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Abstract

The nonnegative rank of an entrywise nonnegative matrix A ∈ R
m×n
+ is the smallest

integer r such that A can be written as A = UV where U ∈ R
m×r
+ and V ∈ R

r×n
+ are

both nonnegative. The nonnegative rank arises in different areas such as combinatorial
optimization and communication complexity. Computing this quantity is NP-hard in
general and it is thus important to find efficient bounding techniques especially in the
context of the aforementioned applications.

In this paper we propose a new lower bound on the nonnegative rank which, unlike
most existing lower bounds, does not solely rely on the matrix sparsity pattern and
applies to nonnegative matrices with arbitrary support. The idea involves computing
a certain nuclear norm with nonnegativity constraints which allows to lower bound
the nonnegative rank, in the same way the standard nuclear norm gives lower bounds
on the standard rank. Our lower bound is expressed as the solution of a copositive
programming problem and can be relaxed to obtain polynomial-time computable lower
bounds using semidefinite programming. We compare our lower bound with existing
ones, and we show examples of matrices where our lower bound performs better than
currently known ones.

1 Introduction

Given a nonnegative1 matrix A ∈ R
m×n
+ , the nonnegative rank of A is the smallest integer

r such that A can be factorized as A = UV where U ∈ R
m×r
+ and V ∈ R

r×n
+ are both

nonnegative. The nonnegative rank of A is denoted by rank+(A) and it always satisfies:

rank(A) ≤ rank+(A) ≤ min(n,m).

The nonnegative rank appears in different areas such as in combinatorial optimization
[Yan91] and communication complexity [KN06, Lov90, LS09]. Indeed, in combinatorial op-
timization a well-known result by Yannakakis [Yan91] shows that the nonnegative rank of

The authors are with the Laboratory for Information and Decision Systems, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139. Email:
{hfawzi,parrilo}@mit.edu. This research was funded in part by AFOSR FA9550-11-1-0305.

1Throughout the paper, a nonnegative matrix is a matrix whose entries are all nonnegative.
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a suitable matrix characterizes the smallest number of linear inequalities needed to repre-
sent a given polytope. This quantity is very important in practice since the complexity of
interior-point algorithms for linear programming explicitly depends on the number of linear
inequalities. Another application of the nonnegative rank is in communication complexity
where one is interested in the minimum number of bits that need to be exchanged between
two parties in order to compute a binary function f : X ×Y → {0, 1}, assuming that initially
each party holds only one of the two arguments of the function. This quantity is known as
the communication complexity of f and is tightly related to the nonnegative rank of the
|X | × |Y| matrix Mf associated to f defined by Mf (x, y) = f(x, y) [LS09, Lov90]. Finally it
was also recently observed [Zha12, JSWZ13] that the logarithm of the nonnegative rank of
a matrix A coincides with the minimum number of bits that need to be exchanged between
two parties in order to sample from the bivariate probability distribution p(x, y) = Ax,y

represented by the matrix A (assuming A is normalized so that
∑

x,y Ax,y = 1).

Lower bounds on nonnegative rank Unfortunately, the nonnegative rank is hard to
compute in general unlike the standard rank: For example it was shown in [Vav09] that the
problem of deciding whether rank+(A) = rank(A) is NP-hard in general (see also [AGKM12]
for further hardness results). Researchers have therefore developed techniques to find lower
and upper bounds for this quantity. Existing lower bounds are not entirely satisfactory
though, since in general they depend only on the sparsity pattern of the matrix A and not
on the actual values of the entries, and as a consequence these bounds cannot be used when
all the entries of A are strictly positive. In fact most of the currently known lower bounds
are actually lower bounds on the rectangle covering number (also known as the Boolean
rank) which is a purely combinatorial notion of rank that is itself a lower bound on the
nonnegative rank. The rectangle covering number of a nonnegative matrix A ∈ R

m×n
+ is the

smallest number of rectangles needed to cover the nonzero entries of A. More precisely it
is the smallest integer r such that there exist r rectangles Ri = Ii × Ji ⊆ support(A) for
i = 1, . . . , r such that

support(A) =

r⋃

i=1

Ri,

where support(A) = {(i, j) ∈ {1, . . . , m} × {1, . . . , n} : Ai,j 6= 0} is the set of indices of the
nonzero entries of A. It is easy to see that the rectangle covering number is always smaller
than or equal to the nonnegative rank of A (each nonnegative rank 1 term in a decomposition
of A corresponds to a rectangle). Some of the well-known lower bounds on the nonnegative
rank such as the fooling set method or the rectangle size method (see [KN06, Section 1.3])
are in fact lower bounds on the rectangle covering number and they only depend on the
sparsity pattern of A and not on the specific values of its entries. Recently, a new lower
bound was proposed in [GG12] that does not rely solely on the sparsity pattern; however
the lower bound depends on a new quantity called the restricted nonnegative rank which
can be computed efficiently only when rank(A) ≤ 3 but otherwise is NP-hard to compute
in general. Also a non-combinatorial lower bound on the nonnegative rank known as the
hyperplane separation bound was proposed recently and used in the remarkable result of
Rothvoss [Rot14] on the matching polytope. The lower bound we propose in this paper
has a similar flavor as the hyperplane separation bound except that it uses the Frobenius
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norm instead of the entrywise infinity norm. Also one focus of the present paper is on
computational approaches to compute the lower bound using sum-of-squares techniques and
semidefinite programming. Finally, after the initial version of this paper was submitted, we
extended some of the ideas presented here and we proposed in [FP14] new lower bounds
that are invariant under scaling and that are related to hyperplane separation bounds and
combinatorial bounds.

Contribution In this paper we present an efficiently computable lower bound on the
nonnegative rank that does not rely exclusively on the sparsity pattern and that is applicable
to matrices that are strictly positive. Before we present our result, recall that a symmetric
matrix M ∈ R

n×n is said to be copositive if xTMx ≥ 0 for all x ∈ R
n
+. Our result can be

summarized in the following:

Theorem 1. Let A ∈ R
m×n
+ be a nonnegative matrix. Let ν+(A) be the optimal value of the

following convex optimization program:

ν+(A) = max
W∈Rm×n

{
〈A,W 〉 :

[
I −W

−WT I

]
copositive

}
. (1)

Then we have

rank+(A) ≥
(
ν+(A)

‖A‖F

)2

, (2)

where ‖A‖F :=
√∑

i,j A
2
i,j is the Frobenius norm of A.

Note that ν+(A) is defined as the solution of a conic program over the cone of copositive
matrices. Copositive programming is known to be NP-hard in general (see e.g., [Dür10]),
but fortunately one can obtain good approximations using semidefinite programming. For
example one can obtain a lower bound to ν+(A) by solving the following semidefinite pro-
gram:

ν
[0]
+ (A) = max

W∈Rm×n

{
〈A,W 〉 :

[
I −W

−WT I

]
∈ N n+m + Sn+m

+

}
(3)

where Sn+m
+ denotes the cone of symmetric positive semidefinite matrices of size n+m, and

N n+m denotes the cone of symmetric nonnegative matrices of size n+m. Since in general the
sum of a nonnegative matrix and a positive semidefinite matrix is copositive, we immediately
see that ν+(A) ≥ ν

[0]
+ (A) for any A, and thus this yields a polynomial-time computable lower

bound to rank+(A):

rank+(A) ≥
(
ν
[0]
+ (A)

‖A‖F

)2

.

One can in fact obtain tighter estimates of ν+(A) using semidefinite programming by consid-
ering hierarchies of approximations of the copositive cone, like e.g., the hierarchy developed
in [Par00]. This is discussed in more detail later in the paper (Section 2.4).

Note from the definition of ν+(A) (Equation (1)) that ν+(A) is convex in A and is thus
continuous on the interior of its domain. In Section 2.2 we show how the quantity ν+(A)
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can in fact be used to obtain a lower bound on the nonnegative rank of any matrix Ã that
is ǫ-close (in Frobenius norm) to A.

It is interesting to express the dual of the copositive program (1). The dual of the cone
of copositive matrices is the cone of completely positive matrices. A symmetric matrix
M is said to be completely positive if it admits a factorization M = BBT where B is
elementwise nonnegative. Note that a completely positive matrix is both nonnegative and
positive semidefinite; however not every such matrix is necessarily completely positive (see
e.g., [BSM03] for an example and for more information on completely positive matrices).
The dual of the copositive program (1) defining ν+(A) is the following completely positive
program (both programs give the same optimal value by strong duality):

ν+(A) = min
X∈Rm×m

Y ∈Rn×n

{
1

2
(trace(X) + trace(Y )) :

[
X A
AT Y

]
completely positive

}
.

We will revisit this completely positive program later in the paper in Section 2.3 when we
discuss the relation between the quantity ν+(A) and the nuclear norm.

Outline The paper is organized as follows. In Section 2 we give the proof of the lower
bound of Theorem 1 and we also outline a connection between the quantity ν+(A) and the
nuclear norm of a matrix. We then discuss computational issues and we see how to obtain
semidefinite programming approximations of the quantity ν+(A). In Section 3 we look at
specific examples of matrices and we show that our lower bound can be greater than the
plain rank lower bound and the rectangle covering number. In general however our lower
bound is uncomparable to the existing lower bounds, i.e., it can be either greater or smaller.
Among the examples, we show that our lower bound is exact for the slack matrix of the
hypercube, thus giving another proof that the extension complexity of the hypercube in n
dimensions is equal to 2n (a combinatorial proof of this fact is given in [FKPT13]).

Notations Throughout the paper Sn denotes the vector space of real symmetric matrices
of size n and Sn

+ is the cone of positive semidefinite matrices of size n. The cone of symmetric
elementwise nonnegative matrices of size n is denoted by N n. If X ∈ Sn we write X � 0
to say that X is positive semidefinite. Given two matrices X and Y , their inner product is
defined as 〈X, Y 〉 = trace(XTY ) =

∑
i,j Xi,jYi,j.

2 The lower bound

2.1 Proof of the lower bound

In this section we prove the lower bound of Theorem 1 in a slightly more general form:

Theorem 2. Let A ∈ R
m×n
+ be a nonnegative matrix. Let P ∈ R

m×m and Q ∈ R
n×n be

nonnegative symmetric matrices with strictly positive diagonal entries. Let ν+(A;P,Q) be
the optimal value of the following copositive program:

ν+(A;P,Q) = max
W∈Rm×n

{
〈A,W 〉 :

[
P −W

−WT Q

]
copositive

}
(4)
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Then we have

rank+(A) ≥
(

ν+(A;P,Q)√
trace(ATPAQ)

)2

. (5)

Note that Theorem 1 in the Introduction corresponds to the special case where P and Q
are the identity matrices. The more general lower bound of Theorem 2 has the advantage of
being invariant under diagonal scaling: namely if Ã = D1AD2 is obtained from A by positive
diagonal scaling (where D1 and D2 are positive diagonal matrices), then the lower bound

produced by the previous theorem for both quantities rank+(A) and rank+(Ã) (which are
equal) will coincide, for adequate choices of P and Q. In fact it is easy to verify that if we
choose P = D−2

1 and Q = D−2
2 then


 ν+(Ã;P,Q)√

trace(ÃTPÃQ)




2

=

(
ν+(A)

‖A‖F

)2

.

The dual of the copositive program defining ν+(A;P,Q) is the following completely positive
program where the matrices P and Q enter as weighting matrices in the objective function:

ν+(A;P,Q) = min
X∈Rm×m

Y ∈Rn×n

{
1

2
(trace(PX) + trace(QY )) :

[
X A
AT Y

]
completely positive

}
.

Proof of Theorem 2. We introduce the shorthand notations ‖x‖P =
√
xTPx when x ∈ R

m
+

and ‖y‖Q =
√

yTQy when y ∈ R
n
+ which are well defined by the assumptions on P and Q

(note however that ‖ · ‖P and ‖ · ‖Q are not necessarily norms in the usual sense). Let A
be an m × n nonnegative matrix with nonnegative rank r ≥ 1 and consider a factorization
A = UV =

∑r
i=1 uiv

T

i where ui ∈ R
m
+ are the columns of U and vTi ∈ R

n
+ the rows of V .

Clearly the vectors ui and vi are nonzero for all i ∈ {1, . . . , r}. By rescaling the ui’s and
vi’s we can assume that ‖ui‖P = ‖vi‖Q for all i ∈ {1, . . . , r} (simply replace ui by ũi = γiui

and vi by ṽi = γ−1
i vi where γi =

√
‖vi‖Q/‖ui‖P ). Observe that by the Cauchy-Schwarz

inequality, we have: ∑r
i=1 ‖ui‖P‖vi‖Q√∑r
i=1 ‖ui‖2P‖vi‖2Q

≤ √
r =

√
rank+(A)

We will now show separately that the numerator of the left-hand side above is lower bounded
by the quantity ν+(A;P,Q), and that the denominator is upper bounded by

√
trace(ATPAQ):

• Numerator: If W is such that
[

P −W
−WT Q

]
is copositive then, since ui, vi ≥ 0, we have:

[
ui

vi

]T [
P −W

−WT Q

] [
ui

vi

]
≥ 0

and hence

uT

i Wvi ≤
1

2
(‖ui‖2P + ‖vi‖2Q) = ‖ui‖P‖vi‖Q
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where we used the fact that ‖ui‖P = ‖vi‖Q. Thus we get

〈A,W 〉 =
〈

r∑

i=1

uiv
T

i ,W

〉
=

r∑

i=1

uT

i Wvi ≤
r∑

i=1

‖ui‖P‖vi‖Q.

Note that this is true for any W such that
[

P −W
−WT Q

]
is copositive and thus we obtain

ν+(A;P,Q) ≤
r∑

i=1

‖ui‖P‖vi‖Q.

• Denominator: We now turn to finding an upper bound on
∑r

i=1 ‖ui‖2P‖vi‖2Q. Observe
that we have

trace(ATPAQ) = 〈PA,AQ〉 =
∑

1≤i,j≤r

〈Puiv
T

i , ujv
T

j Q〉

=

r∑

i=1

‖ui‖2P‖vi‖2Q +
∑

i 6=j

(uT

i Puj)(v
T

j Qvi)

≥
r∑

i=1

‖ui‖2P‖vi‖2Q

where in the last inequality we used the fact that uT

i Puj ≥ 0 and vTj Qvj ≥ 0 which is
true since P and Q are nonnegative.

Now if we combine the two points above we finally get the desired inequality

rank+(A) = r ≥



∑r

i=1 ‖ui‖P‖vi‖Q√∑r
i=1 ‖ui‖2P‖vi‖2Q




2

≥
(

ν+(A;P,Q)√
trace(ATPAQ)

)2

.

2.2 Lower bound on the approximate nonnegative rank

It is clear from the definition (1) that the function A ∈ R
m×n
+ 7→ ν+(A) is convex and is thus

continuous on the interior of its domain, unlike the nonnegative rank. A consequence of this
is that the lower bound (ν+(A)/‖A‖F )2 will be small in general if A is close to a matrix
with small nonnegative rank. This continuity property of ν+(A) can be used to obtain a

lower bound on the nonnegative rank of any matrix Ã that is close enough to A. Define the
approximate nonnegative rank of A, denoted rankǫ+(A), to be the smallest nonnegative rank
among all nonnegative matrices that are ǫ-close to A in Frobenius norm:

rankǫ+(A) = min
{
rank+(Ã) : Ã ∈ R

m×n
+ and ‖A− Ã‖F ≤ ǫ

}
. (6)

Approximate nonnegative factorizations and the approximate nonnegative rank have appli-
cations in lifts of polytopes [GPT13a] as well as in information theory [BJLP13].

The following theorem shows that one can obtain a lower bound on rankǫ+(A) using the
quantity ν+(A):
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Theorem 3. Let A ∈ R
m×n
+ be a nonnegative matrix and let W be an optimal solution in the

definition of ν+(A) (cf. Equation (1)). Let ǫ be a positive constant with ǫ ≤ ν+(A)/‖W‖F .
Then we have:

rankǫ+(A) ≥
(
ν+(A)− ǫ‖W‖F

‖A‖F + ǫ

)2

.

Proof. Let Ã be any nonnegative matrix such that ‖A − Ã‖F ≤ ǫ. Since W is a feasible

point for the copositive program that defines ν+(Ã) we clearly have

ν+(Ã) ≥ 〈Ã,W 〉 = 〈A,W 〉+ 〈Ã−A,W 〉 ≥ ν+(A)− ǫ‖W‖F

Hence since ν+(A)− ǫ‖W‖F ≥ 0 and ‖Ã‖F ≤ ‖A‖F + ǫ we get:

rank+(Ã) ≥
(
ν+(Ã)

‖Ã‖F

)2

≥
(
ν+(A)− ǫ‖W‖F

‖A‖F + ǫ

)2

.

Since this is valid for any Ã that is ǫ-close to A, we have

rankǫ+(A) ≥
(
ν+(A)− ǫ‖W‖F

‖A‖F + ǫ

)2

.

2.3 Connection with nuclear norm

In this section we discuss the connection between the quantity ν+(A) and nuclear norms of
linear operators. If A is an arbitrary (not necessarily nonnegative) matrix the nuclear norm
of A is defined by [Jam87]:

ν(A) = min

{∑

i

‖ui‖2‖vi‖2 : A =
∑

i

uiv
T

i

}
. (7)

It can be shown that the quantity ν(A) above is equal to the sum of the singular values
σ1(A) + · · · + σr(A) of A, and in fact this is the most commonly encountered definition of
the nuclear norm. This latter characterization gives the following well-known lower bound
on rank(A) combining ν(A) and ‖A‖F :

rank(A) ≥
(

σ1(A) + · · ·+ σr(A)√
σ1(A)2 + · · ·+ σr(A)2

)2

=

(
ν(A)

‖A‖F

)2

.

The characterization of nuclear norm given in Equation (7) can be very naturally adapted
to nonnegative factorizations of A by restricting the vectors ui and vi in the decomposition of
A to be nonnegative. The new quantity that we obtain with this restriction is in fact nothing
but the quantity ν+(A) introduced earlier, as we show in the Theorem below. Observe that
this quantity ν+(A) is always greater than or equal than the standard nuclear norm ν(A).
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Theorem 4. Let A ∈ R
m×n
+ be a nonnegative matrix. The following three quantities are

equal to ν+(A) as defined in Equation (1):

(i) min

{∑

i

‖ui‖2‖vi‖2 : A =
∑

i

uiv
T

i , ui, vi ≥ 0

}

(ii) min
X∈Sm

Y ∈Sn

{
1

2
(trace(X) + trace(Y )) :

[
X A
AT Y

]
completely positive

}

(iii) max
W∈Rm×n

{
〈A,W 〉 :

[
I −W

−WT I

]
copositive

}

Proof. Note that the conic programs in (ii) and (iii) are dual of each other; furthermore
program (iii) is strictly feasible (simply take W = 0) thus it follows from strong duality that
(ii) and (iii) have the same optimal value. We thus have to show only that (i) and (ii) are
equal.

We start by proving that (ii) ≤ (i): If A =
∑k

i=1 uiv
T

i where ui, vi ≥ 0 and ui, vi 6= 0 for
all i ∈ {1, . . . , k}, then if we let

X =

k∑

i=1

‖vi‖2
‖ui‖2

uiu
T

i and Y =

k∑

i=1

‖ui‖2
‖vi‖2

viv
T

i

then [
X A
AT Y

]
=

k∑

i=1

‖ui‖2‖vi‖2
[
ui/‖ui‖2
vi/‖vi‖2

] [
ui/‖ui‖2
vi/‖vi‖2

]T

and so
[

X A
AT Y

]
is completely positive since ui and vi are elementwise nonnegative. Further-

more we have

trace(X) + trace(Y ) =

k∑

i=1

‖ui‖2‖vi‖2 +
k∑

i=1

‖ui‖2‖vi‖2 = 2

k∑

i=1

‖ui‖2‖vi‖2.

Hence this shows that (ii) ≤ (i).
We now show that (i) ≤ (ii). Assume that X and Y are such that

[
X A
AT Y

]
is completely

positive and consider a decomposition

[
X A
AT Y

]
=

k∑

i=1

[
xi

yi

] [
xi

yi

]T

where xi and yi are nonnegative. Then from this decomposition we have A =
∑k

i=1 xiy
T

i and

k∑

i=1

‖xi‖2‖yi‖2 ≤
1

2

(
k∑

i=1

‖xi‖22 +
k∑

i=1

‖yi‖22

)
=

1

2
(trace(X) + trace(Y )).

This shows that (i) ≤ (ii) and completes the proof.
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For an arbitrary (not necessarily nonnegative) matrix A the nuclear norm ν(A) can be
computed as the optimal value of the following primal-dual pair of semidefinite programs:

minimize
X∈Sm

Y ∈Sn

1
2
(trace(X) + trace(Y ))

subject to

[
X A
AT Y

]
∈ Sm+n

+

maximize
W∈Rm×n

〈A,W 〉

subject to

[
I −W

−WT I

]
∈ Sm+n

+

(8)

A solution of these semidefinite programs can be obtained from a singular value decomposi-
tion of A: namely if A = UΣV T is a singular value decomposition of A, then X = UΣUT,
Y = V ΣV T and W = UV T are optimal points of the semidefinite programs above, and the
optimal value is trace(Σ) = ν(A).

Note that the primal-dual pairs that define ν(A) and ν+(A) are very similar, and the only
differences are in the cones used: for ν(A) it is the self-dual cone of positive semidefinite
matrices, whereas for ν+(A) it is the dual pair of completely positive / copositive cones.
Note also that these optimization problems are related to the convex programs that arise in
[DV13]. In the following proposition we give simple sufficient conditions on the singular value
decomposition of A that allow to check if the two quantities ν+(A) and ν(A) are actually

equal. For the proposition recall that ν
[0]
+ (A) is the first approximation of ν+(A) defined

in (3), where the copositive cone is replaced by the cone N n+m + Sn+m
+ . Using duality the

quantity ν
[0]
+ (A) is also equal to the solution of the following minimization problem:

min
X,Y

{
1

2
(trace(X) + trace(Y )) :

[
X A
AT Y

]
∈ S2n

+ ∩ N 2n

}
(9)

where S2n
+ ∩N 2n is the cone of doubly nonnegative matrices (i.e., the cone of matrices that

are nonnegative and positive semidefinite).

Proposition 1. Let A ∈ R
m×n
+ be a nonnegative matrix with a singular value decomposition

A = UΣV T and let ν(A) = trace(Σ) be the nuclear norm of A.

(i) If UΣUT and V ΣV T are nonnegative then ν
[0]
+ (A) = ν(A).

(ii) Also, if the matrix [
UΣUT A
AT V ΣV T

]
∈ Sn+m (10)

is completely positive, then ν+(A) = ν(A).

Proof. To prove point (i) of the proposition note first that we always have the inequality

ν
[0]
+ (A) ≥ ν(A). Now if UΣUT and V ΣV T are nonnegative then X = UΣUT and Y = V ΣV T

are feasible for (9) and achieve the value trace(Σ) = ν(A). This shows that in this case

ν
[0]
+ (A) ≤ ν(A) and thus ν

[0]
+ (A) = ν+(A). The proof of item (ii) is similar.

To finish this section we investigate properties of the solution of the completely pos-
itive/copositive pair that defines ν+(A) (cf. (ii) and (iii) in Theorem 4). An interesting
question is to know whether the solution of this primal-dual pair possesses some interesting
properties like the singular value decomposition. The next proposition shows a property
which relates the optimal W of the copositive program and a nonnegative decomposition
A =

∑
i uiv

T

i satisfying
∑

i ‖ui‖2‖vi‖2 = ν+(A).

9



Proposition 2. Let A ∈ R
m×n
+ be a nonnegative matrix. Assume A =

∑
i λiuiv

T

i is a
nonnegative decomposition of A that satisfies

∑

i

λi = ν+(A)

where λi ≥ 0 and ui ∈ R
m
+ , vi ∈ R

n
+ have unit norm ‖ui‖2 = ‖vi‖2 = 1. Let W be an optimal

point in the copositive program (1). Then we have for all i,

ui = Π+(Wvi) and vi = Π+(W
Tui)

where Π+(x) = max(x, 0) is the projection on the nonnegative orthant.

The proposition above can be seen as the analogue in the nonnegative world of the fact that,
for arbitrary matrices A, the optimal W in the semidefinite program (8) satisfies ui = Wvi
and vi = WTui where ui and vi are respectively the left and right singular vectors of A.

Before proving the proposition we prove the following simple lemma:

Lemma 1. If W ∈ R
m×n is such that

[
I −W

−WT I

]
is copositive, then for any v ∈ R

n
+ we

have
‖Π+(Wv)‖2 ≤ ‖v‖2

where Π+(x) = max(x, 0) is the projection on the nonnegative orthant.

Proof. Let v ∈ R
n
+ and call u = Π+(Wv). By the copositivity assumption we have, since u

and v are nonnegative: [
u
v

]T [
I −W

−WT I

] [
u
v

]
≥ 0

which can rewritten as:

(u−Wv)T(u−Wv) + vT(I −WTW )v ≥ 0.

Since u = Π+(Wv) we get:

‖Π+(Wv)−Wv‖22 + ‖v‖22 − ‖Wv‖22 ≥ 0.

Note that ‖Π+(Wv)−Wv‖22−‖Wv‖22 = −‖Π+(Wv)‖22 and thus we get the desired inequality

‖Π+(Wv)‖22 ≤ ‖v‖22.

Using this lemma we now prove Proposition 2:

Proof of Proposition 2. Let A =
∑

i λiuiv
T

i be a nonnegative decomposition of A that sat-
isfies

∑
i λi = ν+(A) and let W be an optimal point of the copositive program (1). Since

10



[
I −W

−WT I

]
is copositive and ‖ui‖2 = ‖vi‖2 = 1, we have for each i, uT

i Wvi ≤ 1. Now

since W is optimal we have

∑

i

λiu
T

i Wvi = 〈A,W 〉 = ν+(A) =
∑

i

λi,

and hence for each i we have necessarily uT

i Wvi = 1. Furthermore, we have the sequence of
inequalities

1 = uT

i Wvi ≤ uT

i Π+(Wvi) ≤ ‖ui‖2‖Π+(Wvi)‖2 ≤ ‖ui‖2‖vi‖2 = 1 (11)

where in the first inequality we used that u ≥ 0, then we used Cauchy-Schwarz inequality
and for the third inequality we used Lemma 1. Since the left-hand side and the right-hand
side of (11) are equal this shows that all the intermediate inequalities are in fact equalities.
In particular by the equality case in Cauchy-Schwarz we have that Π+(Wvi) = ρiui for some
constant ρi. But since uT

i Π+(Wvi) = 1 and ‖ui‖2 = 1 we get that ρi = 1. This shows finally
that ui = Π+(Wvi). To prove that vi = Π+(W

Tui) we use the same line of inequalities as in
(11) starting from the fact that 1 = vTi W

Tui.

2.4 Approximations and semidefinite programming lower bounds

In this section we describe how one can use semidefinite programming to obtain polynomial-
time computable lower bounds on ν+(A), and thus on rank+(A). We outline here the hier-
archy of approximations of the copositive cone proposed by Parrilo in [Par00] using sums-
of-squares techniques.

Recall that a symmetric matrix M ∈ Sn is copositive if xTMx ≥ 0 for all x ≥ 0.
An equivalent way of formulating this condition is to say that the following polynomial of
degree 4 ∑

1≤i,j≤n

Mi,jx
2
ix

2
j

is globally nonnegative. The cone C of copositive matrices can thus be described as:

C =

{
M ∈ Sn : the polynomial

∑

1≤i,j≤n

Mi,jx
2
ix

2
j is nonnegative

}
.

The k’th order inner approximation of C proposed by Parrilo in [Par00] is defined as:

C[k] =



M ∈ Sn :

(
n∑

i=1

x2
i

)k( ∑

1≤i,j≤n

Mi,jx
2
ix

2
j

)
is a sum of squares



 . (12)

It is clear that for any k we have C[k] ⊆ C and also C[k] ⊆ C[k+1], thus the sequence (C[k])k∈N
forms a sequence of nested inner approximations to the cone of copositive matrices; further-
more it is known via Pólya’s theorem that this sequence converges to the copositive cone,
cf. [Par00]. A crucial property of this hierarchy is that each cone C[k] can be represented
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using linear matrix inequalities, which means that optimizing a linear function over any of
these cones is equivalent to a semidefinite program. Of course, the size of the semidefinite
program gets larger as k gets larger, and the size of the semidefinite program at the k’th
level is

(
n+k+1
k+2

)
. Note however that the semidefinite programs arising from this hierarchy

can usually be simplified so that they can be solved more efficiently, cf. [Par00] and [GP04,
Section 8.1].

An interesting feature concerning this hierarchy is that the approximation of order k = 0
corresponds to

C[0] = N n + Sn
+,

i.e., C[0] is the set of matrices that can be written as the sum of a nonnegative matrix and
a positive semidefinite matrix (this particular approximation was already mentioned in the
introduction).

Using this hierarchy, we can now compute lower bounds to rank+(A) using semidefinite
programming:

Theorem 5. Let A ∈ R
m×n
+ be a nonnegative matrix. For k ∈ N, let ν

[k]
+ (A) be the optimal

value of the following semidefinite programming problem:

ν
[k]
+ (A) = max

{
〈A,W 〉 :

[
I −W

−WT I

]
∈ C[k]

}
(13)

where the cone C[k] is defined in Equation (12). Then we have:

rank+(A) ≥
(
ν
[k]
+ (A)

‖A‖F

)2

. (14)

As k gets larger the quantity (ν
[k]
+ (A)/‖A‖F )2 will converge (from below) to (ν+(A)/‖A‖F )2

(where ν+(A) is defined by the copositive program (1)) and this quantity can be strictly
smaller than rank+(A) as can be seen for instance in Example 6 given later in the paper. In

general, the quantity (ν
[k]
+ (A)/‖A‖F )2 may not converge to rank+(A), however it will always

be a valid lower bound to rank+(A). In summary, we can write for any k ≥ 0:

ν(A) ≤ ν
[0]
+ (A) ≤ ν

[k]
+ (A) ≤ ν+(A) ≤

√
rank+(A)‖A‖F

where ν(A) is the standard nuclear norm of A. The lower bounds (14) are thus always
greater than the lower bound that uses the standard nuclear norm (in fact they can also be
greater than the standard rank lower bound as we show in the examples later).

On the webpage http://www.mit.edu/~hfawzi we provide a MATLAB script to com-

pute the quantity ν
[k]
+ (A) and the associated lower bound on rank+(A) for any nonnegative

matrix A and approximation level k ∈ N. The script uses the software YALMIP and its
Sum-Of-Squares module in order to compute the quantity ν

[k]
+ (A) [Löf04, Löf09]. On a stan-

dard computer, the script allows to compute the lower bound of level k = 0 for matrices up
to size ≈ 50.

Note that another hierarchy of inner approximations of the copositive cone has been pro-
posed by de Klerk and Pasechnik in [KP02]. This hierarchy is based on linear programming

12
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(instead of semidefinite programming) and it leads in general to smaller programs that can
be solved more efficiently. However the convergence of the linear programming hierarchy is
in general much slower than the semidefinite programming hierarchy and one typically needs
to take very large values of k (the hierarchy level) to obtain interesting bounds.

Program size reduction when A is symmetric If the nonnegative matrix A is square
and symmetric, the semidefinite programs that define ν

[k]
+ (A) can be simplified to obtain

smaller optimization problems that are easier to solve. For simplicity, we describe below in
detail the case of k = 0; the extensions to the general case can also be done. When A is
symmetric, the dual program defining ν

[0]
+ (A) is:

minimize
1

2
(trace(X) + trace(Y )) subject to

[
X A
A Y

]
∈ S2n

+ ∩N 2n

where S2n
+ ∩N 2n is the cone of doubly nonnegative matrices. It is not difficult to see that one

can always find an optimal solution of the SDP above where X = Y . Indeed if the matrix
[X A
A Y ] is feasible, then so is the matrix [ Y A

A X ] which also achieves the same objective function
and thus by averaging we get a feasible point with the same matrices on the diagonal and
with the same objective function. Therefore for symmetric A, the quantity ν

[0]
+ (A) is given

by the optimal value of:

minimize trace(X) subject to

[
X A
A X

]
∈ S2n

+ ∩N 2n.

Now using the known fact that (see e.g., [Ber09, Fact 8.11.8])

[
X A
A X

]
� 0 ⇔ X −A � 0 and X + A � 0

we can rewrite the program as:

minimize trace(X) subject to





X − A � 0

X + A � 0

X nonnegative

This new program has two smaller positive semidefinite constraints, each of size n, and
thus can be solved more efficiently than the previous definition which involved one large
positive semidefinite constraint of size 2n. Indeed most current interior-point solvers exploit
block-diagonal structure in semidefinite programs.

One can also perform the corresponding symmetry reduction for the primal program that
defines ν

[0]
+ (A), and this gives:

maximize 〈A,W 〉 subject to





R−W � 0

R +W � 0

I −R nonnegative

(15)
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Observe that the constraint in the program above implies that
[

I −W
−WT I

]
∈ S2n

+ +N 2n since:

[
I −W

−W I

]
=

[
I − R 0

0 I − R

]
+

[
R −W

−W R

]

where in the right-hand side the first matrix is nonnegative and the second one is positive
semidefinite.

3 Examples

In this section we apply our lower bound to some explicit matrices and we compare it to
existing lower bounding techniques.

Example 1. We start with an example where our lower bound exceeds the plain rank lower
bound. Consider the following 4× 4 nonnegative matrix from [CR93]:

A =




1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1




The rank of this matrix is 3 and its nonnegative rank is 4 as was noted in [CR93]. We can

compute the exact value of ν
[0]
+ (A) for this matrix A and we get ν

[0]
+ (A) = 4

√
2 ≈ 5.65. We

thus see that the lower bound is sharp for this matrix:

4 = rank+(A) ≥
(
ν
[0]
+ (A)

‖A‖F

)2

=

(
4
√
2√
8

)2

= 4.

The optimal matrix W in the semidefinite program2 (3) for which ν
[0]
+ (A) = 〈A,W 〉 is given

by:

W =
1√
2




1 1 −1 −1
1 −1 1 −1

−1 1 −1 1
−1 −1 1 1


 =

1√
2
(2A− J) (16)

Observe that the matrix W is obtained from A by replacing the ones with 1√
2
and the zeros

with − 1√
2
. The matrix W is feasible for the semidefinite program (3) and one can check that

we have the following decomposition of

[
I −W

−WT I

]
into a nonnegative part and a positive

semidefinite part:

2Note that the matrix considered in this example is symmetric, and so one could use the reduced semidefi-

nite program (15) to simplify the computation of ν
[0]
+ (A). However for simplicity and for illustration purposes,

we used in this example the original formulation (3).
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


I −W

−WT I




=




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0

0

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




︸ ︷︷ ︸
nonnegative

+




1 0 0 −1
0 1 −1 0
0 −1 1 0

−1 0 0 1

−W

−WT

1 0 0 −1
0 1 −1 0
0 −1 1 0

−1 0 0 1




︸ ︷︷ ︸
positive semidefinite

(17)

Example 2 (Slack matrix of the hypercube). The 4×4 matrix of the previous example is in
fact the slack matrix of the square [0, 1]2 in the plane. Recall that the slack matrix [Yan91]
of a polytope P ⊂ R

n with f facet inequalities bi − aTi x ≥ 0, i = 1, . . . , f and v vertices
x1, . . . , xv ∈ R

n is the f × v matrix S(P ) given by:

S(P )i,j = bi − aTi xj ∀i = 1, . . . , f, j = 1, . . . , v.

The matrix S(P ) is clearly nonnegative since the vertices xj belong to P and satisfy the facet
inequalities. Yannakakis showed in [Yan91] that the nonnegative rank of S(P ) coincides with
the smallest number of linear inequalities needed to represent the polytope3 P . The minimal
number of linear inequalities needed to represent P is also known as the extension complexity
of P ; the theorem of Yannakakis therefore states that rank+(S(P )) is equal to the extension
complexity of P .

The hypercube [0, 1]n in n dimensions has 2n facets and 2n vertices. It is known that the
extension complexity of the hypercube is equal to 2n and this was proved recently in [FKPT13,
Proposition 5.9] using a combinatorial argument (in fact it was shown that any polytope in
R

n that is combinatorially equivalent to the hypercube has extension complexity 2n). Note
that the trivial lower bound obtained from the rank of the slack matrix in this case is n+ 1:
in fact for any full-dimensional polytope P ⊂ R

n, the rank of the slack matrix of P is equal
to n + 1, see e.g., [GRT13, Lemma 3.1], and so the rank lower bound is in general not
interesting in the context of slack matrices of polytopes. Also the lower bound of Goemans
[Goe14] here is log2(2

n) = n which is not tight.
Below we use the lower bound on the nonnegative rank introduced in this paper to give

another proof that the extension complexity of the hypercube in n dimensions is 2n.

Proposition 3. Let Cn = [0, 1]n be the hypercube in n dimensions and let S(Cn) ∈ R
2n×2n

be its slack matrix. Then

rank+(S(Cn)) =

(
ν
[0]
+ (S(Cn))

‖S(Cn)‖F

)2

= 2n.

3Note that the trivial representation of P uses f linear inequalities, where f is the number of facets of
P . However by introducing new variables (i.e., allowing projections) one can sometimes reduce dramatically
the number of inequalities needed to represent P . For example the cross-polytope P = {x ∈ R

n : wTx ≤
1 ∀w ∈ {−1, 1}n} has 2n facets but can be represented using only 2n linear inequalities after introducing n

additional variables: P = {x ∈ R
n : ∃y ∈ R

n y ≥ x, y ≥ −x, 1Ty = 1}.
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Proof. The proof is given in Appendix A.

Example 3 (Matrix with strictly positive entries). Consider the following matrix with
strictly positive entries (ǫ > 0):

Aǫ =




1 + ǫ 1 + ǫ ǫ ǫ
1 + ǫ ǫ 1 + ǫ ǫ
ǫ 1 + ǫ ǫ 1 + ǫ
ǫ ǫ 1 + ǫ 1 + ǫ


 .

The matrix Aǫ is obtained from the matrix of Example 1 by adding a constant ǫ > 0 to each
entry. The matrix Aǫ has appeared before, e.g., in [Gil12, Equation 12] (under a slightly
different form) and corresponds to the slack matrix for the pair of polytopes [−1, 1]2 and
[−1− 2ǫ, 1+ 2ǫ]2. It can be shown in this particular case, since Aǫ is 4× 4 and rankAǫ = 3,
that the nonnegative rank of Aǫ is the smallest r such that there is a polygon P with r vertices
such that [−1, 1]2 ⊂ P ⊂ [−1 − 2ǫ,−1 + 2ǫ]2, cf. [Gil12] for more details.

Since Aǫ is a small perturbation of the matrix A of Example 1 one can use the approach4

of Theorem 3 to get a lower bound on ν
[0]
+ (Aǫ). Let W be the matrix defined in (16). Since

W is feasible for (3) we have ν
[0]
+ (Aǫ) ≥ 〈Aǫ,W 〉. It turns out in this example that the value

of 〈Aǫ,W 〉 does not depend on ǫ and is equal to 4
√
2. This allows to obtain lower bounds on

rank+(Aǫ) without solving any additional optimization problem. For example for ǫ = 0.1 we
get:

rank+(A0.1) ≥
(4
√
2)2

‖A0.1‖2F
≈ 3.2

which shows that rank+(A0.1) = 4.

Example 4 (Comparison with the Boolean rank lower bound). We now show an example

where the lower bound (ν
[0]
+ (A)/‖A‖F )2 is strictly greater than the rectangle covering lower

bound (i.e., Boolean rank lower bound). Consider the 4× 4 matrix

A =




0 1 1 1
1 1 1 1
1 1 0 0
1 1 0 0


 .

Note that the rectangle covering number of A is 2 since support(A) can be covered with the

two rectangles {1, 2} × {2, 3, 4} and {2, 3, 4} × {1, 2}. If we compute the quantity ν
[0]
+ (A)

and the associated lower bound we get rank+(A) ≥ ⌈(ν[0]
+ (A)/‖A‖F )2⌉ = 3 which is strictly

greater than the rectangle covering number. In fact rank+(A) is exactly equal to 3 since we
have the factorization

A =




1 1 0
1 1 1
0 1 1
0 1 1






0 0 1 1
0 1 0 0
1 0 0 0


 .

4Since we are interested in obtaining a lower bound for the specific perturbation Aǫ of A, we can obtain
a better bound than the one of Theorem 3 by normalizing by ‖Aǫ‖2F directly.
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The following simple proposition concerning diagonal matrices will be needed for the next
example:

Proposition 4. If A ∈ R
n×n is a nonnegative diagonal matrix and P is a diagonal matrix

with strictly positive elements on the diagonal, then

ν+(A;P, P ) = 〈A, P 〉 =
n∑

i=1

Ai,iPi,i.

In particular, for P = I we get ν+(A) = trace(A).

Proof. We first show that ν+(A;P, P ) ≤ 〈A, P 〉: Observe that if W is such that

[
P −W

−W P

]

is copositive, then we must haveWi,i ≤ Pi,i for all i ∈ {1, . . . , n} (indeed, take ei to be the i’th
element of the canonical basis of Rn, then by copositivity we must have 2eTi Pei−2eTi Wei ≥ 0
which gives Wi,i ≤ Pi,i). Hence, since A is diagonal we have 〈A,W 〉 ≤ 〈A, P 〉 for all
feasible matrices W and thus ν+(A;P, P ) ≤ 〈A, P 〉. Now if we take W = P , we easily see

that

[
P −W

−W P

]
is copositive, and thus ν+(A, P ;P ) ≥ 〈A, P 〉. Thus we conclude that

ν+(A;P, P ) = 〈A, P 〉.

Example 5 (Matrix rescaling). The well-known lower bound on the rank

rank(A) ≥
(

σ1(A) + · · ·+ σr(A)√
σ1(A)2 + · · ·+ σr(A)2

)2

is sharp when all the singular values of A are equal, but it is loose when the matrix is not
well-conditioned. The same phenomenon is expected to happen also for the lower bound
of Theorem 1 on the nonnegative rank, even if it is not clear how to define the notion of
condition number in the context of nonnegative matrices. If one considers the following
diagonal matrix where β > 0

A =




β 0 . . . 0

0 1
...

...
. . . 0

0 . . . 0 1


 ∈ R

n×n
+ ,

then we have from Proposition 4, ν+(A) = trace(A) = β + n − 1, and thus for the lower
bound we get:

rank+(A) ≥
(
ν+(A)

‖A‖F

)2

=

(
β + n− 1√
β2 + n− 1

)2

.

If β is large and grows with n, say for example β = n, the lower bound on the right-hand
side is ≤ O(1) whereas rank+(A) = n. Note also that the standard rank of A is equal to n.
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To remedy this, one can use the more general lower bound of Theorem 2 with weight
matrices P and Q to obtain a better lower bound, and in fact a sharp one. Indeed, if we let

P = Q =




ǫ 0 . . . 0

0 1
...

...
. . . 0

0 . . . 0 1




then we have ν+(A;P,Q)2 = (n− 1 + βǫ)2 and trace(ATPAQ) = n − 1 + (βǫ)2. Hence for

ǫ = 1/β, the ratio

(
ν+(A;P,Q)√
trace(ATPAQ)

)2

is equal to n which is equal to rank+(A).

Example 6 (Derangement matrix). We now consider another example of a matrix that
is not well-conditioned and where the lower bound of Theorem 1 is loose. Consider the
derangement matrix

Dn =




0 1 . . . 1

1
. . .

. . .
...

...
. . .

. . . 1
1 . . . 1 0




that has zeros on the diagonal and ones everywhere else. Then we have rank+(Dn) =
rank(Dn) = n, but we will show that

(
ν+(Dn)

‖Dn‖F

)2

≤ 4

for all n. Observe that the matrix Dn is not well-conditioned since it has one singular value
equal to n− 1 while the other remaining singular values are all equal to 1.

To show that the lower bound of Theorem 1 is always bounded above by 4, note that the
quantity ν+(Dn) in this case is given by:

ν+(Dn) = max

{∑

i 6=j

Wi,j :

[
I −W

−WT I

]
copositive

}
(18)

Observe that by symmetry, one can restrict the matrix W in the program above to have
the form: 5

W =




a b . . . b

b
. . .

. . .
...

...
. . .

. . . b
b . . . b a


 = bJn + (a− b)In

5Indeed, observe first that if W is feasible for (18) then WT is also feasible and has the same objective
value. Thus by averaging one can assume that W is symmetric. Then note that for any feasible symmetric
W and any permutation σ, the new matrix W ′

i,j = Wσ(i),σ(j) is also feasible and has the same objective
value as W . Hence again by averaging we can assume W to be constant on the diagonal and constant on
the off-diagonal.
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where Jn is the n×n all ones matrix. For W of the form above we have for u and v arbitrary

vectors in R
n, uTWv = (a−b)uTv+b(1Tu)(1Tv) and hence the condition that

[
In −W

−WT In

]

is copositive means that

∀ u, v ∈ R
n
+, (a− b)uTv + b(1Tu)(1Tv) ≤ 1

2
(uTu+ vTv)

Hence the quantity ν+(Dn) can now be written as:

ν+(Dn) = max
a,b∈R

{
(n2 − n)b : ∀u, v ∈ R

n
+, (a− b)uTv + b(1Tu)(1Tv) ≤ 1

2
(uTu+ vTv)

}

Let us call bn the largest b in the problem above, so that ν+(Dn) = (n2 − n)bn. Assuming n
is even let

un = (1, . . . , 1︸ ︷︷ ︸
n/2

, 0, . . . , 0) ∈ R
n
+ and vn = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

n/2

) ∈ R
n
+.

Then we have uT

nvn = 0 and the optimal bn must satisfy bn(1
Tun)(1

Tvn) ≤ 1
2
(uT

nun + vTnvn),

which gives bn
n2

4
≤ n

2
, i.e., bn ≤ 2/n. Hence ν+(Dn) ≤ (n2 − n) · 2/n = 2(n− 1) and

(
ν+(Dn)

‖Dn‖F

)2

≤ 4(n− 1)2

n2 − n
= 4(1− 1/n) ≤ 4.

The case when n is odd can be treated the same way and we also obtain the same upper bound
of 4.

Summary of examples In the examples above we have shown that our lower bounds
(both the exact and the first relaxation) are uncomparable to most existing bounds on the
nonnegative rank:

• Examples 1 and 6 show that the bound can be either larger or smaller than the standard
rank.

• Examples 4 and 5 show that the bound can be either larger or smaller than the rectangle
covering number and the fooling set bound.

The following inequalities are however always satisfied for any nonnegative matrix A:

rank+(A) ≥
(
ν+(A)

‖A‖F

)2

≥
(
ν
[0]
+ (A)

‖A‖F

)2

≥
(
ν(A)

‖A‖F

)2

.
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4 Conclusion

In this paper we have presented new lower bounds on the nonnegative rank that can be
computed using semidefinite programming. Unlike many of the existing bounds, our lower
bounds do not solely depend on the sparsity pattern of the matrix and are applicable to
matrices with strictly positive entries.

An interesting question is to know whether the techniques presented here can be strength-
ened to obtain sharper lower bounds. In particular the results given here rely on the ratio
of the ℓ1 and the ℓ2 norms, however it is known that the ratio of the ℓ1 and the ℓp norms for
1 < p < 2 can yield better lower bounds.

Another question left open in this paper is the issue of scaling. As we saw in Section
2 and in the examples, one can choose scaling matrices P and Q to improve the bound.
It is not clear however how to compute the optimal scaling P and Q that yields the best
lower bound. In recent work [FP14] we extend some of the ideas presented in this paper to
obtain a new lower bound on the nonnegative rank which is invariant under diagonal scaling,
and which also satisfies other interesting properties (e.g., subadditivity, etc.). In fact the
technique we propose in [FP14] applies to a large class of atomic cone ranks and can be used
for example to obtain lower bounds on the cp-rank of completely positive matrices [BSM03].

Finally it is natural to ask whether the ideas presented here can be applied to obtain lower
bounds on the positive semidefinite (psd) rank, a quantity which was introduced recently in
[GPT13b] in the context of positive semidefinite lifts of polytopes. One main difficulty
however is that the psd rank is not an “atomic” rank, unlike the nonnegative rank where
the atoms correspond to nonnegative rank-one matrices. In fact it is this atomic property
of the nonnegative rank which was crucial here to obtain the lower bounds in this paper.

A Proof of Proposition 3: Slack matrix of hypercube

In this appendix we prove Proposition 3 concerning the nonnegative rank of the slack matrix
of the hypercube. We restate the proposition here for convenience:

Proposition. Let Cn = [0, 1]n be the hypercube in n dimensions and let S(Cn) ∈ R
2n×2n be

its slack matrix. Then

rank+(S(Cn)) =

(
ν
[0]
+ (S(Cn))

‖S(Cn)‖F

)2

= 2n.

Proof. The facets of the hypercube Cn = [0, 1]n are given by the linear inequalities {xk ≥
0}, k = 1, . . . , n and {xk ≤ 1}, k = 1, . . . , n, and the vertices of Cn are given by the set
{0, 1}n of binary words of length n. It is easy to see that the slack matrix of the hypercube
is a 0/1 matrix: in fact, for a given facet F and vertex V , the (F, V )’th entry of S(Cn) is
given by:

S(Cn)F,V =

{
1 if V /∈ F

0 if V ∈ F
.
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Since the slack matrix of the hypercube S(Cn) has 2n rows we clearly have

(
ν
[0]
+ (S(Cn))

‖S(Cn)‖F

)2

≤ rank+(S(Cn)) ≤ 2n.

To show that we indeed have equality, we exhibit a particular feasible pointW of the semidef-
inite program (3) and we show that this W satisfies (〈S(Cn),W 〉/‖S(Cn)‖F )2 = 2n.

Let

W =
1√
2n−1

(2S(Cn)− J). (19)

Observe that W is the matrix obtained from S(Cn) by changing the ones into 1√
2n−1

and

zeros into − 1√
2n−1

. For this W we verify using a simple calculation that

(〈S(Cn),W 〉
‖S(Cn)‖F

)2

= 2n.

It thus remains to prove that W is indeed a feasible point of the semidefinite program (3)
and that the matrix [

I −W
−WT I

]
∈ R

(2n+2n)×(2n+2n)

can be written as the sum of a nonnegative matrix and a positive semidefinite one. This is
the main part of the proof and for this we introduce some notations. Let F be the set of
facets of the hypercube, and V = {0, 1}n be the set of vertices. If F ∈ F is a facet of the
hypercube, we denote by F the opposite facet to F (namely, if F is given by xk ≥ 0, then
F is the facet xk ≤ 1 and vice-versa). Similarly for a vertex V ∈ V we denote by V the
opposite vertex obtained by complementing the binary word V . Denote by NF : RF → R

F

and NV : RV → R
V the “negation” maps, so that we have:

∀g ∈ R
F , ∀F ∈ F , (NFg)(F ) = g(F ) (20)

∀h ∈ R
V , ∀V ∈ V, (NVh)(V ) = h(V ) (21)

Note that in a suitable ordering of the facets and the vertices, the matrix representation of
NF and NV take the following antidiagonal form (NF is of size 2n × 2n and NV is of size
2n × 2n): 



0 1
. .
.

. .
.

1 0




Consider now the following decomposition of the matrix

[
I −W

−WT I

]
:

[
I −W

−WT I

]
=

[
NF 0
0 NV

]
+

[
I −NF −W
−WT I −NV

]
(22)

Clearly the first matrix in the decomposition is nonnegative. The next lemma states that
the second matrix is actually positive semidefinite:

21



Lemma 2. Let F and V be respectively the set of facets and vertices of the hypercube Cn =
[0, 1]n and let Ŵ ∈ R

F×V be the matrix:

ŴF,V =

{
1 if V /∈ F

−1 if V ∈ F
∀F ∈ F , V ∈ V

Then the matrix [
I −NF −γŴ

−γŴT I −NV

]
(23)

is positive semidefinite for γ = 1/
√
2n−1 (where NF and NV are defined in (20) and (21)).

Proof. We use the Schur complement to show that the matrix (23) is positive semidefinite.
In fact we show that

1. I −NV � 0

2. range(ŴT) ⊆ range(I −NV), and

3. I −NF − γ2Ŵ (I −NV)
−1ŴT � 0.

where (I −NV)
−1 denotes the pseudo-inverse of I −NV .

Observe that for any k ∈ N, the 2k × 2k matrix given by:

I2k −N2k =




1 −1
. . . . .

.

. .
. . . .

−1 1




is positive semidefinite: in fact one can see that 1
2
(I2k − N2k) is the orthogonal projection

onto the subspace spanned by its columns (i.e., the subspace of dimension k spanned by
{ei − e2k−i : i = 1, . . . , n} where ei is the i’th unit vector). Hence this shows that I − NV
is positive semidefinite, and it also shows that (I −NV)

−1 = 1
4
(I −NV).

Now we show that range(ŴT) ⊆ range(I−NV). For any F ∈ F , the F ’th column of ŴT

satisfies (ŴT)V,F = −(ŴT)V ,F for any V ∈ V, and thus range(ŴT) ⊆ span(eV − eV , : V ∈
V) = range(I −NV).

It thus remains to show that

I −NF − γ2Ŵ (I −NV)
−1ŴT � 0

First note that since 1
2
(I−NV) is an orthogonal projection and that range(ŴT) ⊆ range(I−

NV), we have (I −NV)
−1ŴT = 1

2
ŴT. Thus we now have to show that

I −NF − γ2

2
Ŵ ŴT � 0.
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The main observation here is that the matrix Ŵ ŴT is actually equal to 2n(I − NF). For
any F,G ∈ F , we have:

(ŴŴT)F,G =
∑

a∈V
ŴF,aŴG,a =





2n if F = G

−2n if F = G

0 else

First it is clear that if F = G, then (ŴŴT)F,G = 2n. Also if F = G then (ŴŴT)F,G = −2n

since if F = G then a ∈ F ⇔ a /∈ G hence ŴF,aŴG,a = −1 for all a ∈ V. In the case that

F 6= G and F 6= G, it is easy to verify by simple counting that
∑

a∈V ŴF,aŴG,a = 0.

Hence we have I −NF − γ2Ŵ (I −NV)
−1ŴT = I −NF − γ2

2
ŴŴT = (1− γ2

2
2n)(I −NF)

which is positive semidefinite for γ = 1/
√
2n−1.

Using this lemma, Equation (22) shows that the matrix W is feasible for the semidefinite

program (3), and thus that ν
[0]
+ (S(Cn)) ≥ 〈S(Cn),W 〉 =

√
2n−1 ·2n. Hence since ‖S(Cn)‖F =√

2n−1 · 2n we get that

rank+(S(Cn)) ≥
(
ν
[0]
+ (S(Cn))

‖S(Cn)‖F

)2

≥
(√

2n−1 · 2n√
2n−1 · 2n

)2

= 2n

which completes the proof.
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[Lov90] László Lovász. Communication complexity: A survey. Paths, Flows, and VLSI-
Layout, page 235, 1990. 1, 2

[LS09] Troy Lee and Adi Shraibman. Lower bounds in communication complexity, vol-
ume 3. NOW Publishers Inc, 2009. 1, 2

[Par00] Pablo A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry
Methods in Robustness and Optimization. PhD thesis, California Institute of
Technology, 2000. 3, 11, 12

[Rot14] Thomas Rothvoss. The matching polytope has exponential extension complexity.
In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC ’14, pages 263–272. ACM, 2014. 2

[Vav09] Stephen A. Vavasis. On the complexity of nonnegative matrix factorization.
SIAM Journal on Optimization, 20(3):1364–1377, 2009. 2

[Yan91] Mihalis Yannakakis. Expressing combinatorial optimization problems by linear
programs. Journal of Computer and System Sciences, 43(3):441–466, 1991. 1,
2, 15

[Zha12] S. Zhang. Quantum strategic game theory. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, pages 39–59. ACM, 2012. 2

25


	1 Introduction
	2 The lower bound
	2.1 Proof of the lower bound
	2.2 Lower bound on the approximate nonnegative rank
	2.3 Connection with nuclear norm
	2.4 Approximations and semidefinite programming lower bounds

	3 Examples
	4 Conclusion
	A Proof of Proposition ??: Slack matrix of hypercube

