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Abstract. We present two modified versions of the primal-dual splitting algorithm relying
on forward-backward splitting proposed in [21] for solving monotone inclusion problems.
Under strong monotonicity assumptions for some of the operators involved we obtain for
the sequences of iterates that approach the solution orders of convergence of O( 1

n) and
O(ωn), for ω ∈ (0, 1), respectively. The investigated primal-dual algorithms are fully de-
composable, in the sense that the operators are processed individually at each iteration.
We also discuss the modified algorithms in the context of convex optimization problems
and present numerical experiments in image processing and support vector machines clas-
sification.
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1 Introduction and preliminaries

The problem of finding the zeros of the sum of two (or more) maximally monotone op-
erators in Hilbert spaces continues to be a very active research field, with applications
in convex optimization, partial differential equations, signal and image processing, etc.
(see [1,5–7,9,12,13,21]). To the most prominent methods in this area belong the proximal
point algorithm for finding the zeros of a maximally monotone operator (see [17]) and the
Douglas-Rachford splitting algorithm for finding the zeros of the sum of two maximally
monotone operators (see [14]). However, also motivated by different applications, the re-
search community was interested in considering more general problems, in which the sum
of finitely many operators appear, some of them being composed with linear continuous
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operators [1, 9, 12]. In the last years, even more complex structures were considered, in
which also parallel sums are involved, see [6, 7, 13,21].

The algorithms introduced in the literature for these issues have the remarkable prop-
erty that the operators involved are evaluated separately in each iteration, either by for-
ward steps in the case of the single-valued ones (including here the linear continuous oper-
ators and their adjoints) or by backward steps for the set-valued ones, by using the corre-
sponding resolvents. More than that they share the common feature to be of primal-dual
type, meaning that they solve not only the primal inclusion problem, but also its Attouch-
Théra-type dual. In this context we mention the primal-dual algorithms relying on Tseng’s
forward-backward-forward splitting method (see [9, 13]), on the forward-backward split-
ting method (see [21]) and on the Douglas-Rachford splitting method (see [7]). A relevant
task is to adapt these iterative methods in order be able to investigate their convergence,
namely, to eventually determine convergence rates for the sequences generated by the
schemes in discussion. This could be important when one is interested in obtaining an
optimal solution more rapidly than in their initial formulation, which furnish “only” the
convergence statement. Accelerated versions of the primal-dual algorithm from [13] were
already provided in [6], whereby the reported numerical experiments emphasize the ad-
vantages of the first over the original iterative scheme.

The aim of this paper is to provide modified versions of the algorithm proposed by Vũ
in [21] for which an evaluation of their convergence behaviour is possible. By assuming
that some of the operators involved are strongly monotone, we are able to obtain for the
sequences of iterates orders of convergence of O( 1

n) and O(ωn), for ω ∈ (0, 1), respectively.
For the readers convenience we present first some notations which are used throughout

the paper (see [1–3, 15, 19, 22]). Let H be a real Hilbert space with inner product 〈·, ·〉
and associated norm ‖ · ‖ =

√
〈·, ·〉. The symbols ⇀ and → denote weak and strong

convergence, respectively. When G is another Hilbert space and K : H → G a linear
continuous operator, then the norm ofK is defined as ‖K‖ = sup{‖Kx‖ : x ∈ H, ‖x‖ ≤ 1},
while K∗ : G → H, defined by 〈K∗y, x〉 = 〈y,Kx〉 for all (x, y) ∈ H×G, denotes the adjoint
operator of K.

For an arbitrary set-valued operator A : H⇒ H we denote by GrA = {(x, u) ∈ H×H :
u ∈ Ax} its graph, by domA = {x ∈ H : Ax 6= ∅} its domain and by A−1 : H ⇒ H its
inverse operator, defined by (u, x) ∈ GrA−1 if and only if (x, u) ∈ GrA. We say that
A is monotone if 〈x − y, u − v〉 ≥ 0 for all (x, u), (y, v) ∈ GrA. A monotone operator
A is said to be maximally monotone, if there exists no proper monotone extension of the
graph of A on H×H. The resolvent of A, JA : H ⇒ H, is defined by JA = (IdH+A)−1,
where IdH : H → H, IdH(x) = x for all x ∈ H, is the identity operator on H. Moreover,
if A is maximally monotone, then JA : H → H is single-valued and maximally monotone
(cf. [1, Proposition 23.7 and Corollary 23.10]). For an arbitrary γ > 0 we have (see [1,
Proposition 23.2])

p ∈ JγAx if and only if (p, γ−1(x− p)) ∈ GrA

and (see [1, Proposition 23.18])

JγA + γJγ−1A−1 ◦ γ−1 IdH = IdH . (1)

Let γ > 0 be arbitrary. We say thatA is γ-strongly monotone if 〈x−y, u−v〉 ≥ γ‖x−y‖2
for all (x, u), (y, v) ∈ GrA. A single-valued operator A : H → H is said to be γ-cocoercive
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if 〈x− y,Ax−Ay〉 ≥ γ‖Ax−Ay‖2 for all (x, y) ∈ H×H. Moreover, A is γ-Lipschitzian if
‖Ax−Ay‖ ≤ γ‖x− y‖ for all (x, y) ∈ H×H. A single-valued linear operator A : H → H
is said to be skew, if 〈x,Ax〉 = 0 for all x ∈ H. Finally, the parallel sum of two operators
A,B : H⇒ H is defined by A�B : H⇒ H, A�B = (A−1 +B−1)−1.

The following problem represents the starting point of our investigations (see [21]).

Problem 1 Let H be a real Hilbert space, z ∈ H, A : H ⇒ H a maximally monotone
operator and C : H → H an η-cocoercive operator for η > 0. Let m be a strictly positive
integer and for any i ∈ {1, ...,m} let Gi be a real Hilbert space, ri ∈ Gi, Bi : Gi ⇒ Gi
a maximally monotone operator, Di : Gi ⇒ Gi a maximally monotone and νi-strongly
monotone operator for νi > 0 and Li : H → Gi a nonzero linear continuous operator. The
problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax+

m∑
i=1

L∗i
(
(Bi�Di)(Lix− ri)

)
+ Cx, (2)

together with the dual inclusion

find v1 ∈ G1, ..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx

vi ∈ (Bi�Di)(Lix− ri), i = 1, ...,m.
(3)

We say that (x, v1, ..., vm) ∈ H× G1 × ...× Gm is a primal-dual solution to Problem 1,
if

z −
m∑
i=1

L∗i vi ∈ Ax+ Cx and vi ∈ (Bi�Di)(Lix− ri), i = 1, ...,m. (4)

If x ∈ H is a solution to (2), then there exists (v1, ..., vm) ∈ G1 × ... × Gm such that
(x, v1, ..., vm) is a primal-dual solution to Problem 1 and, if (v1, ..., vm) ∈ G1× ...×Gm is a
solution to (3), than there exists x ∈ H such that (x, v1, ..., vm) is a primal-dual solution
to Problem 1. Moreover, if (x, v1, ..., vm) ∈ H× G1 × ...× Gm is a primal-dual solution to
Problem 1, then x is a solution to (2) and (v1, ..., vm) ∈ G1 × ...× Gm is a solution to (3).

By employing the classical forward-backward algorithm (see [12, 20]) in a renormed
product space, Vũ proposed in [21] an iterative scheme for solving a slightly modified
version of Problem 1 formulated in the presence of some given weights wi ∈ (0, 1], i =
1, ...,m, with

∑m
i=1wi = 1 for the terms occurring in the second summand of the primal

inclusion problem. The following result is an adaption of [21, Theorem 3.1] to Problem 1
in the error-free case and when λn = 1 for any n ≥ 0.

Theorem 2 In Problem 1 suppose that

z ∈ ran

(
A+

m∑
i=1

L∗i
(
(Bi�Di)(Li · −ri)

)
+ C

)
.

Let τ and σi, i = 1, ...,m, be strictly positive numbers such that

2 ·min{τ−1, σ−11 , ..., σ−1m } ·min{η, ν1, ..., νm}

1−

√√√√τ
m∑
i=1

σi‖Li‖2

 > 1.
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Let (x0, v1,0, ..., vm,0) ∈ H× G1 ×...× Gm and for all n ≥ 0 set:

xn+1 = JτA
[
xn − τ

(∑m
i=1 L

∗
i vi,n + Cxn − z

)]
yn = 2xn+1 − xn
vi,n+1 = JσiB−1

i
[vi,n + σi(Liyn −D−1i vi,n − ri)], i = 1, ...,m.

Then there exists a primal-dual solution (x, v1, ..., vm) to Problem 1 such that xn ⇀ x and
(v1,n, ..., vm,n) ⇀ (v1, ..., vm) as n→ +∞.

The structure of the paper is as follows. In the next section we propose under appropriate
strong monotonicity assumptions two modified versions of the above algorithm which en-
sure for the sequences of iterates orders of convergence of O( 1

n) and O(ωn), for ω ∈ (0, 1),
respectively. In Section 3 we show how to particularize the general results in the context
of nondifferentiable convex optimization problems, where some of the functions occurring
in the objective are strongly convex. In the last section we present some numerical exper-
iments in image denoising and support vector machines classification and emphasize also
the practical advantages of the modified iterative schemes over the initial one provided in
Theorem 2.

2 Two modified primal-dual algorithms

In this section we propose in two different settings modified versions of the algorithm in
Theorem 2 and discuss the orders of convergence of the sequences of iterates generated by
the new schemes.

2.1 The case A + C is strongly monotone

For the beginning, we show that in case A + C is strongly monotone one can guarantee
an order of convergence of O( 1

n) for the sequence (xn)n≥0. To this end, we update in
each iteration the parameters τ and σi, i = 1, ...,m, and use a modified formula for the
sequence (yn)n≥0. Due to technical reasons, we apply this method in case D−1i is equal to
zero for i = 1, ...,m, that is Di(0) = Gi and Di(x) = ∅ for x 6= 0. Let us notice that, by
using the approach proposed in [6, Remark 3.2], one can extend the statement of Theorem
7 below, which is the main result of this subsection, to the primal-dual pair of monotone
inclusions as stated in Problem 1.

More precisely, the problem we consider throughout this subsection is as follows.

Problem 3 Let H be a real Hilbert space, z ∈ H, A : H ⇒ H a maximally monotone
operator and C : H → H a monotone and η-Lipschitzian operator for η > 0. Let m be a
strictly positive integer and for any i ∈ {1, ...,m} let Gi be a real Hilbert space, ri ∈ Gi,
Bi : Gi ⇒ Gi a maximally monotone operator and Li : H → Gi a nonzero linear continuous
operator. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax+
m∑
i=1

L∗i (Bi(Lix− ri)) + Cx, (5)

together with the dual inclusion

find v1 ∈ G1, ..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx

vi ∈ Bi(Lix− ri), i = 1, ...,m.
(6)
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As for Problem 1, we say that (x, v1, ..., vm) ∈ H× G1 × ...× Gm is a primal-dual solution
to Problem 3, if

z −
m∑
i=1

L∗i vi ∈ Ax+ Cx and vi ∈ Bi(Lix− ri), i = 1, ...,m. (7)

Remark 4 One can notice that, in comparison to Problem 1, we relax in Problem 3 the
assumptions made on the operator C. It is obvious that, if C is a η-cocoercive operator
for η > 0, then C is monotone and 1/η-Lipschitzian. Although in case C is the gradient
of a convex and differentiable function, due to the celebrated Baillon-Haddad Theorem
(see, for instance, [1, Corollary 8.16]), the two classes of operators coincide, in general
the second one is larger. Indeed, nonzero linear, skew and Lipschitzian operators are not
cocoercive. For example, when H and G are real Hilbert spaces and L : H → G is nonzero
linear continuous, then (x, v) 7→ (L∗v,−Lx) is an operator having all these properties.
This operator appears in a natural way when considering primal-dual monotone inclusion
problems as done in [9].

Under the assumption that A + C is γ-strongly monotone for γ > 0 we propose the
following modification of the iterative scheme in Theorem 2.

Algorithm 5
Initialization: Choose τ0 > 0, σi,0 > 0, i = 1, ..,m, such that

τ0 < 2γ/η, λ ≥ η + 1, τ0
∑m

i=1 σi,0‖Li‖2 ≤
√

1 + τ0(2γ − ητ0)/λ
and (x0, v1,0, ..., vm,0) ∈ H× G1 ×...× Gm.

For n ≥ 0 set: xn+1 = J(τn/λ)A
[
xn − (τn/λ)

(∑m
i=1 L

∗
i vi,n + Cxn − z

)]
θn = 1/

√
1 + τn(2γ − ητn)/λ

yn = xn+1 + θn(xn+1 − xn)
vi,n+1 = Jσi,nB−1

i
[vi,n + σi,n(Liyn − ri)], i = 1, ...,m

τn+1 = θnτn, σi,n+1 = σi,n/θn+1, i = 1, ...,m.

Remark 6 Notice that the assumption τ0
∑m

i=1 σi,0‖Li‖2 ≤
√

1 + τ0(2γ − ητ0)/λ in Al-
gorithm 5 is equivalent to τ1

∑m
i=1 σi,0‖Li‖2 ≤ 1, being fulfilled if τ0 > 0 is chosen such

that

τ0 ≤
γ/λ+

√
γ2/λ2 + (

∑m
i=1 σi,0‖Li‖2)2 + η/λ

(
∑m

i=1 σi,0‖Li‖2)2 + η/λ
.

Theorem 7 Suppose that A+C is γ-strongly monotone for γ > 0 and let (x, v1, ..., vm) be
a primal-dual solution to Problem 3. Then the sequences generated by Algorithm 5 fulfill
for any n ≥ 0

λ‖xn+1 − x‖2

τ2n+1

+

(
1− τ1

m∑
i=1

σi,0‖Li‖2
)

m∑
i=1

‖vi,n − vi‖2

τ1σi,0
≤

λ‖x1 − x‖2

τ21
+

m∑
i=1

‖vi,0 − vi‖2

τ1σi,0
+
‖x1 − x0‖2

τ20
+

2

τ0

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉.

Moreover, lim
n→+∞

nτn = λ
γ , hence one obtains for (xn)n≥0 an order of convergence of O( 1

n).
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Proof. The idea of the proof relies on showing that the following Fejér-type inequality
is true for any n ≥ 0

λ

τ2n+2

‖xn+2 − x‖2 +
m∑
i=1

‖vi,n+1 − vi‖2

τ1σi,0
+
‖xn+2 − xn+1‖2

τ2n+1

−

2

τn+1

m∑
i=1

〈Li(xn+2 − xn+1),−vi,n+1 + vi〉 ≤ (8)

λ

τ2n+1

‖xn+1 − x‖2 +
m∑
i=1

‖vi,n − vi‖2

τ1σi,0
+
‖xn+1 − xn‖2

τ2n
−

2

τn

m∑
i=1

〈Li(xn+1 − xn),−vi,n + vi〉.

To this end we use first that in the light of the definition of the resolvents it holds for
any n ≥ 0

λ

τn+1
(xn+1 − xn+2)−

(
m∑
i=1

L∗i vi,n+1 + Cxn+1 − z

)
+ Cxn+2 ∈ (A+ C)xn+2. (9)

Since A+ C is γ-strongly monotone, (7) and (9) yield for any n ≥ 0

γ‖xn+2 − x‖2 ≤
〈
xn+2 − x,

λ

τn+1
(xn+1 − xn+2)

〉
+〈

xn+2 − x,−

(
m∑
i=1

L∗i vi,n+1 + Cxn+1 − z

)
+ Cxn+2 −

(
z −

m∑
i=1

L∗i vi

)〉
=

λ

τn+1
〈xn+2 − x, xn+1 − xn+2〉+ 〈xn+2 − x,Cxn+2 − Cxn+1〉+

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉 .

Further, we have

〈xn+2 − x, xn+1 − xn+2〉 =
‖xn+1 − x‖2

2
− ‖xn+2 − x‖2

2
− ‖xn+1 − xn+2‖2

2
(10)

and, since C is η-Lipschitzian,

〈xn+2 − x,Cxn+2 − Cxn+1〉 ≤
ητn+1

2
‖xn+2 − x‖2 +

η

2τn+1
‖xn+2 − xn+1‖2,

hence for any n ≥ 0 it yields(
λ

τn+1
+ 2γ − ητn+1

)
‖xn+2 − x‖2 ≤

λ

τn+1
‖xn+1 − x‖2 −

λ− η
τn+1

‖xn+2 − xn+1‖2 + 2
m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉.
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Taking into account that λ ≥ η + 1 we obtain for any n ≥ 0 that(
λ

τn+1
+ 2γ − ητn+1

)
‖xn+2 − x‖2 ≤

λ

τn+1
‖xn+1 − x‖2 −

1

τn+1
‖xn+2 − xn+1‖2 + 2

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉. (11)

On the other hand, for every i = 1, ...,m and any n ≥ 0, from

1

σi,n
(vi,n − vi,n+1) + Liyn − ri ∈ B−1i vi,n+1, (12)

the monotonicity of B−1i and (7) we obtain

0 ≤
〈

1

σi,n
(vi,n − vi,n+1) + Liyn − ri − (Lix− ri), vi,n+1 − vi

〉
=

1

σi,n
〈vi,n − vi,n+1, vi,n+1 − vi〉+ 〈Li(yn − x), vi,n+1 − vi〉

=
1

2σi,n
‖vi,n − vi‖2 −

1

2σi,n
‖vi,n − vi,n+1‖2 −

1

2σi,n
‖vi,n+1 − vi‖2

+ 〈Li(yn − x), vi,n+1 − vi〉,

hence

‖vi,n+1 − vi‖2

σi,n
≤ ‖vi,n − vi‖

2

σi,n
− ‖vi,n − vi,n+1‖2

σi,n
+ 2〈Li(yn − x), vi,n+1 − vi〉. (13)

Summing up the inequalities in (11) and (13) we obtain for any n ≥ 0(
λ

τn+1
+ 2γ − ητn+1

)
‖xn+2 − x‖2 +

m∑
i=1

‖vi,n+1 − vi‖2

σi,n
≤

λ

τn+1
‖xn+1 − x‖2 +

m∑
i=1

‖vi,n − vi‖2

σi,n
− ‖xn+2 − xn+1‖2

τn+1
−

m∑
i=1

‖vi,n − vi,n+1‖2

σi,n
(14)

+2
m∑
i=1

〈Li(xn+2 − yn),−vi,n+1 + vi〉.

Further, since yn = xn+1 + θn(xn+1−xn), for every i = 1, ...,m and any n ≥ 0 it holds

〈Li(xn+2 − yn),−vi,n+1 + vi〉 = 〈Li
(
xn+2 − xn+1 − θn(xn+1 − xn)

)
,−vi,n+1 + vi〉 =

〈Li(xn+2 − xn+1),−vi,n+1 + vi〉 − θn〈Li(xn+1 − xn),−vi,n + vi〉+

θn〈Li(xn+1 − xn),−vi,n + vi,n+1〉 ≤
〈Li(xn+2 − xn+1),−vi,n+1 + vi〉 − θn〈Li(xn+1 − xn),−vi,n + vi〉+

θ2n‖Li‖2σi,n
2

‖xn+1 − xn‖2 +
‖vi,n − vi,n+1‖2

2σi,n
.
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By combining the last inequality with (14) we obtain for any n ≥ 0(
λ

τn+1
+ 2γ − ητn+1

)
‖xn+2 − x‖2 +

m∑
i=1

‖vi,n+1 − vi‖2

σi,n
+
‖xn+2 − xn+1‖2

τn+1
−

2
m∑
i=1

〈Li(xn+2 − xn+1),−vi,n+1 + vi〉 ≤ (15)

λ

τn+1
‖xn+1 − x‖2 +

m∑
i=1

‖vi,n − vi‖2

σi,n
+

(
m∑
i=1

‖Li‖2σi,n

)
θ2n‖xn+1 − xn‖2 −

2
m∑
i=1

θn〈Li(xn+1 − xn),−vi,n + vi〉.

After dividing (15) by τn+1 and noticing that for any n ≥ 0

λ

τ2n+1

+
2γ

τn+1
− η =

λ

τ2n+2

,

τn+1σi,n = τnσi,n−1 = ... = τ1σi,0

and (∑m
i=1 ‖Li‖2σi,n

)
θ2n

τn+1
=
τn+1

∑m
i=1 ‖Li‖2σi,n
τ2n

=
τ1
∑m

i=1 ‖Li‖2σi,0
τ2n

≤ 1

τ2n
,

it follows that the Fejér-type inequality (8) is true.
Let N ∈ N, N ≥ 2. Summing up the inequality in (8) from n = 0 to N − 1, it yields

λ

τ2N+1

‖xN+1 − x‖2 +
m∑
i=1

‖vi,N − vi‖2

τ1σi,0
+
‖xN+1 − xN‖2

τ2N
≤

λ

τ21
‖x1 − x‖2 +

m∑
i=1

‖vi,0 − vi‖2

τ1σi,0
+
‖x1 − x0‖2

τ20
+ (16)

2
m∑
i=1

(
1

τN
〈Li(xN+1 − xN ),−vi,N + vi〉 −

1

τ0
〈Li(x1 − x0),−vi,0 + vi〉

)
.

Further, for every i = 1, ...,m we use the inequality

2

τN
〈Li(xN+1 − xN ),−vi,N + vi〉 ≤

σi,0‖Li‖2

τ2N (
∑m

i=1 σi,0‖Li‖2)
‖xN+1 − xN‖2 +

∑m
i=1 σi,0‖Li‖2

σi,0
‖vi,N − vi‖2

and obtain finally

λ‖xN+1 − x‖2

τ2N+1

+

m∑
i=1

‖vi,N − vi‖2

τ1σi,0
≤ λ‖x1 − x‖2

τ21
+

m∑
i=1

‖vi,0 − vi‖2

τ1σi,0
+
‖x1 − x0‖2

τ20

+
2

τ0

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉+

m∑
i=1

∑m
j=1 σj,0‖Lj‖2

σi,0
‖vi,N − vi‖2,

8



which rapidly yields the inequality in the statement of the theorem.
We close the proof by showing that lim

n→+∞
nτn = λ/γ. Notice that for any n ≥ 0,

τn+1 =
τn√

1 + τn
λ (2γ − ητn)

. (17)

Since 0 < τ0 < 2γ/η, it follows by induction that 0 < τn+1 < τn < τ0 < 2γ/η for any
n ≥ 1, hence the sequence (τn)n≥0 converges. In the light of (17) one easily obtains that

lim
n→+∞

τn = 0 and, further, that lim
n→+∞

τn
τn+1

= 1. As ( 1
τn

)n≥0 is a strictly increasing and

unbounded sequence, by applying the Stolz-Cesàro Theorem it yields

lim
n→+∞

nτn = lim
n→+∞

n
1
τn

= lim
n→+∞

n+ 1− n
1

τn+1
− 1

τn

= lim
n→+∞

τnτn+1

τn − τn+1

= lim
n→+∞

τnτn+1(τn + τn+1)

τ2n − τ2n+1

= lim
n→+∞

τnτn+1(τn + τn+1)

τ2n+1
τn
λ (2γ − ητn)

= lim
n→+∞

τn + τn+1

τn+1(
2γ
λ −

η
λτn)

= lim
n→+∞

τn
τn+1

+ 1

2γ
λ −

η
λτn

=
λ

γ
.

�

Remark 8 Let us mention that, if A + C is γ-strongly monotone with γ > 0, then the
operator A+

∑m
i=1 L

∗
i (Bi(Li · −ri)) +C is strongly monotone, as well, thus the monotone

inclusion problem (5) has at most one solution. Hence, if (x, v1, ..., vm) is a primal-dual
solution to Problem 3, then x is the unique solution to (5). Notice that the problem (6)
may not have an unique solution.

2.2 The case A + C and B−1i + D−1i , i = 1, ...,m, are strongly monotone

In this subsection we propose a modified version of the algorithm in Theorem 2 which
guarantees when A + C and B−1i + D−1i , i = 1, ...,m, are strongly monotone orders of
convergence of O(ωn), for ω ∈ (0, 1), for the sequences (xn)n≥0 and (vi,n)n≥0, i = 1, ...,m.
The algorithm aims to solve the primal-dual pair of monotone inclusions stated in Problem
1 under relaxed assumptions for the operators C and D−1i , i = 1, ...,m.

Problem 9 Let H be a real Hilbert space, z ∈ H, A : H ⇒ H a maximally monotone
operator and C : H → H a monotone and η-Lipschitzian operator for η > 0. Let m
be a strictly positive integer and for any i ∈ {1, ...,m} let Gi be a real Hilbert space,
ri ∈ Gi, Bi : Gi ⇒ Gi a maximally monotone operator, Di : Gi ⇒ Gi a monotone operators
such that D−1i is νi-Lipschitzian for νi > 0 and Li : H → Gi a nonzero linear continuous
operator. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax+

m∑
i=1

L∗i
(
(Bi�Di)(Lix− ri)

)
+ Cx, (18)

together with the dual inclusion

find v1 ∈ G1, ..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ Ax+ Cx

vi ∈ (Bi�Di)(Lix− ri), i = 1, ...,m.
(19)
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Under the assumption that A + C is γ-strongly monotone for γ > 0 and B−1i + D−1i
is δi-strongly monotone with δi > 0, i = 1, ....m, we propose the following modification of
the iterative scheme in Theorem 2.

Algorithm 10
Initialization: Choose µ > 0 such that

µ ≤ min
{
γ2/η2, δ21/ν

2
1 , ..., δ

2
m/ν

2
m,
√
γ/ (

∑m
i=1 ‖Li‖2/δi)

}
,

τ = µ/(2γ), σi = µ/(2δi), i = 1, ..,m,
θ ∈ [2/(2 + µ), 1] and (x0, v1,0, ..., vm,0) ∈ H× G1 ×...× Gm.

For n ≥ 0 set: xn+1 = JτA
[
xn − τ

(∑m
i=1 L

∗
i vi,n + Cxn − z

)]
yn = xn+1 + θ(xn+1 − xn)

vi,n+1 = JσiB−1
i

[vi,n + σi(Liyn −D−1i vi,n − ri)], i = 1, ...,m.

Theorem 11 Suppose that A + C is γ-strongly monotone for γ > 0, B−1i + D−1i is δi-
strongly monotone for δi > 0, i = 1, ...,m, and let (x, v1, ..., vm) be a primal-dual solution
to Problem 9. Then the sequences generated by Algorithm 10 fulfill for any n ≥ 0

γ‖xn+1 − x‖2 + (1− ω)

m∑
i=1

δi‖vi,n − vi‖2 ≤

ωn

(
γ‖x1 − x‖2 +

m∑
i=1

δi‖vi,0 − vi‖2 +
γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉

)
,

where 0 < ω = 2(1+θ)
4+µ < 1.

Proof. For any n ≥ 0 we have

1

τ
(xn+1 − xn+2)−

(
m∑
i=1

L∗i vi,n+1 + Cxn+1 − z

)
+ Cxn+2 ∈ (A+ C)xn+2, (20)

thus, since A+ C is γ-strongly monotone, (19) yields

γ‖xn+2 − x‖2 ≤
〈
xn+2 − x,

1

τ
(xn+1 − xn+2)

〉
+〈

xn+2 − x,−

(
m∑
i=1

L∗i vi,n+1 + Cxn+1 − z

)
+ Cxn+2 −

(
z −

m∑
i=1

L∗i vi

)〉
=

1

τ
〈xn+2 − x, xn+1 − xn+2〉+ 〈xn+2 − x,Cxn+2 − Cxn+1〉+

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉 .

Further, by using (10) and

〈xn+2 − x,Cxn+2 − Cxn+1〉 ≤
γ

2
‖xn+2 − x‖2 +

η2

2γ
‖xn+2 − xn+1‖2,

10



we get for any n ≥ 0(
1

2τ
+
γ

2

)
‖xn+2 − x‖2 ≤

1

2τ
‖xn+1 − x‖2 −

(
1

2τ
− η2

2γ

)
‖xn+2 − xn+1‖2 +

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉.

After multiplying this inequality with µ and taking into account that

µ

2τ
= γ, µ

(
1

2τ
+
γ

2

)
= γ

(
1 +

µ

2

)
and µ

(
1

2τ
− η2

2γ

)
= γ − η2

2γ
µ ≥ γ

2
,

we obtain for any n ≥ 0

γ
(

1 +
µ

2

)
‖xn+2 − x‖2 ≤ (21)

γ‖xn+1 − x‖2 −
γ

2
‖xn+2 − xn+1‖2 + µ

m∑
i=1

〈Li(xn+2 − x), vi − vi,n+1〉.

On the other hand, for every i = 1, ...,m and any n ≥ 0, from

1

σi
(vi,n − vi,n+1) + Liyn −D−1i vi,n − ri +D−1i vi,n+1 ∈ (B−1i +D−1i )vi,n+1, (22)

the δi-strong monotonicity of B−1i +D−1i and (19) we obtain

δi‖vi,n+1 − vi‖2 ≤
〈

1

σi
(vi,n − vi,n+1), vi,n+1 − vi

〉
+

〈
Liyn − ri −D−1i vi,n +D−1i vi,n+1 − (Lix− ri), vi,n+1 − vi

〉
.

Further, for every i = 1, ...,m and any n ≥ 0 we have

1

σi
〈vi,n − vi,n+1, vi,n+1 − vi〉 =

1

2σi
‖vi,n − vi‖2 −

1

2σi
‖vi,n − vi,n+1‖2 −

1

2σi
‖vi,n+1 − vi‖2

and, since D−1i is a νi-Lipschitzian operator,

〈D−1i vi,n+1 −D−1i vi,n, vi,n+1 − vi〉 ≤
δi
2
‖vi,n+1 − vi‖2 +

ν2i
2δi
‖vi,n+1 − vi,n‖2.

Consequently, for every i = 1, ...,m and any n ≥ 0 it holds(
1

2σi
+
δi
2

)
‖vi,n+1 − vi‖2 ≤

1

2σi
‖vi,n − vi‖2 −

(
1

2σi
− ν2i

2δi

)
‖vi,n+1 − vi,n‖2 + 〈Li(x− yn), vi − vi,n+1〉,

which, after multiplying it by µ (here is the initial choice of µ determinant), yields

δi

(
1 +

µ

2

)
‖vi,n+1−vi‖2 ≤ δi‖vi,n−vi‖2−

δi
2
‖vi,n+1−vi,n‖2+µ〈Li(x−yn), vi−vi,n+1〉. (23)
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We denote

an := γ‖xn+1 − x‖2 +

m∑
i=1

δi‖vi,n − vi‖2 ∀n ≥ 0.

Summing up the inequalities in (21) and (23) we obtain for any n ≥ 0(
1 +

µ

2

)
an+1 ≤ an (24)

−γ
2
‖xn+2 − xn+1‖2 −

m∑
i=1

δi
2
‖vi,n − vi,n+1‖2 + µ

m∑
i=1

〈Li(xn+2 − yn), vi − vi,n+1〉.

Further, since yn = xn+1 + θ(xn+1 − xn) and ω ≤ θ, for every i = 1, ...,m and any n ≥ 0
it holds

〈Li(xn+2 − yn), vi − vi,n+1〉 = 〈Li (xn+2 − xn+1 − θ(xn+1 − xn)) , vi − vi,n+1〉 =

〈Li(xn+2 − xn+1), vi − vi,n+1〉 − ω〈Li(xn+1 − xn), vi − vi,n〉+

ω〈Li(xn+1 − xn), vi,n+1 − vi,n〉+ (θ − ω)〈Li(xn+1 − xn), vi,n+1 − vi〉 ≤
〈Li(xn+2 − xn+1), vi − vi,n+1〉 − ω〈Li(xn+1 − xn), vi − vi,n〉+

ω‖Li‖
(
µω‖Li‖

‖xn+1 − xn‖2

2δi
+ δi
‖vi,n+1 − vi,n‖2

2µω‖Li‖

)
+

(θ − ω)‖Li‖
(
µω‖Li‖

‖xn+1 − xn‖2

2δi
+ δi
‖vi,n+1 − vi‖2

2µω‖Li‖

)
=

〈Li(xn+2 − xn+1), vi − vi,n+1〉 − ω〈Li(xn+1 − xn), vi − vi,n〉+

θµω‖Li‖2
‖xn+1 − xn‖2

2δi
+ δi
‖vi,n+1 − vi,n‖2

2µ
+ (θ − ω)δi

‖vi,n+1 − vi‖2

2µω
.

Taking into consideration that

µ2θω

2

m∑
i=1

‖Li‖2

δi
≤ γθ

2
ω ≤ γ

2
ω and 1 +

µ

2
=

1

ω
+
θ − ω
ω

,

from (24) we obtain for any n ≥ 0

1

ω
an+1 +

γ

2
‖xn+2 − xn+1‖2 ≤

an +
γ

2
ω‖xn+1 − xn‖2 −

θ − ω
ω

(
an+1 −

m∑
i=1

δi
2
‖vi,n+1 − vi‖2

)
+

µ
m∑
i=1

(
〈Li(xn+2 − xn+1), vi − vi,n+1〉 − ω〈Li(xn+1 − xn), vi − vi,n〉

)
.

As ω ≤ θ and an+1 −
∑m

i=1
δi
2 ‖vi,n+1 − vi‖2 ≥ 0, we further get after multiplying the last

inequality with ω−n the following Fejér-type inequality that holds for any n ≥ 0

ω−(n+1)an+1 +
γ

2
ω−n‖xn+2 − xn+1‖2 + µω−n

m∑
i=1

〈Li(xn+2 − xn+1), vi,n+1 − vi〉 ≤

ω−nan +
γ

2
ω−(n−1)‖xn+1 − xn‖2 + µω−(n−1)

m∑
i=1

〈Li(xn+1 − xn), vi,n − vi〉. (25)
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Let N ∈ N, N ≥ 2. Summing up the inequality in (25) from n = 0 to N − 1, it yields

ω−NaN +
γ

2
ω−N+1‖xN − xN+1‖2 + µω−N+1

m∑
i=1

〈Li(xN+1 − xN ), vi,N − vi〉 ≤

a0 +
γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉.

Using that

〈Li(xN+1 − xN ), vi,N − vi〉 ≥ −
µ‖Li‖2

4δi
‖xN+1 − xN‖2 −

δi
µ
‖vi,N − vi‖2, i = 1, ...,m,

this further yields

ω−NaN + ω−N+1

(
γ

2
− µ2

4

m∑
i=1

‖Li‖2

δi

)
‖xN − xN+1‖2 − ω−N+1

m∑
i=1

δi‖vi,N − vi‖2 ≤

a0 +
γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉. (26)

Taking into account the way µ has been chosen, we have

γ

2
− µ2

4

m∑
i=1

‖Li‖2

δi
≥ γ

2
− γ

4
> 0,

hence, after multiplying (26) with ω−N it yields

aN − ω
m∑
i=1

δi‖vi,N − vi‖2 ≤ ωN
(
a0 +

γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉

)
.

The conclusion follows by taking into account the definition of the sequence (an)n≥0. �

Remark 12 If A + C is γ-strongly monotone for γ > 0 and B−1i + D−1i is δi-strongly
monotone for δi > 0, i = 1, ...,m, then there exists at most one primal-dual solution to
Problem 9. Hence, if (x, v1, ..., vm) is a primal-dual solution to Problem 9, then x is the
unique solution to the primal inclusion (18) and (v1, ..., vm) is the unique solution to the
dual inclusion (19).

3 Convex optimization problems

The aim of this section is to show that the two algorithms proposed in this paper and
investigated from the point of view of their convergence properties can be employed when
solving a primal-dual pair of convex optimization problems.

For a function f : H → R, where R := R∪{±∞} is the extended real line, we denote by
dom f = {x ∈ H : f(x) < +∞} its effective domain and say that f is proper if dom f 6= ∅
and f(x) 6= −∞ for all x ∈ H. We denote by Γ(H) the family of proper convex and lower
semi-continuous extended real-valued functions defined on H. Let f∗ : H → R, f∗(u) =
supx∈H{〈u, x〉− f(x)} for all u ∈ H, be the conjugate function of f . The subdifferential of
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f at x ∈ H, with f(x) ∈ R, is the set ∂f(x) := {v ∈ H : f(y) ≥ f(x) + 〈v, y− x〉 ∀y ∈ H}.
We take by convention ∂f(x) := ∅, if f(x) ∈ {±∞}. Notice that if f ∈ Γ(H), then ∂f is a
maximally monotone operator (cf. [16]) and it holds (∂f)−1 = ∂f∗. For f, g : H → R two
proper functions, we consider their infimal convolution, which is the function f�g : H → R,
defined by (f�g)(x) = infy∈H{f(y) + g(x− y)}, for all x ∈ H.

Let S ⊆ H be a nonempty set. The indicator function of S, δS : H → R, is the function
which takes the value 0 on S and +∞ otherwise. The subdifferential of the indicator
function is the normal cone of S, that is NS(x) = {u ∈ H : 〈u, y − x〉 ≤ 0 ∀y ∈ S}, if
x ∈ S and NS(x) = ∅ for x /∈ S.

When f ∈ Γ(H) and γ > 0, for every x ∈ H we denote by proxγf (x) the proximal
point of parameter γ of f at x, which is the unique optimal solution of the optimization
problem

inf
y∈H

{
f(y) +

1

2γ
‖y − x‖2

}
. (27)

Notice that Jγ∂f = (IdH+γ∂f)−1 = proxγf , thus proxγf : H → H is a single-valued
operator fulfilling the extended Moreau’s decomposition formula

proxγf +γ prox(1/γ)f∗ ◦γ−1 IdH = IdH . (28)

Let us also recall that the function f : H → R is said to be γ-strongly convex for γ > 0,
if f − γ

2‖ · ‖
2 is a convex function. Let us mention that this property implies γ-strong

monotonicity of ∂f (see [1, Example 22.3]).
Finally, we notice that for f = δS , where S ⊆ H is a nonempty convex and closed set,

it holds
JγNS = JNS = J∂δS = (IdH+NS)−1 = proxδS = PS , (29)

where PS : H → C denotes the projection operator on S (see [1, Example 23.3 and Example
23.4]).

In order to investigate the applicability of the algorithm introduced in Subsection 2.1
we consider the following primal-dual pair of convex optimization problems.

Problem 13 Let H be a real Hilbert space, z ∈ H, f ∈ Γ(H) and h : H → R a convex
and differentiable function with a η-Lipschitzian gradient for η > 0. Let m be a strictly
positive integer and for any i ∈ {1, ...,m} let Gi be a real Hilbert space, ri ∈ Gi, gi ∈ Γ(Gi)
and Li : H → Gi a nonzero linear continuous operator. Consider the convex optimization
problem

inf
x∈H

{
f(x) +

m∑
i=1

gi(Lix− ri) + h(x)− 〈x, z〉

}
(30)

and its Fenchel-type dual problem

sup
vi∈Gi,i=1,...,m

{
−
(
f∗�h∗

)(
z −

m∑
i=1

L∗i vi

)
−

m∑
i=1

(
g∗i (vi) + 〈vi, ri〉

)}
. (31)

Considering maximal monotone operators

A = ∂f,C = ∇h and Bi = ∂gi, i = 1, ...,m,
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the monotone inclusion problem (5) reads

find x ∈ H such that z ∈ ∂f(x) +
m∑
i=1

L∗i (∂gi(Lix− ri)) +∇h(x), (32)

while the dual inclusion problem (6) reads

find v1 ∈ G1, ..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ ∂f(x) +∇h(x)

vi ∈ ∂gi(Lix− ri), i = 1, ...,m.
(33)

If (x, v1, ..., vm) ∈ H× G1 × ...× Gm is a primal-dual solution to (32)-(33), namely,

z −
m∑
i=1

L∗i vi ∈ ∂f(x) +∇h(x) and vi ∈ ∂gi(Lix− ri), i = 1, ...,m, (34)

then x is an optimal solution of the problem (30), (v1, ..., vm) is an optimal solution of
(31) and the optimal objective values of the two problems coincide. Notice that (34) is
nothing else than the system of optimality conditions for the primal-dual pair of convex
optimization problems (30)-(31).

In case a qualification condition is fulfilled, these optimality conditions are also neces-
sary. For the readers convenience, let us present some qualification conditions which are
suitable in this context. One of the weakest qualification conditions of interiority-type
reads (see, for instance, [13, Proposition 4.3, Remark 4.4])

(r1, ..., rm) ∈ sqri

(
m∏
i=1

dom gi − {(L1x, ..., Lmx) : x ∈ dom f}

)
. (35)

Here, for H a real Hilbert space and S ⊆ H a convex set, we denote by

sqriS := {x ∈ S : ∪λ>0λ(S − x) is a closed linear subspace of H}

its strong quasi-relative interior. Notice that we always have intS ⊆ sqriS (in general
this inclusion may be strict). If H is finite-dimensional, then sqriS coincides with riS,
the relative interior of S, which is the interior of S with respect to its affine hull. The
condition (35) is fulfilled if (i) dom gi = Gi, i = 1, ...,m or (ii) H and Gi are finite-
dimensional and there exists x ∈ ri dom f such that Lix − ri ∈ ri dom gi, i = 1, ...,m
(see [13, Proposition 4.3]). Another useful and easily verifiable qualification condition
guaranteing the optimality conditions (34) has the following formulation: there exists
x′ ∈ dom f ∩

⋂m
i=1 L

−1
i (ri + dom gi) such that gi is continuous at Lix

′ − ri, i = 1, ...,m
(see [3, Remark 2.5] and [5]).

The following two statements are particular instances of Algorithm 5 and Theorem 7,
respectively.

Algorithm 14
Initialization: Choose τ0 > 0, σi,0 > 0, i = 1, ..,m, such that

τ0 < 2γ/η, λ ≥ η + 1, τ0
∑m

i=1 σi,0‖Li‖2 ≤
√

1 + τ0(2γ − ητ0)/λ
and (x0, v1,0, ..., vm,0) ∈ H× G1 ×...× Gm.

For n ≥ 0 set: xn+1 = prox(τn/λ)f

[
xn − (τn/λ)

(∑m
i=1 L

∗
i vi,n +∇h(xn)− z

)]
θn = 1/

√
1 + τn(2γ − ητn)/λ

yn = xn+1 + θn(xn+1 − xn)
vi,n+1 = proxσi,ng∗i [vi,n + σi,n(Liyn − ri)], i = 1, ...,m

τn+1 = θnτn, σi,n+1 = σi,n/θn+1, i = 1, ...,m.
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Theorem 15 Suppose that f + h is γ-strongly convex for γ > 0 and the qualification
condition (35) holds. Then there exists a unique optimal solution x to (30), an optimal
solution (v1, ..., vm) to (31) fulfilling the optimality conditions (34) and such that the op-
timal objective values of the problems (30) and (31) coincide. The sequences generated by
Algorithm 14 fulfill for any n ≥ 0

λ‖xn+1 − x‖2

τ2n+1

+

(
1− τ1

m∑
i=1

σi,0‖Li‖2
)

m∑
i=1

‖vi,n − vi‖2

τ1σi,0
≤

λ‖x1 − x‖2

τ21
+

m∑
i=1

‖vi,0 − vi‖2

τ1σi,0
+
‖x1 − x0‖2

τ20
+

2

τ0

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉.

Moreover, lim
n→+∞

nτn = λ
γ , hence one obtains for (xn)n≥0 an order of convergence of O( 1

n).

Remark 16 The uniqueness of the solution of (30) in the above theorem follows from [1,
Corollary 11.16].

Remark 17 In case h(x) = 0 for all x ∈ H, one has to choose in Algorithm 14 as initial
points τ0 > 0, σi,0 > 0, i = 1, ..,m, with τ0

∑m
i=1 σi,0‖Li‖2 ≤

√
1 + 2τ0γ/λ and λ ≥ 1

and to update the sequence (θn)n≥0 via θn = 1/
√

1 + 2τnγ/λ for any n ≥ 0, in order to
obtain a suitable iterative scheme for solving the pair of primal-dual optimization problems
(30)-(31) with the same convergence behavior as of Algorithm 14.

We turn now our attention to the algorithm introduced in Subsection 2.2 and consider
to this end the following primal-dual pair of convex optimization problems.

Problem 18 Let H be a real Hilbert space, z ∈ H, f ∈ Γ(H) and h : H → R a convex and
differentiable function with a η-Lipschitzian gradient for η > 0. Let m be a strictly positive
integer and for any i ∈ {1, ...,m} let Gi be a real Hilbert space, ri ∈ Gi, gi, li ∈ Γ(Gi) such
that li is ν−1i -strongly convex for νi > 0 and Li : H → Gi a nonzero linear continuous
operator. Consider the convex optimization problem

inf
x∈H

{
f(x) +

m∑
i=1

(gi�li)(Lix− ri) + h(x)− 〈x, z〉

}
(36)

and its Fenchel-type dual problem

sup
vi∈Gi,i=1,...,m

{
−
(
f∗�h∗

)(
z −

m∑
i=1

L∗i vi

)
−

m∑
i=1

(
g∗i (vi) + l∗i (vi) + 〈vi, ri〉

)}
. (37)

Considering the maximal monotone operators

A = ∂f,C = ∇h,Bi = ∂gi and Di = ∂li, i = 1, ...,m,

according to [1, Proposition 17.10, Theorem 18.15], D−1i = ∇l∗i is a monotone and νi-
Lipschitzian operator for i = 1, ...,m. The monotone inclusion problem (18) reads

find x ∈ H such that z ∈ ∂f(x) +
m∑
i=1

L∗i ((∂gi�∂li)(Lix− ri)) +∇h(x), (38)
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while the dual inclusion problem (19) reads

find v1 ∈ G1, ..., vm ∈ Gm such that ∃x ∈ H :

{
z −

∑m
i=1 L

∗
i vi ∈ ∂f(x) +∇h(x)

vi ∈ (∂gi�∂li)(Lix− ri), i = 1, ...,m.
(39)

If (x, v1, ..., vm) ∈ H× G1 × ...× Gm is a primal-dual solution to (38)-(39), namely,

z −
m∑
i=1

L∗i vi ∈ ∂f(x) +∇h(x) and vi ∈ (∂gi�∂li)(Lix− ri), i = 1, ...,m, (40)

then x is an optimal solution of the problem (36), (v1, ..., vm) is an optimal solution of
(37) and the optimal objective values of the two problems coincide. Notice that (40) is
nothing else than the system of optimality condition for the primal-dual pair of convex
optimization problems (36)-(37).

The assumptions made on li guarantees that gi�li ∈ Γ(Gi) (see [1, Corollary 11.16,
Proposition 12.14]) and, since dom(gi�li) = dom gi + dom li, i = 1, ...,m, one can can
consider the following qualification condition of interiority-type in order to guarantee (40)

(r1, ..., rm) ∈ sqri

(
m∏
i=1

(dom gi + dom li)− {(L1x, ..., Lmx) : x ∈ dom f}

)
. (41)

The following two statements are particular instances of Algorithm 10 and Theorem
11, respectively.

Algorithm 19
Initialization: Choose µ > 0 such that

µ ≤ min
{
γ2/η2, δ21/ν

2
1 , ..., δ

2
m/ν

2
m,
√
γ/ (

∑m
i=1 ‖Li‖2/δi)

}
,

τ = µ/(2γ), σi = µ/(2δi), i = 1, ..,m,
θ ∈ [2/(2 + µ), 1] and (x0, v1,0, ..., vm,0) ∈ H× G1 ×...× Gm.

For n ≥ 0 set: xn+1 = proxτf
[
xn − τ

(∑m
i=1 L

∗
i vi,n +∇h(xn)− z

)]
yn = xn+1 + θ(xn+1 − xn)
vi,n+1 = proxσig∗i [vi,n + σi(Liyn −∇l∗i (vi,n)− ri)], i = 1, ...,m.

Theorem 20 Suppose that f + h is γ-strongly convex for γ > 0, g∗i + l∗i is δi-strongly
convex for δi > 0, i = 1, ...,m, and the qualification condition (41) holds. Then there
exists a unique optimal solution x to (36), a unique optimal solution (v1, ..., vm) to (37)
fulfilling the optimality conditions (40) and such that the optimal objective values of the
problems (36) and (37) coincide. The sequences generated by Algorithm 19 fulfill for any
n ≥ 0

γ‖xn+1 − x‖2 + (1− ω)
m∑
i=1

δi‖vi,n − vi‖2 ≤

ωn

(
γ‖x1 − x‖2 +

m∑
i=1

δi‖vi,0 − vi‖2 +
γ

2
ω‖x1 − x0‖2 + µω

m∑
i=1

〈Li(x1 − x0), vi,0 − vi〉

)
,

where 0 < ω = 2(1+θ)
4+µ < 1.
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4 Numerical experiments

In this section we illustrate the applicability of the theoretical results in the context of two
numerical experiments in image processing and support vector machines classification.

4.1 Image processing

In this subsection we compare the numerical performances of Algorithm 14 with the ones
in the iterative scheme in Theorem 2 for an image denoising problem. To this end we treat
the nonsmooth regularized convex optimization problem

inf
x∈[0,1]k

{
1

2
‖x− b‖2 + λ1TV (x) + λ2‖Wx‖1

}
, (42)

where TV : Rk → R denotes a discrete isotropic total variation, W : Rk → Rk a the
discrete Haar wavelet transform with four levels, λ1, λ2 > 0 the regularization parameters
and b ∈ Rk the observed noisy image. Notice that we consider images of size k = M ×N
as vectors x ∈ Rk, where each pixel denoted by xi,j , 1 ≤ i ≤M , 1 ≤ j ≤ N , ranges in the
closed interval from 0 (pure black) to 1 (pure white).

Two popular choices for the discrete total variation functional are the isotropic total
variation TViso : Rk → R,

TViso(x) =

M−1∑
i=1

N−1∑
j=1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2

+
M−1∑
i=1

|xi+1,N − xi,N |+
N−1∑
j=1

|xM,j+1 − xM,j | ,

and the anisotropic total variation TVaniso : Rk → R,

TVaniso(x) =

M−1∑
i=1

N−1∑
j=1

|xi+1,j − xi,j |+ |xi,j+1 − xi,j |

+
M−1∑
i=1

|xi+1,N − xi,N |+
N−1∑
j=1

|xM,j+1 − xM,j | ,

where in both cases reflexive (Neumann) boundary conditions are assumed. Obviously, in
both situations the qualification condition in Theorem 15 is fulfilled.

Denote Y = Rk×Rk and define the linear operator L : Rk → Y, xi,j 7→ (L1xi,j , L2xi,j),
where

L1xi,j =

{
xi+1,j − xi,j , if i < M
0, if i = M

and L2xi,j =

{
xi,j+1 − xi,j , if j < N
0, if j = N

.

The operator L represents a discretization of the gradient in horizontal and vertical direc-
tion. One can easily check that ‖L‖2 ≤ 8 and that its adjoint L∗ : Y → Rk is as easy to
implement as the operator itself (cf. [10]). Moreover, since W is an orthogonal wavelet, it
holds ‖W‖ = 1.
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(a) Noisy image, σ = 0.06 (b) Noisy image, σ = 0.12

(c) Denoised image, λ1 = 0.035,
λ2 = 0.01, isotropic TV

(d) Denoised image, λ1 = 0.07,
λ2 = 0.01, isotropic TV

Figure 1: The noisy images in (a) and (b) were obtained after adding white Gaussian noise
with standard deviation σ = 0.06 and σ = 0.12, respectively, to the original 256 × 256
lichtenstein test image. The outputs of Algorithm 14 after 100 iterations when solving
(42) with isotropic total variation are shown in (c) and (d), respectively.

When considering the isotropic total variation, the problem (42) can be formulated as

inf
x∈Rk

{f(x) + g1(Lx) + g2(Wx)} , (43)

where f : Rk → R, f(x) = 1
2‖x− b‖

2 + δ[0,1]k(x) is 1-strongly convex, g1 : Y → R is defined

as g1(u, v) = λ1‖(u, v)‖×, where ‖(·, ·)‖× : Y → R, ‖(u, v)‖× =
∑M

i=1

∑N
j=1

√
u2i,j + v2i,j ,

is a norm on the Hilbert space Y and g2 : Rk → R, g2(x) = λ2‖x‖1. Take (p, q) ∈ Y and
σ > 0. We have

proxσf (p) = P[0,1]k
(
(1 + σ)−1(p+ σb)

)
.

Moreover, g∗1(p, q) = δS(p, q) and

proxσg∗1 (p, q) = PS (p, q) ,

where (cf. [6])

S =

(p, q) ∈ Y : max
1≤i≤M
1≤j≤N

√
p2i,j + q2i,j ≤ λ1
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ε = 10−4
isotropic TV anisotropic TV

σ = 0.06 σ = 0.12 σ = 0.06 σ = 0.12

Algorithm in [21] 373 329 383 388
Algorithm 14 95 180 126 255

Table 1: Comparison of the algorithm in [21] and its modification, Algorithm 14, when
denoising the images in Figure 1 (a) and (b) for isotropic TV and anisotropic TV. The
entries represent the number of iterations needed for attaining a root mean squared error
for the primal iterates below the tolerance level of ε = 10−4.

1 5 10 15 20

0.5

1.0

anisotropic
isotropic
anisotropic modified
isotropic modified

Iterations

R
M

S
E

Figure 2: RMSE curves for image denoising: the case of white Gaussian noise with stan-
dard deviation σ = 0.06

and the projection operator PS : Y → S is defined via

(pi,j , qi,j) 7→ λ1
(pi,j , qi,j)

max
{
λ1,
√
p2i,j + q2i,j

} , 1 ≤ i ≤M, 1 ≤ j ≤ N.

Finally, g∗2(p) = δ[−λ2,λ2]k(p), hence

proxσg∗2 (p) = P[−λ2,λ2]k(p) ∀p ∈ Rk.

On the other hand, when considering the anisotropic total variation, the problem (42)
can be formulated as

inf
x∈Rk

{f(x) + g̃1(Lx) + g2(Wx)} , (44)

where the functions f, g2 are taken as above and g̃1 : Y → R is defined as g1(u, v) =
λ1‖(u, v)‖1. For every (p, q) ∈ Y we have g̃∗1(p) = δ[−λ1,λ1]k×[−λ1,λ1]k(p, q) and

proxσg̃∗1 (p, q) = P[−λ1,λ1]k×[−λ1,λ1]k(p, q).

We experimented with the 256× 256 lichtenstein test image to which we added white
Gaussian noise with standard deviation σ = 0.06 and σ = 0.12, respectively. We solved
(42) by Algorithm 14 (with the modifications mentioned in Remark 17) for both instances
of the discrete total variation functional. For the first noisy image (added noise with
standard deviation σ = 0.06), we took as regularization parameters λ1 = 0.035 and
λ2 = 0.01 and for the second one (added noise with standard deviation σ = 0.12), λ1 = 0.07
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Figure 3: RMSE curves for image denoising: the case of white Gaussian noise with stan-
dard deviation σ = 0.12

and λ2 = 0.01. As initial choices in Algorithm 14 we opted for λ = 1, τ0 = 50, σ1,0 = 0.0241
and σ2,0 = 0.008. The reconstructed images after 100 iterations for isotropic total variation
are shown in Figure 1.

We compared Algorithm 14 from the point of view of the number of iterations needed
for a good recovery with the iterative method from Theorem 2 (see [21]) for both isotropic
and anisotropic total variation. For the iterative scheme from [21] we have chosen for
both noisy images and both discrete total variation functionals the optimal initializations
τ = 0.35, σ1 = 0.2 and σ2 = 0.01.

The comparisons concerning the number of iterations needed for a good recovery were
made via the root mean squared error (RMSE). We refer the reader to Table 1 for the
achieved results, which show that Algorithm 14 outperforms the iterative scheme in [21].
Figures 2 and 3 show the evolution of the RMSE curves when solving (43) and (44) with
the algorithm from [21] and with its modified version, Algorithm 14, respectively.

4.2 Support vector machines classifications

The numerical experiments we present in this subsection refer to the class of kernel based
learning methods and address the problem of classifying images via support vector ma-
chines.

We make use of a data set of 11800 training images and 1983 test images of size
28×28 from the website http://www.cs.nyu.edu/∼roweis/data.html. The problem consists
in determining a decision function based on a pool of handwritten digits showing either
the number eight or the number nine, labeled by −1 and +1, respectively (see Figure
4). We evaluate the quality of the decision function on a test data set by computing the
percentage of misclassified images. Notice that we use only a half of the available images
from the training data set, in order to reduce the computational effort.

Figure 4: A sample of images belonging to the classes −1 and +1, respectively.

The classifier functional f is assumed to be an element of the Reproducing Kernel
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Hilbert Space (RKHS) Hκ, which in our case is induced by the symmetric and finitely
positive definite Gaussian kernel function

κ : Rd × Rd → R, κ(x, y) = exp

(
−‖x− y‖

2

2σ2

)
.

Let 〈·, ·〉κ be the inner product on Hκ, ‖ · ‖κ the corresponding norm and K ∈ Rn×n the
Gram matrix with respect to the training data set Z = {(X1, Y1), ..., (Xn, Yn)} ⊆ Rd ×
{+1,−1}, namely the symmetric and positive definite matrix with entries Kij = κ(Xi, Xj)
for i, j = 1, ..., n. We make use of the hinge loss function v : R × R → R, v(x, y) =
max{1 − xy, 0}, which penalizes the deviation between the predicted value f(x) and the
true value y ∈ {+1,−1}. The smoothness of the decision function f ∈ Hκ is employed
by means of the smoothness functional Ω : Hκ → R, Ω(f) = ‖f‖2κ, taking high values
for non-smooth functions and low values for smooth ones. The decision function is the
optimal solution of the Tikhonov regularization problem

inf
f∈Hκ

{
1

2
Ω(f) + C

n∑
i=1

v(f(Xi), Yi)

}
, (45)

where C > 0 denotes the regularization parameter controlling the tradeoff between the
loss function and the smoothness functional.

By taking into account the representer theorem (see [18]), there exists a vector c =
(c1, ..., cn)T ∈ Rn such that the minimizer f of (45) can be expressed as a kernel expansion
in terms of the training data, namely, it holds f(·) =

∑n
i=1 ciκ(·, Xi). In this case the

smoothness functional becomes Ω(f) = ‖f‖2κ = 〈f, f〉κ =
∑n

i=1

∑n
j=1 cicjκ(Xi, Xj) =

cTKc and for i = 1, ..., n it holds f(Xi) =
∑n

j=1 cjκ(Xi, Xj) = (Kc)i. This means that in
order to find the decision function it is enough to solve the convex optimization problem

inf
c∈Rn

{
h(c) +

n∑
i=1

gi(Kc)

}
, (46)

where h : Rn → R, h(c) = 1
2c
TKc is convex, differentiable with ‖K‖-Lipschitz gradient

and gi : Rn → R, gi(c) = Cv(ci, Yi), i = 1, ..., n, are convex functions. The optimization
problem (46) has the structure of (30), where f is taken to be identically 0. Notice that
in this case the function f + h = h is γ-strongly convex with γ = λmin, where λmin is the
smallest eigenvalue of the matrix K. Due to the continuity of the functions gi, i = 1, ..., n,
the qualification condition required in Theorem 15 is guaranteed. We solved (46) by
Algorithm 14 and used for µ > 0 the following formula (see [8])

proxµg∗i (c) =
(
0, ..., PYi[−C,0](ci − µYi), ..., 0

)T
.

With respect to the considered data set, we denote by D= {(Xi, Yi), i = 1, ..., 5899} ⊆
R784 × {+1,−1} the set of available training data consisting of 2974 images in the class
−1 and 2925 images in the class +1. A sample from each class of images is shown in
Figure 4. The images have been vectorized and normalized by dividing each of them by

the quantity
(

1
5899

∑5899
i=1 ‖Xi‖2

) 1
2
.

As initial choices in Algorithm 14 we took τ0 = 0.99 2γ
‖K‖ , λ = ‖K‖ + 1 and σi,0 =√

1 + τ0(2γ − ‖K‖τ0)/λ/(nτ0‖K‖2), i = 1, ..., n, and tested different combinations of the
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σ 0.15 0.175 0.2 0.25 0.5

training error 0 0 0.14 4.09 49.55
test error 1.36 2.12 3.33 5.60 49.12

Table 2: Misclassification rate in percentage for different choices of the kernel parameter
σ and for both the training and the test data set.

kernel parameter σ over a fixed number of 1500 iterations. In Table 2 we present the
misclassification rate in percentage for the training and for the test data (the error for the
training data is less than the one for the test data). One can notice that for certain choices
of σ the misclassification rate outperforms the one reported in the literature dealing with
numerical methods for support vector classification. Let us mention that the numerical
results are given for the case C = 1. We tested also other choices for C, however we did
not observe great impact on the results.
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