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Abstract We investigate geometric features of the unit ball corresponding to
the sum of the nuclear norm of a matrix and the l1 norm of its entries — a
common penalty function encouraging joint low rank and high sparsity. As a
byproduct of this effort, we develop a calculus (or algebra) of faces for general
convex functions, yielding a simple and unified approach for deriving inequal-
ities balancing the various features of the optimization problem at hand, at
the extreme points of the solution set.
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1 Introduction

Recovery of a structured signal from a small number of linear measurements
has been a hot topic of research in recent years. Notable examples include
recovery of sparse vectors [6, 7, 13], low-rank matrices [5, 21], and a sum of
sparse and low-rank matrices [4, 8], to name a few. An overarching theme in
this area is to replace a difficult nonconvex objective by a convex surrogate,
which usually arises as the convex envelope of the objective on a neighborhood
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of the origin. For example, one may replace the rank of a vector x by the l1-
norm ‖x‖1 and the rank of a matrix X by the nuclear norm ‖X‖∗. In practice,
however, it is often the case that the signal that we are attempting to recover is
simultaneously structured. In this case, it is common practice to simply use the
sum of the convex surrogates to enforce the joint structure. We note in passing
that from a compressed sensing point of view, this strategy may be lacking.
Oymak et al. [18] argue that sums of norms (or more general combinations)
do not appear to give results stronger than individual norms; we return to this
point in Section 4. Nevertheless, this is effective and common in practice.

To ground the discussion, suppose that we are interested in finding a matrix
satisfying a linear system that simultaneously has low rank and is sparse. This
situation arises in a vast number of applications. See for example sparse phase
retrieval [3,26] and cluster detection [1,22], and references therein. As alluded
to above, it is popular to then consider the joint norm

‖X‖1,∗ := ‖X‖1 + θ‖X‖∗,

where ‖X‖1 is the l1-norm of the entries of X, and the parameter θ > 0
balances the trade off between sparsity and rank. A proximal-point based
algorithm for optimizing this norm on an affine subspace has been proposed in
[11]. In contrast to previous research on recovery of jointly structured models,
our focus is not set in the context of compressed sensing. Rather we begin by
asking a more basic convex analytic question:

How does the facial structure of each norm ‖ · ‖1 and ‖ · ‖∗ individually
influence the facial structure of the unit ball B1,∗ := {X : ‖X‖1,∗ ≤ 1}?

To adequately address this question it seems that one needs to investigate
the trade-off between rank and sparsity — a topic that to the best of our
knowledge has not been explored nearly enough. We hope that this short note
will at least begin to rectify this discrepancy. For the sake of readers’ intuition,
the unit balls corresponding to the three norms mentioned above, restricted
to 2× 2 symmetric matrices, are illustrated below.

(a) ‖ · ‖1-ball (b) ‖ · ‖∗-ball (c) ‖ · ‖1,∗-ball
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To summarize the main results, we will show that any extreme point X of
the ball B1,∗ satisfies the inequality

r(r + 1)

2
− |I| ≤ 1, (1.1)

where r and |I| are the rank and the number of zero entries of X, respectively.
Moreover, surprisingly, we will see that all the vertices of the ball B1,∗ — points
where the normal cone has nonempty interior — are simply the extreme points
of {X : ‖X‖1 ≤ 1

2}, that is no “new” vertices are created when ‖ · ‖1 and ‖ · ‖∗
are summed. The latter depends on an interesting observation made precise in
Theorem 3.7: the set of matrices with a prescribed rank and sparsity pattern
is rarely small; such a set contains a naturally occurring smooth submanifold
whose size depends only on the connectivity of the adjacency graph.

These results, in turn, have immediate implications on problems of low
rank sparse recovery. Namely, when minimizing the norm ‖X‖1 + θ‖X‖∗ over
matrices satisfying a linear system A(X) = b, any extreme point X of the
solution set satisfies the inequality

r(r + 1)

2
− |I| ≤ 1 + d, (1.2)

where d is the dimension of the range of A (i.e. the number of linear measure-
ments). Moreover we prove that the problem of minimizing a linear functional
〈V,X〉 subject to ‖X‖1 + θ‖X‖∗ ≤ 1 will recover a sparse rank-one matrix for
a positive measure subset of matrices V , a key result for the work of Doan and
Vavasis [12] and Doan, Toh and Vavasis [11], who use the joint norm ‖ · ‖1,∗
to find hidden rank-one blocks inside large matrices.

Those well-versed in the theory of semi-definite programming will see that
equations (1.1) and (1.2) are reminiscent of the foundational results of [2,19],
where the authors derive bounds on the rank of extreme points of the feasible
regions of SDP’s in terms of the number of constraints, and the more general
theory for conic linear programs [20]. The basic ingredient for such results is a
theorem of Dubins [25, Page 116] stating that a set is a face of an intersection
of two convex sets if and only if it is an intersection of two faces. In the current
manuscript, we take this idea further by developing a calculus (or algebra) of
faces for general convex functions. Indeed, one of the major successes of modern
convex analysis is that sets and functions are put on an equal footing. Our
analysis of the facial structure of the rank sparsity ball nicely illustrates how
such a calculus can generally yield a simple and transparent way of obtaining
inequalities (analogous to (1.1) and (1.2)) balancing the various features of
the optimization problem at hand, at the extreme points of the solution set.
In particular, this technique easily adapts to the sum of many other “basic”
norms — a common feature of joint structure recovery.

The outline of the manuscript is as follows. In Section 2, we recall some
basic tools of convex analysis and record a facial calculus. In Section 3, we
study the extreme points and the vertices of the rank sparsity ball, in part
using results of the previous section. In Section 4, we prove that the vectors
exposing rank one matrices with a fixed sparsity pattern have nonzero measure.
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2 Faces of convex functions

2.1 Notation and preliminaries

We begin by establishing some notation and recalling basic tools of convex
analysis. We will in large part follow the notation of [23]. Throughout, the
symbol E will denote a Euclidean space (finite-dimensional real inner product
space) with norm ‖ · ‖ and inner-product 〈·, ·〉. The closed ball of radius ε > 0
around a point x̄ will be denoted by Bε(x̄), while the closed unit ball will
be denoted by B. The interior, boundary, and closure of a set Q ⊂ E will
be written as intQ, bdQ, and clQ, respectively. The linear span, affine span,
convex hull, (nonconvex) conical hull, and convex conic hull ofQ will be written
as spanQ, affQ, convQ, R+Q, and coneQ, respectively. The interior and
boundary of Q relative to its affine span will be denoted by riQ and rbQ,
respectively. We will consider functions f on E taking values in the extended
real line R := R ∪ {±∞}. We will always assume that such functions are
proper, meaning they never take the value −∞ and are not identically +∞.
For a function f : E → R, we define the domain, gph, and epigraph of f ,
respectively, to be

dom f = {x ∈ E : f(x) <∞},
gph f = {(x, f(x)) ∈ E×R : x ∈ dom f},
epi f = {(x, r) ∈ E×R : f(x) ≤ r}.

If in addition Q is a subset of E, then the symbol gph f
∣∣
Q

will simply stand

for (Q × R) ∩ gph f . The symbol [f ≤ r] will denote the sublevel set {x ∈
E : f(x) ≤ r}. Analogous notation will be reserved for [f = r]. A function
f : E → R is lower-semicontinuous (or lsc for short) if the epigraph epi f is
closed. The subdifferential of a convex function f at x̄ is the set

∂f(x̄) := {v ∈ E : f(x) ≥ f(x̄) + 〈v, x− x̄〉 for all x ∈ E}.

The indicator function of a convex set Q, written δQ, is defined to be zero on Q
and +∞ elsewhere. The normal cone to Q at a point x̄ ∈ Q is NQ(x̄) := ∂δQ(x̄)
while the tangent cone is the polar TQ(x̄) := (NQ(x̄))o, where for any convex
cone K we define Ko := {v : 〈x, v〉 ≤ 0}.

With any function f : E→ R, we associate the Fenchel conjugate f∗ : E→
R by setting

f∗(u) := sup
x∈E
{〈u, x〉 − f(x)}.

Whenever f is lsc and convex, we have (f∗)∗ = f and ∂f∗ = (∂f)−1, where
we use the convention (∂f)−1(u) := {x : u ∈ ∂f(x)}. In particular, when K is
a closed convex cone, the equations δ∗K = δKo and NKo = (NK)−1 hold.
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2.2 Faces of functions

Consider a convex set Q ⊂ E. Classically, a face of Q is a convex subset F
of Q such that every closed segment in Q whose relative interior intersects F
must lie fully in F . A face F of Q is a minimal face at x̄ if for any other face
F ′ containing x̄, the inclusion F ⊂ F ′ holds. Equivalently, the minimal face of
Q at x̄ is the unique face of Q containing x̄ in its relative interior.

In the current work, we will need to consider faces of epigraphs of functions.
Therefore to ease notation and make the language more transparent, we extend
the notion of a face to the functional setting by means of epigraphical geometry.

Definition 2.1 (Faces of functions)
Consider an lsc, convex function f : E → R. Then a set F ⊂ E is a face of f
whenever gph f

∣∣
F

is a face of epi f . A face F is minimal at a point x̄ ∈ F if
for any other face F ′ of f containing x̄, the inclusion F ⊂ F ′ holds.

Extreme points and extreme rays of functions are simply the points and rays
that happen to be faces. It is important to note that not all faces of the
epigraph yield faces of the function, since such faces may contain points above
the graph. The following simple lemma illuminates this situation.

Lemma 2.2 (Faces of epigraphs)

Consider an lsc, convex function f : E → R. Then a face F̂ of the epigraph
epi f contains a point (x̄, r) with r > f(x̄) if and only if the recession cone of

F̂ contains the ray {0} ×R+. Consequently if F̂ is a minimal face of epi f at

a pair (x̄, f(x̄)), then F̂ coincides with gph f
∣∣
F

for some set F in E.

Proof The implication⇐ is immediate. To see the converse, let F̂ be a face of
epi f containing a point (x̄, r) with r > f(x̄). Then the defining property of a

face implies that F̂ contains the ray {(x̄, α) : α ≥ f(x̄)}. The result follows. ut

Consider an lsc, convex function f : E → R. A number of properties of
faces are now immediate from the previous lemma. To illustrate, any face of f
is a closed convex set and any point in the domain of f is contained in some
face of f . Moreover, the following are equivalent for any face F of f .

– F is a minimal face of f at x̄,
– gph f

∣∣
F

is a minimal face of epi f at (x̄, f(x̄)),
– x̄ lies in the relative interior of F .

The key to a facial calculus is a chain rule for a composition of a convex
function and a linear mapping. We will establish this rule by bootstrapping
the following result, describing faces of a preimage of a convex set under a
linear mapping [20].

Theorem 2.3 (Faces of preimages of sets)
Consider a linear operator A : E → H and a closed convex set Q ⊂ H. Then
F is a face of the preimage A−1(Q) if and only if F has the form A−1(M) for
some face M of Q. Moreover, if F is a face of A−1(Q), then it can be written
as A−1(M), where M is the minimal face of Q containing A(F ).
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The chain rule, a central result of this subsection, now easily follows.

Theorem 2.4 (Faces of a composition) Consider an lsc, convex function
f : H→ R and a linear operator A : E→ H. Then M is a face of f ◦A if and
only if M has the form A−1(F ) for some face F of f .

Proof Observe we have the representation epi (f ◦ A) = {(x, r) : (A(x), r) ∈
epi f}, or equivalently

epi (f ◦ A) = Â−1(epi f),

for the linear mapping Â(x, r) := (A(x), r). The proof will consist of adapt-
ing Theorem 2.3 to this setting. To this end, let F be a face of f and define
F̂ := gph f

∣∣
F

, which is by definition a face of epi f . Using Theorem 2.3, we

immediately deduce that Â−1(F̂ ) is a face of epi (f ◦ A). On the other hand,

observe Â−1(F̂ ) = gph (f ◦ A)
∣∣
A−1(F )

. Hence A−1(F ) is a face of f ◦ A. Con-

versely, let M be a face of f ◦ A and define M̂ := gph (f ◦ A)
∣∣
M

, which is by

definition a face of epi (f ◦ A). Let F̂ be the minimal face of epi f containing

Â(M̂) = gph f
∣∣
A(M)

. By Theorem 2.3, we have the equality M̂ = Â−1(F̂ ). On

the other hand, since ri F̂ clearly intersects gph f , we deduce by Lemma 2.2
that we can write F̂ = gph f

∣∣
F

for some face F of f . Consequently we obtain

M̂ = gph (f ◦ A)
∣∣
A−1(F )

and conclude M = A−1(F ), as claimed. ut

A sum rule is immediate.

Corollary 2.5 (Faces of a sum) Consider lsc, convex functions f1 : E→ R
and f2 : E→ R. Then F is a face of the sum f1 +f2 if and only if F coincides
with F1 ∩ F2 for some faces F1 of f1 and F2 of f2.

Proof Apply Theorem 2.4 to the linear mapping A(x) = (x, x) and to the
function g(x, y) = f1(x) + f2(y). ut

We now come back full circle and establish a tight connection between
faces of functions and faces of their sublevel sets.

Corollary 2.6 (Faces of sublevel sets)
Consider a continuous, convex function f : E→ R and let r be a real number
which is not a minimal value of f . Then equality

bd [f ≤ r] = [f = r] holds,

and moreover F is a proper face of the sublevel set [f ≤ r] if and only if F
coincides with M ∩ [f = r] for some face M of f .

Proof Since f is continuous and convex, and r is not a minimal value of f ,
one can easily verify

[f ≤ r]× {r} = epi f ∩ {(x, r) : x ∈ E},
bd [f ≤ r] = [f = r].

Apply now Corollary 2.5 with f1 = δepi f and f2 = δ{(x,r):x∈E}. ut
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It will be particularly useful for us to understand faces of the gauge func-
tion. Given a closed, convex set Q containing the origin, the gauge of Q,
denoted by γQ : E → R, is defined to be γQ(x) := inf {λ ≥ 0 : x ∈ λQ}. The
epigraph of γQ is simply cl cone (Q×{1}). See e.g. [23, Part I] for more details.
For the sake of simplicity, we will only consider gauges of compact sets.

Corollary 2.7 (Faces of a gauge) Consider a compact, convex set Q ⊂ E
containing the origin in its interior, and let γQ : E → R be the gauge of Q.
Then F is a face of γQ if and only if the intersection F ∩ bdQ is a face of Q.
Moreover, if M is a proper face of Q then coneM is a face of γQ.

Proof The first claim follows from Corollary 2.6, while the second is easy to
verify from the definitions. ut

2.3 Exposed faces of functions

A special class of faces plays a particularly important role in optimization.
Recall that a set F is an exposed face of a convex set Q if there exists a vector
v ∈ E satisfying F = argmax{〈v, x〉 : x ∈ Q}, or equivalently F = ∂δ∗Q(v). In
this case v is the exposing vector of F . An exposed face F is a minimal exposed
face at x̄ ∈ F if for any other exposed face F ′ containing x̄, the inclusion
F ⊂ F ′ holds. It is easy to see that exposed faces are themselves faces, though
the converse fails in general; see for example [23, Section 19]. A particularly
nice situation arises when a set Q is facially exposed, meaning all of its faces
are exposed. For example, polyhedral sets, the positive semi-definite cone, and
the nuclear norm ball are facially exposed.

We will now extend the notion of an exposed face to functions. We will see
however that the calculus of exposed faces is a bit more subtle than its coun-
terpart for general faces; namely, qualification conditions enter the picture. To
illustrate, consider the two set Q1 := R× {0} and Q2 := {(x, y) : x ≤ 0, x2 ≤
y} ∪R2

+. Then clearly the origin is an exposed face of Q1 ∩ Q2 = R+ × {0}
but it cannot be written as an intersection of the faces of Q1 and Q2. As we
will see, the reason for that is twofold: (i) Q2 is not facially exposed and (ii)
the relative interiors of the two sets do not intersect.

Definition 2.8 (Exposed faces of functions)
Consider an lsc, convex function f : E → R. A set F ⊂ E is an exposed face
of f if it has the form F = ∂f∗(v) for some vector v ∈ E, or equivalently

F = argmin
x∈E

{f(x)− 〈v, x〉}.

In this case v is an exposing vector of F . An exposed face F ⊂ E of f is
minimal at x̄ ∈ F if for any other exposed face F ′ of f containing x̄ the
inclusion F ⊂ F ′ holds.

Of course, specializing the definition above to the indicator function of a
set, we obtain the classical notions. The following theorem is in analogy to
general faces of functions (Definition 2.1). See the appendix for details.
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Theorem 2.9 (Epigraphical coherence of exposed faces)
Consider an lsc, convex function f : E→ R and a point x̄ ∈ dom f . Then the
following are true.

1. A set F is an exposed face of f with exposing vector v if and only if gph f
∣∣
F

is an exposed face of epi f with exposing vector (v,−1).
2. A set F is a minimal exposed face of f at x̄ if and only if gph f

∣∣
F

is a
minimal exposed face of epi f at (x̄, f(x̄)).

Recall that the minimal face of a convex set Q at x̄ is the unique face of Q
containing x̄ in its relative interior. A similar characterization (in dual terms)
holds for exposed faces. See the appendix for a detailed proof.

Theorem 2.10 (Minimal exposed faces of functions)
Consider an lsc, convex function f : E→ R and a point x̄ ∈ E. Then for any
vector v ∈ ri ∂f(x̄), the set ∂f∗(v) is a minimal exposed face of f at x̄.

We now record various calculus rules of exposed faces. Again the basic
result in this direction is the chain rule. In contrast to the development of facial
calculus, however, the key technical tool here is the subdifferential calculus,
and in particular the relationship between ∂(f ◦ A)(x) and A∗∂f(Ax), where
f is an lsc, convex function and A is a linear transformation [23, Theorem
23.9].

Theorem 2.11 (Chain rule for conjugates)
Consider an lsc, convex function f : H → R and a linear transformation
A : E → H, where H and E are Euclidean spaces. Let x̄ be a point in E
and consider a vector v ∈ ∂f(Ax̄). Then the equation

∂(f ◦ A)∗(A∗v) = A−1∂f∗(v) holds. (2.1)

Proof The inclusion ⊃ follows directly from the chain rule ∂(f ◦ A)(x) ⊂
A∗∂f(Ax). To see this, consider a point x ∈ A−1∂f∗(v). Then there exists
a point z in H satisfying z = Ax and v ∈ ∂f(z). We successfully conclude
A∗v ∈ A∗∂f(Ax) ⊂ ∂(f ◦ A)(x), as claimed.

We now prove the inclusion ⊂ in equation (2.1). To this end, consider a
point x satisfying A∗v ∈ ∂(f ◦ A)(x). We deduce

f(Ax) ≥ f(Ax̄)+〈v,Ax−Ax̄〉 ≥ f(Ax)+〈A∗v, x̄−x〉+〈v,Ax−Ax̄〉 = f(Ax).

Thus we have equality throughout. Consequently Ax minimizes the function
y 7→ f(y)− 〈v, y〉, and so we have v ∈ ∂f(Ax). This completes the proof. ut

Theorem 2.12 (Exposed faces of a composition)
Consider an lsc, convex function f : H→ R and a linear mapping A : E→ H,
where H and E are Euclidean spaces. Then the following are true.

1. If F is an exposed face of f with exposing vector v, then A−1F is an exposed
face of f ◦ A with exposing vector A∗v.

2. If the range of A meets ri (dom f), then any exposed face M of f ◦ A can
be written as M = A−1F for some exposed face F of f .
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Proof Claim 1 follows immediately from Theorem 2.11. Claim 2 also follows
from Theorem 2.11 since the standing assumptions of claim 2 imply the exact
chain rule ∂(f ◦ A)(x) = A∗∂f(Ax). ut

Corollary 2.13 (Exposed faces of a sum) Consider two lsc, convex func-
tions f1 : E→ R and f2 : E→ R. Then the following are true.

1. If F1 and F2 are exposed faces of f1 and f2 with exposing vector v1 and v2,
respectively, then F1 ∩F2 is an exposed face of f1 + f2 with exposing vector
v1 + v2.

2. If ri (dom f1) meets ri (dom f2), then any exposed face F of f1 + f2 can be
written as F1 ∩ F2 for some exposed face F1 of f1 and F2 of f2.

Proof Apply 2.12 to the linear mapping A(x) = (x, x) and to the separable
function g(x, y) = f1(x) + f2(y). ut

Finally we record a relationship between exposed faces of a function and
exposed faces of its sublevel sets.

Corollary 2.14 (Sublevel sets)
Consider a continuous convex function f : E→ R and a real number r. Then
the following are true.

1. If F is an exposed face of f , intersecting [f = r], with exposing vector v,
then F ∩ [f = r] is an exposed face of [f ≤ r] with exposing vector v.

2. If r is not the minimum value of f , then every exposed face F of [f ≤ r]
has the form F = F ′ ∩H, where F ′ is an exposed face of epi f .

Proof Apply Theorem 2.13 with f1 = δepi f and f2 = δ{(x,r):x∈E}. ut

Corollary 2.15 (Exposed faces of a gauge)
Consider a closed convex set Q ⊂ E containing the origin in its interior, and
let γQ : E→ R be the gauge of Q. Then F is an exposed face of γQ if and only
if the intersection F ∩ bdQ is a face of Q. Moreover, if M is a proper face of
Q then coneM is a face of γQ.

Now recall that the polar set and the support function of a convex set Q
are defined by

Qo := {v : 〈v, x〉 ≤ 1 for all x ∈ Q},
and

hQ(v) = sup{〈v, x〉 : x ∈ Q},
respectively. Now for any compact convex sets Q1 and Q2, containing the
origin in their interior, we successively deduce using [24, Theorem 14.5] the
equalities

γQ1 + γQ2 = hQ1
o + hQ2

o = hQ1
o+Q2

o = γ(Q1
o+Q2

o)o .

Thus the sum of gauges γQ1 and γQ2 is itself a gauge of (Q1
o +Q2

o)o. Com-
bining this with Corollaries 2.5, 2.7, 2.13, 2.15, we immediately deduce that if
Q1 and Q2 are facially exposed, then so is (Qo1 +Qo2)o, a rather surprising fact
since the sum Qo1 + Qo2 can easily fail to be facially exposed. We record this
observation in the next theorem and will often appeal to it implicitly.
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Corollary 2.16 (Sum of gauges) Consider two compact, convex sets Q1

and Q2, containing the origin in their interior. Then the sum of the gauges of
Q1 and Q2 is the gauge of (Qo1 + Qo2)o. Moreover, if the sets Q1 and Q2 are
facially exposed, then the set (Qo1 +Qo2)o is facially exposed as well.

To illustrate, consider the following example. The symbol Rn will denote
n-dimensional Euclidean space. The lp-norm on Rn will be denoted by ‖ · ‖p.

Example 2.17 (l1 + l∞ norm) Consider the norm on Rn given by

‖x‖1.∞ := ‖x‖1 + ‖x‖∞.

Clearly the minimal face of ‖·‖1.∞ at the origin is the origin itself. Consider now
a point x̄ 6= 0. Since the l1 and the l∞ norms are invariant under coordinate
change of sign, we may suppose x̄ ≥ 0. Define the index sets

Ī := {i : x̄i = 0} and J̄ := {i : x̄i = ‖x̄‖∞}.

Then

F := {x ≥ 0 : xi = 0 for each i ∈ Ī}

is a minimal face of the l1-norm at x̄. Similarly

G := {x : xi = ‖x‖∞ for all i ∈ J̄}

is a minimal face of the l∞-norm at x̄. Thus R+{x̄} is an extreme ray of
‖ · ‖1,∞ if and only if F ∩G is 1-dimensional, that is when we have Ī ∪ J̄ = n.
Using Corollary 2.7, one can now verify that the extreme points of the ball {x :

‖x‖1,∞ ≤ 1} are the points
∏k
i=1{(1+k)−1}×

∏n
i=k+1{0}, for k = 1, . . . , n−1,

and their images under signed permutations of coordinates; see Figure 2.1.

(a) l1-ball (b) l∞-ball (c) (l1 + l∞)-ball

Fig. 2.1: l1 + l∞ norm
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3 Faces of the rank sparsity ball

This section has a dual purpose: (i) to shed light on the extreme points and
vertices of the rank sparsity ball (see definition below) and (ii) to illustrate
using the rank sparsity ball how one can generally apply the facial calculus
developed in the previous section to derive inequalities at the extreme points
of the solution set, balancing the features of the optimization problem at hand.

We begin with some notation. The symbol Mn,m will denote the space of
n×m-matrices, while Sn will denote the space of n×n symmetric matrices. For
simplicity, in the case of Mn,m we will always assume n ≤ m. We will endow
Mn,m, with the trace inner product 〈A,B〉 = tr (ATB), whose restriction is an
inner product on Sn. We also define the singular value map σ : Mn,m → Rn

taking a matrix A to its vector of singular values (σ1(A), . . . , σn(A)) in non-
increasing order. The group of n × n orthogonal matrices is written as On.
For any matrix X ∈ Mn×m, we consider the entry-wise l1-norm ‖X‖1 :=∑
i,j |Xi,j |, the nuclear norm ‖X‖∗ :=

∑n
i=1 σi(X), and the sum ‖X‖1,∗ :=

‖X‖1 + θ‖X‖∗ for θ > 0. The corresponding closed unit balls will be denoted
by B1, B∗, and B1,∗, respectively. The latter is what we call the rank sparsity
ball. It is clear from the previous section that the facial structure of ‖X‖1,∗
does not depend on θ. Consequently without loss of generality, we will set
θ = 1 throughout. We begin the development with the following observation.

Theorem 3.1 (Facial exposedness) The ball B1,∗ is facially exposed.

Proof It is well known that B1 and B∗ are facially exposed. The result now
follows from Corollary 2.16. ut

Hence there is no distinction between faces and exposed faces of B1,∗. We
will use this implicitly. The following theorem characterizes the dimension of
minimal faces of the rank sparsity ball, and derives simple lower bounds on
this quantity in terms of the rank and sparsity of the matrix in question.

Theorem 3.2 (Faces of the ball B1,∗)
Consider a nonzero matrix X ∈ B1,∗ along with a singular value decomposition

X = U(Diagσ(X))V
T

for orthogonal matrices U ∈ On and V ∈ Om. Denote

by r̄ the rank of X, and let Û and V̂ be the restrictions of U and V to the first
r̄ columns. Define the set Ī := {(i, j) : Xi,j = 0}. Then, the minimal face F
of the ball B1,∗ at X satisfies the equation

r̄(r̄ + 1)− 2

2
− dim span {ÛTi,·V̂j,· + V̂ Tj,·Ûi,· : (i, j) ∈ Ī} = dimF. (3.1)

In particular, any face of the ball B1,∗ containing X satisfies the inequality

r̄(r̄ + 1)

2
− |Ī| ≤ dimF + 1.
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Proof It follows from [10, Example 5.6] and Corollary 2.7 that a subset F ⊂ Rn

is a face of the nuclear norm ‖ · ‖∗ if and only if it has the form{
U

[
A 0
0 0

]
V T : A ∈ Sk+

}
for k = 1, . . . , n and orthogonal matrices U ∈ On and V ∈ Om. Clearly then
X is contained in the relative interior of the face

F :=
{
U

[
A 0
0 0

]
V
T

: A ∈ Sr̄+

}
,

thereby making it a minimal face of ‖ · ‖∗ at X. Let F̃ be the minimal face of
‖ · ‖1,∗ at X. Then using Corollary 2.5 and [23, Theorem 6.5], we deduce that

the affine span of F̃ is the set{
X ∈Mn×m : Xi,j = 0 for all (i, j) ∈ Ī

}⋂{
U

[
A 0
0 0

]
V
T

: A ∈ Sr̄
}
.

Observe now that for any A ∈ Sr̄, we have

eTi U

[
A 0
0 0

]
V
T
ej = tr (Ûi,·AV̂

T
j,·) = 〈A, V̂ Tj,·Ûi,·〉 =

1

2
〈A, ÛTi,·V̂j,· + V̂ Tj,·Ûi,·〉.

Applying the classical rank-nullity theorem, we deduce

r̄(r̄ + 1)

2
− dim span {ÛTi,·V̂j,· + V̂ Tj,·Ûi,· : (i, j) ∈ Ī} = dim F̃ .

On the other hand, observe

dim span {ÛTi,·V̂j,· + V̂ Tj,·Ûi,· : (i, j) ∈ Ī} ≤ |Ī|.

Applying Corollary 2.7, the result follows. ut

Example 3.3 Consider the rank two matrix X ⊂M3×3 defined by

1 1 0
0 1 1
0 0 0

 =

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

√3 0 0
0 1 0
0 0 0




1√
6
− 1√

2
1√
3√

2
3 0 − 1√

3
1√
6

1√
2

1√
3


T

Then the matrices[
1√
2
− 1√

2

]T [
1√
6

1√
2

]
+
[

1√
6

1√
2

]T [
1√
2
− 1√

2

]
=

[
1√
3

1
2 −

1√
12

1
2 −

1√
12

−1

]
and[

1√
2

1√
2

]T [
1√
6
− 1√

2

]
+
[

1√
6
− 1√

2

]T [
1√
2

1√
2

]
=

[
1√
3

1√
12
− 1

2
1√
12
− 1

2 −1

]
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are linearly independent. It follows from equation (3.1) of Theorem 3.2 that
X, up to a rescaling, is an extreme point of the ball B1,∗. On the other hand,
a similar computation shows that the matrix1 1 0

0 1 0
0 0 0


is not an extreme point of B1,∗ under any scaling. This is noteworthy since
this matrix has the same rank as X, while being more sparse, and therefore is
“preferable” to X, even though it fails to be extreme.

As a direct consequence of the previous theorem, we now prove that when
using the joint norm ‖ · ‖1,∗ to recover a point satisfying linear measurements,
there is an implicit relationship at any extreme point of the solution set be-
tween the rank, sparsity, and the number of linear measurements. In contrast
to the usual compressed sensing results, this relationship is absolute, being
independent of noise.

Theorem 3.4 (Sparse low rank solutions of a linear system)
Consider the optimization problem

min ‖X‖1 + θ‖X‖∗
s.t. A(X) = b,

where A : Mn×m → Rd is a linear operator and θ is a strictly positive constant.
Then any extreme point X of the solution set satisfies the inequality

r̄(r̄ + 1)

2
− |Ī| ≤ 1 + d,

where r̄ is the rank of X and Ī is the index set of the zero entries of X.

Proof The constant θ will not play a role in the argument, and so we will
assume θ = 1. Let c be the optimal value of this problem. If this value is zero,
then the inequality is trivially true. Hence we suppose c > 0. The exact value
of c will not play a role and so for notational convenience we assume c = 1.
Define now the set L := {X : A(X) = b}. Then the solution set is simply
B1,∗ ∩ L. Moreover, denoting the minimal face of B1,∗ at X by F , we have
{X} = F ∩ L. We immediately deduce, dimF + dimL ≤ mn, which using

Corollary 3.2 implies the inequality, r̄(r̄+1)
2 − |Ī| ≤ 1 + d, as claimed. ut

Remark 3.5 We note that the extreme point inequality in Theorem 3.4, also
holds with d replaced by the dimension of the range of A.

We next consider the vertices of the ball B1,∗. Recall that a point x̄ of
a convex set Q is a vertex if the normal cone NQ(x̄) is full-dimensional. In
particular, the set of exposing vectors of such points has nonzero Lebesgue
measure. It is standard that the vertices of B1 are simply its extreme points,
while the ball B∗ has no vertices. We will shortly see that remarkably the
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rank sparsity ball B1,∗ has no “new” vertices, that is all of its vertices are
simply the extreme points of 1

2B1. The following lemma is key, and may be of
independent interest. It establishes certain lower-bounds on the size of the set
of all matrices with a prescribed rank and sparsity pattern.

Lemma 3.6 (Sparsity-rank intersections)
Consider a matrix X ∈Mn×m and let r = rankX and Ī := {(i, j) : Xi,j = 0}.
Define a bipartite graph G on n×m vertices with the edge set Īc, and denote
by c(G) the number of connected components of G. Then there exists a C∞

manifold M of dimension n+m− c(G) satisfying

X ∈M ⊂ {X : rankX = r and Xi,j = 0 for all (i, j) ∈ Ī}. (3.2)

Moreover, letting α be the number of nonzero rows of X and β be the number
of nonzero columns of X, there exists a linear subspace V of Mn×m satisfying

X ∈ V ⊂ clM⊂ {X : rankX ≤ r and Xi,j = 0 for all (i, j) ∈ Ī}, (3.3)

and having dimV ≥ max{α, β}.

Proof Consider the Lie group action of GL(n) × GL(m) on Mn×m defined
by θ(U,V )(X) := UXV T . Restricting this action to diagonal matrices, we ob-

tain an action of (R \ {0})n × (R \ {0})m on Mn×m defined by θ̂(u,v)(X) :=

Diag (u)XDiag (v). Let M be the orbit of X under θ̂, namely set

M := {Diag (u)XDiag (v) : u ∈ (R \ {0})n and v ∈ (R \ {0})m}.

Clearly inclusions (3.2) hold. By [15, Proposition 7.26], we deduce that the
mapping F (u, v) := Diag (u)XDiag (v) has constant rank. Moreover, since the
orbits of semi-algebraic Lie group actions are always C∞-smooth manifolds
(see [14, Theorem B4]), we deduce that M is a C∞-smooth manifold with
dimension equal to the rank of the linear operator DF (e, e) : Rn × Rm →
Mn×m. Observe, on the other hand, that we have

DF (e, e)(v, w) = Diag (v)X +XDiag (w).

Hence equality DF (e, e)(v, w) = 0 holds if and only if we have ui = −vj for all
(i, j) /∈ Ī. It follows immediately that the kernel of the operator DF (e, e)(v, w)
has dimension c(G), and therefore that M is n + m − c(G) dimensional, as
claimed.

Now let R consist of all indices i such that the i’th row of X is nonzero.
Choose an arbitrary index i∗ ∈ R and define a vector vi∗ = e ∈ Rn. For each
index i ∈ R \ {i∗}, choose a vector v ∈ Rn so that the vectors {vi[R]}i∈R
are linearly independent. Now for each index i ∈ R, define a matrix Bi :=
Diag (vi)X and let V := span {Bi : i ∈ R}. Clearly inclusions (3.3) hold. We
claim that the matrices Bi are all linearly independent. Indeed suppose there
are numbers λi for i ∈ R satisfying

0 =
∑
i∈R

λiBi = Diag
(∑
i∈R

λivi

)
X.
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Hence
∑
i∈R λivi[R] = 0, and we conclude λi = 0 for each index i ∈ R.

Applying an analogous argument to X
T

, the result follows. ut

Theorem 3.7 (Vertices of the ball B1,∗)
The vertices of the ball B1,∗ are simply the extreme points of 1

2B1, that is
matrices having all zero entries except for one entry whose value is ± 1

2 .

Proof First observe that a matrix X is a vertex of the ball B1,∗ if and only if
the equation ‖X‖1,∗ = 1 holds and the set ∂‖ · ‖1,∗(X) has dimension n − 1.
Consequently any matrix having all zero entries except for one entry whose
value is ± 1

2 is a vertex of B1,∗. We will now show that these are the only

vertices of this ball. To this end, suppose that X is a vertex of B1,∗, and define
r = rankX and Ī := {(i, j) : Xi,j = 0}.

We claim that the equation

{X : rankX = r and Xi,j = 0 for all (i, j) ∈ Ī} = R++{X}, (3.4)

holds locally around X. To see this, suppose not. Then there exists a sequence
Xk with Xk /∈ R++{X} for all k, and satisfying Xk → X, rankXk = r, and
Xk
i,j = 0 for all (i, j) ∈ I. Choose a vector V ∈ ri ∂‖·‖1,∗(X). It is standard that

the set-valued mapping X 7→ ∂‖ · ‖1(X) is inner-semicontinuous at X relative
to the linear space {X : Xi,j = 0 for all (i, j) ∈ Ī}. Similarly X 7→ ∂‖ · ‖∗(X)
is inner-semicontinuous at X relative to the manifold {X : rankX = r}. It
follows that there exists a sequence V k ∈ ∂‖·‖1,∗(Xk) converging to V . Hence,
the points 1

‖Xk‖1,∗X
k converge to X and the vectors V k ∈ NB1,∗

(
1

‖Xk‖1,∗X
k
)

converge to the vector V lying in the interior of NB1,∗(X), which is a contra-
diction. Thus equation (3.4) holds. On the other hand, Lemma 3.6 along with
lower-semicontinuity of the rank function implies that X must have at most
one nonzero row and at most one nonzero column, as claimed. ut

4 Recovering sparse rank one matrices with the joint norm

In this section, we will prove that the problem of minimizing 〈V,X〉 subject to
‖X‖1 +θ‖X‖∗ ≤ 1 will recover a sparse rank-one matrix for a positive measure
subset of matrices V ; see Theorem 4.2. Indeed, this property is key for the
results of Doan and Vavasis [12] and Doan, Toh and Vavasis [11], who use the
joint norm ‖ ·‖1,∗ to find hidden rank-one blocks inside large matrices. We will
elaborate on the significance of this result further at the end of this section. We
begin with the following key lemma, which may be of an independent interest.
Roughly speaking, it shows that any translate of any open subregion of the
smooth part of the boundary of the spectral norm ball generates, by way of the
positive hull operation, a region with nonempty interior. The proof requires
some elementary differential geometry; see for example [15]. In particular, we
say that a smooth mapping between smooth manifolds is a submersion at a
point if the derivative of the mapping there is surjective.



16 D. Drusvyatskiy et al.

Lemma 4.1 (Positive hull of the translated spectral ball)
Consider the analytic manifold

M := {X ∈Mn×m : 1 = σ1(X) > σ2(X) ≥ . . . ≥ σn(X)},

and fix a matrix Y ∈Mn×m. Then the positive scaling mapping

Φ : R++ ×M→Mn×m,

(α,X) 7→ α(Y +X),

is a submersion at a pair (α,X) if and only if the condition

〈Y v, u〉 6= −1 holds,

where u and v are the left and right singular vectors of X corresponding to
σ1(X), appearing in any singular value decomposition of X. Consequently there
exists a dense subset DY ofM so that Φ is a submersion at any point in R++×
DY . Therefore for any open set W that intersectsM, the set R+

(
Y +(M∩W )

)
has nonempty interior.

Proof Define the mapping Φ as in the statement of the theorem. A trivial
computation shows that for any α > 0 and X ∈M, we have

rgeDΦ(α,X) = span (Y +X) + TM(X),

where TM(X) denotes the tangent space to M at X. It is standard that M
has codimension 1 and the normal space has the form

NM(X) = span (uvT ),

where u and v are the left and right singular vectors of X corresponding to
σ1(X), appearing in the singular value decomposition X = U(Diagσ(X))V T .
This formula immediately follows for example from [16, Theorem 7.1]. Now Φ is
a submersion at (α,X) if and only if we have Y +X /∈ TM(X), or equivalently

〈Y +X,uvT 〉 6= 0.

Expanding, we obtain

0 6= 〈Y+U(Diagσ(X))V T , uvT 〉 =

= 〈Y v, u〉+ tr
(
(Diagσ(X))UTuvTV

)
= 〈Y v, u〉+ 1.

This proves the first assertion of the theorem. Consequently if Φ is not a
submersion at (α,X), keeping v fixed, we may rotate u slightly to a new vector
û so that 〈Y v, û〉 6= −1. Denote the corresponding rotation matrix by R. Then

the matrix X̂ := RX lies in M close to X, while Φ is indeed a submersion at
(α, X̂). Thus there exists a dense subset DY ofM so that Φ is a submersion at
any point in R++ × DY . Consequently applying the open mapping theorem,
we conclude that Φ sends open sets to open sets. The result follows. ut
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We now arrive at the main result of this section. In what follows, for any
matrix X ∈Mn×m we define the index set suppX := {(i, j) : Xi,j 6= 0}.

Theorem 4.2 (Sparsity and rank one matrices)
Consider a rank one matrix X ∈ Mn×m. Then after a permutation of rows
and columns it has the form [

A 0p,m−q
0n−p,q 0n−p,m−q

]
(4.1)

for some rank one matrix A ∈ Mp×q with all nonzero entries. Consequently,
the set

K := {X : rankX = 1 and suppX = suppX)}

is a (p+ q − 1)-dimensional analytic manifold. Furthermore, there is a set of
matrices V of positive measure such that the problem

min {〈V,X〉 : ‖X‖1 + ‖X‖∗ ≤ 1} (4.2)

admits a unique minimizer and this minimizer lies in K.

Proof Observe that X can be factored as X = uvT for some vectors u ∈ Rn

and v ∈ Rm. Consequently if an entry Xi,j is zero, then either the whole i’th
row or the whole j’th column of X is zero. Hence we may permute the rows
and columns of X so that the resulting matrix has the form (4.1).

We will assume without loss of generality p ≤ q. It is standard that for
almost every matrix V , the problem (4.2) has a unique solution. Consequently
it is sufficient to show that the set⋃

X∈K
NB1,∗(X) =

⋃
X∈K

R+∂‖ · ‖1,∗(X),

has nonzero measure. (Equality above follows from say [23, Corollary 23.7.21].)
Before we proceed with the rest of the proof, we recall (see for example [16,
Theorem 7.1]) that the subdifferential of the nuclear norm at any matrix X is
given by

∂‖ · ‖∗(X) = {U(Diagw)V T : w ∈ ∂‖ · ‖1(σ(X)) and

X = U(Diag (σ(X))V T with U ∈ On, V ∈ Om}.

Consider now a matrix X of the form (4.1) and let ‖ · ‖p,q1 and ‖ · ‖p,q∗ be the
restrictions of ‖·‖1 and ‖·‖∗ to Mp,q, respectively. We claim that the inclusion{[

Y 0
0 0

]
: Y ∈ ∂‖ · ‖p,q∗ (A)

}
⊂ ∂‖ · ‖∗(X),

holds. To see this, consider a matrix Y ∈ ∂‖·‖p,q∗ (A). Then there exist matrices
U ∈ Op and V ∈ Oq and a vector y ∈ ∂‖ · ‖p.q1 (σ(A)) satisfying

Y = U(Diag y)V T and A = U(Diagσ(A))V T .
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Clearly σ(X) = σ(A)×{0}n−p and {y}×{0}n−p ∈ ∂‖·‖1(σ(X)). Consequently
we deduce

X =

[
U 0
0 I

] [
Diagσ(A) 0

0 0

] [
V 0
0 I

]T
and therefore[

Y 0
0 0

]
=

[
U 0
0 I

] [
Diag y 0

0 0

] [
V 0
0 I

]T
∈ ∂‖ · ‖∗(X),

as claimed.
Now fix for the duration of the proof a matrix X of the form (4.1) and the

corresponding submatrix A. Since all the entries of A are nonzero, there is a
neighborhood ofA on which ‖·‖p,q1 is smooth and moreover the gradient∇‖·‖p,q1

is constant. Denote this neighborhood by U and define H := ∇‖ · ‖p,q1 (A).

Consider now any matrix D :=

[
C 0
0 0

]
of the form (4.1) with C ∈ U . From

the subdifferential sum rule, we now deduce that any matrix of the form.

{Z ∈Mn×m : Z
[
[1, p], [1, q]

]
∈ H + ∂‖ · ‖p,q∗ (C), and (4.3)

|Zij | ≤ 1 for all (i, j) /∈ [1, p]× [1, q]}

is contained in ∂‖ · ‖1,∗(D). For ease of notation, we will denote this set of
matrices (4.3) by [

H + ∂‖ · ‖p,q∗ (C) �
� �

]
.

Thus it is sufficient to argue that the set

Γ :=
⋃

C∈U : rankC=1

R+

[
H + ∂‖ · ‖p,q∗ (C) �

� �

]
has nonempty interior. On the other hand, the equation

Γ = R+

( [
H 0
0 0

]
+

⋃
C∈U : rankC=1

[
∂‖ · ‖p,q∗ (C) �

� �

] )
.

holds. Denote now the spectral ball in Mp×q by Bp,qs := [σ1 ≤ 1]. Loosely
speaking, we now claim that

⋃
{ri ∂‖ · ‖p,q∗ (C) : rankC = 1} coincides with the

smooth part of the boundary of the spectral ball Bp,qs . To see this, we appeal
to [9, Theorem 4.6] and obtain

M : =
⋃

C: rankC=1

ri ∂‖ · ‖p,q∗ (C)

= σ−1
( ⋃
x: rank x=1

ri ∂‖ · ‖1(x)
)

= σ−1
(
{x : ‖x‖∞ ≤ 1 and there exists unique i with |xi| = ‖x‖1}

)
= {Q ∈Mp×q : σ1(Q) = 1, σ2(Q) < 1, . . . , σp(Q) < 1}.
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Now since the set-valued mapping (∂‖ · ‖p,q∗ )−1 = NBp,q
s

is inner semi-
continuous when restricted to M (see for example [9, Proposition 3.15]), a
routine argument shows that ⋃

C∈U : rankC=1

ri ∂‖ · ‖p,q∗ (C),

is an open subset ofM. Hence we may write it asM∩W for some open subset
W of Mp×q. Finally to conclude the proof, it is sufficient to show that the set

R+

( [
H 0
0 0

]
+

[
M∩W �
� �

] )
has nonempty interior, but this is immediate from Lemma 4.1. ut

Discussion on sparse rank one recovery:

In Theorem 4.2, we argued that the problem of minimizing 〈V,X〉 subject
to ‖X‖1 + θ‖X‖∗ ≤ 1 will recover a sparse rank-one matrix for a positive
measure subset of matrices V . This result, on the other hand, is not possible
with either the 1-norm or nuclear-norm solely. In other words, minimizing
〈V,X〉 subject to ‖X‖1 ≤ 1 will recover a sparse matrix for a positive measure
subset of matrices V , but will recover a sparse rank-one matrix only for a set
of matrices V of measure zero (except in the somewhat trivial case when the
solution has a single nonzero row or column). The same holds for the nuclear
norm alone. Indeed, this property is key for the results of Doan and Vavasis [12]
and Doan, Toh and Vavasis [11], who used the joint norm ‖·‖1,∗ to find hidden
rank-one blocks inside large matrices.

Thus, the sum of the 1-norm and the nuclear norm appears to have greater
power to recover sparse rank-one matrices than either norm alone. This should
be contrasted with the results of Oymak et al. [18] who show that for the
exact recovery problem given linear measurements, a sum of norms performs
no better than the two norms individually. More precisely, the authors of [18]
consider the following problem: given a linear operator A : Mn,m → Rd and
a measurement vector b ∈ Rd, find a sparse low-rank matrix X satisfying
A(X) = b. They argue that the number of measurements (i.e. the value d)
to guarantee recovery by minimizing ‖X‖1 + θ‖X‖∗ subject to A(X) = b is
no better than the number needed when using only one of the norms in the
objective function.

It is not clear why our results point in the opposite direction of [18]; possibly
the disparity is because [18] focuses on minimizing measurements in the noise-
free case, whereas [11,12] assume the entire matrix is known (i.e., the number
of measurements is unlimited) but the data is corrupted by noise. Indeed, at
the end of [18], the authors note that extending their results to noisy sparse
Principle Component Analysis would be an interesting direction to pursue.

Acknowledgements We thank Gabor Pataki for insightful discussions, and in particular
for suggesting including Subsection 2.2 and Theorem 3.4.
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A Appendix

Recall that the minimal face of a convex set Q at x̄ is the unique face of
Q containing x̄ in its relative interior. A similar characterization holds for
minimal exposed faces: any set of the form ∂δ∗Q(v) for some vector v ∈ riNQ(x̄)
is the minimal exposed face of Q at x̄. To be self-contained, we provide an
elementary proof. We begin with the following lemma.

Lemma A.1 (Exposed faces of the dual cone) Consider a closed convex
cone K ⊂ E and a point x̄ in K. Then the set F := NK(x̄) is an exposed face
of Ko and the equality

NF (v̄) ∩K = NKo(v̄) holds for any v̄ ∈ F.

Proof It follows immediately from the equality NK(x̄) = (NKo)−1(x̄) that F
is an exposed face of Ko. Clearly the inclusion NKo(v̄) ⊂ NF (v̄) ∩ K holds.
Consider now an arbitrary vector w ∈ NF (v̄) ∩K. Then by Moreau’s decom-
position theorem (see for example [17]), we have the representation

w = w1 + w2, for some w1 ∈ NKo(v̄), w2 ∈ TKo(v̄) with 〈w1, w2〉 = 0.

Consequently there exist vectors vi ∈ Ko and real numbers λi > 0 with
λi(vi − v̄) → w2. Hence given any ε > 0, for all sufficiently large indices i we
have

0 ≥ 〈w, λiv̄+λi(vi−v̄)〉 ≥ λi〈w, v̄〉+〈w,w2〉−ε = λi〈w, v̄〉+‖w2‖2+〈w1, w2〉−ε.

Now observe since F is a cone, we have 〈w, v̄〉 = 0. Consequently letting ε tend
to zero we obtain w2 = 0, thereby completing the proof. ut

Theorem A.2 (Minimal exposed faces of convex cones)
Consider a closed, convex cone K ⊂ E and a point x̄ in K. Then for any
vector v ∈ riNK(x̄), the set F = ∂δ∗K(v) is a minimal exposed face of K at x̄.

Proof Consider vectors v ∈ riNK(x̄) and w ∈ NK(x̄). Using Lemma A.1, we
obtain

(NK)−1(w) = NKo(w) = NNK(x̄)(w) ∩K ⊃ NNK(x̄)(v) ∩K = (NK)−1(v),

and the result follows. ut

The theorem above can easily be extended to convex sets by homogenizing;
see Corollary A.4. It will be particularly useful for us to understand the exposed
faces of the gauge function. The proof of the following proposition is standard;
we provide details for the sake of completeness.

Proposition A.3 (Exposed faces of the gauge)
Consider a closed, convex set Q ⊂ E containing the origin in its interior, and
let γQ : E→ R be the gauge of Q. Then the following are true.
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1. If F is an exposed face of Q with exposing vector v, then cl coneF is an
exposed face of γQ with exposing vector v

〈v,x〉 , where x is any point of F .

2. If F is an exposed face of γQ with exposing vector v 6= 0, then F ∩ (bdQ)
is an exposed face of Q with exposing vector v. Moreover F then has the
representation F = cl cone (F ∩ (bdQ)).

Similarly the following are true.

3 If F is a minimal exposed face of Q at x̄, then cl coneF is a minimal
exposed face of γQ at x̄.

4 If F is a minimal exposed face of γQ at x̄, so that the intersection F∩(Q∞)c

is nonempty, then F ∩ (bdQ) is a minimal exposed face of Q at x̄.

Moreover, for any point x ∈ bdQ and nonzero vector v ∈ E, the equivalence

v ∈ NQ(x) ⇐⇒ v

〈v, x〉
∈ ∂γQ(x) holds (A.1)

Proof By [23, Corollary 9.7.1], we have

Q = {x : γQ(x) ≤ 1}, bdQ = {x : γQ(x) = 1}, Q∞ = {x : γQ(x) = 0},

where Q∞ is the recession cone of Q. We first prove 1. To this end, suppose
that F is an exposed face of Q with an exposing vector v. Let x̄ be an arbitrary
point of F and define β := 〈v, x̄〉. Then the inequality 〈v, x〉 ≤ β holds for all
x ∈ Q and we have F = {x ∈ Q : 〈v, x〉 = β}. Since Q contains 0 in its interior,
we deduce β 6= 0. Define now the hyperplane

H := {(x, α) ∈ E×R : 〈(v,−β), (x, α)〉 = 0}.

We claim that it supports epi γQ. To see this, simply observe that for any
vector x ∈ Q, we clearly have 〈(v,−β), (x, 1)〉 ≤ 0. We deduce that Q × {1}
lies on one side of H and consequently so does epi γQ = cl cone ((0, 0), Q×{1}).

Now consider a point (x, α) ∈ H ∩ epi γQ. Since γQ is continuous, we
deduce α = γQ(x). Suppose first α 6= 0. Then we have equality 〈v, α−1x〉 = β.
Consequently x lies in coneF . Suppose on the other hand α = 0, that is x ∈
Q∞. Then it is easy to see that equality 〈v, x〉 = 0 holds. Choose an arbitrary
point y ∈ F . Observe y + λx lies in F for all λ ≥ 0. Hence 1

λ (y + λx) lies in
coneF and converges to x as we let λ tend to ∞. We deduce x ∈ cl coneF .
Conversely, suppose x lies in coneF . Observe that R+{x} intersects bdQ in
a unique point. It then easily follows γQ(x) 6= 0 and consequently that x

γQ(x)

lies in F . We deduce 〈v, x
γQ(x) 〉 = β and therefore 〈(v,−β), (x, γQ(x))〉 = 0.

Hence cone (F × {1}) is contained in H ∩ epi γQ. Taking closure, we obtain
cl cone (F × {1}) ⊂ H ∩ epi γQ. We conclude that cl coneF is an exposed face
of γQ with exposing vector β−1v, as claimed.

We now prove 2. To this end, suppose that F is an exposed face of γQ with
an exposing vector v 6= 0. Then L := gph γQ

∣∣
F

is an exposed face of epi γQ with
exposing vector (v,−1). Consequently the inequality 〈(v,−1), (x, α)〉 ≤ 0 holds
for all (x, α) ∈ epi γQ and we have L = {(x, α) ∈ epi γQ : 〈(v,−1), (x, α)〉 = 0}.



Extreme point inequalities and geometry of the rank sparsity ball 23

Define the hyperplane H := {x : 〈v, x〉 = 1}. It easily follows that H is a
supporting hyperplane of Q and we have H ∩Q = {x : (x, 1) ∈ L} = F ∩bdQ.
Thus F ∩ bdQ is an exposed face of γQ with an exposing vector v. Applying
claim 1 now to F ∩ bdQ, we deduce M = cl cone (M ∩ (bdQ)).

To see 3, suppose that F is a minimal exposed face of Q at x̄. Then by
claim 1, the set cl coneF is an exposed face of γQ containing x̄. Consider now
any exposed face M of γQ containing x̄. Then M necessarily has the form
cl coneF ′ where F ′ is an exposed face of Q. Clearly we have x̄ ∈ F ′ and hence
F ⊂ F ′. The claim follows. Proof of 4 is similar. Equivalence (A.1) follows
easily from the proofs of 1 and 2. ut

Corollary A.4 (Minimal exposed faces of convex sets)
Consider a closed convex set Q ⊂ E and a point x̄ in Q. Then for any vector
v ∈ riNQ(x̄), the set F = ∂δ∗Q(v) is a minimal exposed face at x̄.

Proof Suppose without loss of generality 0 ∈ intQ and let γQ : E→ R be the
gauge of Q. Fix a vector v ∈ riNQ(x̄) and observe by Proposition A.3, we have
(v,−1) ∈ riNepi γQ(x̄, 1). It follows that (Nepi γQ)−1(v,−1) = cl cone (F ×{1})
is a minimal exposed face of epi γQ at (x̄,−1) and consequently F is a minimal
exposed face of Q at x̄. ut

Proof of Theorem 2.9: Claim 1 is obvious. To see 2, let F be a minimal exposed
face of f at x̄. Then gph f

∣∣
F

is an exposed face of epi f . Choose a vector
(v,−β) ∈ riNepi f (x̄, f(x̄)). Clearly then the inequality β > 0 holds and we
deduce using Corollary A.4 that the vector ( vβ ,−1) exposes a minimal exposed

face M of epi f at (x̄, f(x̄)). On the other hand, since F is minimal exposed
face of f at x̄, We immediately obtain the inclusion gph f

∣∣
F
⊂ M , thereby

establishing the validity of 2. ut

Proof of Corollary 2.10: This is immediate from Corollary A.4 and Theo-
rem 2.9. ut
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