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Abstract We consider the problem of certifying lower bounds for real-valued mul-
tivariate transcendental functions. The functions we are dealing with are nonlinear
and involve semialgebraic operations as well as some transcendental functions like
cos, arctan, exp, etc. Our general framework is to use different approximation meth-
ods to relax the original problem into polynomial optimization problems, which we
solve by sparse sums of squares relaxations. In particular, we combine the ideas of
the maxplus approximations (originally introduced in optimal control) and of the
linear templates (originally introduced in static analysis by abstract interpretation).
The nonlinear templates control the complexity of the semialgebraic relaxations at
the price of coarsening the maxplus approximations. In that way, we arrive at a new
- template based - certified global optimization method, which exploits both the pre-
cision of sums of squares relaxations and the scalability of abstraction methods. We
analyze the performance of the method on problems from the global optimization
literature, as well as medium-size inequalities issued from the Flyspeck project.
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1 Introduction

1.1 Certification of Nonlinear Inequalities

Numerous problems coming from different fields of mathematics (like combinatorics,
geometry or group theory) have led to computer assisted proofs. One famous example
is the proof of the Kepler conjecture, proved by Thomas Hales [17, 18]. Recent efforts
have been made to complete the formal verification of this conjecture. In particular,
extensive computation are required to certify hundreds of nonlinear inequalities. We
will often refer to the following inequality taken from Hales’ proof:

Example 1 (Lemma9922699028 Flyspeck) Let K, ∆x, l, t and f be defined as follows:

K := [4, 6.3504]3 × [6.3504, 8]× [4, 6.3504]2 ,
∆x := x1x4(−x1 + x2 + x3 − x4 + x5 + x6)

+x2x5(x1 − x2 + x3 + x4 − x5 + x6)
+x3x6(x1 + x2 − x3 + x4 + x5 − x6)
−x2x3x4 − x1x3x5 − x1x2x6 − x4x5x6 ,

l(x) := −π/2 + 1.6294− 0.2213(√x2 +√x3 +√x5 +√x6 − 8.0)
+0.913(√x4 − 2.52) + 0.728(√x1 − 2.0) ,

t(x) := arctan ∂4∆x√
4x1∆x ,

f(x) := l(x) + t(x) .

Then, ∀x ∈ K, f(x) > 0 .

Note that the inequality of Example 1 would be much simpler to check if l was a
constant (rather than a function of x). Indeed, semialgebraic optimization methods
would provide precise lower and upper bounds for the argument of arctan. Then we
could conclude by monotonicity of arctan using interval arithmetic. Here, both l and
t depend on x. Hence, by using interval arithmetic addition (without any domain
subdivision) on the sum l + t, which ignores the correlation between the argument
of arctan and the function l, we only obtain a coarse lower bound (equal to −0.87,
see Example 3 for details); too coarse to assert the inequality . A standard way to
improve this bound consists in subdividing the initial box (i.e. the Cartesian product
of closed intervals) K and performing interval arithmetic on smaller boxes. However,
this approach suffers from the so called curse of dimensionality. Therefore, it is
desirable to develop alternative certified global optimization methods, applicable to
a wide class of problems involving semialgebraic and transcendental functions.

Moreover, the nonlinear inequalities of Flyspeck are challenging for numerical
solvers for two reasons. First, they involve a medium-scale number of variables
(6∼10). Then, they are essentially tight. For instance, the function f involved in
Example 1 has a nonnegative infimum which is less than 10−3. The tightness of
the inequalities to be certified is actually a frequent feature in mathematical proofs.
Hence, we will pay a special attention in the present work to scalability and numeri-
cal precision issues to provide certified bounds for global optimization. This is called
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informal certification as one obtains numerical certificates (e.g. sums-of-squares cer-
tificates) that can be in turn formally checked inside a proof assistant, such as Coq.
The practical difficulties related to formalization (e.g. polynomial arithmetic imple-
mentation, appropriate certificate data-structures, formal proofs of approximations
for nonlinear functions) are specifically addressed in [7], as a further contribution of
the authors.

1.2 Nonlinear Global Optimization Problems

Let 〈D〉sa be the set of functions obtained by composing (multivariate) semialge-
braic functions with special functions taken from a dictionary D. We will typically
include in D the usual functions tan, arctan, cos, arccos, sin, arcsin, exp, log, (·)r
with r ∈ R \ {0}. As we allow the composition with semialgebraic functions in our
setting, elementary functions like +,−,×, /, |·|, sup(·, ·), inf(·, ·) are of course covered.
Actually, we shall see that some of the present results remain valid if the dictionary
includes semiconvex1 or semiconcave functions with effective lower and upper bounds
on the Hessian. More details about semiconcave functions can be found in [10].

Given f, f1, . . . , fp ∈ 〈D〉sa, we will address the following global optimization
problem:

inf
x∈Rn

f(x) , (1.1)

s.t. f1(x) > 0, . . . , fp(x) > 0 .

The inequalities issued from Flyspeck actually deal with special cases of compu-
tation of a certified lower bound for a real-valued multivariate function f : Rn → R
over a compact semialgebraic set K ⊂ Rn. Checking these inequalities boils down to
automatically provide lower bounds for the following instance of Problem (1.1):

f∗ := inf
x∈K

f(x) , (1.2)

We shall also search for certificates to assess that:

∀x ∈ K, f(x) > 0 . (1.3)

A well studied case is when D is reduced to the identity map {Id}. Then, f =
fsa belongs to the algebra A of semialgebraic functions (extension of multivariate
polynomials with arbitrary compositions of (·)p, (·)

1
p (p ∈ N0), |·|, +, −, ×, /, sup(·, ·),

inf(·, ·), where N0 stands for the set of positive integers) and Problem (1.1) specializes
to the semialgebraic optimization problem:

f∗sa := inf
x∈K

fsa(x) . (1.4)

Another important sub-case is Polynomial Optimization Problems (POP), when
f = fpop is a multivariate polynomial and K = Kpop is given by finitely many
polynomial inequalities. Thus, Problem (1.4) becomes:

f∗pop := inf
x∈Kpop

fpop(x) . (1.5)

1 Recall that for γ > 0, a function φ : Rn → R is said to be γ-semiconvex if the function
x 7→ φ(x) + γ

2 ‖x‖
2
2 is convex.



4 Xavier Allamigeon, Stéphane Gaubert, Victor Magron and Benjamin Werner

We shall see that the presented methods also provide certified lower bounds (pos-
sibly coarse), for optimization problems which are hard to solve by traditional POP
techniques. Such problems have a relatively large number of variables (10∼100) or
are polynomial inequalities of a moderate degree. For illustration purposes, we con-
sider the following running example coming from the global optimization literature.

Example 2 (Modified Schwefel Problem 43 from Appendix B in [4])

min
x∈[1,500]n

f(x) = −
n−1∑
i=1

(xi + εxi+1) sin(
√
xi) ,

where ε is a fixed parameter in {0, 1}. In the original problem, ε = 0, i.e. the objective
function f is the sum of independent functions involving a single variable. This
property may be exploited by a global optimization solver by reducing it to the
problem minx∈[1,500] x sin(

√
x). Hence, we also consider a modified version of this

problem with ε = 1.

1.3 Certified Global Optimization in the Literature

A common idea to handle Problem (1.2) is to first approximate f by multivari-
ate polynomials and then obtain a lower bound of the resulting approximation by
polynomial optimization techniques.

Computing lower bounds in constrained POP (see Problem(1.5)) is already a dif-
ficult problem, which has received much attention. Sums of squares (SOS) relaxation
based methods, leading to the resolution of semidefinite programs (SDP) have been
developed in [24, 34]. They can be applied to the more general class of semialgebraic
problems [36]. Moreover, Kojima has developed a sparse refinement of the hierarchy
of SOS relaxations (see [40]). This has been implemented in the SparsePOP solver.
Checking the validity of the lower bound of POP implies being able to control and
certify the numerical error, as SDP solvers are typically implemented using float-
ing point arithmetic. Such techniques rely on hybrid symbolic-numeric certification
methods, see Peyrl and Parrilo [35] and Kaltofen et al. [21]. They allow one to pro-
duce positivity certificates for such POP. Alternative approaches to SOS/SDP are
based on Bernstein polynomials [41].

The task is obviously more difficult in presence of transcendental functions. Other
methods of choice, not restricted to polynomial systems, include global optimization
by interval methods (see e.g. [20]), branch and bound methods with Taylor mod-
els [11, 8]. Other methods involve rigorous Chebyshev approximations. An imple-
mentation of such approximations is available in the Sollya tool [12].

1.4 Contribution

In this paper, we develop a general certification framework, combining methods from
semialgebraic programming (SOS certificates, SDP relaxations) and from approxima-
tion theory. This includes classical methods like best uniform polynomials and less
classical ones like maxplus approximation (inspired by optimal control and static
analysis by abstract interpretation).
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The present approach exploits both the accuracy of SOS relaxations and the
scalability of the approximation and abstraction procedure. This leads to a new
method in global optimization, the nonlinear template method. Namely, we alternate
steps of semialgebraic approximation for some constituents of the objective function f
and semialgebraic optimization. The resulting constrained polynomial optimization
problems are solved with sums of squares relaxation from Lasserre hierarchy, by
calling a semidefinite solver. In this way, each iteration of the algorithms refines the
following inequalities:

f∗ > f∗sa > f∗pop , (1.6)

where f∗ is the optimal value of the original problem, f∗sa the optimal value of its
current semialgebraic approximation and f∗pop the optimal value of the SOS relax-
ation which we solve. Under certain moderate assumptions, the lower bound f∗pop
does converge to f∗ (see Corollary 2).

The present nonlinear template method is an improved version of the maxplus
approximation method originally presented in [6]. By comparison, the new ingre-
dient is the introduction of the template technique (approximating projections of
the feasible sets), leading to an increase in scalability. This technique is an abstrac-
tion method, which is inspired by the linear template of Sankaranarayanan, Sipma
and Manna in static analysis [38], their nonlinear extensions by Adjé et al. [1]. As
discussed below, it is closely related to the maxplus basis methods, although the
methods differ in the way they propagate approximations.

In the present application, templates are used both to approximate transcen-
dental functions, and to produce coarser but still tractable relaxations when the
standard SOS relaxation of the semialgebraic problem is too complex to be handled.
As a matter of fact, SOS relaxations are a powerful tool to get tight certified lower
bound for semialgebraic optimization problems, but applying them is currently lim-
ited to small or medium size problems: their execution time grows exponentially with
the relaxation order, which itself grows with the degree of the polynomials involved in
the semialgebraic relaxations. The template method allows to reduce these degrees,
by approximating certain projections of the feasible set by a moderate number of
nonlinear inequalities.

In this article, we present the following approximation schemes:

– Semialgebraic maxplus templates for multivariate transcendental func-
tions This method uses maxplus approximation of semiconvex transcendental
functions by quadratic functions. The idea of maxplus approximation comes from
optimal control: it was originally introduced by Fleming and McEneaney [13] and
developed by several authors [3, 30, 29, 39, 14], to represent the value function by
a “maxplus linear combination”, which is a supremum of certain basis functions,
like quadratic polynomials. When applied to the present context, this idea leads
to approximate from above and from below every transcendental function ap-
pearing in the description of the problem by infima and suprema of finitely many
quadratic polynomials. In that way, we are reduced to a converging sequence of
semialgebraic problems. A geometrical way to interpret the method is to think
of it in terms of “quadratic cuts” quadratic inequalities are successively added to
approximate the graph of a transcendental function (Sect. 4.1).

– Non-convex quadratic templates Sub-components of the objective function
f (resp. its semialgebraic approximations) are replaced by suprema of quadratic
polynomials (Sect. 4.2.1).
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– Polynomial under-approximations for semialgebraic functions Given a
degree d and a semialgebraic sub-component fsa of f that involves a large num-
ber of lifting variables, we build a hierarchy of polynomial approximations, that
converge to the best (for the L1 norm) degree-d polynomial under-approximation
of fsa (Sect. 4.2.2).

The paper is organized as follows. In Sect. 2, we recall the definition and proper-
ties of Lasserre relaxations of polynomial problems, together with reformulations by
Lasserre and Putinar of semialgebraic problems classes. The maxplus approximation
and the nonlinear templates are presented in Sect. 3. In Sect. 4, we describe the
nonlinear template optimization algorithm together with the convergence study of
the method. The main numerical results are presented in Sect. 5.

2 Application of SOS to Semialgebraic Optimization

Let Rd[x] be the vector space of real forms in n variables of degree d and R[x] the
set of multivariate polynomials in n variables. We also define the cone Σd[x] of sums
of squares of degree at most 2d.

2.1 Constrained Polynomial Optimization Problems and SOS

We consider the general constrained polynomial optimization problem (POP):

f∗pop := inf
x∈Kpop

fpop(x) , (2.1)

where fpop : Rn → R is a d-degree multivariate polynomial, Kpop is a compact set
defined by polynomials inequalities g1(x) > 0, . . . , gm(x) > 0 with gj(x) : Rn → R
being a real-valued polynomial of degree wj , j = 1, . . . ,m. We call Kpop the feasible
set of Problem (2.1). Let g0 := 1. We introduce the k-truncated quadratic module
QMk(Kpop) ⊂ R2k[x] associated with g1, · · · , gm:

QMk(Kpop) =
{ m∑
j=0

σj(x)gj(x) : σj ∈ Σk−dwj/2e[x]
}
,

and define the quadratic module QM(Kpop) :=
⋃
k∈NQMk(Kpop).

Definition 1 A quadratic module M is called archimedean if N − ‖x‖2
2 ∈ M for

some N ∈ N0.
Let k > k0 := max(dd/2e,max06j6m{dwj/2e}) and consider the hierarchy of

semidefinite relaxations Qk : sup{µ : fpop(x) − µ ∈ QMk(Kpop) , µ ∈ R}, with
optimal value denoted by sup(Qk). The integer k refers to the SOS relaxation order.

Theorem 1 The sequence of optimal values (sup(Qk))k>k0 is non-decreasing. If the
quadratic module QM(Kpop) is archimedean, then this sequence converges to f∗pop.
Proof The proof follows from [24, Theorem 4.2 (a)] as [24, Assumption 4.1] is satisfied
when QM(Kpop) is archimedean. ut
The non-linear inequalities to be proved in the Flyspeck project typically involve a
variable x lying in a box. Thus, Theorem 1 applies when one adds to the definition of
Kpop the redundant constraint g(x) := N−‖x‖2

2 > 0 for some large enough N ∈ N0.
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2.2 Semialgebraic Optimization

In this section, we recall how the previous approach can be extended to semialgebraic
optimization problems by introducing lifting variables. The set A of semialgebraic
functions fsa : Ksa 7→ R is the algebra generated by finite composition of the opera-
tions +,−,×, /, sup, inf, | · |, (·)

1
p (p ∈ N0) on polynomials, whenever these operations

are well-defined (e.g. division by zero never occurs). Let consider the problem

f∗sa = inf
x∈Ksa

fsa(x) , (2.2)

where Ksa := {x ∈ Rn : g1(x) > 0, . . . , gm(x) > 0} is a basic semialgebraic set.

Definition 2 (Basic Semialgebraic Lifting) A semialgebraic function fsa is said
to have a basic semialgebraic lifting if there exist p, s ∈ N, polynomials h1, . . . , hs ∈
R[x, z1, . . . , zp] and a basic semialgebraic set Kpop defined by:

Kpop := {(x, z1, . . . , zp) ∈ Rn+p : x ∈ Ksa, h1(x, z) > 0, . . . , hs(x, z) > 0} ,

such that the graph of fsa (denoted Ψfsa) satisfies:

Ψfsa := {(x, fsa(x)) : x ∈ Ksa} = {(x, zp) : (x, z) ∈ Kpop} .

By [25, Lemma 3], every function fsa ∈ A2 has a basic semialgebraic lifting. To ensure
that the Archimedean condition is preserved, we add bound constraints over the
lifting variables. These bounds are computed by solving semialgebraic optimization
sub-problems. All the semialgebraic functions involved in Flyspeck inequalities have
a basic semialgebraic lifting.

Example 3 (from Lemma9922699028 Flyspeck) Continuing Example 1, we consider the
function fsa := ∂4∆x√

4x1∆x and the set Ksa := [4, 6.3504]3 × [6.3504, 8] × [4, 6.3504]2.
The latter can be equivalently rewritten as

Ksa := {x ∈ R6 : g1(x) > 0, . . . , g12(x) > 0} ,

where g1(x) := x1−4, g2(x) := 6.3504−x1, . . . , g11(x) := x6−4, g12(x) := 6.3504−x6.
We introduce two lifting variables z1 and z2, respectively representing the terms√

4x1∆x and ∂4∆x√
4x1∆x .

We also use a lower bound m1 of infx∈Ksa
√

4x1∆x and an upper bound M1 of
supx∈Ksa

√
4x1∆x which can be both computed by solving auxiliary subproblems.

Now the basic semialgebraic set Kpop and the graph Ψfsa of fsa can be defined
as follows:

Kpop := {(x, z1, z2) ∈ R6+2 : x ∈ Ksa, hj(x, z1, z2) > 0, j = 1, . . . , 6} ,
Ψfsa := {(x, fsa(x)) : x ∈ Ksa} = {(x, z2) : (x, z1, z2) ∈ Kpop} ,

where the multivariate polynomials hj are defined by:

h1(x, z) := z1 −m1 , h4(x, z) := −z2
1 + 4x1∆x ,

h2(x, z) := M1 − z1 , h5(x, z) := z2z1 − ∂4∆x ,

h3(x, z) := z2
1 − 4x1∆x , h6(x, z) := −z2z1 + ∂4∆x .

2 We presume that in [25, Lemma 3], “well-defined function f” stands for the fact that f
can be evaluated in a non-ambiguous way on the considered domain.
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Let h0 := 1, ωl := deg hl (0 6 l 6 6). Consider the following semidefinite relaxations:

Qsak :


max
µ,σj ,θl

µ

s.t. z2 − µ =
∑12

j=1 σj(x, z)gj(x) +
∑6

l=0 θl(x, z)hl(x, z), ∀(x, z) ,

σj ∈ Σk−1[x, z], 1 6 j 6 12 ,
θl ∈ Σk−dωl/2e[x, z], 0 6 l 6 7 .

When k > k0 := max16j66{dωj/2e} = 2, then as a special case of Theorem 1, the
sequence (inf(Qsak ))k>2 is monotonically non-decreasing and converges to f∗sa. The
lower bound m2 = −0.618 computed at the Qsa2 relaxation is too coarse. A tighter
lower bound m3 = −0.445 is obtained at the third relaxation, but it consumes more
CPU time.

3 Maxplus Approximations and Nonlinear Templates

3.1 The Basis of Maxplus Functions

Let B be a set of functions Rn → R, whose elements will be called maxplus basis
functions. Given a function f : Rn → R, we look for a representation of f as a linear
combination of basis functions in the maxplus sense, i.e.,

f = sup
w∈B

(a(w) + w) , (3.1)

where (a(w))w∈B is a family of elements of R ∪ {−∞} (the “coefficients”). The
correspondence between the function x 7→ f(x) and the coefficient function w 7→ a(w)
is a well studied problem, which has appeared in various guises (Moreau conjugacies,
generalized Fenchel transforms, Galois correspondences, see [2] for more background).

The idea of maxplus approximation [13, 28, 3] is to choose a space of functions f
and a corresponding set B of basis functions w and to approximate from below a given
f in this space by a finite maxplus linear combination, f ' supw∈F (a(w)+w) , where
F ⊂ B is a finite subset. Note that supw∈F (a(w) +w) is not only an approximation
but a valid lower bound of f . This is reminiscent of classical linear approximation
methods and in particular of the finite element methods, in which a function in
an finite dimensional space is approximated by a linear combination of prescribed
elementary functions. Note that the term “basis” is abusive in the maxplus setting,
as the family of functions w ∈ F is generally not free in the tropical sense.

A convenient choice of maxplus basis functions is the following [13, 3]. For each
constant γ ∈ R, we shall consider the family of quadratic functions B = {wy | y ∈
Rn}, where

wy(x) := −γ2 ‖x− y‖2
2 . (3.2)

Whereas in classical approximation problems, the ambient function spaces of interest
are Sobolev spaces Hk, or spaces Ck of k times differentiable functions, in the tropical
settings, the appropriate spaces, consistent with the choice of quadratic maxplus
basis functions, turn out to consist of semiconvex functions, which we next examine.
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3.2 Maxplus Approximation for Semiconvex Functions

The following definition is standard in variational analysis.

Definition 3 (Semiconvex function) Let γ denote a nonnegative constant. A
function φ : Rn → R is said to be γ-semiconvex if the function x 7→ φ(x) + γ

2 ‖x‖
2
2 is

convex.

Proposition 1 Let B denote the set of quadratic functions wy of the form (3.2)
with y ∈ Rn. Then, the set of functions f which can be written as a maxplus linear
combination (3.1) for some function a : B → R ∪ {−∞} is precisely the set of lower
semicontinuous γ-semiconvex functions.

Proof Let us note h? : Rn → R∪{±∞} the Legendre-Fenchel transform of a function
h : Rn → R ∪ {±∞}, so that h?(p) := supx∈Rn〈p, x〉 − h(x). A known fact is that
a convex lower semicontinuous function g : Rn → R ∪ {±∞} is the supremum of
the affine functions that it dominates [37, Th. 12.1]. Actually, it is shown there
that g(x) = g??(x) = supp∈Rn〈p, x〉 − g?(p). By applying this result to the function
g(x) = f(x) + γ

2 ‖x‖
2
2, we deduce that f(x) = supp∈Rn〈p, x〉 − γ

2 ‖x‖
2
2 − g?(p) =

supp∈Rn − γ2 ‖x−
1
γ p‖

2
2 − g?(p) + 1

2γ ‖p‖
2
2. which is of the form (3.2).

Conversely, since an arbitrary supremum of γ-semiconvex and lower semicontin-
uous is also γ-semiconvex and lower semicontinuous, the supremum in (3.2) defines
a γ-semiconvex and lower semicontinuous function. ut

The transcendental functions which we consider here are twice continuously dif-
ferentiable. Hence, their restriction to any bounded convex set is γ-semiconvex for a
sufficiently large γ, so that they can be approximated by finite suprema of the form
supw∈F (a(w) + w) with F ⊂ B.

The following result is derived in [14, Theorem 3.2] using methods and results of
Grüber [16], who studied the best approximation of a convex body by a polytope.
It shows that if N = |F| basis functions are used, then the best approximation
error is precisely of order 1/N2/n (the error is the sup-norm, over any compact set),
provided that the function to be approximated is of class C2. We call D2(φ)(x) the
Hessian matrix of φ at x and suppose that we approximate the function φ by the
finite supremum of N γ-semiconvex functions parametrized by pi(i = 1, . . . , N) and
ai(i = 1, . . . , N):

φ ' φ̃N := max
16i6N

{γ2 ‖x‖
2
2 + pTi x + a(pi)} .

Theorem 2 (sup approximation error, [14, Theorem 3.2]) Let γ ∈ R, ε > 0
and let K ⊂ Rn denote any full dimensional compact convex subset. If φ : Rn 7→ R
is (γ − ε)-semiconvex of class C2, then there exists a positive constant α depending
only on n such that:

‖φ− φ̃N‖∞ ∼
α

N2/n

(∫
K

[det(D2(φ)(x) + γIn)] 1
2 dx
) 2

n

as N →∞ .

Thus, the best approximation satisfies

‖φ− φ̃N‖∞ '
C(φ)
N2/n , (3.3)
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where the constant C(φ) is explicit (it depends of det(D2(φ) + γIn) and is bounded
away from 0 when ε is fixed). This approximation indicates that some curse of di-
mensionality is unavoidable: to get a uniform error of order ε, one needs a num-
ber of basis functions of order 1/εn/2. Equivalently, the approximation error is of
order O(h 2

n ) where h is a space discretization step. The assumption that φ̃N is
of class C2 in Theorem 2 is needed to obtain a tight asymptotics of the approxi-
mation error. However, the max-plus approximation error is known to be of order
O(N2/n) under milder assumptions, requiring only semi-convexity type condition,
see Proposition 64 of [22], and also Lemma 16 of [3] for a coarser approximation
in O(N1/n) valid in more general circumstances. This is due to the asymmetrical
character of the maxplus approximation (a “one-sided” regularity, captured by the
semiconvexity condition, is involved). Thus, unlike Taylor models, max-plus approxi-
mation does not require a Ck type regularity. For instance, a nonsmooth function like
|x|−x2/2 = max(x−x2/2,−x−x2/2) can be perfectly represented by two quadratic
max-plus basis functions. In what follows, we shall always apply the approximation
to small dimensional constituents of the optimization problems.

In this way, starting from a transcendental univariate elementary function f ∈
D, such as arctan, exp, etc , defined on a real bounded interval I, we arrive at a
semialgebraic lower bound of f , which is nothing but a supremum of a finite number
of quadratic functions.

Example 4 Consider the function f = arctan on an interval I := [m,M ]. For every
point a ∈ I, we can find a constant γ such that

arctan(x) > par−a (x) := −γ2 (x− a)2 + f ′(a)(x− a) + f(a) .

Choosing γ = supx∈I −f ′′(x) always work. However, it will be convenient to allow
γ to depend on the choice of a to get tighter lower bounds. Choosing a finite subset
A ⊂ I, we arrive at an approximation

∀x ∈ I, arctan (x) > max
a∈A

par−a (x) . (3.4)

Semialgebraic over-approximations x 7→ mina∈A par+
a (x) can be defined in a similar

way. Examples of such under-approximations and over-approximations are depicted
in Fig. 1.

a

y

par+a1

par+a2

par−a2

par−a1

a2a1

arctan

m M

Fig. 1 Semialgebraic under-approximations and over-approximations for arctan
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Example 5 Consider the bivariate function g : (x1, x2) 7→ sin(x1 + x2), defined
on K := [−1.5, 4] × [−3, 3], which is a component of the objective function from
Problem MC (see Appendix A). As in the previous example, we can build under-
approximations for the sine function. Choosing γ = 1, for every (x1, x2) ∈ K and ev-
ery a ∈ [−4.5, 7], one has sin(x1+x2) > − 1

2 (x1+x2−a)2+cos(a)(x1+x2−a)+sin(a).

3.3 Nonlinear Templates

The non-linear template method is a refinement of polyhedral based methods in
static analysis [38]. It can also be closely related to the non-linear extension [1] of
the template method and to the class of affine relaxation methods [31].

Templates allow one to determine invariants of programs by considering para-
metric families of subsets of Rn of the form S(α) = {x | wi(x) 6 αi, 1 6 i 6 p},
where the vector α ∈ Rp is the parameter, and w1, . . . , wp (the template) are fixed
possibly non-linear functions, tailored to the program characteristics.

The nonlinear template method yields a tradeoff between the coarse bounds
of interval calculus and the tighter bounds obtained with high-degree polynomial
approximation (see Remark 1). On the one hand, templates take into account the
correlations between the different variables. On the other hand, instead of increasing
the degree of the approximation, one may increase the number of functions in the
template.

Remark 1 Notice that by taking a trivial template (bound constraints, i.e. , functions
of the form ±xi), the template method specializes to a version of interval calculus,
in which bounds are derived by SOS techniques. The standard Taylor (resp. Cheby-
shev) approximations of transcendental functions can also be retrieved by instanti-
ating some of the wi to degree-d Taylor polynomials (resp. best uniform degree-d
polynomials).

The max-plus basis method introduced in Sect. 3.1 is equivalent to the approx-
imation of the epigraph of a function by a set S(α). This method involves the ap-
proximation from below of a function f in n variables by a supremum f ' g :=
sup16i6p λi +wi. The functions wi are fixed in advance, or dynamically adapted by
exploiting the problem structure. The parameters λi are degrees of freedom.

The template method consists in propagating approximations of the set of reach-
able values of the variables of a program by sets of the form S(α). The non-linear
template and max-plus approximation methods are somehow related. Indeed, the
0-level set of g, {x | g(x) 6 0}, is nothing but S(−λ), so templates can be recovered
from max-plus approximations and vice versa. The functions wi are usually required
to be quadratic polynomials, wi(x) = qTi x + 1

2 xTAix, where qi ∈ Rn and Ai is a
symmetric matrix. A basic choice is Ai = −γIn, where γ is a fixed constant. Then,
the parameters q remain the only degrees of freedom.

4 The Nonlinear Template Optimization Algorithm

Here we explain how to combine semialgebraic optimization techniques with approx-
imation tools for univariate or semialgebraic functions. Let us consider an instance
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of Problem (1.2). We assimilate the objective function f with its abstract syntax
tree t. We assume that the leaves of t are semialgebraic functions in the set A and
other nodes are univariate transcendental functions (arctan, etc ) or basic opera-
tions (+, ×, −, /). For the sake of the simplicity, we suppose that each univariate
transcendental function is monotonic.

4.1 A Semialgebraic Template Approximation Algorithm

The auxiliary algorithm template_approx is presented in Fig. 2.
Given an abstract syntax tree t, a semialgebraic set K := {x ∈ Rn : g1(x) >

0, . . . , gm(x) > 0}, an SOS relaxation order k and a precision p which can be either
a finite sequence s of points x1, . . . ,xp ∈ K or a polynomial approximation degree
d, the algorithm template_approx computes a lower bound m (resp. upper bound
M) of t over K and an under-approximation t− (resp. an over-approximation t+)
of t by means of semialgebraic functions. We assume that the semialgebraic set
K := {x ∈ Rn : g1(x) > 0, . . . , gm(x) > 0} is contained in a box of Rn.

When t ∈ A (Line 1), it suffices to set t− = t+ := t.
When the root of t is a binary operation whose arguments are two children

c1 and c2, we apply recursively template_approx to each child and get semialge-
braic under-approximations c−1 , c−2 and over-approximations c+

1 , c
+
2 . Then, we obtain

semialgebraic approximations of t by using the semialgebraic arithmetic procedure
compose_bop (the rules are analogous with interval calculus).

When t corresponds to the composition of a transcendental (unary) function r
with a child c, lower and upper bounds mc andMc are recursively obtained (Line 7),
as well as semialgebraic approximations c− and c+. Then we define I := [mc,Mc]
and apply the function unary_approx to get approximations r− and r+ of r over
I. The parameters of unary_approx are the univariate function r, the precision p
of the approximation and the closed interval I where r must be approximated. We
shall need to consider various schemes for unary_approx:

1. A classical one is the approximation of univariate functions with best uniform
polynomials of increasing degrees through Remez algorithm. In practice, we use
the function remez available in the Sollya tool [12]. In this case, the precision
is the degree-d of the minimax polynomial approximation. When the algorithm
converges and returns a degree-d polynomial fd, then a numerical approximation
of the infinity norm of the error function (r−fd) on the interval I can be obtained
(infnorm routine from Sollya).

2. An alternative approach is to compute maxplus approximation using the semi-
convexity properties of r on the interval I (see Sect. 3.2). Doing so, one bounds
r from below with a function r− being a supremum of parabola as well as from
above with a function r+ being a infimum of parabola. In this case, the precision
is determined by certain sets s of points, which also parametrize the approx-
imations r− and r+ (see e.g. the right hand side of (3.4) for an example of
under-approximation r−).

The approximations r− and r+ are composed with c− and c+ (compose_approx
function at Line 10) to obtain an under-approximation t− (resp. over-approximation
t+) of t. Notice that the behavior of compose_approx depends on the monotonicity
properties of r.



Certification of Real Inequalities – Templates and Sums of Squares 13

Input: tree t, semialgebraic K, semidefinite relaxation order k, precision p
Output: lower boundm, upper boundM , lower semialgebraic approximation t−2 , upper semi-

algebraic approximation t+2
1: if t ∈ A then t− := t, t+ := t
2: else if bop := root(t) is a binary operation with children c1 and c2 then
3: mi,Mi, c

−
i , c

+
i := template_approx(ci,K, k, p) for i ∈ {1, 2}

4: I2 := [m2,M2]
5: t−, t+ := compose_bop(c−1 , c

+
1 , c
−
2 , c

+
2 , bop, I2)

6: else if r := root(t) ∈ D with child c then
7: mc, Mc, c−, c+ := template_approx(c,K, k, p)
8: I := [mc,Mc]
9: r−, r+ := unary_approx(r, I, c, p)
10: t−, t+ := compose_approx(r, r−, r+, I, c−, c+)
11: end
12: t−2 := reduce_lift(t,K, k, p, t−), t+2 := −reduce_lift(t,K, k, p,−t+)
13: return min_sa(t−2 ,K, k), max_sa(t+2 ,K, k), t−2 , t+2

Fig. 2 template_approx

4.2 Reducing the Complexity of Semialgebraic approximations

The semialgebraic approximations previously computed are used to determine lower
and upper bounds of the function associated with the tree t, at each step of the
induction. The bounds are obtained by calling the functions min_sa and max_sa
respectively, which reduce the semialgebraic optimization problems to polynomial op-
timization problems by introducing extra lifting variables (see Section 2.2). However,
the complexity of solving the SOS relaxations can grow significantly because of the
number nlifting of lifting variables. If k denotes the relaxation order, the correspond-
ing SOS problem Qk indeed involves linear matrix inequalities of size

(
n+nlifting+k

k

)
over

(
n+nlifting+2k

2k
)
variables. The complexity of the semialgebraic approximations is

controlled with the function reduce_lift (Line 12), when the number of lifting vari-
ables exceeds a user-defined threshold value nmax

lifting. Consequently, this is crucial to
control the number of lifting variables, or equivalently, the complexity of the semial-
gebraic approximations. For this purpose, we introduce two approximation schemes.
The first one is presented in Sect. 4.2.1. It allows to compute approximations for
some sub-components of the tree t (or its under-approximation t−) by means of
suprema/infima of quadratic functions. An alternative approach is to approximate
these sub-components with degree-d polynomial under-approximations, using the
semidefinite relaxation described in Sect. 4.2.2.

4.2.1 Multivariate Maxplus Quadratic Templates

Let K ⊂ Rn be a compact semialgebraic set and f : K → R be a multivariate non-
linear function. We consider the vector space Sn of real symmetric n × n matrices.
Given a matrix M ∈ Sn, let λmax(M) (resp. λmin(M)) be the maximum (resp. mini-
mum) eigenvalue ofM . In the sequel, we will often refer to the quadratic polynomial
defined below.



14 Xavier Allamigeon, Stéphane Gaubert, Victor Magron and Benjamin Werner

Definition 4 Let xc ∈ K. The quadratic polynomial fxc,λ′ is given by:

fxc,λ′ : K −→ R
x 7−→ f(xc) +D(f)(xc) (x− xc) (4.1)

+ 1
2(x− xc)TD2(f)(xc)(x− xc)

+ 1
2λ
′‖x− xc‖2

2 ,

with,
λ′ 6 λ := min

x∈K
{λmin(D2(f)(x)−D2(f)(xc))} . (4.2)

The quadratic polynomial fxc,λ′ is an under-approximation of f on the set K:

Lemma 1 ∀x ∈ K, f(x) > fxc,λ′ .

Proof It comes from the first order Taylor expansion with the integral form for the
remainder and the definition of the minimal eigenvalue. ut

Definition 5 Given a symmetric real-valued matrix M ∈ Sn, the spectral radius of
M is given by ρ(M) := max(λmax(M),−λmin(M)).

In the sequel, we use the following inequality:

ρ(M) 6 ‖M‖1 := max
x 6=0

‖Mx‖1

‖x‖1
. (4.3)

Now, we explain how to approximate f from below over K with quadratic polynomi-
als as in (4.1). To approximate from below the value of λ, we determine an interval
matrix D̃2(f) := ([dij , dij ])16i,j6n, containing coarse bounds of the Hessian differ-
ence entries, using interval arithmetic. Let consider the following interval matrix
minimal eigenvalue problem:

λ′ := λmin(D̃2(f)) . (4.4)

Different approximations of λ can be considered.

Tight lower bound of λ

For each interval [dij , dij ], we define the symmetric matrix B:

Bij := max{| dij |, | dij |}, 1 6 i, j 6 n .

Let Sn be the set of diagonal matrices of sign:

Sn := {diag (s1, . . . , sn), s1 = ±1, . . . sn = ±1} .

Next, one specializes the result in [9, Theorem 2.1] for robust optimization procedure
with reduced vertex set.
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Lemma 2 The robust interval SDP Problem (4.4) is equivalent to the following
single variable SDP:

min
t

−t ,
s.t. −tI − SBS < 0 ,

S =
(

1 0
0 S′

)
, ∀S′ ∈ Sn−1 .

Let λ′1 be the solution of this single variable SDP. Then, λ′1 6 λ.

However, solving the semidefinite program given in Lemma 2 introduces a subset of
sign matrices of cardinal 2n−1, thus reduces the problem to a manageable size only
if n is small.

Coarse lower bound of λ

Here, one writes D̃2(f) := X + Y , where X and Y are defined as follows:

Xij :=
[dij + dij

2 ,
dij + dij

2

]
, Yij :=

[
−
dij − dij

2 ,
dij − dij

2

]
.

Proposition 2 Define λ′2 := λmin(X)−max16i6n

{∑n
j=1

dij − dij
2

}
. Then, λ′2 6 λ.

Proof By concavity and homogeneity of the λmin function, one has:

λmin(X + Y ) > λmin(X) + λmin(Y ) = λmin(X)− λmax(−Y ) . (4.5)

Using Proposition 4.3 yields λmax(−Y ) 6 max16i6n

{∑n
j=1

dij − dij
2

}
. ut

The matrixX is real valued and symmetric matrix, thus one can compute its minimal
eigenvalue with the classical semidefinite program: min{−t : X < tI}. Finally, we can
compute a coarse certified lower bound λ′2 of λ with a procedure which is polynomial
in n.

Now we describe the procedure reduce_lift in case of using the multivari-
ate maxplus quadratic templates defined in this section, assuming that the preci-
sion p is determined by a sequence of points s. For each point xc of the sequence
s, a sub-routine returns the polynomial defined in (4.1). In particular, one has
fxc,1 := build_quadratic_form(f,xc, λ′1), which is built with the tight eigenvalue
approximation λ′1. Similarly, fxc,2 is defined with the coarse eigenvalue approxima-
tion λ′2. Since each fxc,i does not necessarily approximate f from below, we determine
a lower boundmc of the function t−−fxc,i, which ensures that t−2 := max

xc∈s
{fxc,i+mc}

is a valid lower approximation of f .
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4.2.2 Polynomial under-approximations for Semialgebraic Functions

Given a box K ⊂ Rn, we consider a semialgebraic sub-component fsa : K → R of
the abstract syntax tree of f . A common way to represent fsa is to use its semi-
algebraic lifting, which leads to solve semialgebraic optimization problems with a
possibly large number of lifting variables nlifting. One way to reduce this number
is to approximate fsa from below with a degree-d polynomial hd, which should in-
volve less variables than nlifting. This section describes how to obtain such an hd,
which has the property to minimize the L1 norm of the difference (fsa − h), over
all degree-d polynomial under-approximations h of fsa. We exploit a technique of
Lasserre and Thanh [23], who showed how to obtain convex under-approximations
of polynomials. Here, we derive a similar hierarchy of SOS relaxations, whose op-
timal solutions are the best (for the L1 norm) degree-d (but possibly non convex)
polynomial under-approximations of t on K. We assume without loss of generality
that K is the unit ball [0, 1]n. By comparison with [23], the main difference is that
the input is a semialgebraic function, rather than a polynomial.

Best polynomial under-approximations of semialgebraic functions for the L1 norm.
Let fsa : [0, 1]n → R be a semialgebraic component of f and λn be the standard
Lebesgue measure on Rn, which is normalized so that λn([0, 1]n) = 1. Define g1 :=
x1(1− x1), . . . , gn := xn(1− xn). The function fsa has a basic semialgebraic lifting,
thus there exist p, s ∈ N, polynomials gn+1, . . . , gn+s ∈ R[x, z1, . . . , zp] and a basic
semialgebraic set Kpop defined by:

Kpop := {(x, z) ∈ Rn+p : g1(x, z) > 0, . . . , gm(x, z) > 0, gm+1(x, z) > 0} ,

such that the graph Ψfsa satisfies:

Ψfsa := {(x, fsa(x)) : x ∈ K} = {(x, zp) : (x, z) ∈ Kpop} ,

with m := n + s and gm+1 := M − ‖z‖2
2, for some positive constant M obtained

by adding bound constraints over the lifting variables z (to ensure that the module
QM(Kpop) is Archimedean). Define the polynomial fpop(x, z) := zp and the total
number of variables npop := n+ p.

Consider the following optimization problem with optimal value md:

(P sa)

 min
h∈Rd[x]

∫
K

(fsa − h)dλn
s.t. fsa − h > 0 on K .

Lemma 3 Problem (P sa) has a degree-d polynomial minimizer hd.

For a proof, see Appendix B.2. Now, define QM(Kpop) to be the quadratic mod-
ule associated with g1, . . . , gm+1. As a consequence of Putinar’s Positivstellensatz for
Archimedean quadratic modules [36], the optimal solution hd of (P sa) is a maximizer
of the following problem:

(Pd)

 max
h∈Rd[x]

∫
[0,1]n

h dλn

s.t. (fpop − h) ∈ QM(Kpop) .

Let µd be the optimal value of (Pd). Then, one has md =
∫
K
fsa dλ− µd.
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Convergent hierarchy of SOS relaxations. We write h =
∑

α∈Nn
d
hαxα, with Nnd :=

{α ∈ Nn :
∑n

i=1 αi 6 d}. Let ω̃0 := d(deg g0)/2e, . . . , ω̃m+1 := d(deg gm+1)/2e and
define k0 := max{dd/2e, d(deg fpop)/2e, ω̃0, . . . , ω̃m+1}. Now, consider the following
SOS relaxation (Pdk) of (Pd), with optimal value µdk:

(Pdk)


max

h∈Rd[x],σj

∑
α∈Nn

d
hαγα

s.t. fpop(x, z) = h(x) +
m+1∑
j=0

σj(x, z)gj(x, z), ∀(x, z) ,

σj ∈ Σk−ω̃j [x, z], 0 6 j 6 m+ 1 ,

with k > k0 and γα :=
∫

[0,1]n xαdx for all α ∈ Nnd . This problem is an SOS program
with variables (hd, σ0, . . . , σm+1). Let md be the optimal value of Problem (P sa). As
in [23], the optimal value of the SOS relaxation (Pdk) can become as close as desired
to md − f∗sa.
Theorem 3 The sequence (

∫
K
fsadλ−µdk)k>k0 is non-increasing and converges to

md. Moreover, if hdk is a maximizer of (Pdk), then the sequence (‖fsa − hdk‖1)k>k0

is non-increasing and converges to md. Furthermore, any accumulation point of the
sequence (hdk)k>k0 is an optimal solution of Problem (P sa).

Proof The proof is analogous with [23, Theorem 3.3]. ut

Numerical experiments. We present the numerical results obtained when computing
the best degree-d polynomial under-approximations of semialgebraic functions for
the L1 norm, using the techniques presented in Sect. 4.2.2. The sequence of lower
bounds (µdk) is computed by solving the SOS relaxations (Pdk). The “tightness”
score ‖fsa − hdk‖1 evaluates the quality of the approximation hdk, together with its
lower bound µdk.
Example 6 In Example 3, we obtained lower bounds for the semialgebraic function
fsa := ∂4∆x√

4x1∆x , using two lifting variables. However, when solving inequalities involv-
ing fsa, one would like to solve POP that do not necessarily include these two lifting
variables and the associated constraints. Table 1 displays the tightness scores and

Table 1 Comparing the tightness score ‖fsa − hdk‖1 and µdk for various values of d and k

d k Upper bound of ‖fsa − hdk‖1 µdk

2 2 0.8024 -1.171
3 0.3709 -0.4479

4 2 1.617 -1.056
3 0.1766 -0.4493

6 3 0.08826 -0.4471

the lower bounds of the approximations obtained for various values of the approxi-
mation degree d and the relaxation order k. Notice that µdk only bounds from below
the actual infimum h∗dk of the under-approximation hdk. It requires a few seconds
to compute approximations at k = 2 against 10 minutes at k = 3, but one shall
consider to take advantage of replacing fsa by its approximation h63 to solve more
complex POP.
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Input: abstract syntax tree t, semialgebraic set K, itermax (optional argument), precision p
Output: lower bound m
1: s := [argmin(randeval(t))] . s ∈ K
2: m := −∞
3: iter := 0
4: while iter 6 itermax do
5: Choose an SOS relaxation order k > k0
6: m,M, t−, t+ := template_approx(t,K, k, p)
7: xopt := guess_argmin(t−) . t−(xopt) ' m
8: s := s ∪ {xopt}
9: p := update_precision(p,xopt)
10: iter := iter + 1
11: done
12: return m, xopt

Fig. 3 template_optim : Template Optimization Algorithm

As an alternative to the method proposed in Sect. 4.2.1, the procedure reduce_lift
can return the polynomial under-approximation hdk while solving the SOS relaxation
(Pdk).

4.3 A Semialgebraic Template Optimization Algorithm

Our main optimization algorithm template_optim is an iterative procedure which
relies on template_approx. At each iteration step, the global precision parameter
p ∈ P is updated dynamically. A convenient way to express the refinement of the
precision, for the general nonlinear template approximation scheme (see Fig. 2), is
to use the vocabulary of nets. We recall the following definitions, using [33]:

Definition 6 A directed set is a set D with a relation 6 which is reflexive, transitive
and directed, i.e. for each a, b ∈ D, there exists some c ∈ D such that a 6 c and
b 6 c.

Definition 7 A net in a set X is a map λ : D → X. If X is a topological space,
we say that the net λ converges to x ∈ X and write λ → x if and only if for every
neighborhood U of x, there exists some tail Λ := {λ(c) : d 6 c ∈ D} such that
Λ ⊆ U .

We represent the precision p by an element of a directed set P. When using
minimax polynomial approximations to approximate an univariate function on a
given interval I, the sequence of approximation degrees defines the net. For the
maxplus approximations, the net is the set of finite subsets of I.

Let c1, . . . , cl be the components of the tree t, on which one calls approximation
algorithms with respective precisions p1 ∈ P1, . . . , pl ∈ Pl. Let P = P1 × · · · × Pl be
the set of precisions, ordered with the product order.

Our main optimization algorithm template_optim, relies on template_approx
and updates the global precision parameter p ∈ P dynamically at each step of an
iteration procedure (Line 1).

Now we describe our main semialgebraic optimization algorithm optim (see Fig-
ure 3). Given an abstract syntax tree t and a compact semialgebraic set K this al-
gorithm returns a lower bound m of t using semialgebraic minimax approximations
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computed recursively with template_approx. The relaxation order k (Line 5) is a
parameter of the semialgebraic optimization functions min_sa (as well as max_sa)
and reduce_lift.

Assuming that K is described by polynomial inequalities g1(x) > 0, . . . , gm(x) >
0. Then, the relaxation order must be at least k0 := max16j6m{ddeg(gj)/2e)}. In
practice, we solve semialgebraic optimization problems with the second or third
SOS Lasserre’s relaxation and take k = k0. At the beginning, the set of points
consists of a single point of the box K. This point is chosen so that it minimizes
the value of the function associated to the tree t among a set of random points
(Line 1). Then, at each iteration of the loop from Lines 4 to 11, the auxiliary function
template_approx is called to compute a lower bound m of the function t (Line 6),
using the approximations t− and t+. At Line 7, a minimizer candidate xopt of the
under-approximation tree t− is computed. It is obtained by projecting a solution xsdp
of the SOS relaxation Qk of Section 2 on the coordinates representing the first order
moments, following [24, Theorem 4.2]. However, the projection may not belong to K
when the relaxation order k is not large enough. This is why tools like SparsePOP
use local optimization solver in a post-processing step to provide a point in K which
may not be a global minimizer. In any case, xopt is then added to the set of points
(Line 8). Alternatively, if we are only interested in determining whether the infimum
of t overK is nonnegative (Problem (1.3)), the loop can be stopped as soon asm > 0.

By comparison, when using minimax approximations, the stopping criterion is
the maximal precision corresponding to a minimax polynomial approximation degree.
This maximal degree dmax shall be selected after consideration of the computational
power available since one may need to solve SOS relaxations involving O(dnmax)
variables with matrices of size O(ddmax/2en).

Example 7 (Lemma9922699028 Flyspeck) We continue Example 3. Since we computed
lower and upper bounds (m and M) for fsa := ∂4∆x√

4x1∆x , we know that the fsa ar-
gument of arctan lies in I := [m,M ]. We describe three iterations of the algorithm
template_optim while using maxplus approximation for unary_approx.
0. Multiple evaluations of f return a set of values and we obtain a first minimizer

guess x1 := argmin(randeval(f)) corresponding to the minimal value of the set.
One has x1 := (4.8684, 4.0987, 4.0987, 7.8859, 4.0987, 4.0987).

1. We compute a1 := fsa(x1) = 0.3962 and define par−a1
(x) := − 1

2 (x − a1)2 +
1

1+a2
1
(x−a1)+arctan(a1). Finally, we obtainm1 6 minx∈K{l(x)+par−a1

(fsa(x))}.
For k = 2, one has m1 = −0.2816 < 0 and a new minimizer x2.

2. We get a2 := fsa(x2) and m2 6 minx∈K{l(x) + max16i62{par−ai
(fsa(x))}}. For

k = 2, we get m2 = −0.0442 < 0 and x3.
3. We get a3 := fsa(x3), par−a3

and m3 6 minx∈K{l(x)+max16i63{par−ai
(fsa(x))}}.

For k = 2, we obtain m3 = −0.0337 < 0 and get a new minimizer x4.

4.4 Convergence of the Nonlinear Template Method

Given an accuracy ε > 0, we prove that the objective function f can be uniformly
ε-approximated over the semialgebraic set K with the algorithm template_approx
under certain assumptions.
Assumption 4 The Archimedean condition holds for the quadratic modules that we
consider when solving SOS relaxations.
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For the sake of simplicity, we assume that the function reduce_lift calls the
procedure that returns the sequence of best (for the L1 norm) polynomial under-
approximations for semialgebraic functions (see Sect. 4.2.2). Let the relaxation order
k be fixed and t−p (resp. t+p ) be the under-approximation (resp. over-approximation)
of t on K obtained with the template_approx function at precision p. The limit of
a net indexed by p ∈ P is obtained by increasing the precision of each elementary
approximation algorithm (either unary_approx or reduce_lift) applied to the
components of t.

Proposition 3 (Convergence of template_approx) Under Assumption 4, the
nets (t−p )p and (t+p )p uniformly converge to t on K.

For a proof, see Appendix B.3. Given a precision p, define m∗p := infx∈K t
−
p

to be the optimal value of the under-approximation t−p on K. Notice that under
Assumption 4, we can theoretically obtain this optimal value, using Theorem 3.

Corollary 1 (Convergence of the approximations optimal values) Under
Assumption 4, the net (m∗p)p converges to the infimum f∗.

Proof Let x∗p be a minimizer of t−p on K and note x∗ one minimizer of t on K, then
one has t(x∗) = f∗, t−p (x∗p) = m∗p. By definition, the following inequalities hold:

t−p (x∗p) 6 t−p (x∗) 6 t(x∗) 6 t(x∗p) . (4.6)

Let ε > 0 be given. From Proposition 3, there exists a precision d0 such that
for all d > d0, one has: t(x∗) − t−p (x∗) < ε/2 and t(x∗p) − t−p (x∗p) < ε/2. Thus,
applying (4.6) yields t(x∗)− t−p (x∗p) < ε, the desired result.

ut

Corollary 2 (Convergence of template_optim) Under Assumption 4, each limit
point of the net of minimizers (x∗p)p is a global minimizer of t over K.

For a proof, see Appendix B.4.2.

5 Numerical Results of the Nonlinear Template Method

We now present some numerical test results by applying the semialgebraic minimax
optimization method to examples from the global optimization literature (see Ap-
pendix A), as well as inequalities from the Flyspeck project. The nonlinear template
method is implemented as a software package, called NLCertify, written in OCaml
and interfaced with the Sollya tool. For more details about this tool, we refer to
the software web-page3 as well as to the dedicated publication [26].

For each problem presented in Table 2, our aim is to certify a lower bound m of
a function f on a box K. The semialgebraic optimization problems are solved at the
SOS relaxation order k. When the relaxation gap is too high to certify the requested
bound, then we perform a domain subdivision in order to get tighter bounds: we
divide the maximal width interval of K in two halves to get two sub-boxes K1 and
K2 such that K = K1 ∪ K2. We repeat this subdivision procedure, by applying

3 http://nl-certify.forge.ocamlcore.org/

http://nl-certify.forge.ocamlcore.org/
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template_optim on a finite set of sub-boxes, until we succeed to certify that m is a
lower bound of f . We note #boxes the total number of sub-boxes generated by the
algorithm.

The algorithm template_optim returns more precise bounds by successive up-
dates of the precision p. For each univariate component u ∈ D of the objective f ,
we note #su the number of points for the maxplus approximations of u and du the
degree of the minimax approximation of u.

A template-free SOS method coincides with the particular case in which du = 0
(or #su = 0) for each univariate component u ∈ D and nlifting = 0. We mentioned
in [5] that this method already outperforms the interval arithmetic solvers. How-
ever, it can only be used for problems with a moderate number of variables. The
algorithm template_optim allows us to overcome this restriction, while keeping a
similar performance (or occasionally improving this performance) on medium-size
examples.

The minimax approximation based method is eventually faster than the maxplus
based method for moderate instances. For the example H3 (resp. H6), the speed-up
factor is 2 when the function exp is approximated by a quartic (resp. quadratic)
minimax polynomial. On the other hand, notice that reducing the number of lifting
variables allows us to provide more quickly coarse bounds for large-scale instances of
the Schwefel problem. We discuss the results appearing in the two last lines of Table 2.
Without any box subdivision, we can certify a better lower bound m = −967n with
nlifting = 2n since our semialgebraic approximation is more precise. However the
last lower bound m = −968n can be computed twice faster by considering only n
lifting variables, thus reducing the size of the POP described in Example 2. This
indicates that the method is able to avoid the explosion for certain hard sub-classes
of problems where a standard (full lifting) POP formulation would involve a large
number of lifting variables.

In Table 3, we present some test results for several non-linear Flyspeck inequali-
ties. The integer nD represents the number of transcendental univariate nodes in the
corresponding abstract syntax trees. These inequalities are known to be tight and
involve sum of arctan of correlated functions in many variables, whence we keep high
the number of lifting variables to get precise semialgebraic approximations. However,
some inequalities (e.g. 9922699028) are easier to solve by using coarser semialgebraic
approximations. The first line (nlifting = 9) corresponds to the algorithm described
in [6]. The second and third line illustrate our improved template method. For the
former (nlifting = 3), we use no lifting variables to represent square roots of uni-
variate functions. For the latter (nlifting = 1), we use the reduce_lift variant of
Sect. 4.2.2 to approximate from below the semialgebraic function ∂4∆x√

4x1∆x with the
approximation h42 (see Example 6), so that we save two more lifting variables. Note
that this reduce_lift variant provides a systematic way to generate polynomial
template approximations for semialgebraic functions but it is difficult in practice to
generate precise approximations, due to the high computational cost of solving SOS
relaxation (Pdk) for large d and k.

In Table 4, we compared our algorithm with the MATLAB toolbox intsolver
[32] (based on the Newton interval method [19]) for random inequalities involving
two transcendental functions. The functions that we consider are of the form x 7→
arctan(p(x))+arctan(q(x)), where p is a four-degree polynomial and q is a quadratic
form. All variables lie in [0, 1]. Both p and q have random coefficients (taken in [0, 1])
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Table 2 Numerical results for global optimization examples using template_optim

Pb n m p nlifting k #boxes time

H3 3 −3.863

#sexp = 3 4 2 99 101 s
dexp = 0 0 1 1096 247 s
dexp = 2 4 1 53 132 s
dexp = 4 4 2 19 57 s
dexp = 6 4 3 12 101 s

H6 3 −3.33
#sexp = 1 6 2 113 102 s
dexp = 0 0 1 113 45 s
dexp = 2 4 2 53 51 s

MC 2 −1.92

#ssin = 2 4 2 17 1.8 s
dsin = 0 0 1 92 7.6 s
dsin = 2 0 1 8 6.3 s
dsin = 4 0 2 4 3.2 s
dsin = 6 0 3 2 3 s
dsin = 8 0 4 1 1.9 s

ML 10 −0.966

#scos = 1 5 1 5 8.2 s
dcos = 0 0 1 8 6.6 s
dcos = 2 5 1 1 6.4 s
dcos = 4 5 2 1 8.1 s

SWF (ε = 0)

10 −430n
#ssin = 6 2n 2 16 40 s
dsin = 0 2n 1 3830 129 s
dsin = 2 2n 1 512 2280 s

102 −440n #ssin = 6 2n 2 274 6840 s
dsin = 0 0 1 > 104 > 104 s

103 −486n #ssin = 4 2n 2 1 450 s
−488n #ssin = 4 n 2 1 250 s

SWF (ε = 1) 103 −967n #ssin = 2 2n 2 1 543 s
−968n n 2 1 272 s

Table 3 Results for Flyspeck inequalities using template_optim with n = 6, k = 2, m = 0
and #s = #sarctan

Inequality id nD p nlifting #boxes time

9922699028

1 #s = 4 9 47 241 s
1 #s = 4, dsqrt = 4 3 39 190 s
1 #s = 1, dsqrt = 4 1 170 1080 s
1 darctan = 4, dsqrt = 4 2 14 244 s

3318775219 1 #s = 2 9 338 1560 s
1 darctan = 4, dsqrt = 4 2 266 4423 s

7726998381 3 #s = 4 15 70 2580 s
7394240696 3 #s = 2 15 351 6480 s
4652969746_1 6 #s = 4 15 81 4680 s
OXLZLEZ6346351218_2_0 6 #s = 4 24 200 20520 s

Table 4 Comparison results for random examples using either intsolver or template_optim
with k = 3 and #s = #sarctan = 3

n m
template_optim intsolver

(time) (time)
3 0.4581 3.8 s 15.5 s
4 0.4157 12.9 s 172.1 s
5 0.4746 60 s 612 s
6 0.4476 276 s 12240 s
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and are sparse. The results indicate that for such random examples, our method also
outperforms interval arithmetic.

6 Conclusion

The present nonlinear template method computes certified lower bounds for global
optimization problems. It can provide tight minimax or maxplus semialgebraic ap-
proximations to certify non-linear inequalities involving transcendental multivariate
functions. Our algorithms can solve both small and intermediate size inequalities of
the Flyspeck project as well as global optimization problems issued from the litera-
ture, with a moderate order of SOS relaxation.

The proposed approach bears some similarity with the “cutting planes” proofs
in combinatorial optimization, the cutting planes being now replaced by nonlinear
inequalities. It also allows one to limit the growth of the number of lifting variables as
well as of polynomial constraints to be handled in the POP relaxations, at the price
of a coarser approximation. Thus, our method is helpful when the size of optimization
problems increases. Indeed, the coarse lower bounds obtained (even with a low SOS
relaxation order) are better than those obtained with interval arithmetic or high-
degree polynomial approximation.

Further research would be to apply nonlinear templates to discrete-time optimal
control problems, e.g. the Mayer problem. In this case, each set of reachable vec-
tors is abstracted by a template and computed in a forward fashion, by exploiting
the dynamics, whereas the templates are refined in a backward fashion. Hence, the
template method includes as a special case a set theoretical version of the familiar
state/co-state optimality conditions in control.
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A Appendix: global optimization problems issued from the literature

The following test examples are taken from Appendix B in [4]. Some of these examples involve
functions that depend on numerical constants, the values of which can be found there.

– Hartman 3 (H3): min
x∈[0,1]3

f(x) = −
4∑
i=1

ci exp
[
−

3∑
j=1

aij(xj − pij)2

]
.

– Hartman 6 (H6): min
x∈[0,1]6

f(x) = −
4∑
i=1

ci exp
[
−

6∑
j=1

aij(xj − pij)2

]
.

– Mc Cormick (MC), with K = [−1.5, 4]× [−3, 3]:
min
x∈K

f(x) = sin(x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1 .

– Modified Langerman (ML):

min
x∈[0,10]n

f(x) =
5∑
j=1

cj cos(dj/π) exp(−πdj), with dj =
n∑
i=1

(xi − aji)2 .

– Schwefel Problem (SWF): min
x∈[1,500]n

f(x) = −
∑n

i=1 xi sin(√xi) .

B Appendix: proofs

B.1 Preliminary Results

For the sequel, we need to recall the following definition.

Definition 8 (Modulus of continuity) Let u be a real univariate function defined on an
interval I. The modulus of continuity of u is defined as:

ω(δ) := sup
x1,x2∈I
|x1−x2|<δ

| u(x1)− u(x2) |

We shall also prove that unary_approx and reduce_lift return uniformly convergent
approximations nets:

Proposition 4 Suppose that Assumption 4 holds. For every function r of the dictionary D,
defined on a closed interval I, the procedure unary_approx returns two nets of univariate lower
semialgebraic approximations (r−p )p∈P and upper semialgebraic approximations (r+

p )p∈P , that
uniformly converge to r on I.

For every semialgebraic function fsa ∈ A, defined on a compact semialgebraic set K, the
procedure reduce_lift returns two nets of lower semialgebraic approximations (t−p )p∈P and
upper semialgebraic approximations (t+p )p∈P , that uniformly converge to fsa on K.
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Proof First, suppose that the precision p is the best uniform polynomial approximation degree.
By Assumption 4, the procedure unary_approx returns the sequence of degree-d minimax
polynomials, using the algorithm of Remez. This sequence uniformly converges to r on I, as
a consequence of Jackson’s Theorem [15, Chap. 3]. Alternatively, when considering maxplus
approximations in which the precision is determined by certain sets of points, we can apply
Theorem 2 that implies the uniform convergence of the maxplus approximations.

Next, for sufficiently large relaxation order, the reduce_lift procedure returns the best
(for the L1 norm) degree-d polynomial under-approximation of a given semialgebraic function,
as a consequence of Theorem 3. ut

B.2 Proof of Lemma 3

Let us equip the vector space Rd[x] of polynomials h of degree at most d with the norm
‖h‖∞ := sup|α|6d{|hα|}.

Let H be the admissible set of Problem (P sa). Observe that H is closed in the topology of
the latter norm. Moreover, the objective function of Problem (P sa) can be written as φ : h ∈
H 7→ ‖fsa − h‖L1(K), where ‖ · ‖L1(K) is the norm of the space L1(K,λn). The function φ is
continuous in the topology of ‖·‖∞ (for polynomials of bounded degree, the convergence of the
coefficients implies the uniform convergence on every bounded set for the associated polynomial
functions, and a fortiori the convergence of these polynomial functions in L1(K,λn)). Note
also that

∫
[0,1]n h dλn =

∫
[0,1]n h(x) dλn(x) =

∫
[0,1]n+p h(x, z) dλn+p(x, z). We claim that

for every t ∈ R, the sub-level set St := {h ∈ H | φ(h) 6 t} is bounded. Indeed, when φ(h) 6 t,
we have:

‖h‖L1(K) 6 ‖fsa − h‖L1(K) + ‖fsa‖L1(K) 6 t+ ‖fsa‖L1(K) .

Since on a finite dimensional vector space, all the norms are equivalent, there exists a constant
C > 0 such that ‖h‖∞ 6 C‖h‖L1(K) for all h ∈ H, so we deduce that ‖h‖∞ 6 C(t +
‖fsa‖L1(K)) for all h ∈ St, which shows the claim. Since φ is continuous, it follows that every
sublevel set of φ, which is a closed bounded subset of a finite dimensional vector space, is
compact. Hence, the minimum of Problem (P sa) is attained. ut

B.3 Proof of Proposition 3

The proof is by induction on the structure of t.
– When t represents a semialgebraic function of A, the under-approximation (resp. over-

approximation) net (t−p )p (resp. (t+p )p) converges uniformly to t by Proposition 4.
– The second case occurs when the root of t is an univariate function r ∈ D with the single

child c. Suppose that r is increasing without loss of generality. We consider the net of under-
approximations (c−p )p (resp. over-approximations (c+

p )p) as well as lower and upper bounds
mcp and Mcp which are obtained recursively. Since K is a compact semialgebraic set, one
can always find an interval I0 enclosing the values of r+

p (i.e. such that [mcp ,Mcp ] ⊂ I0),
for all p.
The induction hypothesis is the uniform convergence of (c−p )p (resp. (c+

p )p) to c on K.
Now, we prove the uniform convergence of (t+p )p to t on K. One has:

‖t− t+p ‖∞ 6 ‖r ◦ c− r+
p ◦ c‖∞ + ‖r+

p ◦ c− t+p ‖∞. (B.1)

Let note ω the modulus of continuity of r+
p on I0. Thus, the following holds:

‖r+
p ◦ c− r+

p ◦ c+
p ‖∞ 6 ω(‖c− c+

p ‖∞). (B.2)

Let ε > 0 be given. The univariate function r+
p is uniformly continuous on I0, thus there

exists δ > 0 such that ω(δ) 6 ε/2. Let choose such a δ. By induction hypothesis, there
exists a precision p0 such that for all p > p0, ‖c − c+

p ‖∞ 6 δ. Hence, using (B.2), the
following holds:

‖r+
p ◦ c− r+

p ◦ c+
p ‖∞ 6 ε/2. (B.3)
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Moreover, from the uniform convergence of (r+
p )p∈N to r on K (by Proposition 4), there

exists a precision p1 such that for all p > p1:

‖r ◦ c− r+
p ◦ c‖∞ 6 ε/2. (B.4)

Using (B.1) together with (B.3) and (B.4) yield the desired result. The proof of the uniform
convergence of the under-approximations is analogous.

– If the root of t is a binary operation whose arguments are two children c1 and c2, then
by induction hypothesis, we obtain semialgebraic approximations c−1,p, c

−
2,p, c

+
1,p, c

+
2,p that

verify:

lim
p→∞

‖c1 − c−1,p‖∞ = 0, lim
p→∞

‖c1 − c+
1,p‖∞ = 0, (B.5)

lim
p→∞

‖c2 − c−2,p‖∞ = 0, lim
p→∞

‖c2 − c+
2,p‖∞ = 0. (B.6)

If bop = +, by using the triangle inequality:

‖c1 + c2 − c−1,p − c
−
2,p‖∞ 6 ‖c1 − c−1,p‖∞ + ‖c2 − c−2,p‖∞,

‖c1 + c2 − c+
1,p − c

+
2,p‖∞ 6 ‖c1 − c+

1,p‖∞ + ‖c2 − c+
2,p‖∞.

Then, the uniform convergence comes from (B.5) and (B.6). The proof for the other cases
is analogous. ut

B.4 Convergence of the template_optim Algorithm

B.4.1 Preliminaries: Γ and Uniform Convergence

To study the convergence of the minimizers of t−p , we first introduce some background on
the Γ -convergence (we refer the reader to [27] for more details) and the lower semicontinuous
envelope. The topology of Γ -Convergence is known to be metrizable hence, we shall consider
the Γ -Convergence of sequences (rather than nets).
Definition 9 (Γ -Convergence) The sequence (tp)p∈N Γ -converges to t if the following two
conditions hold:
1. (Asymptotic common lower bound) For all x ∈ K and all (xp)p∈N such that limp→∞ xp =

x, one has t(x) 6 lim infp→∞ tp(xp).
2. (Existence of recovery sequences) For all x ∈ K, there exists some (xp)p∈N such that

limp→∞ xp = x and lim supp→∞ tp(xp) > t(x).

Define R := R ∪ {−∞,∞} to be the extended real number line.

Definition 10 (Lower Semicontinuous Envelope) Given t : K 7→ R, the lower semicon-
tinuous envelope of t is defined by:

tlsc(x) := sup{g(x) | g : K 7→ R is lower semicontinuous and g 6 f on K}.

If t is continuous, then tlsc := t.
Theorem 5 (Fundamental Theorem of Γ -Convergence [27]) Suppose that the sequence
(tp)p∈N Γ -converges to t and xp minimizes tp. Then every limit point of the sequence (xp)p∈N
is a global minimizer of t.
Theorem 6 (Γ and Uniform Convergence [27]) If (tp)p∈N uniformly converges to t,
then (tp)p∈N Γ -converges to tlsc.

Theorem 6 also holds for nets, since the topology of Γ -Convergence is metrizable.

B.4.2 Proof of Corollary 2

From Proposition 3, the under-approximations net (t−p )p∈N uniformly converge to t on K.
Then, by using Theorem 6, the net (t−p )p∈N Γ -converges to tlsc := t (by continuity of t). It
follows from the fundamental Theorem of Γ -Convergence 5 that every limit point of the net
of minimizers (x∗p)p∈N is a global minimizer of t over K. ut
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