall that DTIME( f (n)) is the class of all decision problems that can be solved by a deterministic Turing
Machine with running time O( f (n)) (see e.g. [21]). The statement NP ⊆ DTIME(nlog log n) would imply
that NP–hard problems admit algorithms with running time O(nlog log n). However, it is widely believed
that NP-hard problems do not admit quasi-polynomial time algorithms, which are algorithms with running
time O(2logc n), where c is constant.
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latter works is one that introduces uncertainty in the cost structure. Concretely, the
input to the robust problem provides an instance of the nominal problem, as well
as a collection wi , i ∈ I of cost functions, presented in one of several ways. The
goal is to find a feasible solution X for the problem minimizing maxi∈I wi (X). Yu
and Yang [41] study the Shortest Path problem in this model. They prove that the
problem is weakly NP-hard already for two scenarios, and strongly NP-hard when the
number of scenarios is unbounded. For the case of a bounded number of scenarios the
authors provide two pseudo-polynomial algorithms. Their objective of minimizing the
maximum weight of several weight functions wi can also be reinterpreted as a multi-
budgeted problem, which is a class of problems that has received considerable attention
recently (see [6,11,12,23,32–34] and references therein). Using this connection, their
algorithmic results for two objective functions are also implied by algorithms for the
Restricted Shortest Path problem (see Warburton [40] and Hassin [25]).

Robust counterparts—in the spirit of the approach of Yu and Yang [41]—of var-
ious other problems were subsequently considered. These problems include robust
counterparts of the Minimum Spanning Tree problem, the Minimum Cut problem,
the Knapsack problem and the Linear Assignment problem. We refer to the book of
Kouvelis and Yu [28] and the recent survey of Aissi et al. [4] for further details about
results for this model.

Dhamdhere et al. [15] introduced a new model for robust combinatorial opti-
mization, called Demand-Robustness. Unlike the previously mentioned model, this
two-stage model incorporates uncertainty in the feasible set. Analogously to Bulk-
Robustness, Demand Robust combinatorial optimization deals with up-monotone set
systems. The uncertainty in the feasible set is problem-dependent. For example, the
robust counterpart of the Shortest Path problem has as a scenario set a collection
of potential terminal pairs (si , ti ), i ∈ I that need to be connected by the chosen
subgraph. The solution is constructed in two stages. In the first stage, a subset of
resources is chosen at a reduced price, without the knowledge of what set of terminal
pairs will materialize. In the second stage, the identity of the materialized scenario
is revealed, and the first-stage solution is augmented to a feasible solution with an
additional set of resources, the full cost of which is incurred. The cost is computed
as the maximum cost of the obtained solution over all possible scenario realizations.
The authors provide approximation algorithms for Demand-Robust counterparts of
several problems, including the Minimum Cut problem, the Minimum Steiner Tree
problem, the Uncapacitated Facility Location problem and the Minimum Vertex Cover
problem. Some results were subsequently improved by Golovin et al. [22]. The model
was extended to allow exponentially many scenarios by Feige et al. [18]. The authors
replace the explicit list of scenarios by an implicitly defined scenario set. Approxima-
tion algorithms are provided for several problems in this model. Khandekar et al. [27]
obtained algorithmic results for other robust problems in this model, and provided
some hardness results.

Bertsimas and Sim [9] developed a model of robust optimization for mixed-integer
linear programming (MIP). The uncertainty in this model lies in the coefficients of the
constraint matrix. Each row of the matrix is associated with an upper bound on the
number of coefficients that can deviate from their nominal values within prescribed
bounds. The goal is to obtain a minimum-cost solution that is feasible in all possible
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scenarios. The authors show that the problem of solving this robust model can be
transformed into a MIP of a moderately larger size.

Recently, Adjiashvili [2] proposed a new nonuniform model for robust combina-
torial optimization. Again, this model assumes up-monotone feasible sets. Given an
instance of the nominal problem, a subset B of resources and a positive integer r , the
goal is to obtain a minimum-cost set of resources X , with the property that X\F is
a feasible solution of the nominal instance for every set F ⊆ B with |F | ≤ r . The
paper studies the Shortest Path problem in this robust model, providing exact algo-
rithms for some special cases, an approximation algorithm for the general case and
some complexity results. Note that any Bulk-Robust instance with width k = 1 is also
an instance of the latter robust model with r = 1, and vice versa, thus these models
coincide when r = k = 1.

Various important network design problems are motivated by robust optimization.
The Minimum k-Edge Connected Spanning Subgraph problem is one important exam-
ple. Gabow, Goemans, Tardos and Williamson [20] developed a polynomial time
(1 + c

k )-approximation algorithm for the latter problem, for a fixed constant c. The
authors also show that for some constant c′ < c, the existence of a polynomial time
(1 + c′

k )-approximation algorithm implies P=NP. The first approximation algorithm
for this problem with a guarantee tending to one as k tends to infinity is due to Cheriyan
and Thurimella [14]. The Minimum k-Edge Connected Spanning Subgraph problem
can be seen as the uniform variant of the Bulk-Robust Minimum Spanning Tree prob-
lem, studied in the current paper.

The Shortest Path problem was studied in a number of robust setups. A setting
related to Bulk-Robust optimization was considered by Adjiashvili and Zenklusen [3].
They study a two-stage s–t connection problem in undirected graphs with a uniform
scenario set. Given a limited adaptability budget, the goal is to choose a minimum-cost
initial set of edges connecting s and t , with the property that for any interdiction set
chosen by the adversary that disconnects s and t , there exists a set of other edges,
whose cost is bounded by the adaptability budget, that reconnect s and t . Without the
second stage, which allows for adapting the solution, this problem can be interpreted
as a Bulk-Robust optimization problem with uniform failure scenarios. The authors
prove that the problem is NP-hard in general and provide exact and constant-factor
approximations for special cases. We refer the reader to [3,10] and references therein
for further information on robust versions of shortest path problems.

Another related class of problems are so-called interdiction problems. These prob-
lems are defined on an underlying combinatorial optimization problem. To illustrate,
consider the Maximum Cardinality Matching problem. A corresponding interdiction
problem asks to find a subset of the edges that satisfy some budget constraint and
whose removal from the graph leads to a new graph whose maximum cardinality
matching is as small as possible. Hence, the order of removing elements and finding
a solution is reversed compared to many other robust problem variants. First, a set is
removed, and then any solution can be obtained. For more information on interdiction
problems, see [26,42] and references therein.

A further problem class with some reminiscence to Bulk-Robust variants, are prob-
lems where one is interested in computing an optimal solution of a combinatorial opti-
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mization problem for any possible failure set of a given size. A well-studied variant
of this problem type is the replacement path problem (see e.g. [7,24,38,39]). Similar
questions have also been considered in the context of spanning trees (see [37]).

Various other robust variants of classical combinatorial optimization problems were
proposed. For a survey of these results we refer the reader to the theses of Adjiashvili [1]
and Olver [31].

1.4 Preliminaries and notation

Throughout the paper n is reserved for the number of vertices in the input graph, or
the number of elements of a matroid, and m is reserved for the number of interdiction
sets, namely m = |�|. All graphs are allowed to have parallel edges and loops. Paths
in graphs are edge disjoint. The vertex set and the edge set of a graph G is denoted
by V (G) and E(G), respectively. For a graph G = (V, E) and a set of edges A ⊆ E
we denote G − A = (V, E\A). For two vertices s, t ∈ V an s–t cut is a set of edges
C ⊆ E with the property that s and t are in different connected components in G−C .
The connected components containing s and t in G−C are called the s-shore and the
t-shore of C , respectively.

As it is common, we assume that matroids M = (A, I) are given by an indepen-
dence oracle, which is a procedure that can be called for any X ⊆ A, and returns
whether X ∈ I. We recall that the rank function r : 2A → Z≥0 of a matroid
M = (A, I) is defined by

r(X) = max{|Y | : Y ⊆ X, Y ∈ I},

and as is well known, it can be computed efficiently given an independence oracle.
We refer the reader to the book of Schrijver [36] for an introduction to matroid theory.

Let us briefly discuss two important properties of Bulk-Robust counterparts. For
this discussion we fix an instance (S, w,�) of a Bulk-Robust counterpart of some
combinatorial optimization problem P , with S = (A,X ) and � = {F1, . . . , Fm}.

Consider first the complexity of the feasibility problem, which amounts to deciding
whether there exists a set X in

F = {Y ⊆ A : Y\Fi ∈ X ∀i ∈ [m]}.

We observe that this problem can be solved by invoking the feasibility oracle of S.
Concretely, if there exists a feasible solution X ∈ F , then also the entire ground set
A ⊇ X is a feasible solution, due to monotonicity of X . Thus, to verify that F is
nonempty one simply needs to verify that A\Fi ∈ X for every i ∈ [m]. Throughout
this paper, when we consider Bulk-Robust problems, we always assume that they are
feasible, to avoid trivial cases.

The second property of Bulk-Robust counterparts is related to their approximabil-
ity. Observe that given an algorithm for the underlying combinatorial optimization
problem that for every B ⊆ A returns a solution
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X∗(B) ∈ argmin{w(X) : X ∈ X : X ⊆ B},

one can obtain an m-approximation for the Bulk-Robust instance by simply taking

X =
⋃

i∈[m]
X∗(A\Fi ).

From monotonicity of X , X is clearly a feasible solution, while

z(S, w,�) ≥ w(X∗(A\Fi ))

follows from the fact that X∗(A\Fi ) is an optimal solution to the relaxation of the robust
problem that only considers a single interdiction set Fi . The latter properties motivate
us to focus on obtaining complexity results and better approximation algorithms for
Bulk-Robust counterparts.

The remainder of the paper is organized as follows. The next section provides com-
plexity results for Bulk-Robust combinatorial optimization problems. Sections 3 and 4
provide approximation algorithms for the Bulk-Robust counterparts of the Minimum
Matroid Basis and the Shortest Path problems, respectively. We conclude the paper
and discuss various promising directions for future research in Sect. 5.

2 Complexity of Bulk-Robust optimization

2.1 Inapproximability of Bulk-Robust counterparts

We begin by showing that the Set Cover problem can be modeled as the Bulk-Robust
couterpart of essentially any combinatorial optimization problem. Recall that Set
Cover is defined as follows. Given a ground set S = {a1, . . . , an} of n elements,
a collection R = {R1, . . . , Rt } of subsets of S with the property that ∪R∈R R = S,
and weights w(R) for each set R ∈ R, the Set Cover problem asks to find a collection
Y ⊆ R covering S, namely satisfying∪R∈Y R = S, while minimizing the total weight∑

R∈Y w(R)of this collection. Feige [17] showed that unless NP ⊆ DTIME(nlog log n),
Set Cover admits no polynomial c ln n-approximation algorithm for any c < 1. Under
the weaker assumption that P �= NP, Raz and Safra [35] proved that Set Cover admits
no polynomial approximation algorithms with guarantee c ln n for some c > 0.

Our goal is to prove that the latter result implies a conditional c ln m lower bound for
approximation for Bulk-Robust counterparts. To achieve this we prove the result first
for an extremely simple problem, namely the Minimum Matroid Basis problem when
the matroid is the uniform matroid of rank one. Recall that the uniform matroid of rank
one with n elements A = {b1, . . . , bn} is the set system Un,1 = (A, I) with I = {B ⊆
A : |B| ≤ 1}. Its bases are all singletons of the ground set, and the optimal solution
for the Minimum Matroid Basis problem is attained by the singleton containing the
cheapest element in A. As we mentioned before, we are always considering the up–
monotone variant of the nominal problem. For the case of the uniform matroid of rank
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one, this variant has as feasible sets all subsets B ⊆ A which contain a basis of the
matroid, namely which satisfy |B| ≥ 1.

Proposition 1 Unless NP ⊆ DTIME(nlog log n), Bulk-Robust Minimum Matroid Basis
admits no polynomial c ln m-approximation algorithm for any fixed c < 1, even when
the matroid is restricted to a uniform matroid of rank one, where m is the number of
interdiction sets.

Proof The proof proceeds by a simple reduction from the Set Cover problem. Consider
an instance of Set Cover as defined above. We construct an instance of Bulk-Robust
Minimum Matroid Basis as follows. The matroid is chosen to be Ut,1 = (A, I), with
the i-th element in A corresponding to the i-th set Ri in the Set Cover instance. The
family of interdiction sets � = {F1, . . . , Fn} contains one interdiction set for every
ground set element of the Set Cover instance. The set Fi is chosen to contain all
elements in A corresponding to sets in the Set Cover instance that do not cover ai .
This concludes the construction of the instance. It is straightforward to verify that
feasible solutions to the Set Cover instance are in one-to-one correspondence with
feasible solutions to the Bulk-Robust Minimum Matroid Basis problem with identical
costs. As the number of interdiction sets m is equal to the cardinality of the ground
set of the Set Cover instance, the result of Feige [17] concludes the proof. 
�

The latter result easily extends to many other combinatorial optimization problems,
including the Bulk-Robust counterparts of the Shortest Path problem and many others.
The simplest explanation is that the Minimum Basis problem for the uniform matroid
of rank one Ut,1 can be simulated with all these problems by considering a graph
with two vertices u and v, and t parallel edges connecting u and v. For example, the
existence of a u-v path in any subgraph of this graph is equivalent to the existence of
an edge in this subgraph. We conclude with the following corollary.

Corollary 2 Unless NP ⊆ DTIME(nlog log n), the Bulk-Robust counterparts of the
Minimum Matroid Basis problem and the Shortest Path problem admit no polynomial
c ln m-approximation algorithm for any fixed c < 1.

2.2 Complexity of the Bulk-Robust shortest path problem

In this section we focus on the Bulk-Robust Shortest Path problem, showing stronger
inapproximability results, as well as various results for fixed-width instances. For our
first reduction we use the Directed Steiner Forest problem, defined as follows.

Given a directed arc-weighted graph G = (V, A), and a collection of ordered pairs
P ⊆ V × V of vertices, the Directed Steiner Forest problem asks to find a cheapest
set of arcs A∗ ⊆ A with the property that it contains a u-v path for every terminal pair
(u, v) ∈ P . Dodis and Khanna [16] showed that Directed Steiner Forest is at least as
hard as the Label Cover problem. This implies that unless NP ⊆ DTIME(nlog log n),
Directed Steiner Forest cannot be approximated in polynomial time within O(2log1−ε n)

for any fixed ε > 0. The following proposition proves a similar result for the Bulk
Robust Shortest Path problem.
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Proposition 3 Unless NP ⊆ DTIME(nlog log n), there is no polynomial approxima-
tion algorithm with guarantee O(2log1−ε n) for the directed Bulk-Robust Shortest Path
problem, for any fixed ε > 0.

Proof We prove the claim by a reduction from the Directed Steiner Forest problem.
Given an instance of the Directed Steiner Forest problem consisting of a graph G =
(V, A) and a collection of terminals P , we construct an instance of Bulk-Robust
Shortest Path as follows. The graph is constructed from G by adding two new vertices
s, t and 2|P| new arcs. For every terminal pair (u, v) ∈ P , two zero-cost arcs su and
vt are added to the graph. This concludes the construction of the graph. The scenario
set � is chosen to contain one interdiction set F(u,v) for each terminal pair (u, v) ∈ P .
The interdiction set F(u,v) contains all arcs incident to s and t , except for su and vt .
Finally, the terminals of the Bulk-Robust Shortest Path problem are chosen to be s
and t . It is straightforward to verify that every feasible solution to the Directed Steiner
Forest instance corresponds to a feasible solution for the Bulk-Robust Shortest Path
problem with the same cost (obtained by adding to this solution all arcs incident to s
and t), and vice versa. Finally, the result follows from the fact that the new graph has
only two vertices more than the original one. 
�

Our next goal is a hardness-of-approximation result in terms of the parameter k.

Proposition 4 Unless NP ⊆ DTIME(nlog log n) there is no O(2
1
4 k1−ε

)-approximation
algorithm for the directed Bulk-Robust Shortest Path problem for any ε > 0, where k
is the width of the instance.

Proof To this end we describe a simple modification of the reduction in Proposition 3.
We assume without loss of generality that |P| = 2l for some integer l. The new
reduction connects the new vertices s and t to the terminals in the graph G using a
balanced binary tree. Formally, the reduced graph contains 2(2l − 1) new vertices
comprising two balanced binary trees T1 and T2, whose leaves are the sets of sources
and the set of targets of the terminal pairs in P , respectively. s is the root of the tree
T1 and all arcs in T1 are directed away from s towards the source terminals, while t is
the root of T2 and all arcs in T2 are directed from the target terminals towards t . This
concludes the construction of the graph. The terminals of the Bulk-Robust Shortest
Path instance remain s and t . Figure 1 illustrates the reduction.

The scenario set � is constructed as follows. Again, for every terminal pair (u, v) ∈
P , � contains a single interdiction set F(u,v). This set is defined as follows. Consider
the unique s–u path in the graph, completely contained in T1. This path contains
l − 1 vertices different from u. Each such vertex has an outgoing arc in T1 that is not
contained in the s–u path. F(u,v) is chosen to contain all these arcs. Consider next the
unique v–t path completely contained in T2. This path contains l−1 vertices different
from v. Each such vertex contains one incoming arc not in the v–t path. We include
also all these arcs in F(u,v). This concludes the construction of F(u,v). Notice that by
construction, any s–t path in the graph, not containing arcs from F(u,v) must contain a
u-v path in the original graph. This implies the correspondence between Steiner forests
in the original graph and robust paths in the transformed graph, thus the reduction is
correct.
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Fig. 1 An illustration of the reduction in Proposition 4. The interdiction set Fu1,v1 , corresponding to the
terminal pair (u1, v1), is marked in red

Finally, note that k = maxF∈� |F | = 2l − 2 ≤ 2 log |P|. Let ε > 0 and f (x) =
2

1
4 x1−ε

. The existence of a O( f (k))-approximation algorithm for Bulk-Robust Short-
est Path implies an approximation algorithm for the Directed Steiner Forest problem

with approximation guarantee of O( f (2 log |P|)) = O(2
1
2 log1−ε |P |) = O(2log1−ε n),

where in the last equality we used |P| ≤ n2. The result now follows from the result
of Dodis and Khanna [16]. 
�

In the remainder of this section we prove that Bulk-Robust Shortest Path is already
APX-hard for k = 2 in both directed and undirected graphs. In light of the polynomial
algorithm for the case k = 1 in [2], this result is tight in terms of the parameter
k. We prove the result for undirected graphs. The adaptation for directed graphs is
straightforward. Our proof is based on a reduction from the Minimum Vertex Cover
problem on subcubic graphs, i.e., graphs with degrees bounded by 3. This is a well-
known APX-hard problem [5]. Recall that given an undirected graph G = (V, E), the
Minimum Vertex Cover problem asks to find a smallest set S ⊆ V of vertices with the
property that every edge is incident to at least one vertex in S.

Our reduction can be broken down into two steps. First, we introduce a property
of graphs, which we call k-monotonicity, and which allows us to map Vertex Cover
problems to Bulk-Robust Shortest Path problems. More precisely, we show that the
Vertex-Cover problem on any graph that is k-monotone can be reduced to a Bulk-
Robust Shortest Path problem of width k. We then prove that any subcubic graph is
2-monotone.

We start by defining the notion of k-monotonicity.

Definition 5 A graph G = (V, E) is k-monotone, if there are k orders π1, . . . , πk of
its edge set E , such that for every vertex v ∈ V , the set of edges incident to v is an
interval in at least one of the k orders.

E.g., a path is 1-monotone by simply ordering the edges in the order that they appear
on the path. Note that every n-vertex graph is n-monotone since one can define for
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every vertex v an edge order such that edges incident to v appear consecutively in this
order. More generally, every t-colourable graph is t-monotone; for each color class
an edge ordering can be defined such that for all vertices v of this color, the edges
incident to v appear consecutively.

In the following lemma we prove that instances of Minimum Vertex Cover on
k-monotone graphs can be modeled as instances of Bulk-Robust Shortest Path with
width k, given a corresponding family of k orderings of the edges.

Lemma 6 Given a k-monotone graph G = (V, E) with a corresponding collection
of k edge orderings π1, . . . , πk , there is a polynomial time transformation of the
Minimum Vertex Cover instance on G to an instance of Bulk-Robust Shortest Path with
width k. Furthermore, any solution to the Vertex Cover problem can be transformed
in polynomial time to a solution of identical value to the Bulk-Robust Shortest Path
problem and vice versa.

Proof We start by fixing some notation. Let E = {e1, . . . , em}, and for i ∈ [k], πi is
a permutation on [m], that defines the edge order {eπi (1), . . . , eπi (m)}.

We construct an instance (H,�) of Bulk-Robust Shortest Path in the following
way. We describe first the graph H and then the interdiction sets. We include in H
k vertex-disjoint s–t paths Pi , i ∈ [k], of length |Pi | = m. We use the term Pi to
represent the edges on the path.

Path Pi corresponds to the permutation πi , and we denote its edges by f i
1 , . . . , f i

m in
the order when traversing Pi from s to t . All edges on any of the paths Pi have cost zero,
and we think of them as being in one-to-one correspondence with the initial edges,
where the initial edge e j ∈ E corresponds to edge f i

πi ( j) of the path Pi . Furthermore,
we add one additional edge to H for every vertex v ∈ V as follows.

We associate every vertex v ∈ V with an index i(v) ∈ [k], that corresponds to
one ordering πi(v) that numbers the edges incident to v, i.e., Ev = {e ∈ E : v ∈ e},
consecutively. If there are several orderings where Ev is consecutive, we break ties
arbitrarily and let i(v) be any one of them. Let beg(v), end(v) be the end vertices in H
of the subpath of Pv(i) that corresponds to the edges Ev . We conclude the construction
of H by adding the edge βv from beg(v) to end(v) with cost one, for every vertex v

of G. We interpret the inclusion of edges of type {beg(v), end(v)} in a solution to the
constructed Bulk-Robust Shortest Path problem instance, as signifying that we use v

in the Vertex Cover problem on G. Figure 2 illustrates the construction for an example
graph G with width k = 2.

The interdiction sets are defined as follows. We have a interdiction set Fe j for every
edge e j ∈ E defined by

Fe j = { f i
πi ( j) | i ∈ k}.

Hence, Fe j includes on each path Pi the edge that corresponds to e j . This finishes our
construction of the Bulk-Robust Shortest Path instance (H,�). Notice that the width
of the instance is k, since all interdiction sets Fe j satisfy |Fe j | = k. Furthermore,
observe that the interdiction set Fe j for e j = {u, v} forces any feasible solution to
(H,�) to contain either {beg(u), end(u)} or {beg(v), end(v)}.
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Fig. 2 Top left A subcubic graph G. The numbering of the edges f i
1 , f i

2 , . . . , f i
11 for i ∈ {1, 2} indicates

two orderings of the edges that show G to be 2-monotone. Top right The partition into two sets V1 and V2 in
Lemma 7, which gives rise to the orderings π1, π2. Bottom the transformation in Lemma 6 corresponding
to the 2-monotone graph G. The interdiction set Fe with e = {u3, u4} is highlighted with dashed edges

We now discuss how solutions map between the two problems. Let C ⊆ V be a
vertex cover in G. We claim that

S =
⋃

i∈[k]
Pi ∪ {βu : u ∈ C}

is a feasible solution to the Bulk-Robust Shortest Path instance with cost equal to |C |.
The fact that the cost matches |C | is immediate from the definition of S. To check
feasibility, consider any interdiction set Fe j ∈ �. Since C is a vertex cover, there is
some u ∈ C with u ∈ e j . The following is an s–t path in H only using edges in S\Fe j :
start at s and follow Pi(u) until beg(u), then take the edge βu to end(u), and continue
on Pi(u) until t . One can easily observe that this is an s–t path in H that only contains
edges in S\Fe j .

Conversely, consider a feasible solution S of cost d for the Bulk-Robust Shortest
Path problem defined by (H,�). Let

C = {v ∈ V : βv ∈ S}.

We claim that C is a vertex cover of G with |C | being equal to the cost of S. Again, the
fact that |C | matches the cost of S follows immediately from the definition of C . To
check that C is a vertex cover, consider any edge e j ∈ E , and consider its associated
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interdiction set Fe j . Since S is a feasible solution to the Bulk-Robust Shortest Path
problem, there must be an s–t path in S\Fe j . As mentioned previously, this is only
possible if S contains an edge of type {beg(v), end(v)} for at least one of the endpoints
v ∈ e j of e j . Hence, C is indeed a vertex cover. 
�

Since Vertex Cover on subcubic graphs is APX-hard [5], it remains to show the
following to obtain APX-hardness for the Bulk-Robust Shortest Path problem with
width k = 2.

Lemma 7 Every subcubic graph is 2-monotone. Furthermore, a corresponding pair
of edge orderings that certifies 2-monotonicity can be obtained from G in polynomial
time.

Proof Let G = (V, E) be a subcubic graph. We describe a procedure to obtain the
two orderings of E . We start by obtaining a partition of the vertex set V = V1 ∪ V2,
which is obtained iteratively. We initialize by setting V1 = V and V2 = ∅. We stop
the procedure when it is true that for every i ∈ [2] and for every v ∈ Vi , the number
of neighbors of v in Vi is at most one. In every iteration we choose an arbitrary vertex
v ∈ Vi for some i ∈ [2], which violates the condition, and move it to the other partition.
Since the graph is subcubic, this operation strictly increases the number of edges with
one endpoint in V1 and the other one in V2. Hence, this iterative algorithm will stop
after O(|E |) steps, with a partition V1, V2 of V that satisfies the desired property.

It remains to define the desired orders π1, π2 of E . The edge ordering πi , for i ∈ [2],
will be such that for any vertex v ∈ Vi , the edges adjacent to v appear consecutively
in πi . We describe how to construct π1, constructing π2 is analogous.

To do so we first order the vertices in V1 such that if u, v ∈ V1 and {u, v} ∈ E ,
then u and v appear one after the other in the order of V1 (see Fig. 2). This can
easily be achieved, since the induced graph G[V1] contains only isolated edges. Let
σ = u1, . . . , u|V1| be the corresponding order. The ordering π1 is then defined as
follows. The first edges in the order are all edges with both endpoints in V2. Those
edges are included in an arbitrary order. We then add all edges e ∈ U that are incident
to u1, followed by the edge {u1, u2} if it exists. We continue with adding all edges
e ∈ U incident to u2 etc. Clearly, the edges incident to a vertex u ∈ V1 appear as an
interval in the ordering given by π1. See Fig. 2 for an illustration. 
�

In light of Lemmas 6 and 7 we obtain the desired result for k = 2.

Theorem 8 The Bulk-Robust Shortest Path problem restricted to instances with k = 2
is APX-hard.

3 Bulk-Robust minimum matroid basis

In this section we develop a polynomial (log r + log m)-approximation algorithm for
the Bulk-Robust Minimum Matroid Basis problem, where r is the rank of the matroid.
In light of Proposition 1, this result is tight with respect to the parameter m. Recall
that the Minimum Matroid Basis problem is defined as follows. Given a matroid
M = (A, I) and a linear cost function on its ground set, the goal is to find a basis of
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the matroid with minimum cost. In the Bulk-Robust Minimum Matroid Basis problem
we are additionally given a collection � of interdiction sets and the goal is to find the
cheapest subset S of the ground set, such that S\Fi contains a basis of the matroid M
for every Fi ∈ �.

This problem can easily be seen to be a special case of the following problem, that
we call Simultaneous Matroid Basis problem, and which is defined as follows. Given t
matroids M1, . . . ,Mt on the same ground set A, find a minimum cost subset S, which
contains a basis of each matroid. Note that Bulk-Robust Minimum Matroid Basis can
be transformed into a Simultaneous Matroid Basis problem by setting Mi = (A, Ii )

and

Ii = {X ⊆ A : X\Fi ∈ I},

for all i ∈ [t]. In the remainder of this section, we will focus on the Simultaneous
Matroid Basis problem, and present an approximation algorithm for this problem,
which, by the above observation, carries over to the Bulk-Robust Minimum Matroid
Basis problem.

We notice that the Simultaneous Matroid Basis problem can be reinterpreted as
a matroid intersection problem. More precisely, instead of directly constructing a
minimum weight set S ⊆ A that contains a basis in each matroid, consider the problem
of obtaining the complement S = A\S of an optimal set. Hence, the problem can be
rephrased as the task of finding a maximum weight set S such that A \ S contains
a basis for each matroid. This is equivalent to saying that S should be a maximum
weight set in the intersection of the dual matroids of all involved matroids. Whereas
this observation is nice from a theoretical point of view, it seems hard to exploit it
algorithmically, partially due to the difficulty of approximating matroid intersection
problems with more than two matroids, and furthermore since this reduction is not
approximation-preserving.

To introduce our approximation algorithm, let us fix an instance of Simultaneous
Matroid Basis with t matroids M1, . . . ,Mt and a cost function w. Let ri denote the
rank function of the matroid Mi for i ∈ [t]. For brevity we let αi = ri (A) denote the
rank of Mi .

Since all matroids are defined with the same ground set A, we can define the
aggregate rank of a set X ⊆ A as

f (X) =
∑

i∈[t]
ri (X).

Observe that f (A) = ∑
i∈[t] αi . Furthermore, a set X ⊆ A is a feasible solution to

the Simultaneous Matroid Basis instance if and only if

f (X) = f (A).

The function f is the key to our algorithm. An important feature of f is submodularity,
namely the property that for every two sets X, Y ⊆ A we have

f (X)+ f (Y ) ≥ f (X ∪ Y )+ f (X ∩ Y ).
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Submodularity of f follows from submodularity of rank functions of matroids, and
the fact that sums of submodular functions are also submodular. Let us briefly review
an important operation on matroids called contraction. For a matroid M = (A, I)

and X ⊆ A, the contraction of M by X is a matroid with ground set A\X , denoted
by M/X , and defined by the rank function

r(Y ) = r(Y ∪ X)− r(X),

where r is the rank function of M. In other words, a set S ⊆ A\X is independent in
M/X , if for any maximal independent set I ⊆ X in M , I ∪ S is independent in M .

We are ready to give a brief description of the algorithm. The algorithm is iterative. In
each iteration, the algorithm maintains a partial solution obtained so far. Let S j denote
the set of elements comprising the partial solution in the end of the j’th iteration and
let S0 = ∅. The invariant that the algorithm maintains is that

f (A)− f (S j+1) ≤ γ ( f (A)− f (S j ))

holds for every iteration j and some constant γ < 1. Another feature is that

w(S j+1\S j ) ≤ OPT,

where OPT is the optimal solution value for this instance of Simultaneous Matroid
Basis. Clearly, any algorithm satisfying the latter two conditions is a O(log f (A))-
approximation algorithm for Simultaneous Matroid Basis. Indeed, the former inequal-
ity guarantees that after O(log f (A)) iterations the partial solution is feasible, and the
latter inequality ensures that in each iteration, the set of elements added have a cost
bounded by OPT.

Let us focus next on a single iteration of the algorithm. In order to obtain the
update set Y j+1 = S j+1\S j we use an algorithm for the Monotone Submodular
Function Maximization problem with a linear budget constraint. More precisely, given
a monotone submodular set function g on some ground set A and a budget constraints
w(X) ≤ B for X ⊆ A, this problem asks to find a set X ⊆ A maximizing

max{g(X) : w(X) ≤ B}.

A result from Feige [17] implies that Monotone Submodular Function Maximization
with a linear budget constraint is in general not possible to approximate within a factor
of 1− 1

e + ε, for any fixed ε > 0, unless P�=NP.2

Lots of progress has been made recently on approximation algorithms for con-
strained and unconstrained submodular function maximization. In particular, several
essentially optimal algorithms for monotone submodular function maximization with

2 Furthermore, if one assumes that the monotone submodular function is only accessible through a value
oracle, then Nemhauser and Wolsey [30] showed that any algorithm with an approximation factor of 1− 1

e+ε,
for any fixed ε > 0, needs an exponential number of queries to the value oracle.
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a single budget constraint were found (see [13,19,29] and references therein). More
precisely, for any fixed ε > 0, these algorithms are efficient (1− 1

e−ε)-approximations.
Our algorithm iteratively calls a O(1)-approximation for the monotone submodular

function maximization problem with a budget constraint as a subprocedure. The main
loop of our algorithm is given as Algorithm 1. The algorithm assumes that the optimal
solution value OPT is known. We will remove this assumption later.

Algorithm 1 Input: An instanceM1, . . . ,Mt of Simultaneous Matroid Basis, together
with its optimal value OPT. Output: A feasible solution S ⊆ A for Simultaneous
Matroid Basis.
1: T ←∑

i∈[t] αi .
2: S← ∅.
3: while

∑
i∈[t] ri (S) < T do

4: Define gi (X) = ri (X ∪ S)− ri (S) for all i ∈ [t].
5: Define f (X) =∑

i∈[t] gi (X).
6: Compute an O(1)-approximation for: Y ← max{ f (X) : X ⊆ A\S, w(X) ≤ OPT}.
7: S← S ∪ Y .
8: Return S.

Let us prove the following lemma, which bounds the approximation guarantee of
Algorithm 1. We set T =∑

i∈[t] αi .

Lemma 9 Algorithm 1 is an O(log T )-approximation.

Proof Note that in each iteration we increase the cost of the current solution by at
most OPT. It remains to bound the number of iterations performed by the algorithm.
For this we will show that the quantity 	 = T −∑

i∈[t] ri (S) decreases by a constant
factor at each iteration of the while loop.

Let S∗ be an optimal solution to the Simultaneous Matroid Basis problem. Hence,
w(S∗) = OPT, and therefore

max{ f (X) : X ⊆ A\S, w(X) ≤ OPT} ≥ f (S∗\S)

=
∑

i∈[t]

(
ri ((S∗\S) ∪ S)− ri (S)

)

=
∑

i∈[t]

(
ri (S∗)− ri (S)

)

= T −
∑

i∈[t]
ri (S).

Since we use a constant-factor approximation to solve the constrained submodular
function maximization problem in step 6, we get a set Y ⊆ A\S satisfying

f (Y ) ≥ c ·	, (1)
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for some constant c ∈ (0, 1). It follows that in the following iteration of the while
loop, the updated version S′ = S ∪ Y of S that we use satisfies

∑

i∈[t]
ri (S ∪ Y ) =

∑

i∈[t]
(gi (Y )+ ri (S))

= f (Y )+
∑

i∈[t]
ri (S).

Combining the above equality with (1), and reordering terms, we obtain

T −
∑

i∈[t]
ri (S ∪ Y ) ≤ (1− c)

⎛

⎝T −
∑

i∈[t]
ri (S)

⎞

⎠ = (1− c)	.

We conclude that 	 decreases by a factor of 1 − c < 1 in each iteration. Since at
the first iteration we have 	 = T , the total number of iterations is at most O(log T ).


�
It remains to remove the assumption that OPT needs to be known in advance. To

this end, notice that for every value T ≥ OPT it holds that the optimal solution S∗
to the Simultaneous Matroid Basis instance is feasible for the problem max{ f (X) :
w(X) ≤ T }. Note that the only requirement we have from the update set Y chosen in
any iteration of Algorithm 1 is that f (Y ) ≥ c ·	 holds. Although S∗ is not a feasible
solution of max{ f (X) : w(X) ≤ T } whenever T < OPT it can still happen, that a
solution to the latter problem yields a set Y with f (Y ) ≥ c · 	. It follows that we
cannot use binary search with the previous criterion to find OPT exactly. At the same
time, we can still use this set Y to update the current solution S, since it satisfies both
required conditions: It has a cost which is at most OPT and it attains a large enough
value for f . The latter discussion justifies the following approach.

Whenever we have to perform step 6 of Algorithm 1, our plan is to find a value T ∈
Z+ and two c-approximations Y T , Y T−1 to the following two Constrained Submodular
Function Maximization problems

Y T ← max{ f (X) : w(X) ≤ T } and Y T−1 ← max{ f (X) : w(X) ≤ T − 1}

that satisfy

f (Y T ) ≥ c ·	 and f
(

Y T−1
)

< c ·	.

Notice that such a value T together with the two solutions Y T and Y T−1 can be
found in polynomial time by applying a binary search procedure to T within the range
[0,

∑
a∈A wa]. Clearly, if T satisfies the above property, then T ≤ OPT: otherwise,

f (Y T−1) < c ·	 would violate the fact that Y T−1 was obtained via a c-approximation.
Hence, we can replace the role of OPT by such a T in Algorithm 1, since Y T satisfies
both criteria we need, namely w(Y T ) ≤ OPT and f (Y T ) ≥ c ·	.
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This concludes the algorithm for Simultaneous Matroid Basis, and as a special
case, for the Bulk-Robust Minimum Matroid Basis problem. We obtain the following
theorem.

Theorem 10 There is a polynomial O(log(T ))-approximation algorithm for Simulta-
neous Matroid Basis. In particular, the Bulk-Robust Minimum Matroid Basis problem
admits a polynomial O(log r + log m)-approximation algorithm.

Notice that the dependence of the approximation factor on m is asymptotically
optimal in view of Proposition 1.

Observe that for the Bulk-Robust Minimum Spanning Tree problem, which is a
special case of Bulk-Robust Minimum Matroid Basis problem, we have r = n − 1.
Hence, Theorem 10 implies a polynomial O(log n + log m)-approximation for this
problem.

4 Bulk-Robust shortest path

In this section we develop a constant-factor approximation algorithm for the Bulk-
Robust Shortest Path problem restricted to instances with width k = 2. In view of
Theorem 8 this is qualitatively the best we can hope for.

Our algorithm relies on a simpler algorithmic framework that gives a O(log m)-
approximation algorithm for any fixed k in polynomial time. We begin by presenting
this algorithm, and later describe the required modification to obtain a constant-factor
approximation algorithm for k = 2. We present the algorithm for undirected graphs.
The adaptation for directed graphs is straightforward.

Consider an instance Ik of Bulk-Robust Shortest Path with graph G = (V, E),
interdiction sets � = {F1, . . . , Fm}, and terminals s, t ∈ V . We assume that the width
k = maxi∈[m] |Fi | is constant.

We define a sequence of relaxations Ik−1, . . . , I1 of the instance Ik . The instance I j

is defined with the same graph and terminals as Ik , but with scenario set

� j = {R ⊆ E : |R| ≤ j and ∃F ∈ � R ⊆ F} .

In words, the set � j contains all subsets of cardinality at most j of interdiction sets
in �. Clearly, for any 1 ≤ l ≤ j ≤ k, any feasible solution for I j is also a feasible
solution for Il , since for any interdiction set R ∈ �l there exists an interdiction set
R′ ∈ � j with R ⊆ R′. Consequently, this is indeed a sequence of relaxations of the
original problem instance.

The algorithm works as follows. It starts by solving the instance I1 to optimality,
using the algorithm in [2]. In each subsequent iteration j > 1, the algorithm augments
the current solution S j−1, which is assumed to be feasible for I j−1, to a solution for
I j , by solving an augmentation problem. The augmentation problem is a certain Set
Cover problem that we define hereafter. We assume without loss of generality that
(V, S j−1) is connected. For otherwise, one can remove all edges in S j−1 that are not
in the connected component that contains s and t , thus obtaining a cheaper solution
for I j−1. A simple but very useful observation is the following.
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Lemma 11 Let F ∈ � j be some interdiction set such that s and t are disconnected
in (V, S j−1\F). Then we have the following

(i) F ⊆ S j−1,
(ii) (V, S j−1\F) consists of two connected components (one containing s and the

other one t).

Proof (i) Assume by the sake of contradiction F �⊆ S j−1, and let F ′ = F ∩ S j−1.
Hence, S j−1\F ′ = S j−1\F , and therefore, removing F ′ from S j−1 disconnects
s and t . This violates the assumption that S j−1 is feasible for I j−1.

(ii) Again, assume by contradiction that (V, S j−1\F) consists of at least 3 connected
components. Then there is at least one connected component whose corresponding
set of vertices W ⊆ V does not contain s or t . Since (V, S j−1) is assumed to
be connected, there is at least one edge e ∈ F that has one endpoint in W and
one outside of W . However, this implies that the set F ′ = F\{e} satisfies that
(V, S j−1\F ′) is disconnected, thus contradicting that S j−1 is feasible for I j−1.


�
In the context of the j-th augmentation problem, we call a set F ∈ � j critical if it

disconnects s and t in (V, S j−1). If we want to augment S j−1 such that it is feasible
for some critical interdiction set F ∈ � j , we can add to S j−1 a path P with the
following properties: P ⊆ E\S j−1, and P is a u–v path, where u and v are vertices in
the connected components of (V, S j−1\F) that contain s and t , respectively. We call
such a path P an F-fixing path.

Notice that Lemma 11 guarantees that adding an F-fixing path P to S j−1 leads
to a set S j−1 ∪ P that is feasible for interdiction set F , since F ⊆ S j−1, and hence,
F ∩ P = ∅. Furthermore, the second part of Lemma 11 makes sure that for any
critical interdiction set F , there exists an F-fixing path, assuming that I j is feasible,
as usual. To see this, observe that if I j is feasible, then there is a set of edges U ⊆
E\(S j−1 ∪ F) such that (V, (S j−1\F)∪U ) contains an s–t path. Since (V, S j−1\F)

only has two connected components, this implies that one can choose U to be a single
path connecting the components, which by definition is an F-fixing path. Notice that if
(V, S j−1) had more than two connected components, then U could consist of several
paths that connected different connected components in (V, S j−1), leading to a graph
where s and t are connected.

To augment S j−1 to a set S j ⊇ S j−1 that is feasible for I j , we will add to S j−1 a
set of edges that contains for every critical interdiction set F ∈ � j an F-fixing path.
A minimum-cost augmentation of this type is called an optimal augmenting set. We
formalize these concepts in the following definition.

Definition 12 The j-th Augmentation problem is: given a feasible solution S j−1 for
I j−1, find a minimum-cost augmenting set X∗j ⊆ E\S j−1, namely a set with the
property that for every critical interdiction set F ∈ � j with respect to S j−1, X∗j
contains an F-fixing path. The optimal solution value of the j-th augmentation problem
is denoted by AUG j .

The following lemma states an important property of the augmentation problem.
Concretely, it states that despite the possibly complicated structure of the optimal
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augmentation set X∗j , one can restrict the search to unions of paths, by incurring a loss
of at most a factor of two.

Lemma 13 There exists a collection of paths Q1, . . . , Qr ⊆ E\S j−1, such that
for each critical F ∈ � j , the collection contains at least one F-critical path and∑r

i=1 w(Qi ) ≤ 2AUG j .

Proof Let X∗j be the optimal solution to the j-th augmentation problem (with w(X∗j ) =
AUG j ). Observe that X∗j is a forest, since the graph is undirected. Consider any tree
T ⊆ X∗j . Let W be the set of vertices incident to edges in S j−1. By doubling all edges
in T , we obtain an Eulerian subgraph. Consider any Eulerian tour in this subgraph. We
cut the tour into edge-disjoint paths in the following way. We start at an arbitrary vertex
in W and follow the tour until it reaches another vertex in W . The edges traversed
correspond to the first path Q1. We continue to follow the tour until the next vertex in
W is reached. This part corresponds to Q2 etc.

Let Q1, . . . , Qr ′ be the obtained paths. Clearly
∑r ′

i=1 w(Qi ) = 2w(T ). Further-
more, every critical interdiction set that was fixed by T is clearly also fixed by some
path from the latter collection. By repeating the argument for every tree in X∗j we
obtain the result. 
�

Lemma 13 allows us to treat the augmentation problem as a Set Cover problem.
Formally, for every pair of vertices u, v ∈ V we compute Pu,v , a shortest u-v path in
E\S j−1. We call this path the u-v link αu,v , and define its cost to be w(Pu,v). We say
that a link Pu,v covers a critical set F ∈ � j , if the path Pu,v fixes F . Finally, the Set
Cover instance is defined as having a ground set composed of the critical interdiction
sets in � j , and a family of covering subsets corresponding to links, where the set
corresponding to the link Pu,v contains all critical interdiction sets which are fixed by
Pu,v . We denote this Set Cover problem by SC j . Exploiting this connection to the Set
Cover problem, we obtain a first approximation algorithm for Bulk-Robust Shortest
Path.

Theorem 14 For any constant k, there is polynomial O(log m)-approximation algo-
rithm for the Bulk-Robust Shortest Path problem restricted to the instances with width
k.

Proof Let OPT denote the optimal solution for the problem. The algorithm proceeds
by solving the problem instance I1, followed by the sequence of k − 1 augmentation
problems. The correctness of the algorithm is a direct consequence of Lemma 11. The
initial problem is solved to optimality using the algorithm in [2]. This incurs a cost
of OPT, at most. The augmentation problems are solved with the Set Cover problem
SC j , for j = 2, . . . , k. We use the greedy algorithm for the Set Cover problem to
solve each problem. Lemma 13 and the fact that the greedy algorithm is a (log n+ 1)-
approximation algorithm [36] imply that the obtained solution in the j-th iteration is
a 2(log n′ + 1)-approximation of AUG j , where n′ ≤ |� j | ≤ 2km is the number of
critical interdiction sets. Since AUG j ≤ OPT for every j ∈ [k] and k is a constant,
the theorem is proved. 
�

In the following section we show how to solve the Set Cover problem SC2 with
a more sophisticated algorithm that exploits the underlying structures, thus incurring
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Fig. 3 An illustration of an s–t bipath

a loss of only a constant factor in the approximation guarantee. This algorithm will
therefore lead to constant-factor approximation algorithm for the case k = 2.

4.1 A constant factor approximation algorithm for k = 2

To solve the Set Cover problem SC2 we need a result about the structure of minimal
solutions for the Bulk-Robust Shortest Path problem for k = 1. Concretely, it was
shown in [2] that every inclusion-wise minimal solution for this problem is an s–t
bipath, formally defined as follows.

Definition 15 An s–t bipath in the graph G = (V, E) is a union of two s–t paths
P1, P2 ⊆ E , such that for every two nodes u, v incident to both P1 and P2, the order
in which they appear on P1 and P2, respectively, when traversed from s to t is the
same.

Intuitively, an s–t bipath is a alternating concatenation of paths and cycles, with
endpoint s and t . See Fig. 3 for an illustration.

Consider a bipath P1∪P2 = Q ⊆ E comprising an optimal solution for the instance
I1, obtained using the algorithm in [2]. We slightly abuse notation assuming that �1
is a set of edges, instead of a collection of sets, each containing a single edge. Clearly,
from feasibility of Q, every bridge in Q (i.e., a single edge separating s and t) is an
edge in E\�1. Observe that this set of bridges is exactly P1 ∩ P2. Let H = (V, Q).

From our previous observation, every critical interdiction set F ∈ �2 = � must
contain exactly one edge on P1 and one edge on P2. More precisely, since no edge
e ∈ P1 ∩ P2 is part of a interdiction set F ∈ �—otherwise P1 ∪ P2 would not be a
feasible solution for the scenarios �1—a critical interdiction set F ∈ �2 must contain
two edges of the same cycle of P1 ∪ P2, one from P1\P2 and one from P2\P1.

Let the edges on the path Pi be numbered ei
1, . . . , ei

di
according to their order on

Pi from s to t . The following property is clearly satisfied for every i ∈ [2].
Property 16 For every j1, j2, j ∈ [di ], j1 < j < j2 and critical F ∈ � such that
ei

j ∈ F, the edge ei
j1

is on the s-shore in H − F, and ei
j2

is on the t-shore in H − F.

For every critical F ∈ � denote by PRE(F) (POST(F), respectively) the subset of
vertices in H − F , which is on the s-shore (t-shore, respectively) of the cut F . Note
that a u-v link fixes F if and only if u ∈ PRE(F) and v ∈ POST(F), or vice versa. In
the following lemma we describe a way to obtain a 6-approximation for the Set Cover
problem SC2.
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Fig. 4 Four different modes of
fixing the interdiction set
F = { f1, f2}. The link αq fixes
F in the q-th mode for q ∈ [4]

Lemma 17 There is a polynomial time 6-approximation algorithm for the Set Cover
problem SC2.

Proof We set 
(u, v) = w(Pu,v). Recall that Pi = {ei
1, . . . , ei

di
} for i ∈ [2]. We denote

the vertex on Pi that is incident to ei
j and ei

j+1 by vi
j for every i ∈ [2] and j ∈ [di −1].

Let Link be all pairs {u, v} corresponding to the endpoints of a link αu,v . We start
by partitioning Link into three groups Link1, Link2 and Link3. Let Link1 be all
pairs {u, v} ∈ Link with u and v being vertices on the first path, i.e., u = v1

i , v = v1
j

for some i, j . Notice that both u and v may simultaneously be on P1 and P2 in this
definition. The set Link2 contains all pairs {u, v} ∈ Link\Link1 with u and v lying
both on the second path. The set Link3 contains all remaining pairs of endpoints
{u, v} ∈ Link. In words, the endpoints {u, v} of a link are in Link3 if not both u, v

are on P1 nor are both on P2.
Based on these definitions, we distinguish between four different modes how a

critical interdiction set F can be fixed by a link αu,v . These modes will later allow
us to decompose the problem into four simpler independent subproblems. Hence, let
αu,v be a link that fixes F . The first and second mode correspond to {u, v} ∈ Link1
and {u, v} ∈ Link2, respectively. The third mode corresponds to {u, v} ∈ Link3, with
u on P1 and v on P2, such that u ∈ PRE(F) and v ∈ POST(F). The forth mode
corresponds to {u, v} ∈ Link4, with u on P1 and v on P2, such that u ∈ POST(F)

and v ∈ PRE(F). Figure 4 illustrates this definition.
The key observation is that if one restricts all failures to be covered in only one of the

four modes, the resulting problem becomes an Interval Covering problem. Recall that
the interval covering problem consists of selecting a minimum–cost set of intervals,
out of a given set of closed weighted intervals S = {[ai , bi ] : i ∈ [m]} with integer
bounds 0 ≤ ai , bi ≤ n such that the union of the selected intervals equals [0, n].
It is well–known that Interval Covering can be modeled as an integer program with
a totally unimodular constraint matrix, thus this problem is integral, namely for any
instance, the optimal solution value always equals the optimal solution value of its
continuous relaxation (see e.g. [36] for details). For the first two modes this claim is
easy to verify: Consider the first mode; here, the Interval Covering problem contains
each faulty edge on P1 as a point while the intervals stretch between pairs of vertices
on the given path. We prove the claim for the third mode. The proof for the fourth
mode is identical. Recall that an interdiction set F is covered in the third mode by a
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Fig. 5 An illustration of the
third mode. The interdiction set
F ′ = { f ′1, f ′2} is redundant in
the presence of the interdiction
set F = { f1, f2}

link αv1
i ,v2

j
with {v1

i , v2
j } ∈ Link3, if v1

i ∈ PRE(F)∩ P1 and v2
j ∈ POST(F)∩ P2. To

obtain the desired Interval Cover problem we first remove all interdiction sets F from
� that are redundant for the third mode in the following sense. Consider two critical
interdiction sets F1 = {e1

i1
, e2

j1
} and F2 = {e1

i2
, e2

j2
} such that i2 > i1 and j2 < j1.

Clearly, if for some link αv1
c ,v2

d
it holds that v1

c ∈ PRE(F1) and v2
d ∈ POST(F1) then

it also holds that v1
c ∈ PRE(F2) and v2

d ∈ POST(F2), since PRE(F1) ⊆ PRE(F2) and
POST(F1) ⊆ POST(F2). Consequently, we can simply eliminate F2, as any solution
that covers F1 also covers F2. Let �′ ⊆ � be all remaining interdiction sets for the
third mode obtained after removing all redundant ones in this way.

Critically, we now have the property that for distinct F1 = {e1
i1
, e2

j1
} and F2 =

{e1
i2
, e2

j2
} in �′ it holds that sign(i1 − i2) = sign( j1 − j2). Thus, �′ can be ordered

according to the appearance of the interdiction sets on the paths P1, P2 from s to t .
It is now straightforward to see that every link αu,v fixes a set of interdiction sets in
�′, which corresponds to an interval in this order, hence the claim is proved. Figure 5
illustrates this procedure.

Consider next the following linear programming relaxation of the Set Cover prob-
lem SC2. We include a variable xu,v ∈ [0, 1] for each link αu,v , where xu,v = 1 is
interpreted as including the link αu,v . Furthermore, we denote by f i x(F) all pairs
{u, v} such that the link αu,v fixes F .

min

⎧
⎨

⎩

(x) : xu,v ≥ 0 ∀{u, v} ∈ Link,

∑

{u,v}∈ f i x(F)

xu,v ≥ 1 ∀F ∈ �

⎫
⎬

⎭

Let x∗ be an optimal fractional solution to the above LP. Such a solution can be obtained
by standard linear programming algorithms. Notice that due to the minimization, no
component of x∗ will be larger than 1, for otherwise, one could set such a component
to 1, thus obtaining a better feasible solution. For F ∈ � and q ∈ [4], let f i xq(F)

denote all pairs {u, v} such that F is fixed in the q-th mode by αu,v . Hence, f i x(F) =
∪q∈[4] f i xq(F).

Since the links in f i x(F) fractionally cover the interdiction set F , at least one of
the following must hold for every interdiction set F ∈ �:

(1)
∑
{u,v}∈ f i x1(F) x∗u,v ≥ 1

6 ,

(2)
∑
{u,v}∈ f i x2(F) x∗u,v ≥ 1

6 ,

(3)
∑
{u,v}∈ f i x3(F) x∗u,v ≥ 1

3 ,

(4)
∑
{u,v}∈ f i x4(F) x∗u,v ≥ 1

3 .
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For each F ∈ �, let j (F) ∈ [4] be such that the above case number j (F) holds for F .
If several cases apply, then j (F) is chosen to be an arbitrary case among those who
apply.

We are now ready to partition the Set Cover problem into four independent problems
with disjoint families of interdiction sets, according to the values of j (F). More
precisely, we partition � into �1, . . . , �4, where

�q = {F ∈ � | j (F) = q} ∀q ∈ [4].

We then solve the following four independent subproblems

min

⎧
⎨

⎩

(x) : xu,v ≥ 0 ∀{u, v} ∈ Link,

∑

{u,v}∈ f i xq (F)

xu,v ≥ 1 ∀F ∈ �q

⎫
⎬

⎭

∀q ∈ [4]. (L Pq)

By the above discussion, each of these problems is naturally integral since the non-
redundant constraints define an Interval Coloring problem. Hence, an optimal solution
to each of these problems is a {0, 1}-solution, and can therefore be interpreted as a
set of links Lq for q ∈ [4]. Clearly, the set L = ∪q∈[4]Lq corresponds to a solution
of SC2. It remains to show that it is a 6-approximation. Notice, that L1 and L2 only
contain links of Link1 and Link2, respectively, whereas L3 and L4 contain links only
of Link3.

By definition of the �q we have that the point z1 ∈ R
Link≥0 defined by z1

u,v = 6x∗u,v

for {u, v} ∈ Link1, and z1
u,v = 0 otherwise, is feasible for L P1. Similarly, z2 ∈ R

Link≥0

defined by z2
u,v = 6x∗u,v for {u, v} ∈ Link2 and z2

u,v = 0 otherwise, is feasible for
L P2. Finally, z3 ∈ R

Link≥0 defined by z3
u,v = 3x∗u,v for {u, v} ∈ Link3 and z3

u,v = 0
otherwise, is feasible for both L P3 and L P4. Hence, the cost of L1 and L2 is bounded
by 
(z1) and 
(z2), respectively, and the cost of each of L3 and L4 is bounded by

(z3).

Thus, the total cost of L is upper bounded by


(z1)+ 
(z2)+ 2
(z3) = 6
(x∗),

where we use z1 + z2 + 2z3 = 6x∗. Hence, L is a 6-approximation for SC2, as
desired. 
�
Putting things together we obtain the following.

Theorem 18 There is a polynomial 13-approximation algorithm for Bulk-Robust
Shortest Path with k = 2.

Proof The cost of the returned solution consists of the cost of S1, which is bounded by
OPT, and the cost of the augmentation set, which by Lemmas 13 and 17 is bounded
by 12OPT. 
�
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5 Conclusion and future work

In this paper we considered a new robust model for combinatorial optimization. The
proposed model allows for defining a collection of possible interdiction sets, thus giv-
ing the possibility to specify explicitly the list of subsets of resources that comprise
all possible interdiction sets. This results in considerable modeling flexibility. Con-
cretely, the ability to specify arbitrary scenario sets permits interdiction sets of variable
cardinality, as well as interdiction sets that model failures of special structures in the
network, and any combination thereof.

We provided both complexity results and approximation algorithms for the Bulk-
Robust counterparts of the Minimum Matroid Basis problem and the Shortest Path
problem. From the point of view of computational complexity, we showed that the
Set Cover problem can be modeled as a special case of many Bulk-Robust problems,
including Bulk-Robust Minimum Matroid Basis and Bulk-Robust Shortest Path. This
result was strengthened with respect to various parameters for the Bulk-Robust Short-
est Path problem. In particular, we showed that the problem is APX-hard when the
input is restricted to instances with width two. In addition, we showed that the Bulk-
Robust Shortest Path problem for general k does not admit approximation algorithms
with polynomial dependence on the width k unless NP ⊆ DTIME(nlog log n).

On the algorithmic side we obtained the following results. We developed an algo-
rithm for the Bulk-Robust Minimum Matroid Basis problem with an approximation
guarantee of O(log m + log r). As a special case, we obtain an O(log n + log m)-
approximation algorithm for the Bulk-Robust Minimum Spanning Tree problem. This
algorithm relies on an approximation algorithm for the Constrained Submodular Func-
tion Maximization problem. The dependence of the approximation guarantee of this
algorithm on the parameter m is essentially the best possible in light of our complexity
results.

For the Bulk-Robust Shortest Path problem we provided algorithmic results
for instances with fixed width. For arbitrary fixed k we obtained an O(log m)-
approximation algorithm, using an iterative procedure that solves a sequence of relax-
ations of the original instance, in combination with an algorithm for the Set Cover
problem. We then refined our method by replacing the Set Cover algorithm by an
LP-based algorithm to obtain a 13-approximation algorithm for instances with width
two.

There is still a wide variety of interesting open problems linked to Bulk-Robust
optimization. We conclude the paper by mentioning a number of such problems.

• It would be interesting to study different Bulk-Robust combinatorial optimization
problems, and in particular, structural properties of the scenarios � that allow for
designing strong approximation algorithms, or even exact algorithms.
• Do there exist constant-factor approximations for the Bulk-Robust Shortest Path

problem for any fixed width k ≥ 3?
• Even for the case k = 1, the complexity of the Bulk-Robust counterpart of a polyno-

mially solvable combinatorial optimization problem can vary significantly. While
Bulk-Robust Shortest Path admits a polynomial-time algorithm in this case, one
can easily see that Bulk-Robust Minimum Spanning Tree generalizes the Mini-
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mum 2-Edge Connected Spanning Subgraph problem, which is already NP-hard.
An analysis of other Bulk-Robust counterparts with k = 1 would be interesting.
• The Bulk-Robust model admits several promising extensions. One way to extend

the model is to allow a combination of an implicitly-given uniform family of inter-
diction sets, specified by a parameter B ∈ N, and an explicitly-given family �

of interdiction sets. A combined interdiction set in this model is composed of any
union F1 ∪ F2, where |F1| ≤ B and F2 ∈ �.
On the one hand, this model allows for describing scenario sets � of exponential
size, thus increasing the modeling flexibility. Furthermore, there is hope that one
could design approximation algorithms for such problems whose approximation
ratio primarily depends only on the maximum size of a set of type F2. This hope is
fostered by the fact that uniform failure models often allow for better approximation
algorithms; for example, the Shortest Path problem with uniform failures of up to k
edges corresponds to finding a minimum cost set of k+ 1 arc-disjoint paths, which
can easily be solved by minimum cost flow techniques.
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