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Abstract

We give explicit polynomial-sized (in n and k) semidefinite representations of the hyperbol-
icity cones associated with the elementary symmetric polynomials of degree k in n variables.
These convex cones form a family of non-polyhedral outer approximations of the non-negative
orthant that preserve low-dimensional faces while successively discarding high-dimensional faces.
More generally we construct explicit semidefinite representations (polynomial-sized in k,m, and
n) of the hyperbolicity cones associated with kth directional derivatives of polynomials of the
form p(x) = det(

∑n
i=1Aixi) where the Ai are m×m symmetric matrices. These convex cones

form an analogous family of outer approximations to any spectrahedral cone. Our represen-
tations allow us to use semidefinite programming to solve the linear cone programs associated
with these convex cones as well as their (less well understood) dual cones.

1 Introduction

Expressing convex optimization problems in conic form, as the minimization of a linear functional
over an affine slice of a convex cone, has been an important method in the development of modern
convex optimization theory. This abstraction is useful (at least from a theoretical viewpoint)
because all that is difficult and interesting about the problem is packaged into the cone. The
conic viewpoint provides a natural way to organize classes of convex optimization problems into
hierarchies based on whether the cones associated with one class can be expressed in terms of
the cones associated with another class. For example, semidefinite programming generalizes linear
programming because the non-negative orthant is the restriction to the diagonal of the positive
semidefinite cone.

When faced with a convex cone the geometry of which is not well understood, we stand to
gain theoretical insight as well as off-the-shelf optimization algorithms by representing it in terms
of a cone with known geometric and algebraic structure such as the positive semidefinite cone.
Terminology is attached to this idea, with a cone being spectrahedral if it is a linear section (or
‘slice’) of the positive semidefinite cone, and semidefinitely representable if it is a linear projection
of a spectrahedral cone. The efficiency of a semidefinite representation is also clearly important. If
we can write a cone as the projection of a slice of the cone of m×m positive semidefinite matrices,
we say it has a semidefinite representation of size m. Many convex cones have been shown to be
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semidefinitely representable using a variety of techniques (see [14] as well as the recent book [1] for
contrasting methods and examples).

The classes of semidefinitely representable cones and spectrahedral cones are distinct [17], with
semidefinitely representable cones being perhaps more natural from the point of view of optimiza-
tion. A semidefinite representation of a cone suffices to express the associated cone program as a
semidefinite program. Furthermore, unlike spectrahedral cones, the class of semidefinitely repre-
sentable cones is closed under duality [4, Proposition 3.2].

The hyperbolicity cones form a family of convex cones (constructed from certain multivariate
polynomials) that includes the positive semidefinite cone, as well as all homogeneous cones [7].
While it has been shown (by Lewis et al. [10] based on work of Helton and Vinnikov [8]) that all
three-dimensional hyperbolicity cones are spectrahedral, little is known about semidefinite repre-
sentations of higher dimensional hyperbolicity cones. Furthermore while hyperbolicity cones have
very simple descriptions, their dual cones are not well understood.

In this paper we give explicit, polynomial-sized semidefinite representations of the hyperbolicity
cones known as the derivative relaxations of the non-negative orthant, and the corresponding deriva-
tive relaxations of the positive semidefinite cone. These cones form a family of outer approximations
to the orthant and positive semidefinite cones respectively with many interesting properties [18].
We obtain semidefinite representations of the derivative relaxations of spectrahedral cones as slices
of the derivative relaxations of the positive semidefinite cone.

1.1 Hyperbolic polynomials and hyperbolicity cones

A homogeneous polynomial p of degree m in n variables is hyperbolic with respect to e ∈ Rn if
p(e) 6= 0 and if for all x ∈ Rn the univariate polynomial t 7→ p(x− te) has only real roots. G̊arding’s
foundational work on hyperbolic polynomials [6] establishes that if p is hyperbolic with respect to
e then the connected component of {x ∈ Rn : p(x) 6= 0} containing e is an open convex cone. This
cone is called the hyperbolicity cone corresponding to (p, e). We denote it by Λ++(p, e), and its
closure by Λ+(p, e).

Note that p is hyperbolic with respect to e if and only if −p is hyperbolic with respect to e. As
such we assume throughout that p(e) > 0. We can expand p(x+ te) as

p(x+ te) = p(e)
[
tm + a1(x)tm−1 + a2(x)tm−2 + · · ·+ am−1(x)t+ am(x)

]
where the ai(x) are polynomials that are homogeneous of degree i. There is an alternative descrip-
tion of the hyperbolicity cone Λ+(p, e) due to Renegar [18, Theorem 20] as

Λ+(p, e) = {x ∈ Rn : a1(x) ≥ 0, a2(x) ≥ 0, . . . , am(x) ≥ 0} . (1)

We use this description of Λ+(p, e) throughout the paper.

Basic examples:

• The polynomial p(x1, x2, . . . , xn) = x1x2 · · ·xn is hyperbolic with respect to e = 1n :=
(1, 1, . . . , 1). The associated closed hyperbolicity cone is the non-negative orthant, Rn

+. Since

p(x+ t1n) = tn + e1(x)tn−1 + · · ·+ en−1(x)t+ en(x)

where ek(x) =
∑

1≤i1<···<ik≤n xi1 · · ·xik is the elementary symmetric polynomial of degree k
in the variables x1, x2, . . . , xn,

Λ+(p, e) = Rn
+ = {x ∈ Rn : e1(x) ≥ 0, e2(x) ≥ 0, . . . , en(x) ≥ 0} .
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• Let X be an n × n symmetric matrix of indeterminates. The polynomial p(X) = det(X)
is hyperbolic with respect to e = In, the n × n identity matrix. The associated closed
hyperbolicity cone is the positive semidefinite cone, Sn+. Since

p(X + tIn) = tn + E1(X)tn−1 + · · ·+ En−1(X)t+ En(X)

where the Ek(X) are the coefficients of the characteristic polynomial of X,

Λ+(p, e) = Sn+ = {X : E1(X) ≥ 0, E2(X) ≥ 0, . . . , En(X) ≥ 0} .

Observe that Ek(X) := ek(λ(X)) is the elementary symmetric polynomial of degree k in the
eigenvalues of X so the positive semidefinite cone can also be described in terms of polynomial
inequalities on the eigenvalues of X as

Sn+ = {X : e1(λ(X)) ≥ 0, e2(λ(X)) ≥ 0, . . . , en(λ(X)) ≥ 0} .

1.2 Derivative relaxations

If p is hyperbolic with respect to e then (essentially by Rolle’s theorem) the directional derivative
of p in the direction e, viz.

p(1)e (x) :=
d

dt
p(x+ te)

∣∣∣∣
t=0

is also hyperbolic with respect to e, a construction that goes back to G̊arding [6]. If p has de-
gree m, by repeatedly differentiating in the direction e we construct a sequence of polynomials

p, p
(1)
e , p

(2)
e , . . . , p

(m−1)
e each hyperbolic with respect to e.

The corresponding hyperbolicity cones can be expressed nicely in terms of polynomial inequal-
ities. Indeed if p(x+ te) = p(e)

[
tm +

∑m
i=1 ai(x)tm−i

]
then differentiating k times with respect to

t we see that

p(k)e (x+ te) = p(e)
[
c0am−k(x) + c1am−k−1(x)t+ · · ·+ cm−kt

m−k
]

where ci = (k + i)!/i! > 0. By (1) the corresponding hyperbolicity cone is

Λ
(k)
+ (p, e) := Λ+(p(k)e , e) = {x ∈ Rn : a1(x) ≥ 0, a2(x) ≥ 0, . . . , am−k(x) ≥ 0}

and can be obtained from (1) by removing k of the inequality constraints. As a result, the hyper-

bolicity cones Λ
(k)
+ (p, e) provide a sequence of outer approximations to the original hyperbolicity

cone that satisfy

Λ+(p, e) ⊂ Λ
(1)
+ (p, e) ⊂ · · · ⊂ Λ

(m−1)
+ (p, e).

The last of these, Λ
(m−1)
+ (p, e), is simply the closed half-space defined by e. The work of Renegar

[18] highlights the many nice properties of this sequence of approximations.

Note that we abuse terminology by referring to the cones Λ
(k)
+ (p, e) as derivative relaxations of

the hyperbolicity cone Λ+(p, e). The abuse is that Λ
(k)
+ (p, e) does not depend only on the geometric

object Λ+(p, e) but on its particular algebraic description via p and e.
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Examples:

• In the case of p(x) = x1x2 · · ·xn = en(x) and e = 1n, we have that p
(k)
e (x) = k!en−k(x).

Consequently the kth derivative relaxation of the orthant, which we denote by Rn,(k)
+ , is the

hyperbolicity cone Λ+(en−k,1n). It can be expressed as

Rn,(k)
+ = {x ∈ Rn : e1(x) ≥ 0, e2(x) ≥ 0, . . . , en−k(x) ≥ 0}. (2)

Consistent with these descriptions we define Rn,(n)
+ := Rn.

• In the case of p(X) = det(X) = En(X) and e = In, we have that p
(k)
e (x) = k!En−k(X). The

kth derivative relaxation of the positive semidefinite cone, which we denote by Sn,(k)+ , can be
described as

Sn,(k)+ = {X ∈ Sn : E1(x) ≥ 0, E2(x) ≥ 0, . . . , En−k(x) ≥ 0} (3)

= {X ∈ Sn : e1(λ(X)) ≥ 0, e2(λ(X)) ≥ 0, . . . , en−k(λ(X)) ≥ 0} . (4)

Again we define Sn,(n)+ := Sn, the set of n× n symmetric matrices. Since Ei(diag(x)) = ei(x)

for all i, the diagonal slice of Sn,(k)+ is exactly Rn,(k)
+ .

Symmetry: Suppose G is a group acting by linear transformations on Rn by x 7→ g · x for all
g ∈ G. Suppose both p and e are invariant under the group action, i.e., g · e = e and (g · p)(x) :=
p(g−1 · x) = p(x) for all g ∈ G. Then for all t ∈ R, x ∈ Rn and g ∈ G

p(x+ te) = (g · p)(x+ te) = p(g−1 · (x+ te)) = p((g−1 · x) + te).

Hence the hyperbolicity cone Λ+(p, e) and all of its derivative cones Λ
(k)
+ (p, e) are invariant under

this same group action.

For our purposes an important example of this is the symmetry of the cones Sn,(k)+ . The action
of O(n) by conjugation on symmetric matrices leaves the polynomial p(X) = det(X) invariant and
preserves the direction e = In. Hence all of the derivative relaxations of the positive semidefinite

cone are invariant under conjugation by orthogonal matrices. As such, the cones Sn,(k)+ are spec-

tral sets, in the sense that whether a symmetric matrix X belongs to Sn,(k)+ depends only on the

eigenvalues of X. This is evident from the description of Sn,(k)+ in (4).

1.3 Related work

Previous work has focused on semidefinite and spectrahedral representations of the derivative re-
laxations of the orthant. Zinchenko [23] used a decomposition approach to give semidefinite repre-

sentations of Rn,(1)
+ and its dual cone. Sanyal [21] subsequently gave spectrahedral representations

of Rn,(1)
+ and Rn,(n−2)

+ and conjectured that all of the derivative relaxations of the orthant admit
spectrahedral representations.

Recently Brändén [2] settled this conjecture in the affirmative giving spectrahedral representa-

tions of Rn,(n−k)
+ for k = 1, 2, . . . , n− 1 of size O(nk−1). For each 1 ≤ k < n Brändén constructs a

graph Gn,k = (V,E) together with edge weights (we(x))e∈E that are linear forms in x so that

Rn,(n−k)
+ =

{
x ∈ Rn : LGn,k

(x) � 0
}

(5)
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where LGn,k
(x) is the |V | × |V | edge-weighted Laplacian of Gn,k. Since LGn,k

(x) is linear in the
edge weights, and the edge weights are linear forms in x, (5) is a spectrahedral representation
of size |V |. With the exception of two distinguished vertices, the vertices of Gn,k are indexed
by all `-tuples (for 1 ≤ ` ≤ k − 1) consisting of distinct elements of {1, 2, . . . , n}. Hence |V | =

2 +
∑k−1

`=1 `!
(
n
`

)
showing that Brändén’s spectrahedral representation of Rn,(n−k)

+ has size O(nk−1).
While Brändén’s construction is of considerable theoretical interest, these representations (unlike
ours) are not practical for optimization due to their prohibitive size.

A spectrahedral representation of Rn,(1)
+ is implicit in the work of Choe et al. [3] that studies

the relationships between matroids and hyperbolic polynomials. Choe et al. observe that ifM is a
regular matroid represented by the rows of a totally unimodular matrix V then det(V T diag(x)V )
is the basis generating polynomial of M. In particular, the uniform matroid Un−1

n is regular and
has en−1(x) as its basis generating polynomial, yielding a symmetric determinantal representation

of en−1(x) and hence a spectrahedral representation of Rn,(n−1)
+ .

From a computational perspective, Güler [7] showed that if p has degree m and is hyperbolic
with respect to e then log p is a self-concordant barrier function (with barrier parameter m) for
the hyperbolicity cone Λ+(p, e). As such, as long as p and its gradient and Hessian can be com-
puted efficiently, one can use interior point methods to minimize a linear functional over an affine
slice of Λ+(p, e) efficiently. Renegar [18, Section 9] gave an efficient interpolation-based method

for computing p
(k)
e (and its gradient and Hessian) whenever p (and its gradient and Hessian) can

be evaluated efficiently. Güler and Renegar’s observations together yield efficient computational
methods to optimize a linear functional over an affine slice of a derivative relaxation of a spectra-
hedral cone. Our results complement these, giving a method to solve optimization problems of this
type using existing numerical procedures for semidefinite programming.

1.4 Notation

Here we define notation not explicitly defined elsewhere in the paper. If C is a convex cone,
we denote by C∗ the dual cone, i.e. the set of linear functionals that are non-negative on C.
We represent linear functionals on Rn using the standard Euclidean inner product, and linear
functionals on Sn using the trace inner product 〈X,Y 〉 = tr(XY ). As such C∗ = {y : 〈y, x〉 ≥
0, for all x ∈ C}. If X ∈ Sn let λ(X) denote its eigenvalues sorted so that λ1(X) ≥ λ2(X) ≥
· · · ≥ λn(X). If X ∈ Sn let diag(X) ∈ Rn denote the vector of diagonal entries and if x ∈ Rn let
diag(x) denote the diagonal matrix with diagonal entries given by x. The usage will be clear from
the context.

2 Results

Our main contribution is to construct two different explicit polynomial-sized semidefinite represen-
tations of the derivative relaxations of the positive semidefinite cone. We call our two representa-
tions the derivative-based and polar derivative-based representations respectively. In this section
we describe these representations, and outline the proof of our main theoretical result.

Theorem 1. For each positive integer n and each k = 1, 2, . . . , n−1, the cone Sn,(k)+ has a semidef-
inite representation of size O(min{k, n− k}n2).

We defer detailed proofs of the correctness of our representations to Sections 3 and 4. At this
stage, we just highlight that there is essentially one basic algebraic fact that underlies all of our
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results. Whenever Vn is an n× (n− 1) matrix with orthonormal columns that are each orthogonal
to 1n, i.e. V T

n Vn = In−1 and V T
n 1n = 0, then

en−1(x) = n det(V T
n diag(x)Vn).

We give a proof of this identity in Section 3. Note that this identity is independent of the particular
choice of Vn satisfying V T

n Vn = In−1 and V T
n 1n = 0. In fact, all of the results expressed in terms

of Vn (notably Propositions 2, 3, 2D, and 3D) are similarly independent of the particular choice of
Vn.

Both of the representations are recursive in nature. The derivative-based representation is based
on recursively applying two basic propositions (Propositions 1 and 2, to follow) to construct a chain
of semidefinite representations of the form

Sn,(k)+

O(n2)←−−−−
Prop. 1

Rn,(k)
+

0←−−−−
Prop. 2

Sn−1,(k−1)+

O((n−1)2)←−−−−−−
Prop. 1

Rn−1,(k−1)
+ ← · · · (6)

· · · ← Rn−k+1,(1)
+

0←−−−−
Prop. 2

Sn−k,(0)+ .

The annotated arrow C
m←−−−−

Prop. a
K indicates that given a semidefinite representation of K of size m′

we can construct a semidefinite representation of C of size m′+m, and that an explicit description
of the construction is given in Proposition a.

The base case of the recursion is just the positive semidefinite cone Sn−k,(0)+ , which has a trivial

semidefinite representation. Hence starting from Sn−k,(0)+ (which has a semidefinite representation

of size n− k), we can apply Proposition 2 to obtain a semidefinite representation of Rn−k+1,(1)
+ of

size n − k, then apply Proposition 1 to obtain a semidefinite representation of Sn−k+1,(1)
+ of size

(n− k) +O((n− k + 1)2), and so on.
The polar derivative-based representation is based on recursively applying Proposition 1 to-

gether with a third basic proposition (Proposition 3, to follow) to construct a slightly different
chain of semidefinite representations of the form

Sn,(k)+

O(n2)←−−−−
Prop. 1

Rn,(k)
+

n←−−−−
Prop. 3

Sn−1,(k)+

O(n2)←−−−−
Prop. 1

Rn−1,(k)
+ ← · · ·

· · · ← Rk+2,(k)
+

n←−−−−
Prop. 3

Sk+1,(k)
+ . (7)

Note that the base case of the recursion is just Sk+1,(k)
+ = {X ∈ Sk+1 : tr(X) ≥ 0}, a half-space.

2.1 Building blocks of the two recursions

We now describe the constructions related to each of the types of arrows in the recursions sketched
above. The arrows labeled by Proposition 1 assert that we can construct a semidefinite repre-

sentation of Sn,(k)+ from a semidefinite representation of Rn,(k)
+ . This can be done in the following

way.

Proposition 1. If Rn,(k)
+ has a semidefinite representation of size m, then Sn,(k)+ has a semidefinite

representation of size m+O(n2). Indeed

Sn,(k)+ =
{
X ∈ Sn : ∃z ∈ Rn s.t. z ∈ Rn,(k)

+ , (X, z) ∈ SHn

}
, (8)

6



where SHn is the Schur-Horn cone defined as

SHn =
{

(X, z) : z1 ≥ z2 ≥ · · · ≥ zn, X ∈ convQ∈O(n){QT diag(z)Q}
}

i.e. the set of pairs (X, z) such that X is in the convex hull of all symmetric matrices with ordered
spectrum z. The Schur-Horn cone has the semidefinite characterization

(X, z) ∈ SHn if and only if z1 ≥ z2 ≥ · · · ≥ zn and

there exist t2, . . . , tn−1 ∈ R, Z2, . . . , Zn−1 � 0

such that tr(X) =
∑n

j=1 zj , X � z1I, and

for ` = 2, . . . , n− 1, X � t`I + Z` and ` · t` + tr(Z`) ≤
∑`

j=1 zj .

Proposition 1 holds because of the symmetry of Sn,(k)+ . In particular it is a spectral set—invariant
under conjugation by orthogonal matrices. The other reason this representation works is that the

diagonal slice of Sn,(k)+ is Rn,(k)
+ . We discuss this result in more detail in Section 4.

The arrows in (6) labeled by Proposition 2 appear only in the derivative-based recursion. They

assert that we can obtain a semidefinite representation of Rn,(k)
+ from a semidefinite representation

of Sn−1,(k−1)+ . Indeed we establish in Section 3.1 that Rn,(k)
+ is actually a slice of Sn−1,(k−1)+ .

Proposition 2. If 1 ≤ k ≤ n− 1 then Rn,(k)
+ =

{
x ∈ Rn : V T

n diag(x)Vn ∈ Sn−1,(k−1)+

}
.

The arrows in (7) labeled by Proposition 3 appear only in the polar derivative-based recur-

sion. They assert that we can obtain a semidefinite representation of Rn,(k)
+ from a semidefinite

representation of Sn−1,(k)+ . We establish the following in Section 3.2.

Proposition 3. If 1 ≤ k ≤ n− 2 then

Rn,(k)
+ =

{
x ∈ Rn : ∃Z ∈ Sn−1,(k)+ s.t. diag(x) � VnZV T

n

}
.

2.2 Size of the representations

Recall that each arrow C
m←− K in (6) and (7) is labeled with the additional size m required to

implement the representation of C given a semidefinite representation of K. Since the derivative-
based recursion has 2k arrows, it is immediate from (6) that the derivative-based semidefinite

representation of Sn,(k)+ has size O(kn2) and so is of polynomial size.
On the other hand, this approach gives a disappointingly large semidefinite representation of the

half-space Sn,(n−1)+ = {X ∈ Sn : tr(X) ≥ 0} of size O(n3). The derivative-based approach cannot
exploit the fact that this is a very simple cone. This is why we also consider the polar derivative-

based representation, as it is designed around the fact that Sn,(n−1)+ has a simple semidefinite
representation.

It is immediate from (7) that the polar derivative-based semidefinite representation of Sn,(k)+ has
size O((n− k)n2) and so is also of polynomial size. Furthermore, it gives small representations of
size O(n2) exactly when the derivative-based representations are large, of size O(n3). For any given

pair (n, k) we should always use the derivative-based representation of Sn,(k)+ if k < n/2 and the
polar derivative-based representation when k > n/2. Theorem 1 combines our two size estimates,

stating that Sn,(k)+ has a semidefinite representation of size O(min{k, n− k}n2).

7



2.3 Pseudocode for our derivative-based representation

We do not write out any of our semidefinite representations in full because the recursive descriptions
given here are actually more naturally suited to implementation. To illustrate this, we give pseu-
docode for the MATLAB-based high-level modeling language YALMIP [11] that ‘implements’ the

derivative-based representations of Sn,(k)+ and Rn,(k)
+ . Decision variables are declared by expressions

like x = sdpvar(n,1); which creates a decision variable x taking values in Rn. An LMI object is
a list of equality constraints and linear matrix inequality constraints that are linear in any declared
decision variables.

Suppose we have a function SH(X,z) that takes a pair of decision variables and returns an LMI
object corresponding to the constraint that (X, z) ∈ SHn. This is easy to construct from the explicit
semidefinite representation in Proposition 1. Then the function psdcone takes an n×n symmetric

matrix-valued decision variable X and returns an LMI object for the constraint X ∈ Sn,(k)+ .

1: function K = psdcone(X,k)

2: if k==0

3: K = [X >= 0];

4: else

5: z = sdpvar(size(X,1),1);

6: K = [orthant(z,k), SH(X,z)];

7: end

It calls a function orthant that takes a decision variable x in Rn and returns an LMI object for

the constraint x ∈ Rn,(k)
+ .

1: function K = orthant(x,k)

2: if k==0

3: K = [x >= 0];

4: else

5: V = null(ones(size(x))’);

6: K = [psdcone(V’*diag(x)*V,k-1)];

7: end

It is straightforward to adapt these two functions for the polar derivative-based representation, one
needs only to change the base cases (lines 2–4 of each) and to adapt line 6 of orthant to reflect
Proposition 3.

2.4 Dual cones

If a cone is semidefinitely representable, so is its dual cone. In fact there are explicit procedures to
take a semidefinite representation for a cone and produce a semidefinite representation for its dual
cone [13, Section 4.1.1]. Here we describe two explicit semidefinite representations of the dual cones

(Sn,(k)+ )∗ that enjoy the same recursive structure as the corresponding semidefinite representations

of Sn,(k)+ .
To construct them, we essentially dualize all the relationships given by the arrows in (6) and (7).

By straightforward applications of a conic duality argument, in Section 3.3 we establish the following
dual analogues of Propositions 2 and 3.

8



Proposition 2D. If 1 ≤ k ≤ n− 1 then

(Rn,(k)
+ )∗ =

{
diag(VnY V

T
n ) : Y ∈ (Sn−1,(k−1)+ )∗

}
.

Proposition 3D. If 1 ≤ k ≤ n− 2 then

(Rn,(k)
+ )∗ =

{
diag(Y ) : Y � 0, V T

n Y Vn ∈ (Sn−1,(k)+ )∗
}
.

We could also obtain a dual version of Proposition 1 by directly applying conic duality to
the semidefinite representation in Proposition 1. This would involve dualizing the semidefinite

representation of SHn. Instead we give another, perhaps simpler, representation of (Sn,(k)+ )∗ in

terms of (Rn,(k)
+ )∗ that is not obtained by directly applying conic duality to Proposition 1.

Proposition 1D. If (Rn,(k)
+ )∗ has a semidefinite representation of size m, then (Sn,(k)+ )∗ has a

semidefinite representation of size m+O(n2) given by

(Sn,(k)+ )∗ =
{
W ∈ Sn : ∃y ∈ Rn s.t. y ∈ (Rn,(k)

+ )∗, (W, y) ∈ SHn

}
. (9)

Recall that Proposition 1 holds because Sn,(k)+ is invariant under orthogonal conjugation and

Rn,(k)
+ is the diagonal slice of Sn,(k)+ . While it is immediate that (Sn,(k)+ )∗ is also orthogonally

invariant, it is a less obvious result that the diagonal slice of (Sn,(k)+ )∗ is (Rn,(k)
+ )∗. We prove this in

Section 4.
The recursions underlying the derivative-based and polar derivative-based representations of

(Sn,(k)+ )∗ then take the form

(Sn,(k)+ )∗ ← (Rn,(k)
+ )∗ ← (Sn−1,(k−1)+ )∗ ← · · · ← (Rn−k+1,(1)

+ )∗ ← (Sn−k,(0)+ )∗ (10)

and, respectively,

(Sn,(k)+ )∗ ← (Rn,(k)
+ )∗ ← (Sn−1,(k)+ )∗ ← · · · ← (Rk+2,(k)

+ )∗ ← (Sk+1,(k)
+ )∗. (11)

Note that for the dual derivative-based representation, the base case is (Sn−k,(0)+ )∗ = Sn−k+ (since
the positive semidefinite cone is self dual). For the dual polar derivative-based representation the

base case is (Sk+1,(k)
+ )∗ = {tIk+1 : t ≥ 0}, the ray generated by the identity matrix in Sk+1.

2.5 Derivative relaxations of spectrahedral cones

So far we have focused on the derivative relaxations of the positive semidefinite cone. It turns out
that the derivative relaxations of spectrahedral cones are just slices of the associated derivative
relaxations of the positive semidefinite cone.

Proposition 4. Suppose p(x) = det(
∑n

i=1Aixi) where the Ai are m×m symmetric matrices and
e ∈ Rn is such that

∑n
i=1Aiei = B is positive definite. Then for k = 0, 1, . . . ,m− 1,

Λ
(k)
+ (p, e) =

{
x ∈ Rn :

n∑
i=1

B−1/2AiB
−1/2xi ∈ Sm,(k)

+

}
.
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Proof. Let A(x) =
∑n

i=1B
−1/2AiB

−1/2xi. Then A(e) = I and for all x ∈ Rn and all t ∈ R

p(x+ te) = det(B) det(A(x+ te)) = det(B) det(A(x) + tI).

This implies that all the derivatives of p in the direction e are exactly the same as the corresponding
derivatives of det(B) det(X) in the direction I evaluated at X = A(x). Since det(B) > 0, it follows

that for k = 0, 1, . . . ,m− 1, x ∈ Λ
(k)
+ (p, e) if and only if A(x) ∈ Sm,(k)

+ .

We conclude this section with an example of these constructions.

Example 1 (Derivative relaxations of a 3-ellipse). Given foci (0, 0), (0, 4) and (3, 0) in the plane,
the 3-ellipse consisting of points such that the sum of distances to the foci equals 8 is shown
in Figure 1. This is one connected component of the real algebraic curve of degree 8 given by
{(x, y) ∈ R2 : det E(x, y, 1) = 0} where E is defined in (12) (see Nie et al. [16]). The region enclosed
by this 3-ellipse is the z = 1 slice of the spectrahedral cone defined by E(x, y, z) � 0 where

E(x, y, z) =



5z + 3x y y − 4z 0 y 0 0 0
y 5z + x 0 y − 4z 0 y 0 0

y − 4z 0 5z + x y 0 0 y 0
0 y − 4z y 5z − x 0 0 0 y
y 0 0 0 11z + x y y − 4z 0
0 y 0 0 y 11z − x 0 y − 4z
0 0 y 0 y − 4z 0 11z − x y
0 0 0 y 0 y − 4z y 11z − 3x


. (12)

Note that E(0, 0, 1) � 0 and so e = (0, 0, 1) is a direction of hyperbolicity for p(x, y, z) = det E(x, y, z).
The left of Figure 1 shows the z = 1 slice of the cone Λ+(p, e) and its first three derivative relax-

ations Λ
(1)
+ (p, e),Λ

(2)
+ (p, e), and Λ

(3)
+ (p, e). The right of Figure 1 shows the z = 1 slice of the cones

(Λ+(p, e))∗, (Λ
(1)
+ (p, e))∗, (Λ

(2)
+ (p, e))∗, and (Λ

(3)
+ (p, e))∗. All of these convex bodies were plotted

by computing 200 points on their respective boundaries by optimizing 200 different linear func-
tionals over them. We performed the optimization by modeling our semidefinite representations
of these cones in YALMIP [11] which numerically solved the corresponding semidefinite program
using SDPT3 [22].

3 The derivative-based and polar derivative-based recursive con-
structions

In this section we prove Proposition 2 which relates Rn,(k)
+ and Sn−1,(k−1)+ as well as Proposition 3

which relates Rn,(k)
+ and Sn−1,(k)+ . These relationships are the geometric consequences of polynomial

identities between elementary symmetric polynomials and determinants.
Specifically the proof of Proposition 2 makes use of a determinantal representation (Equa-

tion (15) in Section 3.1) of the derivative

∂
∂ten(sx+ t1n)

∣∣
s=1

=
[
1 · en−1(x) + · · ·+ (n− 1) · e1(x)tn−2 + n · tn−1

]
. (13)

(Note that s plays no role in (13), we include it to highlight the relationship with (14).) Similarly
the proof of Proposition 3 relies on a determinantal expression (Equation (18) in Section 3.2) for
the polar derivative

∂
∂sen(sx+ t1n)

∣∣
s=1

=
[
n · en(x) + (n− 1) · en−1(x)t+ · · ·+ 1 · e1(x)tn−1

]
. (14)

10



Figure 1: On the left, the inner region is the 3-ellipse consisting of points with sum-of-distances to
(0, 0), (0, 4), and (3, 0) equal to 8, i.e. the z = 1 slice of the spectrahedral cone defined by (12). The
outer three regions are the z = 1 slices of the first three derivative relaxations of this spectrahedral
cone in the direction (0, 0, 1). On the right are the z = 1 slices of the dual cones of the cones shown
on the left, with dual pairs having the same shading.

This explains why we call one the derivative-based representation, and the other the polar derivative-
based representation.

3.1 The derivative-based recursion: relating Rn,(k)
+ and Sn−1,(k−1)

+

Let Vn denote an (arbitrary) n× (n−1) matrix satisfying V T
n Vn = In−1 and V T

n 1n = 0. Our results
in this section and the next stem from the following identity.

Lemma 1. For all x ∈ Rn and all t ∈ R,

∂
∂ten(sx+ t1n)

∣∣
s=1

= en−1(x+ t1n) = n det(V T
n diag(x)Vn + tIn−1). (15)

This is a special case of an identity established by Choe et al. [3, Corollary 8.2] and is closely
related to Sanyal’s result [21, Theorem 1.1]. The proof of Choe et al. uses the Cauchy-Binet identity.
Here we provide an alternative proof.

Proof. The polynomial en−1(x1, x2, . . . , xn) is characterized by satisfying en−1(1n) = n, and by
being symmetric, homogeneous of degree n−1 and of degree one in each of the xi. We show, below,
that n det(V T

n diag(x)Vn) also has these properties and so that en−1(x) = n det(V T
n diag(x)Vn). The

stated result then follows because V T
n Vn = In−1 implies

en−1(x+ t1n) = n det(V T
n diag(x+ t1n)Vn) = n det(V T

n diag(x)Vn + tIn−1).

Now, it is clear that det(V T
n diag(x)Vn) is homogeneous of degree n− 1 and that

n det(V T
n diag(1n)Vn) = n det(In−1) = n.

11



It remains to establish that det(V T
n diag(x)Vn) is symmetric and of degree one in each of the xi.

To do so we repeatedly use the fact that if Vn and Un both have orthonormal columns that span
the orthogonal complement of 1n then det(V T

n diag(x)Vn) = det(UT
n diag(x)Un).

The polynomial det(V T
n diag(x)Vn) is symmetric because for any n × n permutation matrix

P the columns of Vn and PVn respectively are both orthonormal and each spans the orthogonal
complement of 1n (because P1n = 1n). Hence

det(V T
n diag(Px)Vn) = det((PVn)T diag(x)(PVn)) = det(V T

n diag(x)Vn).

We finally show that det(V T
n diag(x)Vn) is of degree one in each xi by a convenient choice of Vn.

For any i, we can always choose Vn to be of the form

V T
n =

[
v1 · · · vi−1

√
n−1
n ei vi+1 · · · vn

]
where ei is the ith standard basis vector in Rn−1. Then

det(V T
n diag(x)Vn) = det

(
xi
(
n−1
n

)
eie

T
i +

∑
j 6=ixjvjv

T
j

)
which is of degree one in xi by the linearity of the determinant in its ith column.

As observed by Sanyal, such a determinantal identity for en−1(x) establishes that Rn,(1)
+ is a

slice of Sn−1+ = Sn−1,(1−1)+ . We now have two expressions for the derivative ∂
∂ten(sx+ t1n)

∣∣
s=1

, one
from the definition (13) and one from (15). Comparing them allows us to deduce Proposition 2,

that Rn,(k)
+ is a slice of Sn−1,(k−1)+ for all 1 ≤ k ≤ n− 1.

of Proposition 2. From (13) and (15) we see that

∂
∂ten(sx+ t1n)

∣∣
s=1

=
[
1 · en−1(x) + · · ·+ (n− 1) · e1(x)tn−2 + n · tn−1

]
= n

[
En−1(V

T
n diag(x)Vn) + · · ·+ E1(V

T
n diag(x)Vn)tn−2 + tn−1

]
.

Comparing coefficients of powers of t we see that for i = 0, 1, . . . , n− 1

nE(n−1)−(i−1)(V
T
n diag(x)Vn) = (n− i)en−i(x).

Hence for k = 1, 2, . . . , n− 1, x ∈ Rn,(k)
+ if and only if V T

n diag(x)Vn ∈ Sn−1,(k−1)+ .

3.2 The polar derivative-based recursion: relating Rn,(k)
+ and Sn−1,(k)

+

In this section we relate Rn,(k)
+ with Sn−1,(k)+ , eventually proving Proposition 3. Our argument

follows a pattern similar to the previous section. First we give a determinantal expression for the
polar derivative ∂

∂sen(sx+ t1n)
∣∣
s=1

, and then interpret it geometrically.
While our approach here is closely related to the approach of the previous section, things are

a little more complicated. This is not surprising because our construction aims to express Rn,(k)
+ ,

which has an algebraic boundary of degree n − k, in terms of Sn−1,(k)+ , which has an algebraic

boundary of smaller degree, n − k − 1. Hence it is not possible for Rn,(k)
+ simply to be a slice of

Sn−1,(k)+ .
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Block matrix notation: Let 1̂n = 1n/
√
n and define Qn =

[
Vn 1̂n

]
noting that Qn is orthog-

onal. It is convenient to introduce the block matrix

M(x) := QT
n diag(x)Qn =

[
V T
n diag(x)Vn V T

n diag(x)1̂n
1̂Tn diag(x)Vn 1̂Tn diag(x)1̂n

]
=:

[
M11(x) M12(x)
M12(x)T M22(x)

]
(16)

which reflects the fact that it is natural to work in coordinates that are adapted to the symmetry of
the problem. (Indeed 1̂n and the columns of Vn each span invariant subspaces for the permutation
action on the coordinates of Rn.)

Schur complements: In this section our results are expressed naturally in term of the Schur
complement (M/M22)(x) := M11(x) − M12(x)M22(x)−1M12(x)T which is well defined whenever
e1(x) = nM22(x) 6= 0. The following lemma summarizes the main properties of the Schur comple-
ment that we use.

Lemma 2. If M =
[
M11 M12

MT
12 M22

]
is a partitioned symmetric matrix with non-zero scalar M22 and

M/M22 := M11 −M12M
−1
22 M

T
12 then[

M11 M12

MT
12 M22

]
=

[
In−1 M12M

−1
22

0 I1

] [
M/M22 0

0 M22

] [
In−1 0

M−122 M
T
12 I1

]
. (17)

This factorization immediately implies the following properties.

• If M is invertible then the (1, 1) block of M−1 is given by [M−1]11 = (M/M22)
−1.

• If M22 > 0 then
M � 0⇐⇒M/M22 � 0.

We now establish our determinantal expression for the polar derivative.

Lemma 3. If e1(x) = nM22(x) 6= 0 then

∂
∂sen(sx+ t1n)

∣∣
s=1

= e1(x) det((M/M22)(x) + tIn−1). (18)

Proof. First assume xi 6= 0 for i = 1, 2, . . . , n. If x ∈ Rn let x−1 denote its entry-wise inverse.
Exploiting our determinantal expression for the derivative we see that

∂
∂sen(sx+ t1n) = en(x) ∂

∂sen(s1n + tx−1)
∗
= en(x)n det(V T

n diag(tx−1 + s1n)Vn)

= en(x)n det(V T
n diag(x−1)Vn) det(tIn−1 + s(V T

n diag(x−1)Vn)−1)
∗
= en(x)en−1(x

−1) det(tIn−1 + s(V T
n diag(x−1)Vn)−1)

= e1(x) det(tIn−1 + s(V T
n diag(x−1)Vn)−1) (19)

where the equalities marked with an asterisk are due to (15). Since Qn is orthogonal M(x)−1 =
(QT

n diag(x)Qn)−1 = QT
n diag(x−1)Qn = M(x−1). Hence using a property of the Schur complement

from Lemma 2 we see that

(V T
n diag(x−1)Vn)−1 = [M(x−1)]−111 = [M(x)−1]−111 = (M/M22)(x).

Substituting this into (19) establishes the stated identity, which, by continuity, is valid for all x
such that e1(x) = nM22(x) 6= 0.
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We now have two expressions for the polar derivative, namely (14) and (18). One comes from
the definition of polar derivative, the other from the determinantal representation of Lemma 3.
Expanding each and equating coefficients gives the following identities.

Lemma 4. Let x ∈ Rn be such that e1(x) = nM22(x) 6= 0. Then for k = 0, 1, 2, . . . , n− 1

e1(x)En−1−k((M/M22)(x)) = (n− k)en−k(x).

Proof. Expanding the polar derivative two ways (from Lemma 3 and (14)) we obtain

∂
∂sen(sx+ t1n)

∣∣
s=1

=
[
n · en(x) + (n− 1) · en−1(x)t+ · · ·+ 1 · e1(x)tn−1

]
= e1(x)

[
En−1((M/M22)(x)) + En−2((M/M22)(x))t+ · · ·+ tn−1

]
.

The result follows by equating coefficients of tk.

We are now in a position to prove the main result of this section.

of Proposition 3. From the definition of M(x) in (16), observe that because Qn is orthogonal, the
constraint diag(x) � VnZV T

n holds if and only if

M(x) = QT
n diag(x)Qn � QT

n (VnZV
T
n )Qn =

[
Z 0
0 0

]
.

Hence we aim to establish the following statement that is equivalent to Proposition 3

Rn,(k)
+ =

{
x ∈ Rn : ∃Z ∈ Sn−1,(k)+ s.t. M(x) �

[
Z 0
0 0

]}
for k = 1, 2, . . . , n− 2.

The arguments that follow repeatedly use the fact (from Lemma 2) that if e1(x) = nM22(x) > 0
then

M(x) �
[
Z 0
0 0

]
⇐⇒ (M/M22)(x) � Z. (20)

With these preliminaries established, we turn to the proof of Proposition 3. First suppose there

is Z ∈ Sn−1,(k)+ such that M(x)−
[
Z 0
0 0

]
� 0. There are two cases to consider, depending on whether

M22(x) is positive or zero.
Suppose we are in the case where e1(x) = nM22(x) > 0. Then (M/M22)(x) � Z, so there is

some Z ′ ∈ Sn−1+ such that

(M/M22)(x) = Z + Z ′ ∈ Sn−1,(k)+ + Sn−1+ = Sn−1,(k)+

where the last equality holds because Sn−1,(k)+ ⊃ Sn−1+ . It follows that x ∈ Rn,(k)
+ because e1(x) > 0

(by assumption) and by Lemma 4,

iei(x) = e1(x)Ei−1((M/M22)(x)) ≥ 0 for i = 2, 3, . . . , n− k.

Now consider the case where e1(x) = nM22(x) = 0. Since[
M11(x)− Z M12(x)
M12(x)T M22(x)

]
=

[
M11(x)− Z V T

n x/
√
n

xTVn/
√
n 0

]
� 0

it follows that V T
n x = 0. Since, 1̂Tnx = 0 we see that QT

nx = 0 so x = 0 ∈ Rn,(k)
+ .
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Consider the reverse inclusion and suppose x ∈ Rn,(k)
+ . Again there are two cases depending on

whether e1(x) is positive or zero. If e1(x) > 0 take Z = (M/M22)(x). Then, by (20), M(x) �
[
Z 0
0 0

]
.

To see that Z ∈ Sn−1,(k)+ note that by Lemma 4,

Ei((M/M22)(x)) = (i+ 1)
ei+1(x)

e1(x)
≥ 0 for i = 1, 2, . . . , n− 1− k.

If x ∈ Rn,(k)
+ and e1(x) = 0 then we use the assumption that k ≤ n− 2. Under this assumption

x ∈ Rn,(k)
+ ∩ {x : e1(x) = 0} = {0}. In this case we can simply take Z = 0 ∈ Sn−1,(k)+ since

M(x) = 0 � 0 =
[
Z 0
0 0

]
.

3.3 Dual relationships

We conclude this section by establishing Propositions 2D and 3D, the dual versions of Propositions 2
and 3. Both follow from general results about conic duality, such as the following rephrasing of [19,
Corollary 16.3.2].

Lemma 5. Suppose K ⊂ Rm is a closed convex cone and A : Rp → Rm and B : Rp → Rn are
linear maps. Let

C = {B(x) : A(x) ∈ K} ⊂ Rn.

Furthermore, assume that there is x0 ∈ Rp such that A(x0) is in the relative interior of K. Then

C∗ = {w ∈ Rn : ∃y ∈ K∗ s.t. B∗(w) = A∗(y)}.

of Proposition 2D. Define A : Rn → Sn−1 by A(x) = V T
n diag(x)Vn and define B to be the identity

on Rn. Then by Proposition 2

Rn,(k)
+ = {B(x) : A(x) ∈ Sn−1,(k−1)+ }.

Clearly B∗ is the identity on Rn and A∗ : Sn−1 → Rn is given by A∗(Y ) = diag(VnY V
T
n ). Since

A(1n) = In−1 is in the interior of Sn−1,(k−1)+ , applying Lemma 5 we obtain

(Rn,(k)
+ )∗ = {w ∈ Rn : ∃Y ∈ (Sn−1,(k−1)+ )∗ s.t. w = diag(VnY V

T
n ).}

Eliminating w gives the statement in Proposition 2D.

of Proposition 3D. Define A : Rn × Sn−1 → Sn × Sn−1 by

A(x, Z) = (diag(x)− VnZV T
n , Z)

and B : Rn × Sn−1 → Rn by B(x, Z) = x. Then by Proposition 3

Rn,(k)
+ = {B(x, Z) : A(x, Z) ∈ Sn+ × Sn−1,(k)+ }.

A straightforward computation shows that B∗ : Rn → Rn × Sn−1 is given by B∗(w) = (w, 0).
Furthermore A∗ : Sn × Sn−1 is given by A∗(Y,W ) = (diag(Y ),W − V T

n Y Vn). Since A(21n, In−1) is

in the interior of Sn+ × Sn−1,(k)+ , applying Lemma 5 we obtain

(Rn,(k)
+ )∗ = {w ∈ Rn : ∃(Y,W ) ∈ Sn+ × (Sn−1,(k)+ )∗ s.t. w = diag(W ), V T

n Y Vn = W}.

Eliminating W and w gives the statement in Proposition 3D.
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4 Exploiting symmetry: relating Sn,(k)
+ and Rn,(k)

+ and their dual
cones

In the introduction we observed that Sn,(k)+ is invariant under the action of orthogonal matrices

by conjugation on Sn and that its diagonal slice is Rn,(k)
+ . In this section we explain how to use

these properties to construct the semidefinite representation of Sn,(k)+ in terms of Rn,(k)
+ stated in

Proposition 1. We then discuss how the duals of these two cones relate. The material in this
section is well known so in some places we give appropriate references to the literature rather than
providing proofs.

Let O(n) denote the group of n× n orthogonal matrices. The Schur-Horn cone is

SHn =
{

(X, z) : z1 ≥ z2 ≥ · · · ≥ zn, X ∈ convQ∈O(n){QT diag(z)Q}
}
, (21)

the set of pairs (X, z) such that z is in weakly decreasing order and X is in the convex hull
of symmetric matrices with ordered spectrum z. We call this the Schur-Horn cone because all
symmetric Schur-Horn orbitopes [20] appear as slices of SHn of the form {X : (X, z0) ∈ SHn}
where z0 is fixed and in weakly decreasing order.

Whenever a convex subset C ⊂ Sn is invariant under orthogonal conjugation, i.e. C is a spectral
set, we can express C in terms of the Schur-Horn cone and the (hopefully simpler) diagonal slice
of C as follows.

Lemma 6. If C ⊂ Sn is convex and invariant under orthogonal conjugation then

C = {X ∈ Sn : ∃z ∈ Rn s.t. (X, z) ∈ SHn, diag(z) ∈ C}.

Proof. Suppose X ∈ C. Take z = λ(X), the ordered vector of eigenvalues of X. Then there is
some Q ∈ O(n) such that X = QT diag(λ(X))Q so (X,λ(X)) ∈ SHn. By the orthogonal invariance
of C, X ∈ C implies that QXQT = diag(λ(X)) ∈ C.

For the reverse inclusion, suppose there is z ∈ Rn such that (X, z) ∈ SHn and diag(z) ∈ C.
Then by the orthogonal invariance of C, QT diag(z)Q ∈ C for all Q ∈ O(n). Since C is convex,
convQ∈O(n){QT diag(z)Q} ⊆ C. Hence (X, z) ∈ SHn implies that

X ∈ convQ∈O(n){QT diag(z)Q} ⊆ C.

The first statement in Proposition 1 follows from Lemma 6 by recalling that Sn,(k)+ is orthogonally

invariant and Rn,(k)
+ = {z ∈ Rn : diag(z) ∈ Sn,(k)+ }.

Proving the remainder of Proposition 1 then reduces to establishing the correctness of the stated
semidefinite representation of SHn. This can be deduced from the following two well-known results.

Lemma 7. If λ(X) is ordered so that λ1(X) ≥ · · · ≥ λn(X) then (X, z) ∈ SHn if and only if
z1 ≥ z2 ≥ · · · ≥ zn,

tr(X) =
n∑

i=1

λi(X) =
n∑

i=1

zi, and
∑̀
i=1

λi(X) ≤
∑̀
i=1

zi for ` = 1, 2, . . . , n− 1.

In other words (X, z) ∈ SHn if and only if z is weakly decreasing and λ(X) is majorized by
z. This is discussed, for example, in [20, Corollary 3.2]. To turn this characterization into a
semidefinite representation, it suffices to have semidefinite representations of the epigraphs of the
convex functions s`(X) :=

∑`
i=1 λi(X). These are given by Nesterov and Nemirovski in [15, Section

6.4.3, Example 7].
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Lemma 8. If 2 ≤ ` ≤ n − 1, the epigraph of the convex function s`(X) =
∑`

i=1 λi(X) has a
semidefinite representation of size O(n) given by

{(X, t) : s`(X) ≤ t} = {(X, t) : ∃s ∈ R, Z ∈ Sn s.t. Z � 0, X � Z + sI, tr(Z) + s ` ≤ t}.

The epigraph of s1(X) has a simpler semidefinite representation as

{(X, t) : s1(X) ≤ t} = {(X, t) : X � tI}.

We now turn to the relationship between (Sn,(k)+ )∗ and (Rn,(k)
+ )∗. Note that (Sn,(k)+ )∗ is invariant

under orthogonal conjugation. So the claim (Proposition 1D) that

(Sn,(k)+ )∗ = {Y ∈ Sn : ∃w ∈ Rn s.t. w ∈ (Rn,(k)
+ )∗, (Y,w) ∈ SHn}

would follow from Lemma 6 once we know that the diagonal slice of (Sn,(k)+ )∗ is (Rn,(k)
+ )∗. This is a

special case of the following result for which we give a direct proof.

Lemma 9. Suppose C ⊂ Sn is a convex cone that is invariant under orthogonal conjugation. Then

{y ∈ Rn : diag(y) ∈ C∗} = {z ∈ Rn : diag(z) ∈ C}∗. (22)

Note that if C = Sn,(k)+ then the left hand side of (22) is the diagonal slice of (Sn,(k)+ )∗ and the

right hand side is (Rn,(k)
+ )∗.

Proof. We use a description of the orthogonal projector onto the subspace of diagonal matrices
as an average of orthogonal conjugations (see, e.g., [12] where the idea is attributed to Olkin).
For every subset I ⊂ {1, 2, . . . , n} let ∆I denote the diagonal matrix with [∆I ]ii = 1 if i ∈ I and
[∆I ]ii = −1 otherwise. The ∆I are all orthogonal and act on symmetric matrices by X 7→ ∆IX∆T

I .
A symmetric matrix is fixed by the action of all the ∆I if and only if it is diagonal. Hence
diag(diag(X)), the orthogonal projection of a symmetric matrix X onto the subspace of diagonal
matrices (the fixed-point subspace), is given by averaging over the action of the ∆I , i.e.

diag(diag(X)) =
1

2n

∑
I

∆IX∆T
I (23)

where the sum is over all 2n subsets of {1, 2, . . . , n}.
We now prove that {diag(X) : X ∈ C} = {x ∈ Rn : diag(x) ∈ C}. Observe that the diagonal

slice of C is certainly contained in the diagonal projection of C giving one inclusion. For the other,
suppose X ∈ C is arbitrary. Since C is orthogonally invariant, each ∆IX∆T

I is an element of C.
Since C is convex, it follows from (23) that diag(diag(X)) ∈ C and is diagonal as we require.

To prove (22), we apply Lemma 5 in Section 3.3 to obtain an expression for {x ∈ Rn : diag(x) ∈
C}∗. For Lemma 5 to apply, we must exhibit x0 ∈ Rn such that diag(x0) is in the relative interior
of C, denoted relint(C). Let X0 ∈ relint(C) be arbitrary. Since C is invariant under orthogonal
conjugation, the same holds for relint(C). It follows that each ∆IX0∆

T
I ∈ relint(C) and by (23)

(and the convexity of relint(C)) it follows that diag(diag(X0)) ∈ relint(C). As such it suffices to
take x0 = diag(X0).

5 Concluding remarks

We conclude with some comments about (the possibility of) simplifying our representations and
some open questions.
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5.1 Simplifications

If we can simplify a representation of Rn,(k)
+ or Sn,(k)+ for some k = i, that allows us to simplify the

derivative-based representations for k ≥ i and the polar derivative-based representations for k ≤ i.
For example Rn,(n−2)

+ can be succinctly expressed in terms of the second-order cone Qn+1
+ = {x ∈

Rn+1 : (
∑n

i=1 x
2
i )

1/2 ≤ xn+1} as

Rn,(n−2)
+ = {x ∈ Rn : (x, e1(x)) ∈ Qn+1

+ }.

Then we can represent Sn,(n−2)+ in terms of the second-order cone as

Sn,(n−2)+ = {Z ∈ Sn : (Z, tr(Z)) ∈ Qn2+1
+ }

because tr(Z) =
∑n

i=1 λi(Z) and
∑n

i,j=1 Z
2
ij =

∑n
i=1 λi(Z)2. This should be used as a base case

instead of Sn,(n−1)+ in the polar derivative-based representations.

As an example of this, Proposition 3 can be used to give a concise representation of Rn,(n−3)
+ in

terms of the second-order cone as

x ∈ Rn,(n−3)
+ ⇐⇒ ∃Z ∈ Sn−1 such that

diag(x) � VnZV T
n and (Z, tr(Z)) ∈ Q(n−1)2+1

+ .

5.2 Lower bounds on the size of representations

The explicit constructions given in this paper establish upper bounds on the minimum size of

semidefinite representations of Sn,(k)+ and Rn,(k)
+ . To assess how good our representations are, it

is interesting to establish corresponding lower bounds on the size of semidefinite representations

of Rn,(k)
+ and Sn,(k)+ . Since Rn,(k)

+ is a slice of Sn,(k)+ , any lower bound on the size of a semidefinite

representation of Rn,(k)
+ also provides a lower bound on the size of a semidefinite representation of

Sn,(k)+ . Hence we focus our discussion on Rn,(k)
+ .

In the case of Rn,(n−1)
+ , a halfspace, the obvious semidefinite representation of size one is clearly

of minimum size. Less trivial is the case of Rn,(0)
+ , the non-negative orthant. It has been shown by

Gouveia et al. [5, Section 5] that Rn
+ does not admit a semidefinite representation of size smaller

than n. Hence the obvious representation of Rn
+ as the restriction of Sn+ to the diagonal is of

minimum size.
For each k, the slice of Rn,(k)

+ obtained by setting the last k variables to zero is Rn−k
+ . Hence

any semidefinite representation of Rn,(k)
+ has size at least n− k, the minimum size of a semidefinite

representation of Rn−k
+ . This argument establishes that Sanyal’s spectrahedral representation of

Rn,(1)
+ of size n − 1 is actually a minimum size semidefinite representation of Rn,(1)

+ . We are not

aware of any other lower bounds on the size of semidefinite representations of the cones Rn,(k)
+ for

2 ≤ k ≤ n− 2.
The semidefinite representations of Rn,(k)

+ given in this paper are equivariant in that they ap-

propriately preserve the symmetries of Rn,(k)
+ . (For a precise definition see [5, Definition 4].) It is

known that symmetry matters when representing convex sets as projections of other convex sets
[9]. For example if p is a power of a prime, equivariant representations of regular p-gons in R2 are
necessarily much larger than their minimum-sized non-equivariant counterparts [5, Proposition 3].

Given that the cones Rn,(k)
+ are highly symmetric, it would also be interesting to establish lower

bounds on the size of equivariant semidefinite representations of the derivative relaxations of the
non-negative orthant.
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