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Abstract

This paper is concerned with the computation of the principal components for a general

tensor, known as the tensor principal component analysis (PCA) problem. We show that the

general tensor PCA problem is reducible to its special case where the tensor in question is super-

symmetric with an even degree. In that case, the tensor can be embedded into a symmetric

matrix. We prove that if the tensor is rank-one, then the embedded matrix must be rank-one too,

and vice versa. The tensor PCA problem can thus be solved by means of matrix optimization

under a rank-one constraint, for which we propose two solution methods: (1) imposing a nuclear

norm penalty in the objective to enforce a low-rank solution; (2) relaxing the rank-one constraint

by Semidefinite Programming. Interestingly, our experiments show that both methods can yield

a rank-one solution for almost all the randomly generated instances, in which case solving the

original tensor PCA problem to optimality. To further cope with the size of the resulting convex

optimization models, we propose to use the alternating direction method of multipliers, which

reduces significantly the computational efforts. Various extensions of the model are considered

as well.
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1 Introduction

Principal component analysis (PCA) plays an important role in applications arising from data

analysis, dimension reduction and bioinformatics etc. PCA finds a few linear combinations of the

original variables. These linear combinations, which are called principal components (PCs), are

orthogonal to each other and explain most of the variance of the data. PCs provide a powerful tool

to compress data along the direction of maximum variance to reach the minimum information loss.

Specifically, let ξ = (ξ1, . . . , ξm) be an m-dimensional random vector. Then for a given data matrix

A ∈ R
m×n which consists of n samples of the m variables, finding the PC that explains the largest

variance of the variables (ξ1, . . . , ξm) corresponds to the following optimization problem:

(λ∗, x∗, y∗) := min
λ∈R,x∈Rm,y∈Rn

‖A− λxy⊤‖. (1)

Problem (1) is well known to be reducible to computing the largest singular value (and correspond-

ing singular vectors) of A, and can be equivalently formulated as:

maxx,y

(

x

y

)⊤(

0 A

A⊤ 0

)(

x

y

)

s.t.

∥
∥
∥
∥
∥

(

x

y

)∥
∥
∥
∥
∥
= 1.

(2)

Note that the optimal value and the optimal solution of Problem (2) correspond to the largest

eigenvalue and the corresponding eigenvector of the symmetric matrix

(

0 A

A⊤ 0

)

.

Although the PCA and eigenvalue problem for matrix have been well studied in the literature, the

research of PCA for tensors is still lacking. Nevertheless, the tensor PCA is of great importance in

practice and has many applications in computer vision [56], diffusion Magnetic Resonance Imaging

(MRI) [19, 2, 50], quantum entanglement problem [27], spectral hypergraph theory [30] and higher-

order Markov chains [37]. This is mainly because in real life we often encounter multidimensional

data, such as images, video, range data and medical data such as CT and MRI. A color image can

be considered as 3D data with row, column, color in each direction, while a color video sequence

can be considered as 4D data, where time is the fourth dimension. Moreover, it turns out that it is

more reasonable to treat the multidimensional data as a tensor instead of unfolding it into a matrix.

For example, Wang and Ahuja [56] reported that the images obtained by tensor PCA technique

have higher quality than that by matrix PCA. Similar to its matrix counterpart, the problem of

finding the PC that explains the most variance of a tensor A (with degree m) can be formulated

as:
min ‖A − λx1 ⊗ x2 ⊗ · · · ⊗ xm‖
s.t. λ ∈ R, ‖xi‖ = 1, i = 1, 2, . . . ,m,

(3)
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which is equivalent to

max A(x1, x2, · · · , xm)

s.t. ‖xi‖ = 1, i = 1, 2, . . . ,m,
(4)

where ⊗ denotes the outer product between vectors; viz.

(x1 ⊗ x2 ⊗ · · · ⊗ xm)i1i2···im =

m∏

k=1

(xk)ik .

Let us call the above solution the leading PC. Once the leading PC is found, the other PCs can

be computed sequentially via the so-called “deflation” technique. For instance, the second PC

is defined as the leading PC of the tensor subtracting the leading PC from the original tensor,

and so forth. The theoretical basis of such a deflation procedure for tensors is not exact sound,

although its matrix counterpart is well established (see [44] and the references therein for more

details). However, the deflation process does provide a heuristic way to compute multiple principal

components of a tensor, albeit approximately. Thus in the rest of this paper, we focus on finding

the leading PC of a tensor.

Problem (4) is also known as the best rank-one approximation of tensor A. As we shall see later,

problem (4) can be reformulated as

max F(x, x, · · · , x)
s.t. ‖x‖ = 1,

(5)

where F is a super-symmetric tensor. Problem (5) is NP-hard and is known as the maximum Z-

eigenvalue problem. Note that a variety of eigenvalues and eigenvectors of a real symmetric tensor

were introduced by Lim [38] and Qi [48] independently in 2005. Since then, various methods have

been proposed to find the Z-eigenvalues [10, 49, 31, 32, 33], which however may correspond only to

local optimums. In this paper, we shall focus on finding the global optimal solution of (5).

Before proceeding let us introduce notations that will be used throughout the paper. We denote

Rn to be the n-dimensional Euclidean space. A tensor is a high dimensional array of real data,

usually in calligraphic letter, and is denoted as A = (Ai1i2···im)n1×n2×···×nm . The space where

n1 × n2 × · · · × nm dimensional real-valued tensor resides is denoted by Rn1×n2×···×nm . We call

A super-symmetric if n1 = n2 = · · · = nm and Ai1i2···im is invariant under any permutation of

(i1, i2, ..., im), i.e., Ai1i2···im = Aπ(i1,i2,··· ,im), where π(i1, i2, · · · , im) is any permutation of indices

(i1, i2, · · · , im). The space where n× n× · · · × n
︸ ︷︷ ︸

m

super-symmetric tensors reside is denoted by Snm
.

Special cases of tensors are vector (m = 1) and matrix (m = 2), and tensors can also be seen as a

long vector or a specially arranged matrix. For instance, the tensor space Rn1×n2×···×nm can also

be seen as a matrix space R(n1×n2×···×nm1
)×(nm1+1×nm1+2×···×nm), where the row is actually an m1

array tensor space and the column is another m−m1 array tensor space. Such connections between
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tensor and matrix re-arrangements will play an important role in this paper. As a convention in this

paper, if there is no other specification we shall adhere to the Euclidean norm (i.e. the L2-norm)

for vectors and tensors; in the latter case, the Euclidean norm is also known as the Frobenius norm,

and is sometimes denoted as ‖A‖F =
√
∑

i1,i2,...,im
A2

i1i2···im
. For a given matrix X, we use ‖X‖∗

to denote the nuclear norm of X, which is the sum of all the singular values of X. Regarding the

products, we use ⊗ to denote the outer product for tensors; that is, for A1 ∈ Rn1×n2×···×nm and

A2 ∈ Rnm+1×nm+2×···×nm+ℓ , A1 ⊗A2 is in Rn1×n2×···×nm+ℓ with

(A1 ⊗A2)i1i2···im+ℓ
= (A1)i1i2···im(A2)im+1···im+ℓ

.

The inner product between tensors A1 and A2 residing in the same space Rn1×n2×···×nm is denoted

A1 • A2 =
∑

i1,i2,...,im

(A1)i1i2···im(A2)i1i2···im .

Under this light, a multi-linear form A(x1, x2, ..., xm) can also be written in inner/outer products

of tensors as

A • (x1 ⊗ · · · ⊗ xm) :=
∑

i1,··· ,im

Ai1,··· ,im(x
1 ⊗ · · · ⊗ xm)i1,··· ,im =

∑

i1,··· ,im

Ai1,··· ,im

m∏

k=1

xkik .

In the subsequent analysis, for convenience we assume m to be even; i.e., m = 2d in (5), where d

is a positive integer. As we will see later, this assumption is essentially non-restrictive. Therefore,

we will focus on the following problem of computing the largest eigenvalue of an even order super-

symmetric tensor:

max F(x, · · · , x
︸ ︷︷ ︸

2d

)

s.t. ‖x‖ = 1,

(6)

where F is a 2d-th order super-symmetric tensor. In particular, problem (6) can be equivalently

written as
max F • x⊗ · · · ⊗ x

︸ ︷︷ ︸

2d

s.t. ‖x‖ = 1.

(7)

Given any 2d-th order super-symmetric tensor form F , we call it rank one if F = λa⊗ · · · ⊗ a
︸ ︷︷ ︸

2d

for

some a ∈ Rn and λ ∈ {1,−1}. Moreover, the CP rank of F is defined as follows.

Definition 1.1 Suppose F ∈ Sn2d
, the CP rank of F denoted by rank(F) is the smallest integer r

satisfying

F =

r∑

i=1

λi a
i ⊗ · · · ⊗ ai
︸ ︷︷ ︸

2d

, (8)

where ai ∈ Rn, λi ∈ {1,−1}.
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The idea of decomposing a tensor into an (asymmetric) outer product of vectors was first introduced

and studied by Hitchcock in 1927 [28, 29]. This concept of tensor-rank became popular after its

rediscovery in the 1970’s in the form of CANDECOMP (canonical decomposition) by Carroll and

Chang [7] and PARAFAC (parallel factors) by Harshman [24]. Consequently, CANDECOMP and

PARAFAC are further abbreviated as ‘CP’ in the context of ‘CP rank’ by many authors in the

literature.

We remark that, the CP rank is theoretically associated with the complex number field, while in

Definition 1.1 decomposition (8) is performed in the real domain. Though the choice of complex or

real domain is immaterial for the matrices, it does make a difference in the tensor case [11]. Since

we only focus on the real tensors here, throughout this paper we shall use the CP rank to denote

the symmetric real rank of a super-symmetric tensor.

In the following, to simplify the notation, we denoteK(n, d) =

{

k = (k1, · · · , kn) ∈ Z
n
+

∣
∣
∣
∣

n∑

j=1
kj = d

}

and

X12k122k2 ···n2kn := X1...1
︸ ︷︷ ︸

2k1

2...2
︸ ︷︷ ︸

2k2

...n...n
︸ ︷︷ ︸

2kn

.

By letting X = x⊗ · · · ⊗ x
︸ ︷︷ ︸

2d

we can further convert problem (7) into:

max F • X
s.t.

∑

k∈K(n,d)

d!∏n
j=1

kj !
X12k122k2 ···n2kn = 1,

X ∈ Sn2d
, rank(X ) = 1,

(9)

where the first equality constraint is due to the fact that
∑

k∈K(n,d)

d!∏n
j=1 kj !

∏n
j=1 x

2kj
j = ‖x‖2d = 1.

The difficulty of the above problem lies in the dealing of the rank constraint rank(X ) = 1. Not

only the rank function itself is difficult to deal with, but also determining the rank of a specific

given tensor is already a difficult task, which is NP-hard in general [25]. To give an impression of

the difficulty involved in computing tensor ranks, note that there is a particular 9 × 9 × 9 tensor

(cf. [34]) whose rank is only known to be in between 18 and 23. One way to deal with the difficulty

is to convert the tensor optimization problem (9) into a matrix optimization problem. A typical

matricization technique is the so-called mode-nmatricization [32]. Roughly speaking, given a tensor

A ∈ Rn1×n2×···×nm, its mode-n matricization denoted by A(n) is to arrange the n-th index of A to

be the row index of the resulting matrix and merge all other indices of A as the column index of

A(n). The precise definition of the mode-n matricization is as follows.

Definition 1.2 For a given tensor A ∈ Rn1×n2×···×nm, the matrix A(n) is the associated mode-n
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matricization. In particular

A(n)in,j := Ai1,i2,··· ,im , ∀ 1 ≤ ik ≤ nk, 1 ≤ k ≤ m,

where

j = 1 +

m∑

k=1

k 6=n

(ik − 1)Jk, with Jk =

k∏

ℓ=1

ℓ 6=n

nℓ. (10)

The so-called n-rank of A is defined by the vector [rank(A(1)), rank(A(2)), · · · , rank(A(m))], where

its n-th component corresponds to the column rank of the mode-n matrix A(n). The notion of

n-rank has been widely used in the problems of tensor decomposition. Recently, Liu et al. [41]

and Gandy et al. [18] considered the low-n-rank tensor recovery problem, which were the first

attempts to solve low-rank tensor optimization problems. Along this line, Tomioka et al. [54]

analyzed the statistical performance of nuclear norm relaxation of the tensor n-rank minimization

problem. Chandrasekaran et al. [8] propose another interesting idea, in particular they directly

apply convex relaxation to the tensor rank and obtain a new norm called tensor nuclear norm,

which is numerically intractable. Thus, a further semidefinite representable relaxation is introduced.

However, the authors did not provide any numerical results for this relaxation. Therefore, in the

following we shall introduce a new scheme to unfold a tensor into a matrix, where we use half of

the indices of tensor to form the row index of a matrix and use the other half as the column index.

Most importantly, in the next section, we manage to establish some connection between the CP

rank of the tensor and the rank of the resulting unfolding matrix.

Definition 1.3 For a given super-symmetric even-order tensor F ∈ Sn2d
, we define its square

matricization, denoted by M (F) ∈ Rnd×nd
, as the following:

M(F)kℓ := Fi1···idid+1···i2d , 1 ≤ i1, . . . , id, id+1, . . . , i2d ≤ n,

where

k =
d∑

j=1

(ij − 1)nd−j + 1, and ℓ =
2d∑

j=d+1

(ij − 1)n2d−j + 1.

Similarly we introduce below the vectorization of a tensor.

Definition 1.4 The vectorization, V (F), of tensor F ∈ Rnm
is defined as

V (F)k := Fi1···im ,

where

k =

m∑

j=1

(ij − 1)nm−j + 1, 1 ≤ i1, · · · , im ≤ n.

6



In the same vein, we can convert a vector or a matrix with appropriate dimensions to a tensor. In

other words, the inverse of the operators M and V can be defined in the same manner. In the

following, we denote X = M(X ), and so

Tr (X) =
∑

ℓ

Xℓ,ℓ with ℓ =

d∑

j=1

(ij − 1)nd−j + 1.

If we assume X to be of rank one, then

Tr (X) =
∑

i1,··· ,id

Xi1···idi1···id =
∑

i1,··· ,id

Xi2
1
···i2

d
.

In the above expression, (i1, · · · , id) is a subset of (1, 2, . . . , n). Suppose that j appears kj times in

(i1, · · · , id) with j = 1, 2, . . . , n and
n∑

j=1
kj = d. Then for a fixed outcome (k1, k2, · · · , kn), the total

number of permutations (i1, · · · , id) to achieve such outcome is

(
d

k1

)(
d− k1
k2

)(
d− k1 − k2

k3

)

· · ·
(
d− k1 − · · · − kn−1

kn

)

=
d!

∏n
j=1 kj!

.

Consequently,

Tr (X) =
∑

i1,··· ,id

Xi2
1
···i2

d
=

∑

k∈K(n,d)

d!
∏n

j=1 kj !
X12k122k2 ···n2kn . (11)

In light of the above discussion, if we further denote F = M(F), then the objective in (9) is F•X =

Tr (FX), while the first constraint
∑

k∈K(n,d)

d!∏n
j=1

kj !
X12k122k2 ···n2kn = 1 ⇐⇒ Tr (X) = 1. The hard

constraint in (9) is rank(X ) = 1. It is straightforward to see that if X is of rank one, then by letting

X = λx⊗ · · · ⊗ x
︸ ︷︷ ︸

2d

for some λ ∈ {1,−1} and Y = x⊗ · · · ⊗ x
︸ ︷︷ ︸

d

, we have M(X ) = λV (Y)V (Y)⊤,

which is to say that matrix M(X ) is of rank one too. In the next section we shall continue to show

that the other way around is also true.

2 Equivalence Under the Rank-One Hypothesis

We first present some useful observations below.

Lemma 2.1 Suppose A ∈ Rnd
is an n dimensional d-th order tensor and A⊗A ∈ Sn2d

. Then we

have:
(i) A ∈ Snd

;

(ii) the n-rank of A is [1, 1, · · · , 1].
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Proof. We denote F = A ⊗ A ∈ Sn2d
. For any d-tuples {i1, · · · , id}, and one of its permutations

{j1, · · · , jd} ∈ π(i1, · · · , id), it holds that

(Ai1,··· ,id −Aj1,··· ,jd)
2 = A2

i1,··· ,id
+A2

j1,··· ,jd
− 2Ai1,··· ,idAj1,··· ,jd

= Fi1,··· ,id,i1,··· ,id +Fj1,··· ,jd,j1,··· ,jd − 2Fi1,··· ,id,j1,··· ,jd = 0,

where the last equality is due to the fact that F is super-symmetric. Therefore, A is super-

symmetric.

To prove the second statement, we first observe that for any two d-tuples {i1, · · · , id} and {i′1, · · · , i′d},
due to the super-symmetry of F , we have

Ai1,··· ,idAi′
1
,··· ,i′

d
= Fi1,··· ,id,i

′
1
,··· ,i′

d
= Fi′

1
,i2,··· ,id,i1,i

′
2
,··· ,i′

d
= Ai′

1
,i2,··· ,idAi1,i

′
2
,··· ,i′

d
.

Now consider the mode-1 unfolding, which is the matrix A(1). For any two components A(1)i1,j

and A(1)i′
1
,j′ with j = 1+

m∑

k=2

(ik−1)Jk, j
′ = 1+

m∑

k=2

(i′k−1)Jk and Jk is defined in (10), the equation

above implies that

A(1)i1,jA(1)i′1,j′ = Ai1,··· ,idAi′
1
,··· ,i′

d
= Ai′

1
,i2,··· ,idAi1,i

′
2
,··· ,i′

d
= A(1)i′

1
,jA(1)i1,j′ .

Therefore, every 2 × 2 minor of matrix A(1) is zero and so A(1) is of rank one. Moreover, since

A is super-symmetric, the mode-unfolded matrices are all the same. Thus, we conclude that the

n-rank of A is [1, 1, · · · , 1]. �

The following lemma tells us if a super-symmetric tensor is of rank one in the sense of nonsymmetric

CP, then the symmetric CP rank of the tensor is also one.

Lemma 2.2 If a d-th order tensor A = a1⊗a2⊗· · ·⊗ad is super-symmetric, then we have ai = ±a1

for i = 2, . . . , d and A = λ a1 ⊗ a1 ⊗ · · · ⊗ a1
︸ ︷︷ ︸

d

for some λ = ±1.

Proof. Since A is super-symmetric, from Theorem 4.1 in [10], we know that

max
‖x‖=1

|A(x, · · · , x
︸ ︷︷ ︸

d

)| = max
‖xi‖=1,i=1,...,d

A(x1, · · · , xd) = ‖a1‖ × ‖a2‖ × · · · × ‖ad‖.

So there must exist an x∗ with ‖x∗‖ = 1 such that |(ai)⊤x∗| = ‖ai‖ for all i, which implies that

ai = ±a1 for i = 2, . . . , d, and thus the conclusion follows. �

We have the following proposition as the immediate consequence of the above lemmas.
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Proposition 2.3 Suppose A ∈ Rnd
is an n dimensional d-th order tensor. The following two

statements are equivalent:

(i) A ∈ Snd
, and rank(A) = 1;

(ii) A⊗A ∈ Sn2d
.

Proof. We shall first show (i) =⇒ (ii). Suppose A ∈ Snd
with rank(A) = 1. Then there exists a

vector a ∈ Rn and a scaler λ ∈ {1,−1} such that A = λa⊗ a⊗ · · · ⊗ a
︸ ︷︷ ︸

d

. Consequently, A ⊗ A =

a⊗ a⊗ · · · ⊗ a
︸ ︷︷ ︸

2d

∈ Sn2d
.

Now we prove (ii) =⇒ (i). From Lemma 2.1, we know that A is super-symmetric and the n-rank

of A is [1, 1, · · · , 1]. It is well known that the n-rank of a tensor corresponds to the size of the

core tensor associated with the smallest exact Tucker decomposition [32]. Consequently, the n-rank

of A is [1, 1, · · · , 1] means that the core tensor associated with the exact Tucker decomposition of

A is a scalar, thus the nonsymmetric real CP rank of A is also one. Finally, due to Lemma 2.2

and the fact that A is super-symmetric, we conclude that the symmetric CP rank of A is one, i.e.

rank(A) = 1. �

Now we are ready to present the main result of this section.

Theorem 2.4 Suppose X ∈ Sn2d
and X = M(X ) ∈ Rnd×nd

. Then we have

rank(X ) = 1 ⇐⇒ rank(X) = 1.

Proof. As remarked earlier, that rank(X ) = 1 =⇒ rank(X) = 1 is evident. To see this, suppose

rank(X ) = 1 and X = x⊗ · · · ⊗ x
︸ ︷︷ ︸

2d

for some x ∈ Rn. By constructing Y = x⊗ · · · ⊗ x
︸ ︷︷ ︸

d

, we have

X = M(X ) = V (Y)V (Y)⊤, which leads to rank(X) = 1.

To prove the other implication, suppose that we have X ∈ Sn2d
and M(X ) is of rank one, i.e.

M(X ) = yy⊤ for some vector y ∈ Rnd
. Then X = V

−1(y) ⊗ V
−1(y), which combined with

Proposition 2.3 implies V
−1(y) is supper-symmetric and of rank one. Thus there exists x ∈ Rn

such that V −1(y) = x⊗ · · · ⊗ x
︸ ︷︷ ︸

d

and X = x⊗ · · · ⊗ x
︸ ︷︷ ︸

2d

. �

3 A Nuclear Norm Penalty Approach

According to Theorem 2.4, we know that a super-symmetric tensor is of rank one, if and only

if its matrix correspondence obtained via the matricization operation defined in Definition 1.3, is

9



also of rank one. As a result, we can reformulate Problem (9) equivalently as the following matrix

optimization problem:

max Tr (FX)

s.t. Tr (X) = 1, M
−1(X) ∈ Sn2d

,

X ∈ Snd×nd
, rank(X) = 1,

(12)

where X = M(X ), F = M(F), and Snd×nd
denotes the set of nd × nd symmetric matrices.

Note that the constraints M
−1(X) ∈ Sn2d

requires the tensor correspondence of X to be super-

symmetric, which essentially correspond to O(n2d) linear equality constraints. The rank constraint

rank(X) = 1 makes the problem intractable. In fact, Problem (12) is NP-hard in general, due to

its equivalence to problem (6).

There have been a large amount of work that deal with the low-rank matrix optimization problems.

Research in this area was mainly ignited by the recent emergence of compressed sensing [5, 12],

matrix rank minimization and low-rank matrix completion problems [51, 4, 6]. The matrix rank

minimization seeks a matrix with the lowest rank satisfying some linear constraints, i.e.,

min
X∈Rn1×n2

rank(X), s.t., C(X) = b, (13)

where b ∈ Rp and C : Rn1×n2 → Rp is a linear operator. The results in [51, 4, 6] show that

under certain randomness hypothesis on the linear operator C, with high probability the NP-hard

problem (13) is equivalent to the following nuclear norm minimization problem, which is a convex

programming problem:

min
X∈Rn1×n2

‖X‖∗, s.t., C(X) = b. (14)

In other words, the optimal solution to the convex problem (14) is also the optimal solution to the

original NP-hard problem (13).

Motivated by the convex nuclear norm relaxation, one way to deal with the rank constraint in

(12) is to introduce the nuclear norm term of X, which penalizes high-ranked X’s, in the objective

function. This yields the following convex optimization formulation:

max Tr (FX) − ρ‖X‖∗
s.t. Tr (X) = 1, M

−1(X) ∈ Sn2d
,

X ∈ Snd×nd
,

(15)

where ρ > 0 is a penalty parameter. It is easy to see that if the optimal solution of (15) (denoted

by X̃) is of rank one, then ‖X̃‖∗ = Tr (X̃) = 1, which is a constant. In this case, the term −ρ‖X‖∗
added to the objective function is a constant, which leads to the fact the solution is also optimal

with the constraint that X is rank-one. In fact, Problem (15) is the convex relaxation of the

10



following problem

max Tr (FX) − ρ‖X‖∗
s.t. Tr (X) = 1, M

−1(X) ∈ Sn2d
,

X ∈ Snd×nd
, rank(X) = 1,

which is equivalent to the original problem (12) since ρ‖X‖∗ = ρTr (X) = ρ.

After solving the convex optimization problem (15) and obtaining the optimal solution X̃ , if

rank(X̃) = 1, we can find x̃ such that M
−1(X̃) = x̃⊗ · · · ⊗ x̃

︸ ︷︷ ︸

2d

, according to Theorem 2.4. In

this case, x̃ is the optimal solution to Problem (6). The original tensor PCA problem, or the

Z-eigenvalue problem (6), is thus solved to optimality.

Interestingly, we found from our extensive numerical tests that the optimal solution to Problem (15)

is a rank-one matrix almost all the time. In the following, we will show this interesting phenomenon

by some concrete examples. The first example is taken from [31].

Example 3.1 We consider a super-symmetric tensor F ∈ S34 defined by

F1111 = 0.2883, F1112 = −0.0031, F1113 = 0.1973, F1122 = −0.2485, F1123 = −0.2939,

F1133 = 0.3847, F1222 = 0.2972, F1223 = 0.1862, F1233 = 0.0919, F1333 = −0.3619,

F2222 = 0.1241, F2223 = −0.3420, F2233 = 0.2127, F2333 = 0.2727, F3333 = −0.3054.

We want to compute the largest Z-eigenvalue of F .

Since the size of this tensor is small, we used CVX [23] to solve Problem (15) with F = M(F) and

ρ = 10. It turned out that CVX produced a rank-one solution X̃ = aa⊤ ∈ R32×32 , where

a = (0.4451, 0.1649,−0.4688, 0.1649, 0.0611,−0.1737,−0.4688,−0.1737, 0.4938)⊤ .

Thus we get the matrix correspondence of a by reshaping a into a square matrix A:

A = [a(1 : 3), a(4 : 6), a(7 : 9)] =






0.4451 0.1649 −0.4688

0.1649 0.0611 −0.1737

−0.4688 −0.1737 0.4938




 .

It is easy to check that A is a rank-one matrix with the nonzero eigenvalue being 1. This fur-

ther confirms our theory on the rank-one equivalence, i.e., Theorem 2.4. The eigenvector that

corresponds to the nonzero eigenvalue of A is given by

x̃ = (−0.6671,−0.2472, 0.7027)⊤ ,

which is the optimal solution to Problem (6).
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The next example is from a real Magnetic Resonance Imaging (MRI) application studied by Ghosh

et al. in [19]. In [19], Ghosh et al. studied a fiber detection problem in diffusion Magnetic Resonance

Imaging (MRI), where they tried to extract the geometric characteristics from an antipodally

symmetric spherical function (ASSF), which can be described equivalently in the homogeneous

polynomial basis constrained to the sphere. They showed that it is possible to extract the maxima

and minima of an ASSF by computing the stationary points of a problem in the form of (6) with

d = 2 and n = 4.

Example 3.2 The objective function F(x, x, x, x) in this example is given by

0.74694x41 − 0.435103x31x2 + 0.454945x21x
2
2 + 0.0657818x1x

3
2 + x42

+ 0.37089x31x3 − 0.29883x21x2x3 − 0.795157x1x
2
2x3 + 0.139751x32x3 + 1.24733x21x

2
3

+ 0.714359x1x2x
2
3 + 0.316264x22x

2
3 − 0.397391x1x

3
3 − 0.405544x2x

3
3 + 0.794869x43 .

Again, we used CVX to solve problem (15) with F = M(F) and ρ = 10, and a rank-one solution

was found with X̃ = aa⊤, with

a = (0.0001, 0.0116, 0.0004, 0.0116, 0.9984, 0.0382, 0.0004, 0.0382, 0.0015)⊤ .

By reshaping vector a, we get the following expression of matrix A:

A = [a(1 : 3), a(4 : 6), a(7 : 9)] =






0.0001 0.0116 0.0004

0.0116 0.9984 0.0382

0.0004 0.0382 0.0015




 .

It is easy to check that A is a rank-one matrix with 1 being the nonzero eigenvalue. The eigenvector

corresponding to the nonzero eigenvalue of A is given by

x̃ = (0.0116, 0.9992, 0.0382)⊤ ,

which is also the optimal solution to the original problem (6).

Henceforth we conduct some numerical tests on randomly generated examples. We construct 4-th

order tensor T with its components drawn randomly from i.i.d. standard normal distribution. The

super-symmetric tensor F in the tensor PCA problem is obtained by symmetrizing T . All the

numerical experiments in this paper were conducted on an Intel Core i5-2520M 2.5GHz computer

with 4GB of RAM, and all the default settings of Matlab 2012b and CVX 1.22 were used for all the

tests. We choose d = 2 and the dimension of F in the tensor PCA problem from n = 3 to n = 9.

We choose ρ = 10. For each n, we tested 100 random instances. In Table 1, we report the number

of instances that produced rank-one solutions. We also report the average CPU time (in seconds)

using CVX to solve the problems.
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n rank-1 CPU

3 100 0.21

4 100 0.56

5 100 1.31

6 100 6.16

7 100 47.84

8 100 166.61

9 100 703.82

Table 1: Frequency of nuclear norm penalty problem (15) having a rank-one solution

Table 1 shows that for these randomly created tensor PCA problems, the nuclear norm penalty

problem (15) always gives a rank-one solution, and thus always solves the original problem (6) to

optimality.

4 Semidefinite Programming Relaxation

In this section, we study another convex relaxation for Problem (12). Note that the constraint

X ∈ Snd×nd

, rank(X) = 1

in (12) actually implies that X is positive semidefinite. To get a tractable convex problem, we drop

the rank constraint and impose a semidefinite constraint to (12) and consider the following SDP

relaxation:
(SDR) max Tr (FX)

s.t. Tr (X) = 1,

M
−1(X) ∈ Sn2d

, X � 0.

(16)

Remark that replacing the rank-one constraint by SDP constraint is by now a common and standard

practice; see, e.g., [1, 21, 55]. Next theorem shows that the SDP relaxation (16) is actually closely

related to the nuclear norm penalty problem (15).

Theorem 4.1 Let X∗
SDR and X∗

PNP (ρ) be the optimal solutions of problems (16) and (15) re-

spectively. Suppose Eig+(X) and Eig−(X) are the summations of nonnegative eigenvalues and

negative eigenvalues of X respectively, i.e.,

Eig+(X) :=
∑

i: λi(X)≥0

λi(X), Eig−(X) :=
∑

i: λi(X)<0

λi(X).

It holds that

2(ρ− v)
∣
∣Eig−(X∗

PNP (ρ))
∣
∣ ≤ v − F0,

13



where F0 := max
1≤i≤n

Fi2d and v is the optimal value of the following optimization problem

max Tr (FX)

s.t. ‖X‖∗ = 1,

X ∈ Snd×nd
.

(17)

As a result, lim
ρ→+∞

Tr (FX∗
PNP (ρ)) = Tr (FX∗

SDR).

Proof. Observe that M(ei ⊗ · · · ⊗ ei
︸ ︷︷ ︸

2d

), where ei is the i-th unit vector, is a feasible solution for

problem (15) with objective value Fi2d − ρ for all 1 ≤ i ≤ n. Moreover, by denoting r(ρ) =

|Eig−(X∗
PNP (ρ))|, we have

‖X∗
PNP (ρ)‖∗ = Eig+(X∗

PNP (ρ)) +
∣
∣Eig−(X∗

PNP (ρ))
∣
∣

=
(
Eig+(X∗

PNP (ρ)) + Eig−(X∗
PNP (ρ))

)
+ 2

∣
∣Eig−(X∗

PNP (ρ))
∣
∣

= 1 + 2r(ρ).

Since X∗
PNP (ρ) is optimal to problem (15), we have

Tr (FX∗
PNP (ρ))− ρ (1 + 2r(ρ)) ≥ max

1≤i≤n
Fi2d − ρ ≥ F0 − ρ. (18)

Moreover, since X∗
PNP (ρ)/‖X∗

PNP (ρ)‖∗ is feasible to problem (17), we have

Tr (FX∗
PNP (ρ)) ≤ ‖X∗

PNP (ρ)‖∗ v = (1 + 2r(ρ)) v. (19)

Combining (19) and (18) yields

2(ρ− v) r(ρ) ≤ v − F0. (20)

Notice that ‖X‖∗ = 1 implies ‖X‖∞ is bounded for all feasible X ∈ Snd×nd
, where ‖X‖∞ denotes

the largest entry of X in magnitude. Thus the set {X∗
PNP (ρ) | ρ > 0} is bounded. Let X∗

PNP be

one cluster point of sequence {X∗
PNP (ρ) | ρ > 0}. By taking the limit ρ → +∞ in (20), we have

r(ρ) → 0 and thus X∗
PNP � 0. Consequently, X∗

PNP is a feasible solution to problem (16) and

Tr (FX∗
SDR) ≥ Tr (FX∗

PNP ). On the other hand, it is easy to check that for any 0 < ρ1 < ρ2,

Tr (FX∗
SDR) ≤ Tr (FX∗

PNP (ρ2)) ≤ Tr (FX∗
PNP (ρ1)),

which implies Tr (FX∗
SDR) ≤ Tr (FX∗

PNP ). Therefore, lim
ρ→+∞

Tr (FX∗
PNP (ρ)) = Tr (FX∗

PNP ) =

Tr (FX∗
SDR). �

Theorem (4.1) shows that when ρ goes to infinity in (15), the optimal solution of the nuclear norm

penalty problem (15) converges to the optimal solution of the SDP relaxation (16). As we have
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shown in Table 1 that the nuclear norm penalty problem (15) returns rank-one solutions for all the

randomly created tensor PCA problems that we tested, it is expected that the SDP relaxation (16)

will also be likely to give rank-one solutions. In fact, this is indeed the case as shown through the

numerical results in Table 2. As in Table 1, we tested 100 random instances for each n. In Table 2,

we report the number of instances that produced rank-one solutions for d = 2. We also report the

average CPU time (in seconds) using CVX to solve the problems. As we see from Table 2, for these

randomly created tensor PCA problems, the SDP relaxation (16) always gives a rank-one solution,

and thus always solves the original problem (6) to optimality.

n rank-1 CPU

3 100 0.14

4 100 0.25

5 100 0.55

6 100 1.16

7 100 2.37

8 100 4.82

9 100 8.89

Table 2: Frequency of SDP relaxation (16) having a rank-one solution

5 Alternating Direction Method of Multipliers

The computational times reported in Tables 1 and 2 suggest that it can be time-consuming to solve

the convex problems (15) and (16) when the problem size is large (especially for the nuclear norm

penalty problem (15)). In this section, we propose an alternating direction method of multipliers

(ADMM) for solving (15) and (16) that fully takes advantage of the structures. ADMM is closely

related to some operator-splitting methods, known as Douglas-Rachford and Peaceman-Rachford

methods, that were proposed in 1950s for solving variational problems arising from PDEs (see

[13, 47]). These operator-splitting methods were extensively studied later in the literature for

finding the zeros of the sum of monotone operators and for solving convex optimization problems

(see [40, 16, 20, 14, 15]). The ADMM we will study in this section was shown to be equivalent to

the Douglas-Rachford operator-splitting method applied to convex optimization problem (see [17]).

ADMM was revisited recently as it was found to be very efficient for many sparse and low-rank

optimization problems arising from the recent emergence of compressed sensing [59], compressive

imaging [57, 22], robust PCA [53], sparse inverse covariance selection [60, 52], sparse PCA [42] and

SDP [58] etc. For a more complete discussion and list of references on ADMM, we refer to the

recent survey paper by Boyd et al. [3] and the references therein.
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Generally speaking, ADMM solves the following convex optimization problem,

minx∈Rn,y∈Rp f(x) + g(y)

s.t. Ax+By = b

x ∈ C, y ∈ D,

(21)

where f and g are convex functions, A ∈ Rm×n, B ∈ Rm×p, b ∈ Rm, C and D are some simple

convex sets. A typical iteration of ADMM for solving (21) can be described as follows:







xk+1 := argminx∈C Lµ(x, y
k;λk)

yk+1 := argminy∈D Lµ(x
k+1, y;λk)

λk+1 := λk − (Axk+1 +Byk+1 − b)/µ,

(22)

where the augmented Lagrangian function Lµ(x, y;λ) is defined as

Lµ(x, y;λ) := f(x) + g(y)− 〈λ,Ax+By − b〉+ 1

2µ
‖Ax+By − b‖2,

with λ being the Lagrange multiplier and µ > 0 a penalty parameter. The following theorem gives

the global convergence of (22) for solving (21), and this has been well studied in the literature (see,

e.g., [16, 14]).

Theorem 5.1 Assume both A and B are of full column rank, the sequence {(xk, yk, λk)} generated

by (22) globally converges to a pair of primal and dual optimal solutions (x∗, y∗) and λ∗ of (21)

from any starting point.

Because both the nuclear norm penalty problem (15) and SDP relaxation (16) can be rewritten in

the form of (21), we can apply ADMM to solve them.

5.1 ADMM for Nuclear Norm Penalty Problem (15)

Note that the nuclear norm penalty problem (15) can be rewritten equivalently as

min −Tr (FY ) + ρ‖Y ‖∗
s.t. X − Y = 0,

X ∈ C,
(23)

where C := {X ∈ Snd×nd | Tr (X) = 1, M
−1(X) ∈ Sn2d}. A typical iteration of ADMM for solving

(23) can be described as







Xk+1 := argminX∈C −Tr (FY k) + ρ‖Y k‖∗ − 〈Λk,X − Y k〉+ 1
2µ‖X − Y k‖2F

Y k+1 := argmin −Tr (FY ) + ρ‖Y ‖∗ − 〈Λk,Xk+1 − Y 〉+ 1
2µ‖Xk+1 − Y ‖2F

Λk+1 := Λk − (Xk+1 − Y k+1)/µ,

(24)
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where Λ is the Lagrange multiplier associated with the equality constraint in (23) and µ > 0 is a

penalty parameter. Following Theorem 5.1, we know that the sequence {(Xk, Y k,Λk)} generated

by (24) globally converges to a pair of primal and dual optimal solutions (X∗, Y ∗) and Λ∗ of (23)

from any starting point.

Next we show that the two subproblems in (24) are both easy to solve. The first subproblem in

(24) can be equivalently written as

Xk+1 := argmin
X∈C

1

2
‖X − (Y k + µΛk)‖2F , (25)

i.e., the solution of the first subproblem in (24) corresponds to the projection of Y k + µΛk onto

convex set C. We will elaborate how to compute this projection in Section 5.2.

The second subproblem in (24) can be reduced to:

Y k+1 := argmin
Y

µρ‖Y ‖∗ +
1

2
‖Y − (Xk+1 − µ(Λk − F ))‖2F . (26)

This problem is known to have a closed-form solution that is given by the following so-called matrix

shrinkage operation (see, e.g., [43]):

Y k+1 := UDiag (max{σ − µρ, 0})V ⊤,

where UDiag (σ)V ⊤ is the singular value decomposition of matrix Xk+1 − µ(Λk − F ).

5.2 The Projection

In this subsection, we study how to solve (25), i.e., how to compute the following projection for

any given matrix Z ∈ Snd×nd
:

min ‖X − Z‖2F
s.t. Tr (X) = 1,

M
−1(X) ∈ Sn2d

.

(27)

For the sake of discussion, in the following we consider the equivalent tensor representation of (27):

min ‖X − Z‖2F
s.t.

∑

k∈K(n,d)

d!∏n
j=1

kj !
X12k122k2 ···n2kn = 1,

X ∈ Sn2d
,

(28)

where X = M
−1(X), Z = M

−1(Z), and the equality constraint is due to (11). Now we denote

index set

I =
{

(i1 · · · i2d) ∈ π(12k1 · · ·n2kn)
∣
∣ k = (k1, · · · , kn) ∈ K(n, d)

}

.
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Then the first-order optimality conditions of Problem (28) imply






2

(

|π(i1 · · · i2d)| Xi1···i2d −
∑

j1···j2d∈π(i1···i2d)

Zj1···j2d

)

= 0, if (i1 · · · i2d) 6∈ I,

2

(

(2d)!∏n
j=1

(2kj)!
X12k1 ···n2kn − ∑

j1···j2d∈π(1
2k1 ···n2kn )

Zj1···j2d

)

− λ (d)!∏n
j=1

(kj)!
= 0, otherwise.

Denote Ẑ to be the super-symmetric counterpart of tensor Z, i.e.

Ẑi1···i2d =
∑

j1···j2d∈π(i1···i2d)

Zj1···j2d

|π(i1 · · · i2d)|

and α(k, d) :=
( (d)!∏n

j=1
(kj)!

)
/
( (2d)!∏n

j=1
(2kj)!

)
. Then due to the first-order optimality conditions of (28),

the optimal solution X ∗ of Problem (28) satisfies
{

X ∗
i1···i2d

= Ẑi1···i2d , if (i1 · · · i2d) 6∈ I,

X ∗
12k1 ···n2kn

= λ
2 α(k, d) + Ẑ12k1 ···n2kn , otherwise .

(29)

Multiplying the second equality of (29) by (d)!∏n
j=1 (kj)!

and summing the resulting equality over all

k = (k1, · · · , kn) yield
∑

k∈K(n,d)

(d)!
∏n

j=1 (kj)!
X ∗
12k1 ···n2kn

=
λ

2

∑

k∈K(n,d)

(d)!
∏n

j=1 (kj)!
α(k, d) +

∑

k∈K(n,d)

(d)!
∏n

j=1 (kj)!
Ẑ12k1 ···n2kn .

It remains to determine λ. Noticing that X ∗ is a feasible solution for problem (28), we have
∑

k∈K(n,d)

(d)!∏n
j=1 (kj)!

X ∗
12k1 ···n2kn

= 1. As a result,

λ = 2

(

1−
∑

k∈K(n,d)

(d)!
∏n

j=1 (kj)!
Ẑ12k1 ···n2kn

)/
∑

k∈K(n,d)

(d)!
∏n

j=1 (kj)!
α(k, d),

and thus we derived X ∗ and X∗ = M(X ∗) as the desired optimal solution for (27).

5.3 ADMM for SDP Relaxation (16)

Note that the SDP relaxation problem (16) can be formulated as

min −Tr (FY )

s.t. Tr (X) = 1, M
−1(X) ∈ Sn2d

X − Y = 0, Y � 0.

(30)

A typical iteration of ADMM for solving (30) is






Xk+1 := argminX∈C −Tr (FY k)− 〈Λk,X − Y k〉+ 1
2µ‖X − Y k‖2F

Y k+1 := argminY�0−Tr (FY )− 〈Λk,Xk+1 − Y 〉+ 1
2µ‖Xk+1 − Y ‖2F

Λk+1 := Λk − (Xk+1 − Y k+1)/µ,

(31)
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where µ > 0 is a penalty parameter. Following Theorem 5.1, we know that the sequence {(Xk, Y k,Λk)}
generated by (31) globally converges to a pair of primal and dual optimal solutions (X∗, Y ∗) and

Λ∗ of (30) from any starting point.

It is easy to check that the two subproblems in (31) are both relatively easy to solve. Specifically,

the solution of the first subproblem in (31) corresponds to the projection of Y k +µΛk onto C. The
solution of the second problem in (31) corresponds to the projection of Xk+1 +µF − µΛk onto the

positive semidefinite cone Y � 0, i.e.,

Y k+1 := UDiag (max{σ, 0})U⊤,

where UDiag (σ)U⊤ is the eigenvalue decomposition of matrix Xk+1 + µF − µΛk.

6 Numerical Results

6.1 The ADMM for Convex Programs (15) and (16)

In this subsection, we report the results on using ADMM (24) to solve the nuclear norm penalty

problem (15) and ADMM (31) to solve the SDP relaxation (16). For the nuclear norm penalty

problem (15), we choose ρ = 10. For ADMM, we choose µ = 0.5 and we terminate the algorithms

whenever
‖Xk −Xk−1‖F

‖Xk−1‖F
+ ‖Xk − Y k‖F ≤ 10−6.

We shall compare ADMM and CVX for solving (15) and (16), using the default solver of CVX

– SeDuMi version 1.21. We report in Table 3 the results on randomly created problems with

d = 2 and n = 6, 7, 8, 9. For each pair of d and n, we test ten randomly created examples. In

Table 3, we use ‘Inst.’ to denote the number of the instance and use ‘Iter.’ to denote the number

of iterations for ADMM to solve a random instance. We use ‘Sol.Dif.’ to denote the relative

difference of the solutions obtained by ADMM and CVX, i.e., Sol.Dif. = ‖XADMM−XCV X‖F
max{1,‖XCV X‖F } , and we

use ‘Val.Dif.’ to denote the relative difference of the objective values obtained by ADMM and CVX,

i.e., Val.Dif. = |vADMM−vCV X |
max{1,|vCV X |} . We use TADMM and TCV X to denote the CPU times (in seconds) of

ADMM and CVX, respectively. From Table 3 we see that, ADMM produced comparable solutions

compared to CVX; however, ADMM were much faster than CVX, i.e., the interior point solver,

especially for nuclear norm penalty problem (15). Note that when n = 10, ADMM was about 500

times faster than CVX for solving (15), and was about 8 times faster for solving (16).

In Table 4, we report the results on larger problems, i.e., n = 14, 16, 18, 20. Because it becomes

time consuming to use CVX to solve the nuclear norm penalty problem (15) (our numerical tests

showed that it took more than three hours to solve one instance of (15) for n = 11 using CVX), we
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compare the solution quality and objective value of the solution generated by ADMM for solving

(15) with solution generated by CVX for solving SDP problem (16). From Table 4 we see that, the

nuclear norm penalty problem (15) and the SDP problem (16) indeed produce the same solution

as they are both close enough to the solution produced by CVX. We also see that using ADMM to

solve (15) and (16) were much faster than using CVX to solve (16).

6.2 Comparison with SOS and MBI

Based on the results of the above tests, we may conclude that it is most efficient to solve the SDP

relaxation by ADMM. In this subsection, we compare this approach with two competing methods:

one is based on the Sum of Squares (SOS) approach (Lasserre [35, 36] and Parrilo [45, 46]), and

the other one is the Maximum Block Improvement (MBI) method proposed by Chen et al. [10].

Theoretically speaking, the SOS can solve any general polynomial problems to any given accuracy,

but it requires to solve a sequence of (possibly large) semidefinite programs, which limits the

applicability of the method to solve large size problems. Henrion et al. [26] developed a specialized

Matlab toolbox known as GloptiPoly 3 based on SOS approach, which will be used in our tests.

The MBI is tailored for multi-block optimization problem, and the polynomial optimization can be

treated as multi-block problems, to which MBI can be applied. As we mentioned before, MBI aims

to finding a stationary point, which may or may not be globally optimal.

In Table 5 we report the results using ADMM to solve SDP relaxation of PCA problem and

compare them with the results of applying the SOS method as well as the MBI method for the

same problem. When using the MBI, as suggested in [10], we actually work on an equivalent problem

of (6): max
‖x‖=1

F(x, · · · , x
︸ ︷︷ ︸

2d

) + 6(x⊤x)d, where the equivalence is due to the constraint ‖x‖ = 1. This

transformation can help the MBI avoid getting trapped in a local minimum.

We use ‘Val.’ to denote the objective value of the solution, ‘Status’ to denote optimal status of

GloptiPoly 3, i.e., Status = 1 means GloptiPoly 3 successfully identified the optimality of current

solution, ‘Sol.R.’ to denote the solution rank returned by SDP relaxation and thanks to the previous

discussion ‘Sol.R.=1’ means the current solution is already optimal. From Table 5, we see that the

MBI is the fastest among all the methods but usually cannot guarantee global optimality, while

GloptiPoly 3 is very time consuming but can globally solve most instances. Note that when n = 20,

our ADMM was about 30 times faster than GloptiPoly 3. Moreover, for some instances GloptiPoly

3 cannot identify the optimality even though the current solution is actually already optimal (see

instance 9 with n = 16 and instance 3 with n = 18).
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6.3 Comparison with Z-Eigenvalue Methods

In [49], Qi et al. proposed two heuristic methods to find the maximum Z-eigenvalue of the third

order super-symmetric tensors. We will show later in Section 8.2 that our method can solve tri-

linear (not necessary super-symmetric) tensor PCA problems. Thus in this subsection, we report

the results of using ADMM to solve SDP relaxation of the third order tensor PCA problems and

compare them with the results of applying the two Z-eigenvalue methods, which are referred as

“Z1” and “Z2” in Tables 6 and 7. In Table 6 we generate 1000 tensors by normal distribution,

while in Table 7, the 1000 instances are generated by uniform distribution in the interval (−1, 1).

We report, in Tables 6 and 7, the number of instances that are globally solved by each algorithm.

According to these experiments, we can see that the performance of our approach is better than

that of Z1 and is comparable to Z2.

7 What If the Solution Is Not Rank-One?

Although our numerical results strongly indicate that problems (15) and (16) are very likely to

admit rank-one solutions (100% for the randomly created problems we tested), it is in principle

possible that the solution X∗ =
r∑

i=1
ai(ai)⊤ is not of rank one, i.e., r > 1. In this situation, we can

introduce a small perturbation to the original tensor F and apply the proposed algorithms. If the

newly obtained solution is rank-one, we can say that this solution is a good approximation of the

“true” solution. Another way to proceed is to apply a post-processing procedure, which will be

discussed below, to X∗ to obtain a rank-one solution.

We denote X ∗ = M
−1(X∗), and X ∗ =

r∑

i=1
Ai ⊗Ai, where V (Ai) = ai. Basically, we want to find

the projection of X ∗ onto the rank-one tensor set {X ∈ S2d
∣
∣ rank(X ) = 1, ‖X‖F = 1}:

min
X∈S2d,‖X‖F=1,rank(X )=1

‖X ∗ − X‖F ,

which is equivalent to

max
‖x1‖=···=‖x2d‖=1

X ∗
(

x1, x2, · · · , x2d
)

. (32)

This is a problem in the form of (6), but the difference is that X ∗ has a further structure which

plays an important role in the later discussion.

Proposition 7.1 For a tensor F =
r∑

i=1
Ai ⊗Ai ∈ Sn2d

, it holds that

F
(

x1, x1, x2, x2, · · · , xd, xd
)

≥ 0, ∀ x1, x2, · · · , xd. (33)
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Proof. Since F is super-symmetric, for any x1, x2, · · · , xd,

F
(

x1, x1, x2, x2, · · · , xd, xd
)

= F
(

x1, x2, · · · , xd, x1, x2, · · · , xd
)

=

r∑

i=1

Ai ⊗Ai
(

x1, x2, · · · , xd, x1, x2, · · · , xd
)

=
r∑

i=1

(

Ai
(

x1, x2, · · · , xd
))2

≥ 0.

�

Inequality (33) is called co-quadratic positive semidefinite. In [9], it was proved that if F is co-

quadratic positive semidefinite then

F
(

x1, x2, · · · , x2d
)

≤ max
1≤i≤2d






F(xi, · · · , xi
︸ ︷︷ ︸

2d

)






.

As a result

max
‖x‖=1

F(x, · · · , x
︸ ︷︷ ︸

2d

) = max
‖x1‖=···=‖x2d‖=1

F
(

x1, x2, · · · , x2d
)

. (34)

For a solution X∗, which is either optimal to (15) or (16), by Proposition 7.1 we know that

X ∗ = M
−1(X∗) is co-quadratic positive semidefinite. So the problem (32) on finding the rank-one

projection of X ∗ is equivalent to

max
‖x1‖=···=‖x2d‖=1

X ∗
(

x1, x2, · · · , x2d
)

due to equality (34). Essentially, we can resort to a multi-linear problem, which is easier than (6)

and can be solved, for instance, by the MBI method proposed in [10]. Note that if we apply the

MBI method directly to (6), relation (34) may not be guaranteed: the MBI may get trapped in a

local minimum instead of local maximum.

8 Extensions

In this section, we show how to extend the results in the previous sections for super-symmetric

tensor PCA problem to tensors that are not super-symmetric.
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8.1 Bi-quadratic tensor PCA

A closely related problem to the tensor PCA problem (6) is the following bi-quadratic PCA problem:

max G(x, y, x, y)
s.t. x ∈ Rn, ‖x‖ = 1,

y ∈ Rm, ‖y‖ = 1,

(35)

where G is a partial-symmetric tensor defined as follows.

Definition 8.1 A 4-th order tensor G ∈ R(nm)2 is called partial-symmetric if Gijkℓ = Gkjiℓ =

Giℓkj,∀i, j, k, ℓ. The space of all 4-th order partial-symmetric tensor is denoted by
−→−→
S (mn)2 .

Various approximation algorithms for bi-quadratic PCA problem have been studied in [39]. Prob-

lem (35) arises from the strong ellipticity condition problem in solid mechanics and the entanglement

problem in quantum physics; see [39] for more applications of bi-quadratic PCA problem.

We can unfold a partial-symmetric tensor G in a similar manner as in Definition 1.3.

Definition 8.2 For G ∈
−→−→
S (nm)2 , we define its square matrix rearrangement, denoted by M(G) ∈

Rmn×mn, as the following:

M(G)kℓ := Gi1i2i3i4 , 1 ≤ i1, i3 ≤ n, 1 ≤ i2, i4 ≤ m where k = (i1−1)m+ i2, and ℓ = (i3−1)m+ i4.

It is easy to check that for given vectors a ∈ Rn and b ∈ Rm, a ⊗ b ⊗ a⊗ b ∈
−→−→
S (nm)2 . Moreover,

we say a partial-symmetric tensor G is of rank one if G = λa⊗ b⊗ a⊗ b for some vectors a, b and

scaler λ.

Since Tr (xy⊤yx⊤) = x⊤xy⊤y = 1, by letting X = x⊗ y ⊗ x⊗ y, problem (35) is equivalent to

max G • X
s.t.

∑

i,j

Xijij = 1,

X ∈
−→−→
S (nm)2 , rank(X ) = 1.

In the following, we group variables x and y together and treat x⊗ y as a long vector by stacking

its columns. Denote X = M(X ) and G = M(G). Then, we end up with a matrix version of the

above tensor problem:

max Tr (GX)

s.t. Tr (X) = 1, X � 0,

M
−1(X) ∈

−→−→
S (nm)2 , rank(X) = 1.

(36)
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As it turns out, the rank-one equivalence theorem can be extended to the partial symmetric tensors.

Therefore the above two problems are actually equivalent.

Theorem 8.1 Suppose A is an n×m dimensional matrix. Then the following two statements are

equivalent:

(i) rank(A) = 1;

(ii) A⊗A ∈
−→−→
S (nm)2 .

In other words, suppose F ∈
−→−→
S (nm)2 , then rank(F) = 1 ⇐⇒ rank(F ) = 1, where F = M(F).

Proof. (i) =⇒ (ii) is obvious. Suppose rank(A) = 1, say A = ab⊤ for some a ∈ Rn and b ∈ Rm.

Then G = A⊗A = a⊗ b⊗ a⊗ b is partial-symmetric.

Conversely, suppose G = A⊗A ∈
−→−→
S (nm)2 . Then

Ai1j1Ai2j2 = Gi1j1i2j2 = Gi2j1i1j2 = Ai2j1Ai1j2 , ∀1 ≤ i1, i2 ≤ n, 1 ≤ j1, j2 ≤ m,

implies Ai1j1Ai2j2 − Ai2j1Ai1j2 = 0. That is, every 2 × 2 minor of matrix A is zero. Thus A is of

rank one. �

By using the similar argument in Theorem 4.1, we can show that the following SDP relaxation

of (36) has a good chance to get a low rank solution.

max Tr (GX)

s.t. Tr (X) = 1, X � 0,

M
−1(X) ∈

−→−→
S (nm)2 .

(37)

Therefore, we used the same ADMM to solve (37). The frequency of returning rank-one solutions

for randomly created examples is reported in Table 8. As in Table 1 and Table 2, we tested

100 random instances for each (n,m) and report the number of instances that produced rank-one

solutions. We also report the average CPU time (in seconds) using ADMM to solve the problems.

Table 8 shows that the SDP relaxation (37) can give a rank-one solution for most randomly created

instances, and thus is likely to solve the original problem (35) to optimality.

8.2 Tri-linear tensor PCA

Now let us consider a highly non-symmetric case: tri-linear PCA.

max F(x, y, z)

s.t. x ∈ Rn, ‖x‖ = 1,

y ∈ Rm, ‖y‖ = 1,

z ∈ Rℓ, ‖z‖ = 1,

(38)
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where F ∈ Rn×m×ℓ is any 3-rd order tensor and n ≤ m ≤ ℓ.

Recently, tri-linear PCA problem was found to be very useful in many practical problems. For

instance, Wang and Ahuja [56] proposed a tensor rank-one decomposition algorithm to compress

image sequence, where they essentially solve a sequence of tri-linear PCA problems.

By the Cauchy-Schwarz inequality, the problem (38) is equivalent to

max ‖F(x, y, ·)‖
s.t. x ∈ Rn, ‖x‖ = 1,

y ∈ Rm, ‖y‖ = 1,

⇐⇒
max ‖F(x, y, ·)‖2
s.t. x ∈ Rn, ‖x‖ = 1,

y ∈ Rm, ‖y‖ = 1.

We further notice

‖F(x, y, ·)‖2 = F(x, y, ·)⊤F(x, y, ·) =
ℓ∑

k=1

Fijk Fuvk xiyjxuyv

=

ℓ∑

k=1

Fivk Fujk xiyvxuyj =

ℓ∑

k=1

Fujk Fivk xuyjxiyv.

Therefore, we can find a partial symmetric tensor G with

Gijuv =

ℓ∑

k=1

(Fijk Fuvk + Fivk Fujk + Fujk Fivk) /3, ∀ i, j, u, v,

such that ‖F(x, y, ·)‖2 = G (x, y, x, y). Hence, the tri-linear problem (38) can be equivalently

formulated in the form of problem (35), which can be solved by the method proposed in the

previous subsection.

8.3 Quadri-linear tensor PCA

In this subsection, we consider the following quadri-linear PCA problem:

max F(x1, x2, x3, x4)

s.t. xi ∈ Rni , ‖xi‖ = 1, ∀ i = 1, 2, 3, 4,
(39)

where F ∈ Rn1×···×n4 with n1 ≤ n3 ≤ n2 ≤ n4. Let us first convert the quadri-linear function

F(x1, x2, x3, x4) to a bi-quadratic function T
(
x1

x3 ,
x2

x4 ,
x1

x3 ,
x2

x4

)

with T being partial symmetric. To

this end, we first construct G with

Gi1,i2,n+i3,n+i4 =

{

Fj1j2j3j4 , if 1 ≤ ik ≤ nk

0, otherwise.
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Consequently, we have F(x1, x2, x3, x4) = G
(
x1

x3 ,
x2

x4 ,
x1

x3 ,
x2

x4

)

. Then we can further partial-symmetrize

G and the desired tensor T is as follows,

Ti1i2i3i4 =
1

4
(Gi1i2i3i4 + Gi1i4i3i2 + Gi3i2i1i4 + Gi3i4i1i2) ∀ i1, i2, i3, i4,

satisfying T
(
x1

x3 ,
x2

x4 ,
x1

x3 ,
x2

x4

)

= G
(
x1

x3 ,
x2

x4 ,
x1

x3 ,
x2

x4

)

. Therefore, problem (39) is now reformulated as

a bi-quadratic problem:

max T
(
x1

x3 ,
x2

x4 ,
x1

x3 ,
x2

x4

)

s.t. xi ∈ Rni , ‖xi‖ = 1, ∀ i = 1, . . . , 4.
(40)

Moreover, we can show that the above problem is actually a bi-quadratic problem in the form

of (35).

Proposition 8.2 Suppose T is a fourth order partial symmetric tensor. Then problem (40) is

equivalent to

max T
(
x1

x3 ,
x2

x4 ,
x1

x3 ,
x2

x4

)

s.t.
√

‖x1‖2 + ‖x3‖2 =
√
2,

√

‖x2‖2 + ‖x4‖2 =
√
2.

(41)

Proof. It is obvious that (41) is a relaxation of (40). To further prove that the relaxation (41) is

tight, we assume (x̂1, x̂2, x̂3, x̂4) is optimal to (41). Then T
(
x̂1

x̂3 ,
x̂2

x̂4 ,
x̂1

x̂3 ,
x̂2

x̂4

)

= F(x̂1, x̂2, x̂3, x̂4) > 0,

and so x̂i 6= 0 for all i. Moreover, notice that

√

‖x̂1‖‖x̂3‖ ≤
√

‖x̂1‖2 + ‖x̂3‖2
2

= 1 and
√

‖x̂2‖‖x̂4‖ ≤
√

‖x̂2‖2 + ‖x̂4‖2
2

= 1.

Thus

T





x̂1

‖x̂1‖

x̂3

‖x̂3‖

,

x̂2

‖x̂2‖

x̂4

‖x̂4‖

,

x̂1

‖x̂1‖

x̂3

‖x̂3‖

,

x̂2

‖x̂2‖

x̂4

‖x̂4‖



 = F
(

x̂1

‖x̂1‖ ,
x̂2

‖x̂2‖ ,
x̂3

‖x̂3‖ ,
x̂4

‖x̂4‖

)

=
F(x̂1, x̂2, x̂3, x̂4)

‖x̂1‖‖x̂2‖‖x̂3‖‖x̂4‖
≥ F(x̂1, x̂2, x̂3, x̂4)

= T
(
x̂1

x̂3
,
x̂2

x̂4
,
x̂1

x̂3
,
x̂2

x̂4

)

.

To summarize, we have found a feasible solution
(

x̂1

‖x̂1‖ ,
x̂2

‖x̂2‖ ,
x̂3

‖x̂3‖ ,
x̂4

‖x̂4‖

)

of (40), which is optimal

to its relaxation (41) and thus this relaxation is tight. �
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By letting y =
(
x1

x3

)

, z =
(
x2

x4

)

and using some scaling technique, we can see that problem (41)

share the same solution with
max T (y, z, y, z)

s.t. ‖y‖ = 1,

‖z‖ = 1,

which was studied in Subsection 8.1.

8.4 Even order multi-linear PCA

The above discussion can be extended to the even order multi-linear PCA problem:

max F(x1, x2, · · · , x2d)
s.t. xi ∈ Rni , ‖xi‖ = 1, ∀ i = 1, 2, . . . , 2d,

(42)

where F ∈ R
n1×···×n2d

. An immediate relaxation of (42) is the following

max F(x1, x2, · · · , x2d)

s.t. xi ∈ Rni ,

√

2d∑

i

‖xi‖2 =
√
2d.

(43)

The following result shows that these two problems are actually equivalent.

Proposition 8.3 It holds that problem (42) is equivalent to (43).

Proof. It suffices to show that relaxation (43) is tight. To this end, suppose (x̂1, · · · , x̂2d) is an

optimal solution of (43). Then F(x̂1, x̂2, · · · , x̂2d) > 0 and so x̂i 6= 0 for i = 1, . . . , 2d. We also

notice √
√
√
√

( 2d∏

i=1

‖x̂i‖2
) 1

2d

≤

√
√
√
√

2d∑

i

‖x̂i‖2/2d = 1.

Consequently,
2d∏

i=1
‖x̂i‖ ≤ 1 and

F
(

x̂1

‖x̂1‖ ,
x̂2

‖x̂2‖ , · · · ,
x̂2d

‖x̂2d‖

)

=
F(x̂1, x̂2, · · · , x̂2d)

2d∏

i=1
‖x̂i‖

≥ F(x̂1, x̂2, · · · , x̂2d).

Therefore, we have found a feasible solution
(

x̂1

‖x̂1‖
, x̂2

‖x̂2‖
, · · · , x̂2d

‖x̂2d‖

)

of (42), which is optimal to (43)

implying that the relaxation is tight. �
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We now focus on (43). Based on F , we can construct a larger tensor G as follows

Gi1···i2d =







Fj1···j2d , if 1 +
k−1∑

ℓ=1

nℓ ≤ ik ≤
k∑

ℓ=1

nℓ and jk = ik −
k−1∑

ℓ=1

nℓ

0, otherwise.

By this construction, we have

F(x1, x2, · · · , x2d) = G(y, · · · , y
︸ ︷︷ ︸

2d

)

with y = ((x1)⊤, (x2)⊤, · · · , (x2d)⊤)⊤. We can further symmetrize G and find a super-symmetric T
such that

Ti1···i2d :=
1

|π(i1 · · · i2d)|
∑

j1···j2d∈π(i1···i2d)

Gj1···j2d , ∀ 1 ≤ i1, · · · , i2d ≤
2d∑

ℓ=1

nℓ,

and

T (y, · · · , y
︸ ︷︷ ︸

2d

) = G(y, · · · , y
︸ ︷︷ ︸

2d

) = F(x1, x2, · · · , x2d).

Therefore, problem (43) is equivalent to

max T (y, · · · , y
︸ ︷︷ ︸

2d

)

s.t. ‖y‖ =
√
2d,

which is further equivalent to

max T (y, · · · , y
︸ ︷︷ ︸

2d

)

s.t. ‖y‖ = 1.

Thus the methods we developed for solving (6) can be applied to solve (42).

8.5 Odd degree tensor PCA

The last problem studied in this section is the following odd degree tensor PCA problem:

max F(x, · · · , x
︸ ︷︷ ︸

2d+1

)

s.t. ‖x‖ = 1,

(44)

where F is a (2d+ 1)-th order super-symmetric tensor. As the degree is odd,

max
‖x‖=1

F(x, · · · , x
︸ ︷︷ ︸

2d+1

) = max
‖x‖=1

|F(x, · · · , x
︸ ︷︷ ︸

2d+1

)| = max
‖xi‖2

2
=1, i=1,...,2d+1

|F(x1, · · · , x2d+1)|,
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where the last identity is due to Corollary 4.2 in [10]. The above formula combined with the fact

that

max
‖x‖=1

|F(x, · · · , x
︸ ︷︷ ︸

2d+1

)| ≤ max
‖x‖=1, ‖y‖=1

|F(x, · · · , x
︸ ︷︷ ︸

2d

, y)| ≤ max
‖xi‖=1, i=1,...,2d+1

|F(x1, · · · , x2d+1)|

implies

max
‖x‖=1

F(x, · · · , x
︸ ︷︷ ︸

2d+1

) = max
‖x‖=1, ‖y‖=1

|F(x, · · · , x
︸ ︷︷ ︸

2d

, y)| = max
‖x‖=1, ‖y‖=1

F(x, · · · , x
︸ ︷︷ ︸

2d

, y).

By using the similar technique as in Subsection 8.2, problem (44) is equivalent to an even order

tensor PCA problem:

max G(x, · · · , x
︸ ︷︷ ︸

4d

)

s.t. ‖x‖ = 1,

where G is super-symmetric with

Gi1,··· ,i4d =
1

|π(i1 · · · i4d)|

n∑

k=1




∑

j1···j4d∈π(i1···i4d)

Fi1···i2dk Fi2d+1···i4dk



 .

9 Conclusions

Tensor principal component analysis is an emerging area of research with many important appli-

cations in image processing, data analysis, statistical learning, and bio-informatics. In this paper

we introduced a new matricization scheme, which ensures that if the tensor is of rank one (in the

sense of CP rank), then its matricization is a rank-one matrix, and vice versa. This enables one

to apply the methodology in compressive sensing and matrix rank minimization, in particular the

L1-norm and nuclear norm optimization techniques. As it turns out, this approach is very likely

to yield a rank-one solution. This effectively finds the leading PC by convex optimization, at least

for randomly generated problem instances. The resulting convex optimization model is still large

in general. We proposed to use the first-order method such as the ADMM method, which turns

out to be very effective in this case. Multiple principal components can be computed sequentially

via the so-called “deflation” technique.
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Inst. # Nuclear Norm Penalty (15) SDP (16)

Sol.Dif. Val.Dif. TADMM Iter. TCV X Sol.Dif. Val.Dif. TADMM Iter. TCV X

Dimension n = 6

1 1.77e-04 3.28e-06 1.16 464 18.50 1.01e-04 2.83e-06 0.50 367 1.98

2 1.25e-04 3.94e-07 0.71 453 13.43 4.99e-05 3.78e-06 0.38 355 1.68

3 1.56e-04 2.36e-07 0.89 478 12.20 4.59e-05 3.51e-06 0.39 370 1.33

4 3.90e-05 6.91e-07 0.59 475 14.10 8.00e-05 9.57e-07 0.44 364 2.63

5 1.49e-04 3.69e-06 0.58 459 15.08 4.74e-05 3.18e-06 0.60 355 1.98

6 8.46e-05 3.92e-06 1.07 463 13.23 1.02e-04 2.68e-07 0.76 362 1.46

7 5.59e-05 4.12e-06 0.86 465 12.62 4.91e-05 4.75e-06 0.37 344 1.54

8 5.24e-05 3.95e-06 0.61 462 14.07 1.63e-05 2.97e-06 0.55 368 1.90

9 9.30e-05 3.05e-06 0.85 471 11.41 1.05e-04 2.90e-06 0.39 380 1.39

10 1.36e-04 3.89e-08 0.56 465 11.04 3.38e-05 3.11e-06 0.30 319 1.69

Dimension n = 7

1 1.59e-04 4.62e-07 1.23 600 65.73 1.14e-04 4.09e-06 0.82 453 2.60

2 9.11e-05 3.93e-07 1.02 593 68.65 8.24e-05 2.87e-09 0.79 474 2.51

3 2.61e-04 4.19e-06 1.07 609 66.08 6.83e-05 4.01e-06 0.78 480 2.53

4 1.12e-04 4.44e-06 1.07 590 65.21 6.02e-05 3.88e-06 0.86 480 2.50

5 1.22e-04 4.34e-06 1.10 614 57.40 9.15e-05 4.15e-07 0.81 487 2.57

6 1.44e-04 8.81e-08 1.06 599 60.89 4.51e-05 4.46e-06 0.77 466 2.44

7 1.93e-04 3.81e-06 1.08 590 66.09 1.19e-04 2.82e-07 0.62 389 2.54

8 1.53e-04 4.59e-06 1.09 594 59.98 2.76e-05 3.73e-06 0.75 463 2.61

9 1.41e-04 4.29e-08 1.06 616 78.20 3.29e-04 4.21e-06 0.69 443 2.57

10 1.51e-04 3.94e-06 0.83 501 75.58 1.23e-04 3.52e-06 0.78 454 2.63

Dimension n = 8

1 2.86e-04 5.10e-06 2.15 728 342.25 1.12e-04 4.52e-06 1.59 592 5.34

2 2.76e-04 3.95e-07 2.07 739 303.75 8.17e-05 4.78e-06 1.81 591 5.02

3 9.29e-05 4.78e-06 7.74 2864 333.46 2.57e-05 5.00e-06 7.20 2746 4.75

4 3.21e-04 4.65e-06 2.01 715 337.57 9.86e-05 4.01e-06 1.47 512 5.00

5 1.26e-04 7.05e-07 1.92 746 335.63 7.41e-05 4.36e-06 1.68 607 4.92

6 1.32e-04 1.63e-07 2.12 745 336.35 7.80e-05 5.00e-06 1.44 550 5.29

7 3.49e-04 7.19e-07 2.00 739 309.76 6.33e-05 4.55e-07 1.54 582 5.03

8 4.55e-05 4.72e-07 2.13 744 316.74 3.59e-05 7.27e-07 1.59 600 5.02

9 5.60e-04 4.99e-06 2.06 759 336.10 4.19e-05 4.97e-06 1.46 569 6.00

10 2.65e-04 1.36e-07 2.46 746 382.20 8.00e-05 4.14e-06 1.86 606 5.98

Dimension n = 9

1 1.41e-04 1.35e-07 4.35 910 1370.60 7.29e-05 4.78e-06 3.26 715 12.61

2 1.83e-04 5.77e-06 3.60 872 1405.46 1.77e-04 4.72e-06 2.86 732 9.63

3 4.00e-04 4.85e-06 3.24 807 1709.30 3.12e-04 8.28e-07 2.73 702 9.99

4 3.34e-04 1.36e-07 3.06 747 1445.57 6.13e-05 3.19e-07 2.91 707 10.19

5 2.63e-04 5.43e-06 3.62 904 1307.60 2.34e-05 4.68e-06 2.82 729 10.20

6 8.01e-05 9.01e-08 3.78 906 1353.45 9.33e-05 5.37e-06 2.49 597 9.31

7 2.30e-04 5.16e-06 3.77 900 1434.71 8.14e-05 5.68e-06 2.75 676 9.52

8 3.27e-04 5.45e-06 3.71 908 1314.14 1.98e-05 5.10e-06 2.91 730 9.98

9 9.53e-05 5.56e-06 3.66 888 1575.16 1.69e-04 4.82e-06 2.85 714 9.64

10 2.73e-04 2.16e-07 4.50 1136 1628.80 2.73e-05 4.98e-06 3.39 882 9.90

Table 3: Comparison of CVX and ADMM for small-scale problems
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Inst. # NNP SDP

Sol.Dif.DS Val.Dif.DS TADMM Iter. Sol.Dif. Val.Dif. TADMM Iter. TCV X

Dimension n = 14

1 4.61e-04 8.41e-06 36.85 1913 4.61e-04 8.35e-06 37.00 1621 158.21

2 4.02e-04 2.94e-07 39.52 1897 4.02e-04 7.93e-06 39.65 1639 167.89

3 1.62e-04 2.68e-08 37.21 1880 1.62e-04 8.23e-06 34.36 1408 213.04

4 4.92e-04 7.74e-06 45.15 1918 4.92e-04 4.70e-07 59.84 1662 202.95

5 8.56e-04 8.15e-06 34.93 1674 8.56e-04 8.14e-06 38.15 1588 194.01

6 3.99e-05 4.05e-07 34.41 1852 4.08e-05 7.48e-06 32.28 1411 186.99

7 7.98e-05 7.90e-06 38.11 1839 7.94e-05 3.76e-08 40.81 1555 191.76

8 1.50e-04 8.10e-06 38.29 1990 1.50e-04 8.30e-06 34.10 1543 164.13

9 1.35e-04 8.54e-06 34.58 1874 1.35e-04 2.62e-07 30.33 1387 171.77

10 5.50e-04 8.59e-06 37.28 1825 5.50e-04 7.71e-06 35.85 1567 169.51

Dimension n = 16

1 5.22e-05 9.00e-06 125.24 2359 5.21e-05 9.45e-06 102.85 2035 582.19

2 1.02e-04 3.37e-07 92.37 2244 1.02e-04 9.11e-06 63.02 1427 606.70

3 2.02e-05 5.97e-07 96.21 2474 2.01e-05 4.40e-07 83.92 1910 566.92

4 8.53e-05 9.27e-06 90.83 2323 8.54e-05 9.59e-06 93.44 2048 560.54

5 2.14e-04 9.19e-06 86.22 2359 2.14e-04 2.19e-07 80.06 1961 523.15

6 3.12e-04 9.29e-06 88.82 2304 3.12e-04 8.58e-06 88.31 2042 498.55

7 9.69e-05 9.12e-06 88.29 2431 9.65e-05 2.86e-07 88.05 2067 520.82

8 3.34e-04 1.00e-05 85.32 2271 3.34e-04 8.53e-06 85.04 2043 515.85

9 2.61e-04 9.01e-06 93.13 2475 2.61e-04 9.12e-06 88.85 2034 505.71

10 2.06e-04 3.45e-07 103.92 2813 2.05e-04 1.01e-05 94.41 2269 527.50

Dimension n = 18

1 2.70e-04 1.01e-05 172.97 2733 2.70e-04 1.87e-07 168.91 2323 1737.94

2 8.17e-04 1.11e-05 184.70 2970 8.17e-04 1.99e-07 168.83 2365 1549.10

3 1.07e-04 3.22e-08 183.72 2920 1.07e-04 1.14e-05 169.64 2456 1640.04

4 5.16e-04 1.01e-05 182.40 2958 5.16e-04 1.02e-05 174.72 2442 1636.86

5 9.48e-04 1.03e-05 184.69 3039 9.48e-04 1.04e-05 170.68 2441 1543.41

6 1.67e-04 1.03e-05 171.71 2845 1.67e-04 9.96e-06 182.37 2553 1633.55

7 4.87e-05 3.77e-07 180.64 2883 4.87e-05 2.79e-07 187.56 2545 1638.38

8 8.28e-05 1.07e-05 178.35 2904 8.28e-05 1.04e-05 181.57 2542 1641.56

9 2.45e-04 1.06e-07 174.82 2902 2.45e-04 9.97e-06 152.58 2127 1735.26

10 9.58e-05 7.61e-07 191.06 2872 9.66e-05 1.11e-05 183.29 2480 1642.33

Dimension n = 20

1 1.23e-03 6.98e-08 414.62 3415 1.23e-03 4.21e-08 388.36 2810 6116.02

2 7.93e-04 1.24e-05 401.54 3383 7.93e-04 1.14e-05 347.27 2689 6182.56

3 3.11e-04 1.21e-05 426.91 3498 3.11e-04 1.21e-05 399.92 2845 6808.99

4 7.16e-05 6.99e-07 397.69 3312 7.40e-05 1.18e-05 366.82 2758 7701.91

5 6.24e-04 1.19e-05 435.05 3564 6.25e-04 1.20e-05 419.23 2903 7419.43

6 1.09e-04 1.20e-05 393.25 3376 1.09e-04 1.15e-05 397.43 2869 8622.19

7 4.58e-04 3.21e-05 429.38 3536 4.58e-04 3.20e-05 422.72 2938 9211.37

8 6.15e-04 1.11e-05 273.33 2330 6.15e-04 7.14e-07 205.49 1511 5166.66

9 4.92e-04 1.16e-05 344.99 3017 4.92e-04 2.32e-07 259.18 1896 5063.00

10 3.45e-004 2.56e-004 395.63 3357 1.14e-005 4.36e-007 359.13 2713 6559.39

Table 4: Comparison of CVX and ADMM for large-scale problems
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Inst. # MBI GLP SDP by ADMM

Val. Time Val. Time Status Val. Time Sol.R.

Dimension n = 14

1 5.17 0.23 5.28 143.14 1 5.28 14.29 1

2 5.04 0.22 5.65 109.65 1 5.65 32.64 1

3 5.08 0.13 5.80 119.48 1 5.80 34.30 1

4 5.94 0.16 5.95 100.39 1 5.95 30.64 1

5 4.74 0.48 5.88 122.19 1 5.88 33.13 1

6 5.68 0.54 6.38 122.44 1 6.38 33.30 1

7 4.61 0.12 5.91 104.68 1 5.91 30.17 1

8 5.68 0.23 6.31 141.52 1 6.31 41.73 1

9 5.93 0.22 6.40 102.73 1 6.40 37.32 1

10 5.09 0.36 6.03 114.35 1 6.03 35.68 1

Dimension n = 16

1 6.52 0.45 6.74 420.10 1 6.74 91.80 1

2 5.51 1.21 5.93 428.10 1 5.93 83.90 1

3 5.02 0.30 6.44 393.16 1 6.44 90.16 1

4 5.60 0.32 6.48 424.07 1 6.48 90.67 1

5 5.78 0.36 6.53 431.44 1 6.53 95.48 1

6 5.23 0.26 6.42 437.58 1 6.42 98.19 1

7 6.11 0.24 6.23 406.16 1 6.23 89.21 1

8 5.92 0.51 6.39 416.58 1 6.39 89.75 1

9 5.47 0.28 6.00 457.29 0 6.00 77.56 1

10 4.95 0.35 6.32 367.26 1 6.32 80.38 1

Dimension n = 18

1 6.16 0.57 7.38 1558.00 1 7.38 199.44 1

2 5.94 0.25 6.65 1388.45 1 6.65 190.52 1

3 7.42 0.22 7.42 1500.05 0 7.42 193.27 1

4 5.85 0.94 7.21 1481.34 1 7.21 195.02 1

5 7.35 0.43 7.35 1596.00 1 7.35 117.44 1

6 5.91 1.05 6.79 1300.82 1 6.78 193.36 1

7 5.80 0.85 6.84 1433.50 1 6.84 182.58 1

8 5.72 0.54 6.96 1648.63 1 6.96 231.88 1

9 6.15 0.17 7.07 1453.82 1 7.07 212.50 1

10 6.01 1.11 6.89 1432.06 1 6.89 199.26 1

Dimension n = 20

1 5.95 0.39 7.40 8981.97 1 7.40 429.64 1

2 6.13 2.14 6.93 9339.06 1 6.93 355.25 1

3 6.37 2.49 6.68 9629.04 1 6.68 418.11 1

4 6.23 1.14 6.87 10148.21 1 6.87 404.18 1

5 6.62 1.66 7.72 11079.94 1 7.72 326.44 1

6 6.81 1.26 7.46 10609.65 1 7.46 415.69 1

7 7.80 1.02 7.80 9723.37 1 7.80 430.76 1

8 6.03 0.95 7.02 12755.35 1 7.02 416.00 1

9 7.80 0.61 7.80 12353.47 1 7.80 430.45 1

10 7.47 0.89 7.47 11629.12 1 7.47 375.52 1

Table 5: Comparison SDP Relaxation by ADMM with GloptiPoly 3 and MBI.
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n SDP Z1 Z2

4 999 979 995

5 999 964 993

6 1000 947 998

7 1000 941 997

8 1000 938 999

9 1000 911 997

10 1000 906 1000

Table 6: Comparison with Z-eigenvalue methods with data generated by normal distribution

n SDP Z1 Z2

4 999 986 995

5 1000 966 997

6 999 945 997

7 999 934 1000

8 1000 902 999

9 1000 910 999

10 1000 898 1000

Table 7: Comparison with Z-eigenvalue methods with data generated by uninform distribution

Dim (n,m) rank-1 CPU

(4,4) 100 0.12

(4,6) 100 0.25

(6,6) 100 0.76

(6,8) 100 1.35

(8,8) 98 2.30

(8,10) 100 3.60

(10,10) 96 5.77

Table 8: Frequency of problem (37) having rank-one solution
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