
HAL Id: hal-01249101
https://inria.hal.science/hal-01249101

Submitted on 4 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assigning sporadic tasks to unrelated machines
Alberto Marchetti-Spaccamela, Cyriel Rutten, Suzanne van Der Ster, Andreas

Wiese

To cite this version:
Alberto Marchetti-Spaccamela, Cyriel Rutten, Suzanne van Der Ster, Andreas Wiese. Assigning
sporadic tasks to unrelated machines. Mathematical Programming, 2015, 152 (1-2), pp.247-274
�10.1007/s10107-014-0786-9�. �hal-01249101�

https://inria.hal.science/hal-01249101
https://hal.archives-ouvertes.fr

Assigning sporadic tasks to unrelated machines

Alberto Marchetti-Spaccamela · Cyriel Rutten ·
Suzanne van der Ster · Andreas Wiese

Abstract We study the problem of assigning sporadic tasks to unrelated machines
such that the tasks on each machine can be feasibly scheduled. Despite its impor-
tance for modern real-time systems, this problem has not been studied before. We
present a polynomial-time algorithm which approximates the problem with a constant
speedup factor of 8 + 2

√
6 ≈ 12.9 and show that any polynomial-time algorithm

needs a speedup factor of at least 2, unless P=NP. In the case of a constant number
of machines we give a polynomial-time approximation scheme. Key to these results
are two new relaxations of the demand bound function, the function that yields a suf-
ficient and necessary condition for a task system on a single machine to be feasible.
In particular, we present new methods to approximate this function to obtain useful
structural properties while incurring only bounded loss in the approximation quality.
For the constant speedup result we employ a very general rounding procedure for lin-
ear programs (LPs) which model assignment problems with capacity-type constraints.
It ensures that the cost of the rounded integral solution is no more than the cost of
the optimal fractional LP solution and the capacity constraints are violated only by a
bounded factor, depending on the structure of the matrix that defines the LP. In fact,

A. Marchetti-Spaccamela
Sapienza University of Rome, Rome, Italy
e-mail: alberto@dis.uniroma1.it

C. Rutten
Maastricht University, Maastricht, The Netherlands
e-mail: cyrielrutten@gmail.com

S. van der Ster (B)
Vrije Universiteit, Amsterdam, The Netherlands
e-mail: suzanne.vander.ster@vu.nl

A. Wiese
Max-Planck Institut für Informatik, Saarbrücken, Germany
e-mail: awiese@mpi-inf.mpg.de

our rounding scheme generalizes the well-known 2-approximation algorithm for the
generalized assignment problem due to Shmoys and Tardos.

Keywords Scheduling · Sporadic task systems · Unrelated machines ·
Demand bound function · Integer linear programming · Rounding

1 Introduction

The sporadic task model is a model of recurrent processes in hard real-time systems
that has received great attention in the last years; see for example [7,12], and references
therein. A sporadic task τ = (cτ , dτ , tτ) is characterized by a worst-case execution
time cτ , a relative deadline dτ , and a minimum interarrival separation tτ . Such a
sporadic task generates a potentially infinite sequence of jobs with successive job
arrivals separated by at least tτ time units, it has an execution requirement less than or
equal to cτ and a deadline that occurs dτ time units after its arrival time.

A sporadic task system is comprised of several such sporadic tasks. Since the
actual interarrival times can vary, there are infinitely many job sequences that can be
generated. A sporadic task system is said to be feasible upon a specified platform if it
is possible to schedule the system on the platform such that all jobs of all tasks will
meet their deadlines, under all permissible combinations of job arrival sequences by
the different tasks comprising the system.

The feasibility analysis of sporadic task systems on single processors has been
extensively studied [7]. It is known that the Earliest Deadline First (EDF) algorithm,
that schedules at any time the job with the earliest absolute deadline, is optimal in
the sense that for any sequence of jobs it produces a valid schedule, whenever a valid
schedule exists [27]. However, it is co-NP-hard to decide whether a task system is
feasible on a single machine [18].

On multiprocessor systems, there are two main paradigms for scheduling: global
and partitioned scheduling. In the former, all tasks can use all machines, and jobs can
even be migrated from one machine to another. In the partitioned scheduling approach
each task has to be assigned to one of the machines such that all its jobs have to be exe-
cuted on this specific machine. Since the process of partitioning tasks among proces-
sors reduces a multiprocessor scheduling problem to a series of single-processor prob-
lems, the optimality of EDF for preemptive single-processor scheduling makes EDF
a reasonable algorithm to use as the run-time scheduling algorithm on each machine.

In recent years, hardware design has seen a highly visible trend towards heteroge-
neous processors. In particular, modern hardware architectures often contain special-
ized processors for certain tasks (e.g., graphical processors, floating-point units). To
model the actual behavior of the different types of processors when making schedul-
ing decisions, in this paper we assume that the given machines are unrelated; i.e., we
assume that the processing time of each task depends on the machine where it is exe-
cuted, including the possibility that some tasks cannot be executed on some machines

at all.

For attacking our problem, we will be using an integer linear program (ILP). It is
NP-hard to solve ILPs optimally [22], but the corresponding LP relaxation (i.e., where
the integrality constraints on the variables are relaxed) can be solved in polynomial
time. Hence, a common approach is to solve the relaxation and transform the obtained
fractional solution into an integer solution, at the cost of worsening the objective
value or violating the constraints in a controlled way. As part of our techniques, we
present a new method to round a very general class of linear programs for assignment
problems, without worsening the objective value and with carefully bounding the (then
unavoidable) errors on the constraints due to the rounding.

Related work As mentioned above, deciding whether a task system is feasible on a
single machine is a co-NP-hard problem [18]. This motivates approximate feasibility
tests that run efficiently but introduce an error in the decision process, controlled by an
accuracy parameter α (the speedup). If an α-approximation test returns “feasible”, then
the task set is guaranteed to be feasible on an α-speed processor(s); if the test returns
“infeasible”, the task set is guaranteed to be infeasible on a unit-speed processor(s). For
the case of a single processor, an FPTAS feasibility test for EDF has been proposed [14]
(i.e., for any ε > 0, there exists a (1 + ε)-approximation test with running time
polynomial in the number of tasks and in 1/ε).

In the case of m identical processors, assuming the global paradigm, the natural
EDF-policy is no longer optimal, but it is known that any feasible collection of jobs on
m machines of unit speed is schedulable using EDF on m machines of speed 2− 1

m [28].
Also, a corresponding test for task sets is known [11,13]. Recently, Anand et al. [2]
presented an online algorithm needing only a speedup factor of e/(e − 1) ≈ 1.58.

In the case of the partitioned paradigm, to the best of our knowledge, the multiple-
machines case has only been studied for identical machines. Most of prior research
has considered the special case of implicit-deadline systems in which all tasks have
their deadlines equal to their period parameters (i.e., dτ = tτ for all τ). Then, a set
of tasks is feasible on one machine if and only if the sum of the utilizations cτ /tτ
is at most one and the problem reduces to Makespan Minim ization . In Eisen-
brand and Rothvoß [17] a PTAS was proposed for the case where tasks are sched-
uled according to fixed priorities using resource augmentation. In that paper also
the existence of an FPTAS is ruled out, thus showing that the problem is strongly
NP-hard.

If deadlines are not implicit, much less is known. Baruah and Fisher [9] propose an
algorithm which can partition any set of tasks that is feasible on m machines such that
the assignment is feasible if the machines run 4 − 2

m times faster. In Fisher et al. [19]
a similar result is given if the tasks are scheduled according to static priorities, rather
than with the more powerful EDF policy. Chen and Chakraborty [15] improved upon
these results by showing that a deadline-monotonic policy with approximate demand
bound functions leads to a feasibility test with speedup factor 3e−1

e − 1
m ≈ 2.6322− 1

m
in case of constrained deadlines (dτ ≤ tτ for all τ) and a speedup factor of 3 − 1

m for
unconstrained deadlines.

As mentioned above, we assume the machines to be unrelated, meaning that the
processing times of the tasks can differ on the different machines. To the best of our

knowledge the unrelated-machines setting has not been studied for arbitrary-deadline
sporadic tasks. For implicit-deadline task systems some results are known, that are
discussed below.

However, the setting with unrelated machines is well-studied for assigning jobs to
minimize the makespan. Lenstra et al. [26] give a 2-approximation algorithm for the
problem of minimizing the makespan of a set of jobs and prove that it is NP-hard to
achieve a performance ratio better than 1.5. Despite a lot of effort, the only improve-
ments in the setting of an arbitrary number of machines are a 1.75-approximation
algorithm for the graph balancing case [16] and a 33/17 ≈ 1.94-estimation algo-
rithm for the restricted assignment case [32]. A generalization of this problem is the
Generalized Assignment Problem (GAP). In this problem, assigning a job j
to a machine i incurs a certain (global) cost ci, j . Shmoys and Tardos [31] give a
2-approximation for this problem; to be more precise, they devise an algorithm com-
puting a schedule with makespan 2T and cost at most C , given that a solution with
the same cost and a makespan of T exists.

Azar and Epstein [6] consider �p norms (for finite p > 1, rather than the makespan)
for which they improved the previously best result of θ(p) [5] to a 2-approximation
and even a

√
2-approximation for the �2 norm. This was improved to a better-than-two

result for all p > 1 in [24].
For a constant number of machines, polynomial-time approximation schemes are

known [20,26]. Rather than focusing on a constant number of machines, one could
also consider the case of a constant number of machine types; each machine belongs
to one of the types and the processing time of each job depends only on the job and the
type of the machine it is assigned to. For the problem of assigning implicit-deadline
task systems to unrelated machines of two different types, an approximation algorithm
is given in [29] based on the first-fit heuristic with a worst-case performance ratio of
2. For the same problem, a PTAS was given later [30]. In the meantime, a PTAS
was given [33] for any constant number of machine types. The authors justify their
contribution in [30] by pointing out that their PTAS for two different types has a much
lower run-time complexity than the one in [33] applied to two machine types.

The NP-hardness of solving arbitrary ILPs inspired the search for algorithms that
transform the fractional solution of an LP relaxation into an integer solution. The goal is
that such a solution either has a bounded loss on the objective function while satisfying
all constraints, or gives a bound on the amount that any constraint is violated. There
are many problems than can be well approximated using LP rounding, see e.g., [34]
for an introduction.

The LP rounding procedure we will present in Sect. 3 produces an integral solution
that maintains an objective value not worse than that of the optimal fractional solution,
while guaranteeing a bound on the violation of any constraint in the system. This
procedure is based on ideas presented in [23], where a solution for an integer linear
program (without objective function) is found by rounding the solution to the LP
relaxation such that each variable is rounded up or rounded down and each constraint
of the program is violated by at most a constant factor (depending on the maximum
sum of elements over all columns of the coefficient matrix).

Our contribution To the best of our knowledge, no non-trivial algorithm is known for
assigning a set of sporadic tasks to a set of unrelated machines. We first present an
algorithm that, given a task system for which a task assignment on m machines exists,
finds a task assignment that can be scheduled on m machines that are 8+2

√
6 ≈ 12.9

times as fast.
This result is obtained through a new rounding procedure that is first presented

separately in Sect. 3. The procedure is designed for rounding a fractional solution
of the LP relaxation of any assignment-type problem where items (e.g., tasks in our
case) have to be assigned to resources (e.g., machines) while obeying some knapsack-
type constraints. Given that each resource-item combination appears in at most γ

constraints, the procedure preserves the constraint that every item is assigned and all
other constraints are violated by at most a factor of γ + 1. Further, the cost of this
rounded solution is no more than the optimal cost of the LP relaxation. In fact, the well-
known 2-approximation algorithm for the generalized assignment problem by Shmoys
and Tardos [31] can be derived as a direct corollary from our rounding procedure. We
apply the procedure to a sparse LP formulation which approximately models the task
assignment problem on unrelated machines and obtain the mentioned result (after some
technical modifications of the LP). Also, we show that no polynomial-time algorithm
can compute a task assignment needing a speedup factor of 2 − ε for ε > 0, unless
P = N P . Note that this bound is stronger than the best known (3/2 − ε)-hardness
result for the contained problem of minimizing the makespan when scheduling jobs
on unrelated machines [26].

For the case that the number of machines is fixed, we present a polynomial-time
algorithm that either finds a feasible task assignment on m machines that are 1 + ε

times as fast, or guarantees that no solution exists on unit-speed processors.
In order to be able to achieve these results, we need deep understanding of the

demand bound function (dbf) which yields a necessary and sufficient condition for a
task system to be feasible on one machine. In particular, we present two new relaxations
for handling this well-studied function. For our result for an arbitrary number of
machines, we give a set of sparse linear constraints which approximate the dbf up to a
constant factor. Due to the sparsity we are able to design an efficient iterative rounding
procedure.

For the case of a constant number of machines, we observe that we cannot exploit
the technique of partitioning the task set into “big” and “small” tasks as in the job
scheduling problem. A task having a small execution time or small utilization (formally
defined in the next section) might still be very tight in the sense that its relative deadline
is fairly small. Therefore, even if all large tasks are already assigned, assigning the
small tasks is still very tricky, i.e., they cannot be scheduled easily by spreading
them over machines which still have some capacity left. An important feature of our
dbf relaxation is that the feasibility test of assigning a task with deadline D to a
machine having tasks with deadlines <D already assigned to it, requires only limited
information of the previously assigned tasks. To be more explicit, the approximate
demand bound function for each task only needs to be evaluated at a constant number
of points. Afterwards we just approximate the function by the task’s utilization. We
exploit this feature and other tricks to polynomially bound the running time of a

dynamic programming algorithm.

2 Preliminaries

Given is a set M of m parallel unrelated machines and a sporadic task system T , with
|T | = n. Each task τ ∈ T is characterized by a set of values ({ci,τ }i∈M , dτ , tτ), where
ci,τ is its execution time on machine i , dτ is its deadline, relative to its arrival time,
and tτ denotes the minimum interarrival time between two jobs of τ and is called
the period. We assume all parameters to be integer and strictly positive. We study the
problem of finding a task assignment T = {Ti }i∈M such that ∪iTi = T . Without loss
of generality we can restrict to task assignments with the property that Ti ∩ Ti ′ = ∅
for any two machines i
= i ′.

A task assignment is feasible if for any machine i , any job arrival sequence of the
tasks in Ti can be feasibly scheduled on i , allowing jobs to be preempted. Since each
task is assigned to exactly one machine, after finding an assignment, EDF will be our
scheduling algorithm of choice, by its optimality for single-machine scheduling [27].

An α-approximation test for the problem of assigning tasks to unrelated machines
is an algorithm that runs in polynomial time and which either guarantees that there
is no feasible integral assignment of the tasks to the given machines (running at unit
speed), or finds an integral assignment which is feasible if the machines run at speed α.

By ui,τ we denote the utilization of task τ on machine i and we define it as ui,τ =
ci,τ /tτ . Given a task assignment T , we define the utilization of each machine i by
ui = ∑

τ∈Ti
ui,τ . Note that in a feasible assignment ui ≤ 1, for all i ∈ M , is a

necessary but not sufficient condition for feasibility [27].
Clearly, the necessary condition ui ≤ 1 for all i ∈ M implies that if there is a task

τ such that ui,τ > 1, this task will never be assigned to machine i . Further, if for any
task τ and machine i it holds that ci,τ > dτ , then τ will not be assigned to machine
i . If it were assigned to machine i , the first job of τ clearly could not be completed
before ci,τ and would miss its deadline at dτ .

Feasibility test The synchronous arrival sequence for task system T is defined to be
the collection of job arrivals in which each task in T generates a job at time instant
zero, and subsequent jobs arrive as soon as legally permitted (i.e., task τ generates a
job at each time-instant k tτ , k = 0, 1, 2, . . .).

It is known [10] that a set of sporadic tasks Ti is EDF-schedulable on machine i if
and only if the following conditions are satisfied:

1. the utilization of the task system does not exceed 1, i.e., ui = ∑
τ∈Ti

ui,τ ≤ 1,
2. all jobs with deadlines [0, lcmτ∈Ti (tτ)] in the synchronous arrival sequence of Ti

meet their deadlines (where lcm denotes the least common multiple).

This immediately yields an exponential-time test to check whether Ti is EDF-
schedulable; however we recall that the problem is co-NP-hard [18] and that it is not
known whether it can be determined in pseudo-polynomial time.

A necessary and sufficient condition for a task system T to be schedulable is based
on the demand bound function. In the case of unrelated machines we have the following
condition.

Proposition 1 ([10]) An assignment T = {Ti }i∈M is feasible for task system T if and
only if for all i ∈ M

dbfT ,i (s) :=
∑

τ∈Ti :dτ ≤s

⌊
s + tτ − dτ

tτ

⌋

ci,τ ≤ s ∀s ≥ 0.

We write dbfi instead of dbfT ,i whenever the assignment T is clear from the context.
Further, we define dbfi (τ, s) :=
(s + tτ − dτ)/tτ � ci,τ , i.e., dbfi (τ, s) denotes the
contribution of task τ to dbfT ,i (s).

3 Rounding procedure

In this section we introduce the LP rounding procedure that was designed for ILPs that
represent assignment problems. After that, we show that this procedure generalizes
the result of Shmoys and Tardos [31] for the Generalized Assignment Problem .

3.1 The rounding procedure

Almost any combinatorial optimization problem can be formulated as an integer lin-
ear programming (ILP) problem with integral (or binary) decision variables and linear
constraints. A feasible or optimal solution to this ILP is then a feasible or optimal
solution to the problem originally considered. Unfortunately, solving ILPs in gen-
eral is NP-hard [22]. A common approach is to, instead, solve the corresponding LP
relaxation, where the integrality constraints on the decision variables are relaxed. In
a second step, one turns this fractional solution into an integral solution without (1)
violating the constraints too much, or (2) losing too much in the objective value with
respect to the LP optimum.

In this section we present an LP rounding procedure that is specially designed
for ILPs that stem from assignment problems. It guarantees that after applying the
rounding, the obtained integral solution violates the constraints from the ILP by only
a bounded factor (depending on the structure of the LP matrix) and the objective value
of the LP optimum is preserved. In Sect. 4 we use this procedure to obtain a constant-
factor approximation test for the problem of assigning tasks to unrelated machines.
Since the procedure itself is independent of the application we will use it for, we present
it here in more general terminology than we will need later. The rounding procedure
is quite similar to the procedure presented in [23], but in contrast to the latter, ensures
that in the resulting integral solution one obtains a feasible integral assignment.

Assume we want to solve the following assignment problem: given is a set of n
items and a set of m resources M and a set R ⊆ {1, . . . , m} × {1, . . . , n} containing
all combinations (i, j) such that it is allowed to assign item j to resource i . For each
combination (i, j) ∈ R we are given a cost ci, j denoting the cost of assigning item
j to i . The goal is to assign each item j to a resource i to minimize the total cost,
and such that for each resource i a set of knapsack-type constraints is satisfied. Each
item appears in at most γ constraints per resource. W.l.o.g. we assume that each item-
resource combination appears in exactly γ of these constraints. Formally, we are given
the set R and for all (i, j) ∈ R we define decision variable zi, j , which is equal to 1
if item j is assigned to resource i, and 0 otherwise. Let θ := n γ . We are also given

non-negative values a�
i, j and b�

i for all (i, j) ∈ R and � ∈ {1, . . . , θ}, such that for

each (i, j) ∈ R, a�
i, j > 0 for at most γ out of the θ coefficients. We want to solve the

following integer linear program (ILP).

min
∑

(i, j)∈R

ci, j zi, j

∑

i :(i, j)∈R

zi, j = 1 for j = 1, . . . , n; (1a)

∑

j :(i, j)∈R

a�
i, j zi, j ≤ b�

i for i = 1, . . . , m; � = 1, . . . , θ; (1b)

zi, j ∈ {0, 1} for all (i, j) ∈ R (1c)

We denote by L P0 the LP relaxation of the above ILP. The contribution of item j in
constraint � of resource i is expressed by coefficient a�

i, j . Note that if this is larger than

the ‘capacity’ b�
i , item j will never be assigned to resource i in an integral solution.

However, for our reasoning in Sect. 4 we need to round LP relaxations of the above
type where possibly a�

i, j > b�
i . We assume w.l.o.g. that a�

i, j ≤ 1 for all i, j, � (which
can be ensured by linear scaling).

Solving the LP relaxation of this problem usually does not give an integral solution
and hence items are fractionally assigned to multiple resources. Our rounding proce-
dure turns this solution into an integral solution, such that each capacity constraint
is not violated by more than γ times the maximum coefficient on the left-hand side.
Further, the cost of this rounded solution will not be more than the optimal cost from
the fractional LP solution.

In typical assignment-type problems, the number of constraints where the same
resource-item combination appears, is often low. For example, in the linear program
that we will use in Sect. 4 for the problem of assigning tasks to unrelated machines,
we will have that γ = 2. In an LP relaxation for the problem of scheduling jobs on
unrelated machines to minimize the makespan, we even have γ = 1.

Our rounding procedure is iterative and in each iteration h we compute an extreme-
point solution zh of a linear program L Ph , where, as defined above, L P0 equals
the LP relaxation of the original assignment problem and for h ≥ 0 each L Ph+1 is
obtained by fixing the value for some variable(s) or removing some constraint(s) of
L Ph . Whenever during this process constraints have become redundant (e.g., because
all their variables have been already fixed) we remove them from the LP.

Given a feasible fractional solution zh , to obtain L Ph+1 we first fix all variables
which are integral in zh , i.e., those variables are not allowed to be changed anymore in
the remainder of the procedure. Let s be the number of variables in L Ph and let ra and
rb be the number of constraints of types (1a) and (1b), respectively. Let r = ra + rb.
To obtain L Ph+1, we either fix and delete one or more variables (in case that s > r),
or delete a constraint while ensuring that in the final solution that constraint will
not be violated too much. Later in this section we will explain how to identify these
constraints and bound the amount that these constraints can be violated in the final
solution. Along the way we ensure that the constraints of type (1a) are always satisfied
exactly and that the costs in the objective are not increased.

ALGORITHM 1: Iterative Rounding Procedure
Input: A set of m resources, a set of n items and a set R ⊆ {1, . . . , m} × {1, . . . , n} and for each
(i, j) ∈ R and � ∈ {1, . . . , θ} values ci, j ≥ 0, b�

i ≥0 and a�
i, j ≥0 and L P0, the LP relaxation of (1)

loop
Solve L Ph consisting of s variables and r constraints and find extreme-point solution zh .
if s > r then

zh has at least one integral entry.
fix all integral entries at their value, remove them from the program and update right-hand side
coefficients
remove all inequalities that have become redundant by fixing the integral values

else
find a resource i and � ∈ {1, . . . , θ} such that maxw∈S

∑n
j=1 a�

i, j (wi, j − zh
i, j) ≤ γ , where

S = {0, 1}s

remove the inequality corresponding to the found i and �.
end if
The remaining linear program is L Ph+1

end loop
return Integral solution z̄i, j for all (i, j) ∈ R such that c�z̄ ≤ c�z0 and (5) holds.

Note that if there is some variable zi, j that is fixed at value 1 and removed from
the program, for all i ′ ∈ M\{i}, zi ′, j will be set to 0 and also be removed from the
program. The constraint of type (1a) corresponding to this item j is then superfluous
and will also be removed. We also update the right-hand side of each constraint where
zi, j appears, taking into account that we decided to assign j to i which thus reduces
the remaining capacities of i , for each of the up to θ remaining constraints.

The following lemma is the key to show that this algorithm works correctly.

Lemma 1 Let L Ph be the linear program that is solved in iteration h of the rounding
procedure, having s variables and r constraints. Let zh be an extreme-point solution
to this LP. If s > r , then zh has at least one integral entry. If s ≤ r , then there is a
resource i and some � ∈ {1, . . . , θ} such that maxw∈S

∑n
j=1 a�

i, j (wi, j − zh
i, j) ≤ γ ,

where S is the integer solution space for all remaining variables, i.e., S = {0, 1}s .

Proof Assume that the subproblem in iteration h (described by L Ph) is defined as
Az ≤ b. First assume that s > r . Then the null space of A is non-empty. Let z0
be a vector in the null space of A. Since zh is an extreme-point solution to L Ph it
cannot be expressed as the convex combination of two (or more) solutions to L Ph (see
also e.g., [21]). If zh does not have any integral entry then we can find a value δ > 0 such
that zh +δ ·z0 and zh −δ ·z0 are both solutions to L Ph and, in particular, zh is a convex
combination of these two solutions. Therefore, zh must have at least one integral entry.

Now assume that s ≤ r . For this case, we show that there always exists a constraint
l of type (1b) such that maxw∈S{(Aw)l − (Az)l} ≤ γ . We show the statement by
contradiction. Assume that the statement is not true; that is, for each constraint l of
type (1b) it holds that there exists a vector w ∈ S such that

(Aw)l − (Az)l > γ. (2)

In each previous round, if variables were removed from the program, also con-
straints that had become redundant, were removed. Therefore, for all variables present
in the linear program in this round, the corresponding constraint of type (1a) is also
still present in the linear program (and this constraint is not present if all of its variables
have been removed from the program). It follows that

m∑

i=1

∑

j :zi, j present

zi, j = ra . (3)

Define L as the set of constraints of type (1b) present in the current linear program. For
any q = (i, j), let Lq denote the set of these constraints containing variable zq . Then,

γ (r − ra) = γ rb

(2)
<

∑

l∈L

max
w∈S

((Aw)l − (Az)l)

all al,q≥0=
∑

l∈L

((A1)l − (Az)l)

=
∑

l∈L

∑

q

al,q(1 − zq)

=
∑

q

∑

l∈Lq

al,q(1 − zq)

≤
∑

q

γ (1 − zq)

= γ s −
∑

q

γ zq

= γ (s − ra). (4)

The second inequality follows since each variable zq appears in at most γ constraints
of type (1b) and since we assumed that al,q ≤ 1 for all constraints l ∈ L and all
variables q.

The chain of inequalities implies that γ (r − ra) < γ (s − ra) ⇒ r < s which is a
contradiction to being in the case that s ≤ r . Hence, we conclude that if s ≤ r , there
must be a constraint l of type (1b), for which maxw∈S{(Aw)l − (Az)l} ≤ γ . ��

Given an extreme-point solution zh for a linear program L Ph , we can find in
polynomial time a constraint which can be dropped, assuming that the number of
variables is bounded by the number of constraints (i.e., s ≤ r). For each of the
polynomial number of constraints, we try the most “pessimistic” vector w ∈ S =
{0, 1}s . This vector w is obtained by taking wi, j = 1 for all (i, j), since a�

i, j ≥ 0 for
all (i, j) and all � ∈ {1, . . . , θ}.
Theorem 1 Let m, n, γ ∈ N. Let θ = n γ . Suppose we are given a set R ⊆
{1, . . . , m} × {1, . . . , n} of pairs (i, j) that we define a decision variable zi, j for.
For each (i, j)∈ R and �∈ {1, . . . , θ} we are given values ci, j≥ 0, b�

i≥ 0, and

a�
i, j ≥ 0, such that for each (i, j) ∈ R, a�

i, j > 0 for at most γ coefficients. Assume

that the resulting linear program L P0, as given in (1), is feasible and denote by z∗
its optimal solution. Then there is a polynomial-time algorithm computing an integral
solution z̄ with c�z̄ ≤ c�z∗ which satisfies

∑

i :(i, j)∈R

z̄i, j = 1 f or j = 1, . . . , n; (5a)

∑

j :(i, j)∈R

a�
i, j z̄i, j ≤ b�

i + γ max
j

a�
i, j f or i = 1, . . . , m; � = 1, . . . , θ; (5b)

z̄i, j ∈ {0, 1} f or all (i, j) ∈ R. (5c)

Proof Before applying the rounding procedure, we scale each linear constraint such
that max j a�

i, j = 1 for each combination of a resource i and a value � ∈ {1, . . . , θ}.
We apply our iterative rounding procedure, where L P0 equals the LP relaxation

of (1) and for each h ≥ 0, L Ph+1 is obtained from L Ph by either fixing the value of
some variable(s) or removing some constraint(s). Suppose we computed an extreme-
point solution zh for L Ph . Then if s > r , according to Lemma 1, zh must have at
least one integral value. Those variables that have an integer value in zh are fixed at
these values and the variables are removed from the program. If a variable zi, j is fixed
at value 1, then for all i ′ ∈ M\{i}, the variables zi ′, j will be fixed at value 0 and be
removed and the constraint of type (1a) corresponding to j will also be removed. Also
the right-hand side of each constraint of type (1b) where zi, j appears will be updated,
considering that assigning item j to resource i used a�

i, j of the capacity in constraint

�. Note that the optimal objective value of the resulting linear program L Ph+1 is not
larger than the optimal objective in L Ph since zh induces a solution to L Ph+1 with
the same objective value as zh gives in L Ph .

If s ≤ r , we know by Lemma 1 that a constraint l exists, such that

max
w∈S

{(Aw)l − (Az)l} ≤ γ (6)

and it can be found in polynomial time. To this end, we check for each resource i
whether

∑
j (1 − zi, j) ≤ γ . This is sufficient since all a�

i, j ≥ 0 and the maximum
value any variable zi, j can take is 1. (In fact, it is even true that if the latter condition
is satisfied all constraints of a given resource can be removed.) Since the removed
constraint satisfies (6), we know that whatever value the variables in this constraint
will get in the final solution, the additive error in the right-hand side of this constraint
will be at most γ , assuming that all a�

i, j ≤ 1. Note that removing constraints cannot
increase the costs of the final solution. At the end we scale all constraints back to their
original values. Thus, the resulting solution satisfies (5b).

Finally, we know that in each iteration either of the two cases of Lemma 1 applies
and thus after a polynomial number of iterations either all constraints or all variables
are removed and we are done. ��

3.2 Generalized assignment problem

In fact, a direct consequence of Theorem 1 is a 2-approximation algorithm for the
Generalized Assignment Problem (GAP), as it was first presented by Shmoys
and Tardos [31]. Given are a set of n jobs and a set of m unrelated machines. For each
combination of a job j and a machine i we are given the running time pi, j of j on i
and a cost ci, j . For given values C ≥ 0 and T ≥ 0, the goal is to find an assignment
of the jobs to the machines with total cost at most C and such that each machine has
a makespan of at most T . In Shmoys and Tardos [31], a polynomial-time algorithm is
presented that finds a solution with cost at most C and makespan at most 2T , given
that a solution of cost at most C and makespan at most T exists. The canonical LP
formulation for GAP is the following:

min
m∑

i=1

n∑

j=1

ci, j xi, j

m∑

i=1

xi, j = 1 for j = 1, . . . , n; (7a)

n∑

j=1

pi, j xi, j ≤ T for i = 1, . . . , m; (7b)

xi, j ≥ 0 for all (i, j) s.t. pi, j ≤ T (7c)

If the optimal objective value is strictly greater than C then there is no solution
obeying C and T . Otherwise, Theorem 1 directly gives a polynomial-time procedure
that finds an integral solution with cost at most C and a makespan of at most 2T ,
using that we have exactly one constraint per machine, i.e., γ = 1. In fact, for this
specific LP it is known that the iterative rounding procedure described above gives the
mentioned result; see e.g., [25].

4 Arbitrary number of machines

In this section we present an α = 8 + 2
√

6 ≈ 12.9-approximation test for assigning
tasks to unrelated machines and we show that the problem is NP-hard to approximate
to within a ratio of 2 − ε for any ε > 0.

4.1 Constant-factor approximation test

We will formulate the problem of assigning tasks to unrelated machines as a linear
program, such that the tasks on each machine can be feasibly scheduled using the
EDF-scheduler. First, we derive a set of linear inequalities which are

– necessary, meaning that they are fulfilled by any feasible assignment,
– approximately sufficient, meaning that any integral assignment which (approxi-

mately) fulfills the constraints is feasible if the speed of the machine is increased
by some constant factor, and

– sparse, meaning that each variable occurs in only two capacity constraints.

For each pair of a machine i and a task τ , such that ui,τ ≤ 1 and ci,τ ≤ dτ , we
introduce a variable yi,τ modeling to assign τ to machine i . Note that for pairs (i, τ)

that do not satisfy these conditions we do not need a variable yi,τ since it will be
infeasible to assign such a τ to machine i . The first constraints are utilization bounds
on all tasks assigned to the same machine i . Formally, we demand that

∑

τ∈T

ui,τ yi,τ ≤ 1 ∀i ∈ M. (8)

Secondly, we require that for all tasks with their deadline in the interval (2k−1, 2k],
the sum of their execution time is at most 2k . Formally, we require

∑

τ∈T :dτ ∈(2k−1,2k]
ci,τ yi,τ ≤ 2k ∀i ∈ M, ∀k ∈ N. (9)

We call these conditions the relaxed dbf constraints. It is clear that these constraints
have to be fulfilled by any feasible task assignment. Since they are linear, they can be
used in an LP relaxation for the problem. Their sparsity gives the potential to use the
rounding procedure from Sect. 3 to obtain an integral solution that violates the relaxed
dbf constraints only by a constant factor. The following lemma shows that—even
when violated up to a constant factor—the presented constraints are approximately
sufficient.

Lemma 2 Let T be an assignment for the task system T such that, for all machines
i,

∑
τ∈Ti

ui,τ ≤ β and
∑

τ∈Ti :dτ ∈(2k−1,2k] ci,τ ≤ β 2k . Then dbfT ,i (s) ≤ 6βs for all
s ≥ 0 and T is a feasible task assignment under a speedup factor of 6β.

Proof Let π ∈ N and s := 2π . Consider an assignment T of the tasks in T to the
machines in M . For any machine i ∈ M , we bound dbfi (s) := dbfT ,i (s) by

dbfi (s) =
∑

τ∈Ti : dτ ≤s

⌊
s + tτ − dτ

tτ

⌋

ci,τ

≤
∑

τ∈Ti : dτ ≤s

(

s
ci,τ

tτ
+ ci,τ

)

≤ s
∑

τ∈Ti

ci,τ

tτ
+

∑

τ∈Ti : dτ ≤s

ci,τ

= s
∑

τ∈Ti

ui,τ +
log2(s)∑

k=0

∑

τ∈Ti : dτ ∈(2k−1,2k]
ci,τ

≤ βs +
π∑

k=0

β 2k

≤ βs + β 2π+1

= βs + 2βs = 3βs.

Hence, for any machine i and for arbitrary s we get that dbfi (s) ≤ dbfi (2�log2 s�) ≤
3β 2�log2 s� ≤ 6βs. This implies that T is a feasible assignment for scheduling the
tasks in T to the set of unrelated machines whenever the machines receive a speedup
factor of 6β. ��

Let ρ > 1. We define the function r(x) := ρ
⌈

logρ x
⌉

. Assume we are given
an instance of our problem. Let dmax := maxτ∈T dτ and define the set Dρ :=
{ρ0, ρ1, . . . , r(dmax)}. We now formulate the following linear program, denoted by
Ass-LP, where the deadlines are rounded up to the nearest power of ρ rather than to
the nearest power of 2 (as implicitly done in the relaxed dbf constraints given above).

∑

i∈M

yi,τ = 1 ∀τ ∈ T, (10a)

∑

τ∈T

ui,τ yi,τ ≤ 1 ∀i ∈ M, (10b)

∑

τ∈T : r(dτ)=D

ci,τ yi,τ ≤ D ∀D ∈ Dρ, ∀i ∈ M, (10c)

yi,τ ≥ 0 ∀τ ∈ T,∀i ∈ M : ui,τ ≤ 1 ∧ ci,τ ≤ dτ . (10d)

If Ass-LP is infeasible, then there can be no feasible (integral) task assignment. Now
assume that it is feasible and we have computed a feasible solution y∗. For each
machine i and deadline D ∈ Dρ we extract a value

Ui,D :=
∑

τ∈T : r(dτ)=D

ci,τ y∗
i,τ .

Based on these values, we define a strengthened variation of Ass-LP, denoted by
SAss-LP in the sequel. We obtain the latter by replacing the constraints (10c) by the
following set of constraints:

∑

τ∈T : r(dτ)=D

ci,τ yi,τ ≤ Ui,D ∀D ∈ Dρ, ∀i ∈ M. (10c′)

Clearly if y∗ is a feasible solution for Ass-LP, it is also a feasible solution for
SAss-LP and if SAss-LP is infeasible, then no feasible task assignment exists. We
now round y∗ to an integral solution which approximately satisfies SAss-LP by using
the rounding procedure presented in Sect. 3. Note that each machine-task combination
appears in one constraint of type (10b) and in one of type (10c′). Hence, when applying
Theorem 1, we have that γ = 2. Therefore, applying the rounding procedure from

Theorem 1 gives a task assignment ŷ that satisfies constraints (10a) and (10d) and the
following two inequalities

∑

τ∈T

ui,τ ŷi,τ ≤ 3 ∀i ∈ M, (11)

∑

τ∈T : r(dτ)=D

ci,τ ŷi,τ ≤ Ui,D + 2D ∀D ∈ Dρ, ∀i ∈ M. (12)

Observe that Ui,D ≤ D for all D ∈ Dρ and all machines i , and hence the vector ŷ
violates the relaxed dbf -constraints by at most a factor of β = 3. Hence, Lemma 2
directly implies that the task assignment given by the vector ŷ is feasible with a speedup
of 18 if we choose ρ = 2. However, using the definition of Ui,D and a more careful
calculation, we can bound the needed speedup even further.

Lemma 3 If we choose ρ = 1 + √
6/3, the task assignment implied by the variables

ŷ is feasible if the machines run at speed 8 + 2
√

6.

Proof Let T denote the assignment implied by the integral variables ŷ. Correspond-
ingly, Ti denotes the set of tasks that are assigned to machine i , that is Ti = {τ ∈ T :
ŷi,τ = 1}. We show that for the task assignment implied by ŷ, dbfT ,i (s) ≤ (8+2

√
6)s

for all s and any machine i , if we choose ρ = 1 + √
6/3:

dbfT ,i (s) =
∑

τ∈Ti : dτ ≤s

⌊
s + tτ − dτ

tτ

⌋

ci,τ

≤
∑

τ∈Ti : r(dτ)≤r(s)

(

s
ci,τ

tτ
+ ci,τ

)

≤ s
∑

τ∈T

ci,τ

tτ
ŷi,τ +

∑

τ∈T : r(dτ)≤r(s)

ci,τ ŷi,τ

= s
∑

τ∈T

ui,τ ŷi,τ +
logρ(r(s))

∑

k=0

∑

τ∈T : r(dτ)=ρk

ci,τ ŷi,τ

(11)&(12)≤ 3s +
logρ(r(s))

∑

k=0

(
Ui,ρk + 2ρk

)

≤ 3s + ρlogρ(r(s)) + 2

logρ(r(s))
∑

k=0

ρk

= 3s + r(s) + 2
ρlogρ(r(s))+1 − 1

ρ − 1

≤ 3s + r(s) + 2ρ
r(s)

ρ − 1

≤ s(3 + ρ + 2
ρ2

ρ − 1
) =

(
8 + 2

√
6
)

s.

The last inequality follows since r(s) ≤ ρs, whereas the last equality follows by
optimization of the value of ρ, i.e., we set ρ := 1 + √

6/3. ��
Theorem 2 There is a (8 + 2

√
6)-approximation test for the problem of assigning

tasks to unrelated machines.

Proof We solve the linear program Ass-LP and if feasible, we formulate the program
SAss-LP given by (10a), (10b), (10c′) and (10d). We then apply Theorem 1 to obtain the
integral vector ŷ, noting that γ = 2. The result follows from choosing ρ = 1 + √

6/3
and applying Lemma 3. ��

4.2 Hardness result

Finally, we show that it is NP-hard to decide whether a task system T has an assignment
which is feasible on m unrelated machines, even with a speedup factor of 2−ε, for any
ε > 0; the proof follows the lines of the (3

2 − ε)-hardness result for makespan mini-
mization in [26]. We reduce from the 3- Dimensional Matching problem which is
known to be NP-complete [26] and is defined below.
Instance of 3- dimensional matching Given are three disjoint sets, consisting of
n elements each: A = {a1, a2, . . . , an} , B = {b1, b2, . . . , bn} and C = {c1, c2,

. . . , cn}. Also, given is a family F = {F1, F2, . . . , Fm} of m ≥ n triples such that
each triple contains exactly one element from the set A, one from B, and one from C ,
that is, |Fi ∩ A| = |Fi ∩ B| = |Fi ∩ C | = 1 for all i ∈ {1, . . . , m} .

Question Does F contain a 3-dimensional matching, i.e., a subfamily F ′ ⊆ F for
which |F ′| = n and

⋃
Fi ∈F ′ Fi = A ∪ B ∪ C ?

Let ε > 0. Consider an instance I of 3- Dimensional Matching . We create
an instance (task system) T for sporadic real-time scheduling on unrelated parallel
machines in the following way:

– Define a large constant M := 2/ε.
– Associate a machine i with each triple Fi , yielding m machines.
– Let F(ak) ⊆ F be the set of triples containing element ak ∈ A. We will slightly

abuse notation and also use F(ak) to refer to the set of machines corresponding to
the triples in F(ak). Further, let f (ak) := |F(ak)|. Note that

∑
ak∈A f (ak) = m.

– For each element bg ∈ B, create one task τg such that dτg = 1 and tτg = ∞. Further,
ci,τg = 1 if bg ∈ Fi , and ci,τg = 2 otherwise. We refer to these tasks as being type
I tasks. There will be n tasks of type I.

– For each element cl ∈ C , create one task τl such that dτl = M and tτl = ∞. Further,
ci,τl = M − 1 if cl ∈ Fi , and ci,τl = 2M otherwise. We refer to these tasks as being
type II tasks. There will be n tasks of type II.

– For each element ak ∈ A, create f (ak)−1 dummy tasks dum(k1),. . . dum(k f (ak)−1)

which have a deadline and period equal to one. Each dummy task dum(kz) has
ci,kz = 1 if i ∈ F(ak), and ci,kz = 2 otherwise. Note that in total there will be m −n
dummy tasks.

In Lemmas 4 and 5 we show that the reduction from 3- Dimensional Matching
is valid.

Lemma 4 If there exists a 3-dimensional matching for I, then there exists a feasible
assignment for T .

Proof Let F∗ ⊆ F be the triples in the 3-dimensional matching. For all triples Fi ={
ak, bg, cl

} ∈ F∗, schedule tasks τg and τl on machine i . Note that machine i can
process the tasks assigned to it. Also, all tasks corresponding to elements in B and C
have been scheduled. As the element ak is only covered by one triple in G∗, it follows
that there are f (ak)−1 machines remaining in F(ak) which are not assigned any tasks
yet. Assign the f (ak)−1 dummy tasks dum(k1), . . . dum(k f (ak)−1) to these machines.
Note that a machine in F(ak) can process exactly one dummy task corresponding to
the element ak . ��

Before giving Lemma 5, we first need to show some propositions about the elements
in the created scheduling instance T .

Proposition 2 For any ρ < 2, no task τg corresponding to an element bg ∈ B can be
scheduled on a machine i if bg /∈ Fi , even under a speedup of ρ.

Proposition 3 For any ρ < 2, no task τl corresponding to an element cl ∈ C can be
scheduled on a machine i if cl /∈ Fi , even under a speedup of ρ.

Proposition 4 For any ρ < 2, no dummy task dum(kz) corresponding to an element
ak ∈ A can be scheduled on a machine i if i /∈ F(ak), even under a speedup of ρ.

Proof We argue for Proposition 2. Propositions 3 and 4 follow similarly. The proof is
by contradiction; let a task τg corresponding to an element bg ∈ B be scheduled on a
machine i such that bg /∈ Fi . Then ci,τh = 2. At time dτg = 1 the first job of task τg

needs to be completed and hence a speedup of 2 is required. ��
Proposition 5 For any ρ < 2 − ε/2, no dummy task dum(kz) can be scheduled
together with another task on the same machine, even under a speedup of ρ.

Proof We argue by contradiction. We consider three cases:

– Suppose that two dummy tasks were scheduled on the same machine. Both dum-
mies would need to finish their first job by their first deadline which is at time 1.
Their accumulated processing requirement to the machine would be at least 2 and
hence a speedup of at least 2 would be required.

– Suppose a dummy task and a task of type I were scheduled on the same machine.
We reason analogously to the previous case.

– Suppose a dummy task and a task of type II were scheduled on the same
machine. Consider time instant M , where the dummy task should have finished
M jobs, whereas the other task should have finished its first job. The accu-
mulated processing requirement for the machine by time M would be at least
M ∗ 1 + (M − 1) = 2M − 1. Hence, a speedup of 2M−1

M = 2 − 1
M = 2 − ε/2 > ρ

would be required, by our definition of M . ��
Lemma 5 For any ρ < 2 − ε/2, if there exists a feasible assignment for T with
speedup ρ, then there exists a 3-dimensional matching for I.

Proof Proposition 5 yields that each dummy task gets its own machine, even under a
speedup of ρ < 2−ε/2. Therefore, and by Proposition 4, for all ak ∈ A, there remains
in each group F(ak) one machine available to process tasks of type I or II, even under
a speedup of ρ < 2. In total there are m − (m − n) = n machines left which do not
process a dummy task. There are 2n tasks of type I and II. Since a single machine
cannot process two tasks of the same type under a speedup less than 2, it follows that
each machine which does not process a dummy task, processes one task of type I and
one task of type II. Let ik ∈ F(ak) be the machine which does not process a dummy
task but instead one task of type I and one task of type II. By Propositions 2 and 3,
the only way for machine ik to be feasible, even under a speedup of ρ < 2, is when
it processes the tasks corresponding to bg and cl where Fik = {

ak, bg, cl
}
. It follows

that the machines ik , for k ∈ {1, . . . , m}, define a 3-dimensional matching for I. ��

Theorem 3 Let ε > 0. There is no (2 − ε)-approximation test for the problem of
assigning tasks to unrelated machines, unless P = N P.

Proof Theorem 3 follows by Lemmas 4 and 5, and by the 3- Dimensional Matching
problem being NP-complete. ��

We remark that our hardness result is different from the one by Andersson and
Tovar [3]. They show that any algorithm needs a speedup factor of at least 2 − ε for
finding a feasible partition on m related parallel machines for a given task system with
implicit deadlines in case the task system is feasible when migration is allowed.

5 Constant number of machines

Assuming that the number of machines m is bounded by a constant, in this section we
present a polynomial-time dynamic programming (DP) algorithm that gives a (1+ε)-
approximation test for any ε > 0. During phase p, p = 1, 2, . . . , n, the DP computes
a possible assignment of task τp, using assignments of the first (p − 1) tasks. In order
to obtain a DP-table of bounded size we introduce an approximation of the demand
bound function such that the contribution of each task can be derived by using only a
constant number of values.

By scaling all parameters, we assume that dmin = minτ∈T dτ = 1. Let ε > 0, and
assume without loss of generality that ε < 1/2. Let L be the minimum integer which
satisfies 1 ≤ (1 + ε)L−1ε2. We define the function dbf ∗ as

dbf ∗
i (τ, s) :=

{⌊
s+tτ −dτ

tτ

⌋
ci,τ if s < (1 + ε)Ldτ ,

ci,τ
tτ

s otherwise.

Given a task assignment T of the tasks in T to the machines, we define

dbf ∗
T ,i (s) :=

∑

τ∈Ti

dbf ∗
i (τ, s) ∀s > 0.

Further, to have clean notation, we write dbf ∗
i (s) instead of dbf ∗

T ,i (s) in case the
assignment T is clear from the context. The key observation is that for computing the
function dbf ∗

i (τ, s) for a fixed task τ , it suffices to know the utilization of the task
τ and the values of the demand bound function dbfi (τ, s) for s ∈ [

dτ , (1 + ε)Ldτ

)
.

Exploiting the properties of the functions dbfT ,i (s) and dbf ∗
T ,i (s) yields that dbf ∗

T ,i
is a (1 + ε)-approximation of the ‘real’ demand bound function dbfT ,i .

Lemma 6 Given an assignment T and a constant ε < 1/2. Then, for all machines i ,

(i) if dbf ∗
T ,i ((1 + ε)k) ≤ α(1 + ε)k for all k ∈ N≥0, then dbfT ,i (s) ≤ (1 + ε)2αs

for all s ≥ 0;
(ii) if dbfT ,i (r) ≤ r for all r ≥ 0, then dbf ∗

T ,i (s) ≤ (1 + ε)s for all s ≥ 0.

Proof For the first claim, we first show that a slightly stronger statement holds for all
powers of 1 + ε. We show that if for all k ∈ N≥0 it holds that dbf ∗

T ,i ((1 + ε)k) ≤
α(1 + ε)k , then for all k ∈ N≥0 it holds that

dbfT ,i

(
(1 + ε)k

)
≤ (1 + ε)α(1 + ε)k . (13)

Subsequently, we show that then for all s it holds that dbfT ,i (s) ≤ (1 + ε)2αs.
Inequality (13) trivially holds for all k with (1 + ε)k ≤ dmin, as then dbfi (τ, (1 +

ε)k) = 0 for all tasks τ ∈ T . Assume that (13) holds for all k′ ∈ N≥0 with k′ < k, we
show that it then also holds for k. Let s := (1+ε)k . Consider some partition of the tasks
T = {T1, . . . , Tm}. Let T early

i := {τ ∈ Ti |(1 + ε)Ldτ < s} and T late
i := Ti\T early

i .
By definition of dbf ∗

T ,i it follows that

dbfT ,i (s) ≤
∑

τ∈Ti

dbf ∗
i (τ, s) +

∑

τ∈T early
i

ci,τ = dbf ∗
T ,i (s) +

∑

τ∈T early
i

ci,τ . (14)

Further, since for τ ∈ T early
i it holds that dτ < s

(1+ε)L ,

∑

τ∈T early
i

ci,τ ≤
∑

τ∈T early
i

⌊ s
(1+ε)L + tτ − dτ

tτ

⌋

ci,τ

=
∑

τ∈T early
i

dbfi

(

τ,
s

(1 + ε)L

)

≤ dbfT ,i

(
s

(1 + ε)L

)

(∗)≤ αs

(1 + ε)L−1 ≤ ε2αs ≤ εαs. (15)

The inequality at (∗) is due to the induction hypothesis; we assumed Inequality (13)

to be correct for all k′ < k and
(

s
(1+ε)L

)
= (1 + ε)k′

for k′ = k − L . (Note that

although this was only shown for k′ ∈ N≥0, it holds also if k′ = k − L < 0, since
then (1 + ε)k′ ≤ 1 = dmin.) The penultimate inequality follows from 1

(1+ε)L−1 < ε2.

Inequalities (14) and (15) imply that dbfT ,i (s) ≤ dbf ∗
T ,i (s) + εαs ≤ (1 + ε)αs. For

all values of s which are not powers of 1 + ε, we observe that the function dbfT ,i (s)
is non-decreasing and thus if Inequality (13) holds for all k ∈ N≥0, then (i) holds for
all s. That is, for values s that are not powers of 1 + ε we need an additional factor of
1 + ε.

For the second claim no induction is necessary and we calculate that

dbf ∗
T ,i (s) <

∑

τ∈T late
i

dbfi (τ, s) +
∑

τ∈T early
i

s − dτ + s
(1+ε)L

tτ
ci,τ

≤
∑

τ∈T late
i

dbfi (τ, s) +
∑

τ∈T early
i

(⌊
s − dτ + tτ

tτ

⌋

+ s

(1 + ε)L tτ

)

ci,τ

≤ dbfT ,i (s) +
∑

τ∈T early
i

(ε2ui,τ)s

= dbfT ,i (s) + ε2dbf ∗
T early

i ,i
(s)

≤ dbfT ,i (s) + ε2dbf ∗
T ,i (s).

Therefore, (1 − ε2)dbf ∗
T ,i (s) ≤ dbfT ,i (s), i.e., dbf ∗

T ,i (s) ≤ (1 + ε)dbfT ,i (s), for
any ε < 1/2. ��

Note that, in contrast to other approximations of the demand bound function consid-
ered in the literature (e.g., [1]), in Lemma 6 we do not use an analysis task by task, and
we do not bound the ratio dbf (τ, s)/dbf ∗(τ, s). In fact, the latter can be unbounded:
consider for example a task τ with cτ = 1, dτ = 1, and pτ = M for a very large
value M , then dbf (τ, s) ≥ 1 for all s ≥ 1 whereas dbf ∗(τ, (1 + ε)L) = (1 + ε)L/M .

Observe that Lemma 6 implies that at the cost of a (1 + ε)2-speedup it suffices to
check whether the condition dbf ∗

T ,i (s) ≤ s is (approximately) satisfied at powers of
1 + ε. Therefore, the DP may characterize each task τ only by its utilization and the
constantly many values dbf ∗

i (τ, (1 + ε)k) (namely those values for integers k such
that dτ ≤ (1 + ε)k < (1 + ε)Ldτ , for each machine i).

For each task τ , each machine i and all � ∈ N≥0, we introduce a vector v(i, τ) by
defining position

v(i, τ)� := dbf ∗
i (τ, (1 + ε)�)

(1 + ε)�
.

Recall that for any vector a the infinity norm ‖a‖∞ = maxi {ai }. The following
proposition follows by definition.

Proposition 6 Consider an assignment T . For all machines i ∈ M, it holds that∥
∥
∥
∑

τ∈Ti
v(i, τ)

∥
∥
∥∞ ≤ α if and only if dbf ∗

T ,i ((1 + ε)�) ≤ α(1 + ε)�, for all � ∈ N≥0.

We present a dynamic programming algorithm which either (1) asserts that there
is no feasible assignment of the tasks to the machines by showing that there is no

assignment T of tasks to machines such that we have
∥
∥
∥
∑

τ∈Ti
v(i, τ)

∥
∥
∥∞ ≤ 1 + ε for

each machine i , or (2) finds an assignment T such that
∥
∥
∥
∑

τ∈Ti
v(i, τ)

∥
∥
∥∞ ≤ 1+ O(ε)

for each machine i . In the latter case, Lemma 6 and the above proposition imply
an approximation test for the problem of assigning tasks to a constant number of
unrelated machines. The test either concludes that the task system is not feasible
(without speedup) or provides an assignment which is feasible in case the machines
have a speedup factor of 1 + O(ε).

Assume without loss of generality that the tasks τ1, . . . , τn are ordered such that
dτp ≤ dτp+1 for each p. We partition the tasks into groups Gk := {τ |(1 + ε)k ≤ dτ <

(1 + ε)k+1} for each k ∈ N≥0. The proposed DP works in phases; one phase for each
task. The key idea is that when trying to assign task τ ∈ Gk , the DP needs only a
constant number of values from the assignment of the previously considered tasks.

Define L(k) := min{k, L} (such that k − L(k) ≥ 0). For all tasks having a deadline
at most a factor (1+ε)L smaller than dτp , the DP needs to know how much the vectors
of tasks from each group Gk′ (with k − L(k) < k′ ≤ k) contribute towards dimension
� on machine i , for k ≤ � ≤ k + L . For the same groups Gk′ the DP needs to know
the summed utilization per machine i over group Gk′ . For the other groups Gk′ with
k′ ≤ k − L(k) for each machine i , only the aggregated utilization over all groups is
needed. Formally we need, for all i ,

– the sum
∑

τ∈Ti ∩
(⋃k−L(k)

k′=0
Gk′

) ui,τ ,

– the sum
∑

τ∈Ti ∩Gk′ ui,τ , for all k′ s.t. k − L(k) < k′ ≤ k, and

– the sum
∑

τ∈Ti ∩Gk′ v(i, τ)�, for all � s.t. k ≤ � ≤ k + L and all k′ s.t. � − L(�) <

k′ ≤ k.

Ideally, we would like the DP to store all possible combinations of the above quantities
that can result from assigning the tasks of previous iterations. Then, the DP could
compute the values for the next iteration by taking each combination of values from
the last iteration and additionally schedule task τ to one of the machines. Unfortunately,
the number of possible combinations of the above values is not polynomially bounded,
as already the input values (which then imply the utilization, etc.) might be in an
exponential range. In order to bound them, we round entries of the vectors v(i, τ). The
DP then performs the described procedure with the rounded vectors. This will result
in a polynomial-time procedure.

Consider a task τ ∈ Gk, k ∈ N≥0. For all i and τ , define v′(i, τ)� := ε
n

⌊ n
ε

v(i, τ)�
⌋

for each � ≤ k + L , and v′(i, τ)� := u′
i,τ := ε

n

⌊ n
ε

ui,τ
⌋

for each � > k + L . The
following lemma bounds the rounding error.

Lemma 7 Let i be a machine and Ti be a set of tasks. For all � ∈ N≥0, it holds that∑
τ∈Ti

v′(i, τ)� ≤ ∑
τ∈Ti

v(i, τ)� ≤ ∑
τ∈Ti

v′(i, τ)� + ε.

Proof Consider a task τ ∈ Ti . Define k(τ) such that τ ∈ Gk(τ). We show for each
τ ∈ Ti and the corresponding k(τ) that v′(i, τ)� ≤ v(i, τ)� ≤ v′(i, τ)� + ε/n. The
statement trivially follows. The case where � ≤ k(τ) + L follows trivially from
the relation
x� ≤ x <
x� + 1 which holds for any x. Therefore, consider the

case � > k(τ) + L . Since τ ∈ Gk(τ), it follows that dτ < (1 + ε)k(τ)+1. Hence,
dbf ∗

i (τ, (1 + ε)�) = ci,τ
tτ

(1 + ε)� = ui,τ (1 + ε)� which yields v(i, τ)� = ui,τ . The
result for the case � > k(τ) + L now also follows from
x� ≤ x <
x� + 1. ��

Note that each rounded vector v′(i, τ) can be described with only constantly many
pieces of information. When working with the rounded vectors, for the quantities men-
tioned above, there are only a polynomial number of combinations (assuming that m is
a constant). In particular, the dynamic programming table will be of polynomial size.
Formally, the dynamic programming table consists of entries of the form (p, z, w, c)
where

– p ∈ {0, . . . , n} denotes the phase of the DP. In phase p, task τp is being assigned
to a machine. Let k be an integer such that τp ∈ Gk ;

– in phase p, for each machine i , the value z(p)
i is of the form � ε

n for some integer �,
denoting the rounded aggregated utilization for machine i due to the tasks having
a deadline at least a factor of (1 + ε)L smaller with respect to the deadline of
task τp;

– in phase p, for each machine i and each k′ with k − L(k) < k′ ≤ k, the value w
(p)

i,k′
is of the form � ε

n for some integer �, denoting the rounded utilization of tasks in
Gk′ ∩ Ti ;

– in phase p, for each triple (i, k′, k′′) ∈ C p with C p = {(i, k′, k′′) : 1 ≤ i ≤ m; k ≤
k′′ < k + L and k′′ − L(k′′) < k′ ≤ k}, the value c(p)

i,k′,k′′ is of the form � ε
n for

some integer �, denoting the quantity
∑

τ∈Ti ∩Gk′ v′(i, τ)k′′ , expressing how much
the vectors of the tasks in Gk′ on machine i contribute towards dimension k′′.

We require the following set of conditions to be satisfied for a DP-cell (p, z, w, c)
to exist; for each machine i ∈ M and all k′′ ∈ {k, . . . , k + L}

zi +
k′′−L(k′′)

∑

k′=k−L(k)+1

wi,k′ +
k∑

k′=k′′−L(k′′)+1

ci,k′,k′′ ≤ 1 + ε. (16)

This condition implies that, for all parameters, zi , wi,k′ , ci,k′,k′′ ≤ 1 + ε.

Proposition 7 The number of DP-cells is bounded by n((1 + ε)n/ε)2mL2
.

Proof The values zi , wi,k′ and ci,k′,k′′ are all stored with accuracy ε
n and hence each of

those can take (1 + ε)n/ε many different realizations. Further, i can take m different
values whereas k′ and k′′ can take L different values if the DP is in a certain phase p.
Further, there are at most n phases for the DP. It follows that the number of cells of
the DP table is no more than

n ·
(

(1 + ε)n

ε

)m

·
(

(1 + ε)n

ε

)mL

·
(

(1 + ε)n

ε

)mL2

≤ n

(
(1 + ε)n

ε

)2mL2

��

Each entry (p, z, w, c) of the DP-table either stores ‘YES’ or ‘NO’ depending on
whether or not there is an assignment of the tasks τ1, . . . , τp to the machines which
yields the quantities given by the vectors z, w, c.

We proceed by describing how to fill the DP-table. First, initialize the table by
assigning a ‘YES’-entry to (0, 0, 0, 0) and a ‘NO’-entry to any other entry with p =
0. Assume that for some p, all entries of the form (p − 1, z(p−1), w(p−1), c(p−1))

have been computed. The DP-table is then iteratively extended to phase p. Phase
p considers each combination of assigning task τp to some machine i and a DP-
cell (p − 1, z(p−1), w(p−1), c(p−1)) with a ‘YES’-entry. Intuitively, the DP computes
which values for z(p), w(p), and c(p) are obtained if it takes the task assignment encoded
in the DP-cell (p − 1, z(p−1), w(p−1), c(p−1)) and additionally schedules task τp to
machine i .

Let tasks τp−1 and τp be in group Gh and Gk , respectively. Almost all entries of
the vectors are equal and hence we only list the values which differ with respect to
the entries from phase p − 1. If h = k and task τp is assigned to machine i , then

w
(p)
i,k = w

(p−1)
i,k + u′

i,τp
, and c(p)

i,k,k′′ = c(p−1)

i,k,k′′ + v′(i, τp)k′′ for all k′′ ∈ {k, . . . , k + L}.
If h
= k, w.l.o.g. we assume that h = k − 1 (e.g., by creating dummy tasks of zero

processing requirement to fill in-between groups that otherwise would be empty and
thus, non-existent). Then, z(p)

g = z(p−1)
g + w

(p−1)

g,k−L(k) for all machines g ∈ M ; as we
have moved up one group, tasks from group Gk−L(k) now have their deadline at least a
factor (1+ε)L away from dτp and their utilizations are not stored separately anymore,
but in a aggregated way. For the tasks in groups Gk′ such that k − L(k) < k′ < k and
all machines g ∈ M we still store the utilizations per group and thus w

(p)

g,k′ = w
(p−1)

g,k′ .
For group Gk we also store the utilization for the machine i that it was assigned to, so
w

(p)
i,k = u′

i,τp
and w

(p)
g,k = 0 for all machines g
= i . Since τp is assigned to machine

i , c(p)

i,k,k′′ = v′(i, τp)k′′ for all k′′ : k ≤ k′′ ≤ k + L; and for all machines g
= i ,

c(p)

g,k,k′′ = 0 for all k′′ : k ≤ k′′ ≤ k + L . Finally, c(p)

g,k′,k′′ = c(p−1)

g,k′,k′′ for all machines

g ∈ M , all k′′ : k ≤ k′′ ≤ k + L and all k′ : k′′ − L(k′′) < k′ < k.
Hereafter, the DP checks whether the computed values z(p), w(p) and c(p) sat-

isfy the condition given in (16). If this is the case, then the corresponding DP-
cell (p, z(p), w(p), c(p)) is filled with a ‘YES’-entry and we say that this DP-cell
extends the DP-cell (p − 1, z(p−1), w(p−1), c(p−1)). In case there does not exist
a DP-cell (p − 1, z(p−1), w(p−1), c(p−1)) which can be extended to the DP-cell
(p, z(p), w(p), c(p)), the latter DP-cell is filled with a ‘NO’-entry.

The DP-table is filled inductively, phase by phase, until each cell in the DP-table
is filled. In the next lemma we show for any machine i the equivalence between the

inequalities
∥
∥
∥
∑

τ∈Ti
v′(i, τ)

∥
∥
∥∞ ≤ 1 + ε on the one hand, and condition (16) on the

other hand.

Lemma 8 For phase p, if there exists a DP-cell of the form (p, z(p), w(p), c(p)) with
a ‘YES’-entry, then there exists a task assignment T of the first p tasks to the machines,

such that for each i ∈ M it holds that
∥
∥
∥
∑

τ∈Ti
v′(i, τ)

∥
∥
∥∞ ≤ 1 + ε.

Proof Consider some phase p and assume that the statement is correct for all phases
p′ < p. Let k be such that τp ∈ Gk . As no first job of any task in Gk has its
deadline before (1 + ε)k it follows by induction that for all � : 0 ≤ � < k it holds
that

∑
τ∈Ti

v′(i, τ)� ≤ 1 + ε. Next, we show the statement for phase p and the

corresponding dimension k. Consider DP-cell of the form (p, z(p), w(p), c(p)) with a
‘YES’-entry. We denote by (16)(p) the corresponding inequality given in (16) at phase
p of the DP, that is, when task τp is being assigned to a machine. For all machines i
it follows that,

∑

τ∈Ti

v′(i, τ)k =
k−L(k)
∑

k′=0

∑

τ∈Ti ∩Gk′
u′

i,τ +
k∑

k′=k−L(k)+1

∑

τ∈Ti ∩Gk′
v′(i, τ)k

= z(p)
i +

k∑

k′=k−L(k)+1

c(p)

i,k′,k
(16)(p)

≤ 1 + ε.

The last inequality follows by setting the parameter k′′ of (16)(p) equal to k. Next,
consider the dimensions � : k < � ≤ k+L . Note that dτp < (1+ε)k+1. Consequently,
every task in ∪k

k′=0Gk′ has its first deadline before (1 + ε)k+1, that is, being in phase
p of the DP where τp ∈ Gk it follows that Gk′ = ∅ for all k′ > k. This insight is used
in the first equality below.

∑

τ∈Ti

v′(i, τ)� =
�−L(�)
∑

k′=0

∑

τ∈Ti ∩Gk′
u′

i,τ +
k∑

k′=�−L(�)+1

∑

τ∈Ti ∩Gk′
v′(i, τ)�

=
⎛

⎝z(p)
i +

�−L(�)
∑

k′=k−L(k)+1

w
(p)

i,k′

⎞

⎠ +
k∑

k′=�−L(�)+1

c(p)

i,k′,�
(16)(p)

≤ 1 + ε.

The last inequality follows by setting the parameter k′′ of (16)(p) equal to �. Finally,
the analysis for any dimension � > k + L is equal to that of the dimension � = k + L
as the contribution of each task to any dimension � ≥ k + L will be approximated by

its utilization. Thus,
∥
∥
∥
∑

τ∈Ti
v′(i, τ)

∥
∥
∥∞ ≤ 1 + ε and the statement follows. ��

Lemma 9 For phase p, there exists a DP-cell of the form (p, z(p), w(p), c(p)) with a
‘YES’-entry, if there exists a task assignment T of the first p tasks to the machines,

such that for each i ∈ M it holds that
∥
∥
∥
∑

τ∈Ti
v′(i, τ)

∥
∥
∥∞ ≤ 1 + ε.

Proof Consider the assignment T (p) where the first p tasks are assigned to the

machines such that
∥
∥
∥
∑

τ∈T (p)
i

v′(i, τ)

∥
∥
∥

∞
≤ 1+ε for all machines i ∈ M . Let τp ∈ Gk .

Define the following values for each machine i:

z(p)
i :=

k−L(k)
∑

k′=0

∑

τ∈T (p)
i ∩Gk′

u′
i,τ ,

w
(p)

i,k′ :=
∑

τ∈T (p)
i ∩Gk′

u′
i,τ for k′ ∈ {k − L(k), . . . , k}, and

c(p)

i,k′,k′′ :=
∑

τ∈T (p)
i ∩Gk′

v′(i, τ)k′′ for k′′ ∈ {k, . . . , k + L},

and for k′ ∈ {k′′ − L(k′′), . . . , k}.

First we need to show that the DP-cell (p, z(p), w(p), c(p)) exists, that is, we need to
check whether the inequality (16)(p) holds. From the lemma statement it is known that∑

τ∈Ti
v′(i, τ)� ≤ 1 + ε, for all �. Thus, in particular, this inequality also holds for all

dimensions k′′ ∈ {k, . . . , k + L}. Therefore, for each machine i and each dimension
k′′ ∈ {k, . . . , k + L} it holds that

z(p)
i +

k′′−L(k′′)
∑

k′=k−L(k)+1

w
(p)

i,k′ +
k∑

k′=k′′−L(k′′)+1

c(p)

i,k′,k′′

=
k′′−L(k′′)

∑

k′=0

∑

τ∈Gk′
v′(i, τ)k′′ +

k∑

k′=k′′−L(k′′)+1

c(p)

i,k′,k′′

=
k′′−L(k′′)

∑

k′=0

∑

τ∈Gk′
v′(i, τ)k′′ +

k∑

k′=k′′−L(k′′)+1

∑

τ∈Gk′
v′(i, τ)k′′

=
∑

τ∈T (p)
i

v′(i, τ)k′′ ≤ 1 + ε.

Consequently, the DP-cell (p, z(p), w(p), c(p)) exists. The DP-cell (p, z(p), w(p), c(p))

trivially extends the DP-cell (p − 1, z(p−1), w(p−1), c(p−1)) by assigning task τp to

machine i if τp ∈ T (p)
i . By induction it follows that the DP-cell (p, z(p), w(p), c(p))

contains a ‘YES’-entry, for all p ∈ {0, 1, . . . , n}. ��
Combining Lemmas 6, 7, 8 and 9, and Proposition 6 yields a (1+7ε)-approximation

test, for any ε and a constant number of machines. The claim on the running time
follows from Proposition 7. If for a given ε > 0 we run the above procedure with
ε′ := ε/7, rather than with ε, we obtain a (1 + ε)-approximation test.

Theorem 4 For a constant number of machines and for any ε > 0 there exists a
(1 + ε)-approximation test, that runs in time polynomial in the number of tasks.

Proof We show that for a constant number of unrelated machines, the algorithm given
above either concludes that the task system is infeasible, or returns an assignment of

tasks to machines that is feasible with a speedup factor of 1 + 7ε. The running time is
polynomial in n, given that m and ε are constants. First, we redefine ε = min{ε, 1/2}.

Suppose that there is a DP-cell of the form (n, z, w, c) containing a ‘YES’-entry.
Due to Lemma 8 there is an assignment T of all tasks to the machines such that∥
∥
∥
∑

τ∈Ti
v′(i, τ)

∥
∥
∥∞ ≤ 1 + ε, for each machine i ∈ M . By Lemma 7 this implies that

∥
∥
∥
∑

τ∈Ti
v(i, τ)

∥
∥
∥∞ ≤ 1+2ε. Due to Proposition 6 this implies that dbf ∗

T ,i ((1+ε)k) ≤
(1 + 2ε)(1 + ε)k for each k ∈ N.

Finally, Lemma 6 implies that the computed task assignment is feasible if the
machines run with speed (1 + ε)2(1 + 2ε) ≤ 1 + 7ε (as ε < 1/2).

On the other hand, if all DP-cells of the form (n, z, w, c) have a ‘NO’-entry,
then, by Lemma 9, for any task assignment T there must be a machine i

with
∥
∥
∥
∑

τ∈Ti
v′(i, τ)

∥
∥
∥∞ > 1 + ε. By Lemma 7 this yields then that also

∥
∥
∥
∑

τ∈Ti
v(i, τ)

∥
∥
∥∞ > 1 + ε. Proposition 6 yields that for this machine i there exists a

time instant s which is a power of (1+ ε) such that dbf ∗
T ,i (s) > (1+ ε)s. Finally, (the

negation of) Lemma 6 yields that there is a time instant r for which dbfT ,i (r) > r .
Since, for any partition T , there exist a machine i and a time instant r such that T
violates the feasibility condition, it follows that the task system T is infeasible if the
machines run at unit speed.

The claim that the running time is polynomial in n for given constant m and ε follows
from Proposition 7 and the fact that each entry of the table can be decided upon in
polynomial time. Herewith, note that L = O(log(1+ε)(1/ε2)), which is constant if ε

is constant. ��

6 Conclusion

In this paper we presented the first results for assigning sporadic tasks with arbitrary
deadlines to unrelated parallel processors. Through the development of a new LP
rounding procedure and approximations of the demand bound function we found a
8+2

√
6 ≈ 12.9-approximate feasibility test for an arbitrary number of machines. We

hope that future research might bring the approximation ratio down and close the gap
between 12.9 and our lower bound of 2. One possible tool might be configuration-
LPs which are often stronger than assignment-LPs like the one that we use here (see
e.g., [4,8,32]). Another interesting direction would be to obtain better approximations
for the case that the processors are unrelated but there are only a few types of processors
(e.g., CPUs and GPUs), as done in e.g., [29,30,33].

Our rounding procedure is very general and can not only be applied to the problem of
assigning tasks to machines but for any assignment problem which allows for a sparse
linear program. It would be interesting to see other new applications for it. Additionally,
it would be interesting if a better rounding procedure can be given for large values of γ .

For a constant number of machines we give a polynomial-time approximation
scheme. While for scheduling jobs on unrelated machines, a PTAS is relatively easy
to obtain once one has the tools from Lenstra et al. [26] at hand, for assigning sporadic
tasks, much more sophisticated machinery was required.

References

1. Albers, K., Slomka, F.: An event stream driven approximation for the analysis of real-time systems.
In: Proceedings of 16th Euromicro Conference on Real-Time Systems, pp. 187–195 (2004)

2. Anand, S., Garg, N., Megow, N.: Meeting deadlines: how much speed suffices? In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) Proceedings of 38th International Colloquium on Automata, Languages
and Programming, Volume 6755 of Lecture Notes in Computer Science, pp. 232–243 (2011)

3. Andersson, B., Tovar, E.: Competitive analysis of partitioned scheduling on uniform multiprocessors.
In: Proceedings of 21st International Parallel and Distributed Processing Symposium, pp. 1–8. IEEE
(2007)

4. Asadpour, A., Feige, U., Saberi, A.: Santa Claus meets hypergraph matchings. In: Approximation,
Randomization and Combinatorial Optimization: Algorithms and Techniques, Volume 5171 of Lecture
Notes in Computer Science, pp. 10–20. Springer, Berlin (2008)

5. Awerbuch, B., Azar, Y., Grove, E.F., Kao, M.-Y., Krishnan, P., Vitter, J.S.: Load balancing in the L p
norm. In: Proceedings of 36th Symposium on Foundations of Computer Science, pp. 383–391. IEEE
(1995)

6. Azar, Y., Epstein, A.: Convex programming for scheduling unrelated machines. In: Proceedings of
37th Symposium on Theory of Computing, pp. 331–337. ACM (2005)

7. Baker, T.P., Baruah, S.K.: Schedulability analysis of multiprocessor sporadic task systems. In: Hand-
book of Real-Time and Embedded Systems, chapter 3. CRC Press (2007)

8. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: Proceedings of 38th Symposium on Theory
of Computing, pp. 31–40. ACM, New York, NY, USA (2006)

9. Baruah, S., Fisher, N.: The partitioned multiprocessor scheduling of sporadic task systems. In: Pro-
ceedings of 26th IEEE Real-Time Systems Symposium, pp. 321–329. IEEE (2005)

10. Baruah, S., Mok, A., Rosier, L.: Preemptively scheduling hard-real-time sporadic tasks on one proces-
sor. In: Proceedings of 11th IEEE Real-Time Systems Symposium, pp. 182–190. IEEE (1990)

11. Baruah, S.K., Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S.: Improved multiprocessor global
schedulability analysis. Real-Time Syst. 46(1), 3–24 (2010)

12. Baruah, S.K., Pruhs, K.: Open problems in real-time scheduling. J. Sched. 13, 577–582 (2010)
13. Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S.: A constant-approximate feasibility test for multi-

processor real-time scheduling. Algorithmica 62(3–4), 1034–1049 (2012)
14. Chakraborty, S., Künzli, S., Thiele, L.: Approximate schedulability analysis. In: Proceedings of 23rd

IEEE Real-Time Systems Symposium, pp. 159–168. IEEE (2002)
15. Chen, J.-J., Chakraborty, S.: Resource augmentation bounds for approximate demand bound functions.

In: Proceedings of 32nd IEEE Real-Time Systems Symposium, pp. 272–281. IEEE (2011)
16. Ebenlendr, T., Krčál, M., Sgall, J.: Graph balancing: a special case of scheduling unrelated parallel

machines. In: Proceedings of 19th Symposium on Discrete Algorithms, pp. 483–490 (2008)
17. Eisenbrand, F., Rothvoß, T.: A PTAS for static priority real-time scheduling with resource augmenta-

tion. In: Aceto, L., Damgård, I., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) Proceed-
ings of 35th International Colloquium on Automata, Languages and Programming. Lecture Notes in
Computer Science, vol. 5125, pp. 246–257. Springer, Berlin (2008)

18. Eisenbrand, F., Rothvoß, T.: EDF-schedulability of synchronous periodic task systems is coNP-hard.
In: Proceedings of 21st Symposium on Discrete Algorithms, pp. 1029–1034 (2010)

19. Fisher, N., Baruah, S., Baker, T.P.: The partitioned scheduling of sporadic tasks according to static-
priorities. In: Proceedings of 18th Euromicro Conference on Real-Time Systems, pp. 118–127 (2006)

20. Jansen, K., Porkolab, L.: Improved approximation schemes for scheduling unrelated parallel machines.
In: Proceedings of 31st Symposium on Theory of Computing, pp. 408–417. ACM (1999)

21. Karloff, H.: Linear Programming. Birkhäuser, Basel (1991)
22. Karp, R.M.: Reducibility among combinatorial problems. Complex. Comput. Comput. 40, 85–103

(1972)
23. Karp, R.M., Leighton, F.T., Rivest, R.L., Thompson, C.D., Vazirani, U.V., Vazirani, V.V.: Global wire

routing in two-dimensional arrays. Algorithmica 2, 113–129 (1987)
24. Anil Kumar, V.S., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: Approximation algorithms for

scheduling on multiple machines. In: Proceedings of 46th Symposium on Foundations of Computer
Science, pp. 254–263. IEEE (2005)

25. Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization. Cambridge University
Press, Cambridge, MA (2011)

26. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling unrelated parallel
machines. Math. Program. 46(1–3), 259–271 (1990)

27. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard real-time environment.
J. ACM 20, 46–61 (1973)

28. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via resource augmenta-
tion. Algorithmica 32, 163–200 (2002)

29. Raravi, G., Andersson, B., Bletsas, K.: Assigning real-time tasks on heterogeneous multiprocessors
with two unrelated types of processors. Real-Time Syst. 49, 29–72 (2013)

30. Raravi, G., Nélis, V.: A PTAS for assigning sporadic tasks on two-type heterogeneous multiprocessors.
In: Proceedings of 33rd IEEE Real-Time Systems Symposium, pp. 117–126. IEEE (2012)

31. Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assignment problem. Math.
Program. 62(1–3), 461–474 (1993)

32. Svensson, O.: Santa Claus schedules jobs on unrelated machines. J. Comput. 41(5), 1318–1341 (2012)
33. Wiese, A., Bonifaci, V., Baruah, S.: Partitioned EDF scheduling on a few types of unrelated multi-

processors. Real-Time Syst. 49(2), 219–238 (2013)
34. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University

Press, Cambridge, MA (2011)

	Assigning sporadic tasks to unrelated machines
	Abstract
	1 Introduction
	2 Preliminaries
	3 Rounding procedure
	3.1 The rounding procedure
	3.2 Generalized assignment problem

	4 Arbitrary number of machines
	4.1 Constant-factor approximation test
	4.2 Hardness result

	5 Constant number of machines
	6 Conclusion
	References

