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Abstract

This paper is devoted to the design of an efficient and convergent semi-proximal alternat-
ing direction method of multipliers (ADMM) for finding a solution of low to medium accuracy
to convex quadratic conic programming and related problems. For this class of problems, the
convergent two block semi-proximal ADMM can be employed to solve their primal form in a
straightforward way. However, it is known that it is more efficient to apply the directly ex-
tended multi-block semi-proximal ADMM, though its convergence is not guaranteed, to the
dual form of these problems. Naturally, one may ask the following question: can one con-
struct a convergent multi-block semi-proximal ADMM that is more efficient than the directly
extended semi-proximal ADMM? Indeed, for linear conic programming with 4-block constraints
this has been shown to be achievable in a recent paper by Sun, Toh and Yang [arXiv preprint
arXiv:1404.5378, (2014)]. Inspired by the aforementioned work and with the convex quadratic
conic programming in mind, we propose a Schur complement based convergent semi-proximal
ADMM for solving convex programming problems, with a coupling linear equality constraint,
whose objective function is the sum of two proper closed convex functions plus an arbitrary
number of convex quadratic or linear functions. Our convergent semi-proximal ADMM is partic-
ularly suitable for solving convex quadratic semidefinite programming (QSDP) with constraints
consisting of linear equalities, a positive semidefinite cone and a simple convex polyhedral set.
The efficiency of our proposed algorithm is demonstrated by numerical experiments on various
examples including QSDP.

Keywords: Convex quadratic conic programming, multiple-block ADMM, semi-proximal
ADMM, convergence, QSDP.

1 Introduction

In this paper, we aim to design an efficient yet simple first order convergent method for solving
convex quadratic conic programming. An important special case is the following convex quadratic
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semidefinite programming (QSDP)

min (X, 9X) + (C, X)

1
st. AgX =bg, A X >b;, X GS?_QK, ( )

where S is the cone of n X n symmetric and positive semi-definite matrices in the space of n x n
symmetric matrices S" endowed with the standard trace inner product (-, -) and the Frobenius
norm || - ||, Q is a self-adjoint positive semidefinite linear operator from 8" to S", Ag : 8™ — R™~
and A7 : 8™ — R™ are two linear maps, C' € S™, bp € R™E and by € R™ are given data, K is a
nonempty simple closed convex set, e.g., K ={W € §": L <W < U} with L,U € 8™ being given
matrices. By introducing a slack variable W € 8™, we can equivalently recast as

min (X, QX) + (C, X) + dc(W)

2
st. ApX =bp, A;X>b;, X=W, Xed&, ®

where dx(+) is the indicator function of I, i.e., dxc(X) = 0if X € K and 0x(X) = 0o if X ¢ K. The
dual of problem is given by
max  —8x(=Z) + (b1, yr) — 5(X, QX) + (bp, yr)

3
st. Z+Ajyr—QX+S+Apye=C, yr>0, Ses&t, )

where for any Z € 8", §i.(—Z2) is given by

Ox(=2) = — inf (Z, W) = VSV%I;J—Z, w). (4)

It is evident that the dual problem is in the form of the following convex optimization
model:

min f(u) + 320 0i(yi) + g(v) + 325 v5(2) -
st Fru+ 00 Afyi +Go+ 300 Bz =c, 5)

where p and ¢ are given nonnegative integers, f : U — (—o0,+oc], g : V — (—o0,+o<], 0; : Vi —
(—o0,+00],i=1,...,p,and ; : Z; = (—o00,+00], j =1,...,q are closed proper convex functions,
F:X—=UG: X =V A :X=),i=1,....,pand B; : X = Z;, j =1,...,q are linear maps,
U,V Ji,...,¥Vp, 21,...,24 and X are all real finite dimensional Euclidean spaces each equipped
with an inner product (-, -) and its induced norm || - ||.

In this paper, we make the following blanket assumption.

Assumption 1.1 For i = 1,...,p and j = 1,...,q, each 0;(-) and ¢;(-) are convex quadratic
functions.

Note that, in general, problem does not satisfy Assumption unless y; is vacuous from
the model or KL = S™. However, one can always reformulate problem equivalently as

min - (05(=2) + dgmr () = (br, y1) + 5(X, QX) +ds7.(S) — (be, yi)
st. Z+ Ay — QX+ S+ Apyp =C, (6)
D*u — D*yr =0,



where D : ™ — R™I is any given nonsingular linear operator and dgym; (+) is the indicator function
over R, Now, one can see that problem @ satisfies Assumption

There are many other important cases that take the form of model satisfying Assumption
One prominent example comes from the matrix completion with fixed basis coefficients [15],
14], 20]. Indeed the nuclear semi-norm penalized least squares model in [I4] can be written as

min  3llApX —d|* + p(| X[l — (C, X))

XeRmxn (7)
s.t. ApX =bg, X eK:={X||RaX| < a},
where || X || is the nuclear norm of X defined as the sum of all its singular values, || - || is the
elementwise loo norm defined by || X||oc := maxj—i, . m{maxj_i _n|X;l|}, Ar : R — R"F

and Ap : R™*"™ — R™E are two linear maps, p and « are two given positive parameters, d € R"F
C € R™*™ and by € R"E are given data, Q C {1,...,m}x{1,...,n} is the set of the indices relative
to which the basis coefficients are not fixed, Rq : %" — R is the linear map such that RoX :=
(Xij)ijen- Note that when there are no fixed basis coefficients (i.e., @ = {1,...,m} x{1,...,n} and
Ap are vacuous), the above problem reduces to the model considered by Negahban and Wainwright
in [16] and Klopp in [12]. By introducing slack variables n, R and W, we can reformulate problem

as
min 3 [[n9* + p(|[Rlls = (C, X)) + dxc(W) ®)
st. ApX —-d=mn, Agr=bg, X=R, X=W.

The dual of problem takes the form of

max  —05(=Z) = 5[€1?* + (d, &) + (bp, yp) )
st Z+ ARl + S+ Apyp = —pC,  |[S]l2 < p,

where ||S||2 is the operator norm of S, which is defined to be its largest singular value.
Another compelling example is the so called robust PCA (principle component analysis) con-
sidered in [19]:

. A2
min [|Al« + M [|Ell1 + ?HZH%

(10)
st. A+E+Z=W, AE,ZeRmn,

where W € R™*" is the observed data matrix, || - ||; is the elementwise Iy norm given by || E|; :=

>ty 201 [Eijl, [+ lp is the Frobenius norm, Ay and Az are two positive parameters. There are

many different variants to the robust PCA model. For example, one may consider the following
model where the observed data matrix W is incomplete:

. A2
min  [[Al[« + M[|E[} + ?HPQ(Z)”%“
st. Po(A+E+2Z)=Po(W), AE,ZecRm™",

(11)

i.e. one assumes that only a subset Q@ C {1,...,m} x{1,...,n} of the entries of W can be observed.
Here Pq : R™*™ — R™*™ is the orthogonal projection operator defined by

Po(X) :{ X if (i,5) € Q, 12)

0 otherwise.



Again, problem satisfies Assumption In [I8], Tao and Yuan tested one of the equivalent
forms of problem . In the numerical section, we will see other interesting examples.

For notational convenience, let V = Y X Yox,..., ), Z = Z1 X ZoX,...,2Z,. We write
Y= (y1,92,-..,Yp) € Y and z = (21,22,...,2¢) € Z. Define the linear map A : X — ) such that
its adjoint is given by

p
A*y = ZAZ‘yZ Yy e V.
i=1

Similarly, we define the linear map B : X — Z such that its adjoint is given by

q
Bz = Zszj Vz e Z.

Jj=1

Additionally, let O(y) := Y2 1 0:(yi), y € Y and p(z) := 2321 ©;(2j), z € Z. Now we can rewrite
in the following compact form:

min  f(u) +0(y) + g(v) + ¢(2) .
st. Frut+ A'y+Gv+Bz2=c (13)

Problem can be view as a special case of the following block-separable convex optimization
problem:

min {Z:L:l@(wl) | ijlﬂfwi = c} , (14)

where for each i € {1,...,n}, W; is a finite dimensional real Euclidean space equipped with an
inner product (-, -) and its induced norm | - ||, ¢; : Wi — (—o0,+0o0] is a closed proper convex
function, H; : X — W, is a linear map and ¢ € X is given. Note that when we rewrite problem
in terms of , the quadratic structure in is hidden in the sense that each ¢; will be treated
equally. However, this special quadratic structure will be thoroughly exploited in our search for an
efficient yet simple ADMM-type method with guaranteed convergence.

Let o > 0 be a given parameter. The augmented Lagrangian function for is defined by

n n " o n ”
Lo(wy, ... wp;x) = Zi:1¢i<wi) + (z, Zizl”ﬂi w; —¢) + §\|Zi:17{i w; — c|?

for w; € Wi, i = 1,...,n and # € X. Choose any initial points w? € dom(¢;), i = 1,...,q and
2% € X. The classical augmented Lagrangian method consists of the following iterations:

E+1
nl) o=

(w’f“,...,w = argmin Ea(wl,...,wn;:ﬂk), (15)

k k gk kL
22t = 1o (Zileiwi+ —c), (16)

where 7 € (0,2) guarantees the convergence. Due to the non-separability of the quadratic penalty
term in L, it is generally a challenging task to solve the joint minimization problem exactly
or approximately with high accuracy. To overcome this difficulty, one may consider the following
n-block alternating direction methods of multipliers (ADMM):



Wit = argmin £, (wy,wh ... wk; ),

k+1 : k+1 k+1 k k., .k
w, = argmin Lo(wy ", ... w0, Wi, Wiy, ..., Wi x"),
(17)
k+1 : k+1 k+1 .ok
w,, = argmin L,(w]" ..., w0, |, Wn;T"),

n
= mk+7'a<§ 'l’wafH—c).
1=

The above n-block ADMM is an direct extension of the ADMM for solving the following 2-block
convex optimization problem

min {qﬁl(wl) + (252(202) ‘ /HTUH + H§w2 = C} . (18)

The convergence of 2-block ADMM has already been extensively studied in [8, 6] [7, 4] 5 2] and
references therein. However, the convergence of the n-block ADMM has been ambiguous for a long
time. Fortunately this ambiguity has been addressed very recently in [I] where Chen, He, Ye, and
Yuan showed that the direct extension of the ADMM to the case of a 3-block convex optimization
problem is not necessarily convergent. On the other hand, the n-block ADMM with 7 > 1 often
works very well in practice and this fact poses a big challenge if one attempts to develop new ADMM-
type algorithms which have convergence guarantee but with competitive numerical efficiency and
iteration simplicity as the n-block ADMM.

Recently, there is exciting progress in this active research area. Sun, Toh and Yang [I7]
proposed a convergent semi-proximal ADMM (PADMM3c) for convex programming problems of
three separable blocks in the objective function with the third part being linear. One distinctive
feature of algorithm PADMMS3c is that it requires only an inexpensive extra step, compared to the
3-block ADMM, but yields a convergent and faster algorithm. Extensive numerical tests on the
doubly non-negative SDP problems with equality and/or inequality constraints demonstrate that
PADMM3c can have superior numerical efficiency over the directly extended ADMM. This opens up
the possibility of designing an efficient and convergent ADMM type method for solving multi-block
convex optimization problems. Inspired by the aforementioned work, in this paper we shall propose
a Schur complement based semi-proximal ADMM (SCB-SPADMM) to efficiently solve the convex
quadratic conic programming problems to medium accuracy. The development of our algorithm
is based on the simple yet elegant idea of the Schur complement and the convenient convergence
results of the semi-proximal ADMM given in the appendix of [3]. Our primary motivation for
designing the proposed SCB-SPADMM is to generate a good initial point quickly to warm-start
locally fast convergent method such as the semismooth Newton-CG method used in [22] 21] for
solving linear SDP though the method proposed here is definitely of its own interest.

The remaining parts of this paper are organized as follows. In the next section, we present
a Schur complement based semi-proximal augmented Lagrangian method (SCB-SPALM) to solve
a 2-block convex optimization problem where the second function ¢ is quadratic and then show
the relation between our SCB-SPALM and the generic 2-block semi-proximal ADMM (SPADMM).



In section 3, we propose our main algorithm SCB-SPADMM for solving the general convex model
. Our main convergence results are presented in this section. Section 4 is devoted to the
implementation and numerical experiments of using our SCB-SPADMM to solve convex quadratic
conic programming problems and the various extensions. We conclude our paper in the final section.

Notation. Define the spectral (or operator) norm of a given linear operator 7 by || 7| :=
SUp| =1 || Tw]|. For any w € U, we let

1
Proxy(w) := argmin,, f(u) + §Hu —w|?.

2 A Schur complement based semi-proximal augmented Lagrangian
method

Before we introduce our approach for the multi-block case, we need to consider the convex opti-
mization problem with the following 2-block separable structure

min  f(u) +g(v)

s.t. Ffu+Grv = c, (19)

where f: U — (—o0,+0o0] and g : V — (—o0, +00] are closed proper convex functions, F : X — U
and G : X — V are given linear maps. The dual of problem is given by

min {(c, x) + f*(s) + g*(t) | Fr +s=0, Ge +t=0}. (20)
Let o > 0 be given. The augmented Lagrangian function associated with is given as follows:
Lo(u,v;2) = f(u)+gv)+ (z, Ffut+Gv—c)+ %H]:*u + G*v — | (21)

The semi-proximal ADMM proposed in [3], when applied to (19)), has the following template.
Since the proximal terms added here are allowed to be positive semidefinite, the corresponding
method is referred to as semi-proximal ADMM instead of proximal ADMM as in [3].

Algorithm SPADMM: A generic 2-block semi-proximal ADMM for solving .

Let 0 > 0 and 7 € (0,00) be given parameters. Let 7; and 7, be given self-adjoint positive
semidefinite, not necessarily positive definite, linear operators defined on U and V), respectively.
Choose (u”,1°,2°) € dom(f) x dom(g) x X. For k = 0, 1,2, ..., perform the kth iteration as follows:

Step 1. Compute

Wkt — argmin,, L, (u, o ﬂfk) + %HU - Uk”%'f (22)

Step 2. Compute
VF 1 = argmin, Lo (uFtL, v; 2b) + %H” — U’f||279. (23)

Step 3. Compute
P = 2 o (Fruf 4 groR ), (24)




In the above 2-block semi-proximal ADMM for solving , the presence of 7y and 7, can help
to guarantee the existence of solutions for the subproblems (22 and . In addition, they play
important roles in ensuring the boundedness of the two generated sequences {y**'} and {zF*1}.
Hence, these two proximal terms are preferred. The choices of Ty and 7, are very much problem
dependent. The general principle is that both 7y and 7, should be as small as possible while Ykl
and zFt1 are still relatively easy to compute.

Let df and O0g be the subdifferential mappings of f and g, respectively. Since both df and dg
are maximally monotone, there exist two self-adjoint and positive semidefinite operators X and
3, such that for all u, % € dom(f), £ € df(u), and £ € Of (),

(€ =&u—a)> |lu—als, (25)
and for all v,o € dom(g), ¢ € dg(v), and Ce 0g(0),
C=Cv=1) > |lv 173, (26)

For the convergence of the 2-block semi-proximal ADMM, we need the following assumption.
Assumption 2.1 There exists (i, 0) € ri(dom f x dom g) such that F*i + G*0 = c.

Theorem 2.1 Let Xy and X, be the self-adjoint and positive semidefinite operators defined by
and (20), respectively. Suppose that the solution set of problem is nonempty and that
Assumption holds. Assume that T; and T, are chosen such that the sequence {(u®,v*, z*)}
generated by Algorithm SPADMM is well defined. Then, under the condition either (a) T € (0, (1+
V5)/2) or (b) 7 > (1+5)/2 but 3572, (167 (5! — oF)|]2 + 771 [ Fruft + Gl — ¢f?) < oo,
the following results hold:

(1) If (u™®,v>, 2>) is an accumulation point of {(u*,v¥, 2*)}, then (u™,v>) solves problem
and x> solves , respectively.
(ii) If both a_lzf + Ty + FF* and 0_129 + Ty + GG* are positive definite, then the sequence

{(uF, ¥, %)}, which is automatically well defined, converges to a unique limit, say, (u™,v>°, x°°)

with (u™,v>°) solving problem and x> solving , respectively.

(iii) When the u-part disappears, the corresponding results in parts (i)—(ii) hold under the condition
either 7 € (0,2) or 7 > 2 but Y oo [|G** ! — ¢|? < .

Remark 2.1 The conclusions of Theoremfollow essentially from the results given in [3, The-
orem B.1]. See [17] for more detailed discussions.

Next, we shall pay particular attention to the case when g is a quadratic function:

1
g(v) = §<U, Zg”) - <ba ’U>, v € Vv (27)
where ¥, a self-adjoint positive semidefinite linear operator defined on V and b € V is a given
vector. Problem now takes the form of
min  f(u) + 2 (v, Sgv) — (b, v)



The dual of problem is given by
min {(c, x) + f*(s) + g*(t) | Fr +s=0, Gz +t =0}. (29)

In order to solve subproblem in Algorithm SPADMM, we need to solve a linear system with
the linear operator given by 0_1Eg + GG*. Hence, an appropriate proximal term should be chosen
such that can be solved efficiently. Here, we choose 7, as follows. Let & : V — V be a
self-adjoint positive definite linear operator such that it is a majorization of U‘lEg + Gg*, ie.,

&y = 0_129 + Gg*.
We choose &, such that its inverse can be computed at a moderate cost. Define
Ty =€ —0 '8, — GG" = 0. (30)

Note that for numerical efficiency, we need the self-adjoint positive semidefinite linear operator 7,
to be as small as possible. In order to fully exploit the structure of the quadratic function g, we
add, instead of a naive proximal term, a proximal term based on the Schur complement as follows.
For a given Ty = 0, we define the self-adjoint positive semidefinite linear operator

Tp =Ty + FG*ETGF*, (31)

For later developments, here we state a proposition which uses the Schur complement condition
for establishing the positive definiteness of a linear operator.

Proposition 2.1 It holds that

([ F FN\° o (% T; .
W.—(g><g>+o < Eg>+< 7;]>>-0<:}]:]:+0 Xp+Tr = 0.

Proof. We have that

wo— <]:]:*+J_1Ef+7\} FG* )
F*g g™ + 0718, + 7,

Since &, = GG* + 0_129 + T4 = 0, by the Schur complement condition for ensuring the positive
definiteness of linear operators, we have W = 0 if and only if

FF* 40718, + 7} — FG*€ 19.7-"* > 0.
By , we know that the conclusion of this proposition holds. 0

Now, we can propose our Schur complement based semi-proximal augmented _Lagrangian
method (SCB-SPALM) to solve with a specially chosen proximal term involving 7} and 7.



Algorithm SCB-SPALM: A Schur complement based semi-proximal augmented La-
grangian method for solving .

Let 0 > 0 and 7 € (0,00) be given parameters. Choose (u?,v%, z") € dom(f) x V x X. For
k=0,1,2,..., perform the kth iteration as follows:

Step 1. Compute

. o o
(1, 0F1) = argaming,, £ (u,02%) + Tl — w2, + Do — o3 (32)

Step 2. Compute
R = 2k 4 Ta(f*ukH + Gt — c). (33)

Note that problem in Step 1 is well defined if the the linear operator W defined in Propo-
sition is positive definite, or equivalently, if FF* + o~ 1% ¢+ T; = 0. Also, note that in the
context of the convex optimization problem , Assumption is reduced to the following:

Assumption 2.2 There exists (4, 0) € ri(dom f) x V such that F*u + G*0 = c.
Now, we are ready to establish our convergence results for Algorithm SCB-SPALM for solving .

Theorem 2 2 Let Xy, ¥4 and Ty be three self-adjoint and positive semz’deﬁnite operators defined
by (29 (.) and, respectwely Suppose that the solution set of problem (28]) is nonempty and

that Assumptzon A holds. Assume that Ty is chosen such that the sequence {(u”, vk x*)} generated
by Algorithm SCB-SPALM is well defined. Then, under the condition either (a) T € (0,2) or (b)
7> 2 but Y oo |IFubtt 4+ GFobt — ¢||? < oo, the following results hold:
(1) If (u, v, ) is an accumulation point of {(u¥,v¥, z*)}, then (u®,v>) solves problem
and x*° solves , respectively.
(i) If 0718 + T + FF* is positive definite, then the sequence {(uF,v* 2*)}, which is auto-

matically well defined, converges to a unique limit, say, (u™,v>° x>) with (u*>,v>) solving

problem and x> solving , respectively.

Proof. By combining Theorem and Proposition one can prove the results of this theorem
directly. 0

The relationship between Algorithm SCB-SPALM and Algorithm SPADMM for solving
will be revealed in the next proposition.
Let 64 : U x V x X — U be an auxiliary linear function associated with defined by

dg(u,v,2) = Fg*ggl(b — Gz — X+ 0G(c— F'u—Gv)). (34)
LetucelU,veV,ze X and c € X be given. Denote
¢i=c—Fu—G'v and & = 0y(t,0,2) =FGE, " (b—GT — Sgv + 0Ge).
Let (ut,v") € U x V be defined by

. _ o _ g _
(u™,v") = argmin, , Lo(u,v;T) + §Hu - u||2,ff + §||v — v||%—q (35)




Proposition 2.2 Let & := o 'b+ T,o + G(c — 0 'Z). Define v’ €V by

. _ _ g _ —1/- * —
v/ = argmin, L, (u,v;T) + §Hv - vH%-g =¢, Ya —gF*a). (36)
The optimal solution (u™,v") to problem is generated exactly by the following procedure
ut = argmin, L, (u,7;Z) + (5g, u) + Fl|u — a||27f, (37)
vt = argmin, Lo(ut,v;Z) + §[jv — z‘;ngg = & (a—GFuh).
Furthermore, (u™,v™) can also be obtained by the following equivalent procedure
ut = argmin, Lo(u,v;Z) + §lu— 11||2rf,
38
vt = argmin, L,(ut,v;Z) + §[jv — Q_JH% = & (a—gFrut). (38)
Proof. First we show that the equivalence between and . Define
Lo(u,0;%) i= Lo(u,v;T) + %Hu —all% + %Hv —olZ. (uv) €U X V.
By simple algebraic manipulations, we have that
~ 1
Lo(u,v;®) = f(u) + 5 Ju = all3 +o(u.v) - 5|2l (39)

where

o g * * -1~ 2 g =12

Buw) = 9@)+ 2NFut Gt o w el + 2ol

_ o & 9 .F* =~ JT_'* —1= 2 =112

= 3 (v, Egu) +2(v, GFu—a) + [ Fru+ oz —c||” + [[v]|7,
with & as defined in the proposition. For any given u € U, let

v(u) = argmin, ¢y, ¢(u,v) = Eg_l(d — GFu).

Then by using the fact that min, 3 (v, &) + (¢, v) = —1(q, Eg_lq> for any ¢ € V, we have that

o(uv(w) = Z( = (GF u=a, &1 (GF u=a) + | Futo 'z —c|* + o]}, )

o
= 2 ((w (FF = FG & GF u) +2(u, F(G & a+ 07" 5 = 0)) ) + ko,
where ko = $(|lo™'z — ¢||* + H@H% - Héz”?g_l). Let
w1 = ko + 2 |GF all: — i||if|!2 = —(e, @) + 2 (el + IGFall2 . + 193, — lla]2).
2 &' 20 ’ 2 & Ta £
From , we have that for any given u € U,

~ 1
Lol o(u);®) = fu)+ Zllu =l + ZIGF (u =031 + 0w, v(w) — 5|7

= f(u)+ gHu — fELngf +olu, FIGE \a+ o' —c) — FGES GF ) + g(u, FF u) + K1
= fl) + Sl —allF, + (u, 3,) + (u, F(@+0(G"0 = 0))) + 2w, FFu) + 51

10



where ry = k1 — g(0) — §[|G*0 — ¢||* — (Z, G*0 — ¢). Note that with some manipulations, we can
show that the constant term

g 12 g _ —n2
w2 = ZIGF a2 - Z1E,0 —alZ 1.
Now, we have that

uer%lev Lo(u,v;T) = min (glelg Lo (u,v; :Z“)) = min Lo (u,v(u); T),

where L, (u,v(u); Z) satisfies ([0). From here, the equivalence between and follows.
Next, we prove the equivalence between and . Note that, the first minimization
problem in can be equivalently recast as

0€df(u")+Fz+oF(F'ut +G% —c)+ 0T (u" —a),

which, together with the definition of v" given in , is equivalent to

0€df(uh)+ Fr+oF(Fut —c+G'&;(a—GF*u) + oTs(u™ — ). (41)
The condition can be reformulated as

0€df(ut)+ Fr+ oF(Fum + G0 —c)+oFGE; (a—GF u—Eg) + oTp(uh — u).
Thus, we have
0€0f(u")+Fz+oF(F'ut +G0—c)+ g+ oTp(u’ —u), (42)

which can equivalently be rewritten as

ut

. o < g _
= argmiin,, £, 0;2) + (3, ) + 7l — a3,
The equivalence between and then follows. This completes the proof of this proposition.
0

Proposition 2.3 Let 5’; = 5g(uk,vk,a:k) for k=0,1,2,.... We have that uF*' and v**1 obtained
by Algorithm SCB-SPALM for solving can be generated exactly according to the following
procedure:

uFtl = argmin, L, (u,v¥; %) + <6§, u) + F||u — ukHQTf,
VT = argming £,(ut0i2b) + Fo - o (43)
ol = gk o ro(Fruktl 4 gl — ).

Proof. The conclusion follows directly from in Proposition 0

11



Remark 2.2 (i) Note that comparing to (@ in Algorithm SPADMM, the first subproblem of
has an extra linear term (65, ). It is this linear term that allows us to design a convergent
SPADMM for solving multi-block convex optimization problems.

(ii) The linear term (55, ) will vanish if ¥4 = 0, & = GG* > 0 and a proper starting point
(u®, 0%, 20) is chosen. Specifically, if we choose x° € X such that Gx° = b and (u°,v°) € dom(f)xV
such that 10 = Eglg(c — F*u0), then it holds that GzF = b and vF = 5;1g(c — F*u®), which imply
that 6% = 0.

(iii) Observe that when Ty and T4 are chosen to be 0 in , apart from the range of T, our
Algorithm SCB-SPALM differs from the classical 2-block ADMM for solving problem only in
the linear term <5§, ). This shows that the classical 2-block ADMM for solving problem has
an unremovable deviation from the augmented Lagrangian method. This may explain why even
when ADMM type methods suffer from slow local convergence, the latter can still enjoy fast local
convergence.

In the following, we compare our Schur complement based proximal term § [lu — u” H%_ +Zllv—
f

vk ngg used to derive the scheme (43)) for solving (28)) with the following proximal term which allows

one to update u and v simultaneously:

g ko k\ 2 k|2 k2 : _ Dy  —FG*
5 I, v) = (0, v + llu = w¥ll7; + Jlo = o%7)  with M = < GF D, > =0, (44)

where D1 : U — U and Dy : V — V are two self-adjoint positive semidefinite linear operators
satisfying
D1 = V(FG*)(FG*)* and Dy = \/(GF*)(GF*)*.

A common naive choice will be D1 = ApaxZ1 and Dy = ApaxZe where Apax = || FG* ||, Z1 : U — U
and Zo : V — V are identity maps. Simple calculations show that the resulting semi-proximal
augmented Lagrangian method generates (uf*!, v*+1 2F+1) as follows:

M = argmin, Lo(u,0F;2F) + 3 u — ukH%ﬁTf,
Pl = argming, L, (uF, v;2®) + Zllv — Uk”QD2+Tg> (45)
ol = 2k o ro(FrukFt 4 gkt — o).

To ensure that the subproblems in are well defined, we may require the following sufficient
conditions to hold:

o+ T+ FF +D1 =0 and o 'S, + T, +GG* + Dy = 0.
Comparing the proximal terms used in and , we can easily see that the difference is:

lu — w vs. [(u,0) = (¥, v") 34

k”2
FG €5 1GF*
To simplify the comparison, we assume that

D1 = (FG*)(FG*)* and Dy =+/(GF*)(GF*)*.
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By rescaling the equality constraint in if necessary, we may also assume that | F| = 1. Now,
we have that

FGES\GF X FF*

and
k k k
HU—’LL ||_27:g*g;1g]:* < HU—U ||.27-'_7:* < HU—U ||2

In contrast, we have

1w, v) = (W oM R < 2 (le = w3, + [lv —v*]13,)

IN

217G (lu — u*]* + [lv — o*1?)

IN

2061 (Il — u®|* + o = ") ,

which is larger than the former upper bound ||u — u*||? if ||G|| > 1/2. Thus we can conclude safely
that the proximal term Hu—ukHi_g*gg_lg]__* can be potentially much smaller than [|(u, v)—(u*,v*)[]3,
unless ||G|| is very small.

The above mentioned upper bounds difference is of course due to the fact that the SCB semi-
proximal augmented Lagrangian method takes advantage of the fact that ¢ is assumed to be a
convex quadratic function. However, the key difference lies in the fact that is a splitting
version of the semi-proximal augmented Lagrangian method with a Jacobi type decomposition,
whereas Algorithm SCB-SPALM is a splitting version of semi-proximal augmented Lagrangian
method with a Gauss-Seidel type decomposition. It is this fact that provides us with the key idea
to design Schur complement based proximal terms for multi-block convex optimization problems
in the next section.

3 A Schur complement based semi-proximal ADMM

In this section, we focus on the problem

min  f(u) + >0 0i(yi) + 9(v) + X0 9i(z)

46
st Fru4+ Yt Aty +Gv+ Z?:l Bizj=c (46)

with all 6; and ¢; being assumed to be convex quadratic functions:

1 ) 1 .

where P; and Q; are given self-adjoint positive semidefinite linear operators. The dual of is
given by

p q

max { — (¢, z) = f*(=Fx) = Y_0; (~Aix) — g"(~Gz) = Y ¢} (~Bjx)}, (47)

=1 j=1
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which can equivalently be written as

min (¢, 7) + f*(s) + 22051 07 (ri) + 97 (1) + 225 ¢ (w))
st. Fr+s=0, Ax+r; =0, i=1,...,p, (48)
Gr+t=0, Bjz+w; =0, j=1,...,q

Fori=1,...,p, let &, be a self-adjoint positive definite linear operator on ); such that it is a
majorization of o~1P; + A;AZ, ie.,

592. >~ 0'71732' + .AZ.A:
We choose &y, in a way that its inverse can be computed at a moderate cost. Define
To, :=Ep, —0 Py — LA =0, i=1,...,p. (49)

Note that for numerical efficiency, we need the self-adjoint positive semidefinite linear operator 7y,
to be as small as possible for each i. Similarly, for j = 1,...,q, let £,, be a self-adjoint positive
definite linear operator on Z; that majorizes a‘le + BjB;f in a way that 5;]_1 can be computed
relatively easily. Denote

T, =

J

Ep,

J

—0'Q;—BiB; =0, j=1,...,q (50)

Again, we need the self-adjoint positive semidefinite linear operator 7, to be as small as possible
for each j.
For notational convenience, we define

Y<i = (y17y2)~ . '7yi)) Y>q = (yiuyi+17"‘ 7yp)7 1= 07' 7P+ 1

with the convention that yo = yp+1 = y<o = y>p+1 = 0. For i = 1,...,p, define the linear operator
Agi X = y by

.All‘
Aoz
) = Az = A1z x Az ... x Az Vo e X
Az
In a similar manner, we can define z<;, 2>; for j = 0,...,¢ + 1 and define the linear operator B<;

for j=1,...,q. Note that by definition, we have y = y<,,, 2 = 2<4, A = A<, and B = B<,.
Define the affine function I' : U x Y x V x Z — X by

Du,y,v,2) = Fu+ A'y+Gv+B2—c YV(u,y,v,2) EU XY XV X Z. (51)
Let o > 0 be given. The augmented Lagrangian function associated with is given as follows:
Lo(u,y, v, 250) = f(u) +0(y) + g(v) + o(2) + (2, T(u, y, v, 2)) + %HT(% Y. v, 2)|I? (52)
where (y) = Y 6:(y:) and (2) = 0, 5(2)).

14



Now we are ready to present our SCB-SPADMM (Schur complement based semi-proximal
alternating direction method of multipliers) algorithm for solving .

Algorithm SCB-SPADMM: A Schur complement based SPADMM for solving .
Let 0 > 0 and 7 € (0,00) be given parameters. Let 7; and 7, be given self-adjoint positive
semidefinite operators defined on I and V respectively. Choose (u®, 4%, v°, 20, 20) € dom(f) x Y x
dom(g) x Z x X. For k = 0,1,2,..., generate (u*+1 yF1 oF+1 2k+1) and 2+ according to the
following iteration.

Step 1. Compute for ¢ =p,..., 1,

_ . _ g
g = argminy, Lo(u", (1,9 78500, 0" 25 2%) + Sy — 7117, (53)

where Ty, is defined as in . Then compute

k+1

uPT = argmin, Lo (u, 7", 0%, 2% %) + gHu - ung—f (54)

Step 2. Compute for i =1,...,p,

) _ o
yZ(chl = argmin,, Eg(uk+17( 1;417_11’y2., ygi+1),vk7 Pt xk) + §HyZ — ny%l (55)

Step 3. Compute for j =g¢,..., 1,

(Uk+1, k+1 )k

— . _ g
Zj = argmin,. Ly Yy y U ’(Zgj—la 23 Zéj—&-l);l‘k) + §||Zj - ZJI?H'%:(,ja (56)

where 7, is defined as in . Then compute

oFT = argmin, Lo (w1 yF 0, 2 M) + %Hv - vk”%'g (57)
Step 4. Compute for j =1,...,q,
A = argmin, Lo (w0 G 2 iat) + e — I (59)
Step 5. Compute
P = 2F ro(Frul L 4 ARy 4 GrRtl  BEAL ), (59)

In order to prove the convergence of Algorithm SCB-SPADMM for solving , we need first
to study the relationship between SCB-SPADMM and the generic 2-block semi-proximal ADMM
for solving a two-block convex optimization problem discussed in the previous section.

Define for I =1, ..., p,

filuw) = fw),  frn(u,y<) = flu) + X0 0:(y) ¥ (w,y<) €U x Ve (60)
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where YV<; = Y1 x Vo x ... x Y. Similarly, for [ =1,...,q, define Z<; = Z; X Z5 x ... x 2, and

g1(v) = g(v), g1V, z<1) = gv) + X 0i(z) V(v,22) €V x 24 (61)
Denote Aj = Ff = F* and Bj = Gf = G*. Let
= <_7—“*7 ;,...,A;‘), i=1,....p . = <g*7 T,...,Bj), i=1,....q
Define the following self-adjoint linear operators: 7\}1 =T+ F1AE, YA F
Tp, = Tris F &, L A Fy | =2 62
fi.— 7(,9 + 7 i@i 1Y 7 1= 7"'7p ( )
i—1
and 7y, == T, + G1B{E,  B1G1,
Ty = ﬁj* + GBIESIBG: =2 (63)
95 7;]-_1 1%~ ©j 179 j_ P )q
Let (v,z,Z,¢) € V x Z x X x X be given. Denote
¢=c—Gv-—B% and ¥ = —TI(a,7,0,2)
Define
Bpi = A1 A&y by — AT — Py + 0 A7), j=1,...,p (64)
and fori=p—1,...,1,
P
Bij = A1 ATE" <bi — ) Brisr — AT — Pigi + U«%V) o J=1..0 (65)
k=i+1

Let
(66)

P
8o ==Y Bi1-
i=1
We will show later in Proposition that dg is the auxiliary linear term associated with problem

. Recall that
o
Lo(u,y,0,22) = fu) +0(y) + 9(v) + ¢(2) + (2, [(w,9,9,2)) + S[IT(w, 9,9, 2)|.

Fori=p,...,1, let y; € J; be defined by

. _ o g _
argming, Lo (i, (§<i—1, Y Yoir1): 0, % %) + 5 9 = Uil 7%,

59:.1 (7' — o7 A + To, 55 + Ai AL g — AL (U, (F<io1, Tir Ysi41), 0, 2))

vi =
(67)
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with the convention y;,,, = ). Define (u™*,y*) €U x Y by

(ut,y*) = axgming, Lo(u.9.0,22) + 5l y<p) = (@50 1% + 5w — Gl - (68)
The following proposition about two other equivalent procedures for computing (ut,y™) is the key
ingredient for our algorithmic developments. The idea of proving this proposition is very simple:
use Proposition repeatedly though the proof itself is rather lengthy due to the multi-layered
nature of the problems involved. For , we first express y, as a function of (u,y<p—1) to obtain
a problem involving only (u,y<p—1), and from the resulting problem, express y,—1 as a function of
(u, y<p—2) to get another problem involving only (u,y<p—2). We continue this way until we get a
problem involving only (u,y1).

Proposition 3.1 The optimal solution (u™,y™") defined by can be obtained exactly by

'f) + <597 'LL> + %HU, - aH?]'fa

ut = argmin, L, (u,7,
+ (69)

v, Z;

Ti_ = . L + . /' *7.7+g =12 :1
yz a’rgmlnyi O'(U 7(y§1_17y17y21+1)7v7'27x) QHyZ yZH%Z7 ? s Dy
where the auziliary linear term g is defined by (@/ Furthermore, (u™,y™) can also be generated
by the following equivalent procedure

ut = argrninuEAU,y’,”D,E;J’;)—i—%Hu—ﬁ”%, -
: I _ , 70
yt = argming Lo(ut (UE b vor)s 05 0) + Sl — il . 1= Leep.

Proof. We will separate our proof into two parts and for each part we prove our conclusions
by induction.

Part one. In this part we show that (u™,y™) defined by can be obtained exactly by .
For the case p = 1, this follows directly from Proposition [2.2

Assume that the equivalence between and holds for all p < [. We need to show that
for p = [ 4 1, this equivalence also holds. For this purpose, we consider the following optimization
problem with respect to (u,y<;) and y;41:

min  fi11(u, y<i) + 01 (1) + 9(0) + ¢(2)

§ i - (71)
st Fio(u,y<) + Al iy = ¢
The augmented Lagrangian function associated with problem is given by
LN ((wy<) yia; 0, 2,2) = fran(w,y<) + 01 (Y1) + 9(0) + 9(2)
_ g _

+(z, T(w,y,0,2)) + S IT(u, 9,0, 2) [ (72)

We denote the vector dp,, as the auxiliary linear term associated with problem by
00y, = -7:l+1v47+1597i1 (b1 — A1 ® = Pryafier + 0 Ai19). (73)

Note that by the definition of F;11 and p =1+ 1, we have
!
<59p7 (u,y<1)) = (Bp,1, u) + Zj:1<ﬁp7j+lv Yi)
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with 8,5, 7 =1,...,1 41, defined as in .
By noting that £ ((w, y<1), Yi+1;0, 2, &) = Lo (u, y<i, Yi+1, U, Z; T), we can rewrite problem
for p =1+ 1 equivalently as

I

‘ClaJrl((uv yﬁl)) Yi+1; v, Z, 3_3) + %H(U, ySl) - (U7 ggl) T,
e b

(v, 98,y ,) = argmin i
R +%”?/l+1—yl+1”%;,l+1

Then, from Proposition we know that problem is equivalent to

£10'+1((u7 y§1)7 gH—l; v, Z, j) + <591+17 (U, ygl)>

+ oy — :
u, = argmin o _ , 75
(u™y<) SR wy<) | 49|(u, y<1-1) — (@ g2+ Sllu — il (75)
!
. o g _
yltrl = argmin, ﬁf;rl((qu7 y;l)ﬁylﬂ; v, z,x) + §Hyz+1 - yl+1H%l+l. (76)

By observing that L5 ((u™,yZ)),y141;0,2,2) = Lo(ut,yd}, yip1,0,2; %), we know that problem
(76]) can equivalently be rewritten as

. _ g _
yl—:_l = a‘rgmlnyl_H £0’(u+7y;l7yl+17v7 2 CC) + §”yl+1 - yl+1||%79l+1 : (77)

In order to apply our induction assumption to problem , we need to construct a corresponding
optimization problem. Define for i =1,...,1,

bii=b; — Bpiv1 and  G;(yi) == 0i(yi) + (Bpit1, vi) = yi, Piyi) — (i, yi) Yy € Vi,
Fr(u) == f(u) + (Bpa, u),  Firr(uy<) = frw) + S5 0;(y;) ¥ (u,y<i) €U x Vi
We shall now consider the following optimization problem with respect to (u,y<;):

min  fi(u) + 3ty 0(y) + 01 (Gra1) + 9(0) + ¢(2)

(78)
s.t. .F*u + Aglyﬁl = Cc— A?_},_lﬂl#»l'
The augmented Lagrangian function associated with problem is defined by
Lo(u,y<i; Gie1,0,2,2) = fi(u) + Yoy 0:(ui) + 0141 (B141) + 9(0) + (2)
+ <.’L‘, F(’LL, (y§l> gl-}—l)v v, Z)) + %HF(’LL, (y§l7 gl-i—l)v v, 5) ||2
Define
7’9: =Ty, and 7}; =T, t=1,...,L
By using the definitions of 51 and ﬁ, i1=1,...,1, we have
E5 =&, and ?}vz?f i=1,...,1 (79)
Therefore, problem can equivalently be rewritten as
- Zo(u7y§l;gl+lvl_)727 f)
u, = argmin _ _ 80
(" yd) S (4, y ) +5 1 (u, y<i—1) — (a, ygl,l)H% + Sy — Z/l”%l (80)
l
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Define N B
By = Aj—lA?‘%‘ll(bz —AZ— P +0AF), j=1,...,1

and fori=1—-1,1—2,...,1,

Bij = Aj—lAfggl @z‘ — it Brit1 — AT — Pifii + UAfY) , J=1,...,1

The auxiliary linear term d; associated with problem is given by
55 = Zi’:l 511
We will show that for ¢ =1,1 —1,...,1,
Bij=Bi; Yi=1,...,i
First, by using , we have for j =1,...,[ that
By = Aj—lAfgg_ll(gl - Az — P+ 0 Ay)

= A1 AE (b= By — A — P+ o Aiy) = By

That is, holds for ¢ = [ and j = 1,...,l. Now assume that we have proven B” = fi,; for
alli > k+1withk+1<!land j =1,...,7. We shall next prove that holds for ¢ = k£ and

j=1,..., k. Again, by using , we have for j = 1,...,k that
Brj = Aj—lAZ;g(il (314: — 1Bt — AT — Py + UAM)
= A ALE! (bk — Byt — 3oy 1 Bojor1 — AT — Pyl + UAW>
= AjALE! <bk — 1Bt — AT — Py + UAW> = Brj

which, shows that holds for i = k and j = 1,...,k. Thus, is proven.
Fori=1,1—1,...,1, define y, € ); by

y; = argmin,, Lo (a, (J<im1:Yir Usin1); Uig1, 0, Z, T) + %Hyi — ?3¢||QT§Z_,
— 55_1.1 (0710 — o T AT + T5.9i + AiAi g — AL (W, (J<io1, Gis Voig1, U141), 0, 2)), - (83)
where we use the convention ) 1= (). We will prove that
J=y Vi=1l1-1,... 1. (84)
We first calculate
Y1 — Y1 = 59_li1 (07 i1 — o A T + Top, Gt + Arr A G + A ¥ — oy Ti)
= & (07 b — o A — o Praiig + Aipr), (85)

1+1
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which, together with the definitions of 3,; in , implies
A (Yl — Gi1) =0 Bpir1 Vi=0,...,1 (86)
Now, by using , and the definitions of y] and y;, we have
u-u = 59_11 (Uﬁlﬂp,lﬂ + ALA L (U1 — yl/+1))
= 5971(0_15p,l+1 - U_lﬁp,l—i—l) = 0.

That is, holds for ¢ = I. Now assume that we have proven y, = y. for all ¢ > k + 1 with
k + 1 <. We shall next prove that holds for i = k. Again, by using the definitions of 7 and
Y}, and noting

(@ (Fks Yorrrs Y1) 0, 2) = D@ Gk Yorsn) 0:2) = Al (i1 = v,
we obtain that
Ve—Te = & (07 bk —b) + AAl L (Bie1 — vl 1))
— 6;1 (07 By k1 + AAr 1 (U1 — Vi)
- gosgl(ailﬂp,kJrl — 0 Bpis1) =0,

which, shows that holds for ¢ = k. Thus, holds.
By applying our induction assumption to problem , we obtain equivalently that

. = _ _ g _

uwt = argmin, L, (u,Y<i; Git1,0, 2, T) + (05, u) + §||u — uHQTf, (87)
. 5 ~ _ _ o _ .

y;r = argmlnyi £U(u+7 (ygifhyiv ylz'é—l—l);yH—l?U? va) + §Hyl - yZH%’glﬂ = 17 s 717 (88)

where we use the facts that 7}~1 =Ty and T; = Ty, for © = 1,...,1. By combining and the
definitions of dg and dg defined in and , respectively, we derive that

So =" Bir+Ba=>", Bia + Bir11 = 05+ Biy1,1- (89)
By direct calculations,
!

Lo (u,P<t; Y141, 0,5 ) = Lo(0, 7,0, % 2) + (Bryras u) + > (Biyvist, Ui)- (90)
i=1

Using , and the definition of Ea, we have for i = 1,...,[ that

CO-(U+, (y;ifla Yi,s g,Zz—Q—l)a gl-‘rla v, 27 j) - *Cd(u+

7(3/;,1,%,3//21'—1-1)@75; i‘)
= Ea(u+7 (y;rifl’ Yi, y;—l—l? ceey yi)» ?jl—i—la v,Zz, j) - LU(U+3 (y;,p Yi, ylzi—i-l)a v, Z; j)
(Bpit1, vi) + (0 AAL L (Tt — Yig)s ¥i) + ¢

= Gy, (91)
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where ¢; is a constant term given by

i1 !
¢ = (B ut)+ > (Brrrgin v+ Y (Birrje U)
=1 =it

0111 (Ti1) — 011 (Wi 1) + (2 Al (i1 — vis))

I
g — * * — —
+§<A?+1(yl+1 —Yip1)s 2(F ut + Agiq@/;q + Z Asy; =€) + Al (T + Yig))-
j=it1

Thus, by using , and we know that and can be rewritten as

{ u* = argmin, Lo (u,§,0,%) + (5, u) + §llu—al%,.

Z
)
yz+ = argminyi £0<’U,+, (y;i_17yiay/2i+1)7’l_)72;j) + %Hyz - gZH%’gla 1= 17 cee 7l7

which, together with , shows that the equivalence between and holds for p =1+ 1.
The proof of this part is completed.

Part two. In this part, we prove the equivalence between and . Again, for the case
p = 1, it follows directly from Proposition

Assume that the equivalence between and holds for all p < I. We shall prove that
this equivalence also holds for p =14 1. Write fo(-) = f(-) + Zé:lwi,lv -). Since fy differs from f
only with an extra linear term, we define 77, = T;. In order to use Proposition @, we consider the
following optimization problem with respect to u and y;11:

min  fo(u) + 01 (1) + ey 0:(F:) + 9(0) + ¢(2)

(92)
st. Fru+ Aj Ly = ¢ — ALy«
The augmented Lagrangian function associated with problem is given as follows:
Lo yip1; P, 0. 2,2) = folu) + Orea(yien) + X1 0i(3:) + 9(0) + 0 (2)
o, D, (521, 9040), 9, 2)) + 20w, Gzt 040), 9, 2)[1
By observing that
L0, Gry1; G<1 0,2, F) = Lo (05,7, % 7) + S (Bin, u) and  Tj, = T,
we can rewrite the first subproblem in as
wt = argmin, £ (u, Yi41; <t 0, %, 2) + (Bie11, u) + %Hu - ﬁ||%—f0' (93)
By using the definition of ] 41 glven in , we have
Vi1 = &gy (07 b1 = A @) + To Gier + At Al G + A ). (94)

Since
LT, yi11;T<1,0, 2, T) = Lo (T, (<t Y141), 7, 5 ) + ooy (B, @),
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the point y) 41 can be rewritten equivalently as

. _ _ _ o - g _
y;+1 = argmlnyl+1 ‘Cg(u7 Yi+15Y<i, v, 2, .%') + §Hyl+l —Yi+1 H%H—l . (95)

Then, by applying Proposition to problem with respect to w and w41, we know that
problem is equivalent to

. _ o g _
ut = argming £3(u, 4159 0,7,7) + 2 lu—al (96)

In order to apply our induction assumption to problem , we need to consider the following
optimization problem with respect to (u,y<;):

min  f(u) + 30 0:(y) + Oi41(y)4 ) + 9(0) + @(2)

* * = * ! <97)
sit. F*(u) + Aglygl =c— Al 1Y
The augmented Lagrangian function associated with problem ({97)) is given by
£0—(U, ySla y;+17 /177 27 :E) = f(u) + Zi:lel(yl) + 0l+1(y2+1) + g(ﬁ) + 90(2)
I o o
—|—<Q?, P(ua (y§17 Z/f+1)v v, Z)) + 5 HF(U7 (ygh yg—l—l)? v, Z)||2
Define
fy\ = —F(l_t, (ﬂgl,yl,+1),@,f) and h; = b; — A;T — Piyi, 1=1,...,L
For problem , we define the following associated terms
By = Aj1 A& (i +0AR), j=1,...,1
and fori=1—-1,1—2,...,1,
Bij = Aj 1 AT (hz‘ = Cheir1Pri + UAi;;)a Jg=1...
The auxiliary linear term 5 associated with problem is given by
6 = Yiei B (98)
We will show that, fori=1,1—1,...,1,
Bij = Bij Vi=1,...,i. (99)
Similar to what we have done in part one, we shall first prove that B\l,j =pfjforj=1,2,...,1. In

fact, for j =1,...,1, we have
B = Aj—lAzkgg_ll(hl — Bi41,041 + 0 ArY)
= A1 AE (- AZA7+1597L (b1 + o A117y) + o AY)
= A1 AE, (= AT (U, (<1, Y141): T, 2))
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where the third equation follows from and simple calculations. This shows that holds
fori =1and j = 1,...,l. Now we assume that B” = fijforall ¢t > k+1with k+1 <[ and
7 =1,...,1. Next, we shall prove that holds for i = k and j = 1,..., k. By direct calculations,
we know for j =1,...,k that

Brj = A1 A& (hk — > 1B oAzﬂ)
= AjflAZSJ,f (hk - Zi:k-ﬁ-lgs,k — Btk + GAW)
= A4 (hk — Y1 B ApAf 1€y (it + oA y) + UAk’_Y)
= A48, (hk — Y k100, — O AL (@, (i<t Y1), T, 5))

= AAg! (hk — k100, + 0«41ﬁ> = Brj»

which, shows that holds for ¢ = k and j =1, ..., k. Therefore, we have shown that holds.
Fori=1,1—1,...,1, define y; € Y; as

~

. _ o o _
v = argmin, Lo (, (Y<i-1, i, /y\lzi—i-l);ngrl’U? Z,%) + 5”%’ - yi”%—gi

= 59:1 (0710 — o7 A + To, 5 + AiAL G — AL (W, (J<io1, Uir Usir1, Yie1), 0, 2)), (100)
where we use the convention 3 1= (). We will prove that
U=y, Vi=1,...,1L (101)
From , we know that
g = 59_11 (o7 — o AZ + To, 01 + AL G — AL(G, (F<i—1, Uy Yigr)» 0, 2)),

which is exactly the same as y; defined in . This shows that (101)) holds for i = [. Now we
assume that g, =y} for all ¢ > k41 with k+1 < [. Next, we shall prove that (101]) holds for i = k.
Again, by using the definition of 7, in (100) and the definition of y}, in (67), we see that

U = 59;1 (o7 b — o ARz + To, Ui + Ae ALk — AeL (@, (Y<th—1, Ui, Poki1: Yig1)> 0 Z))
= 59;1 (o7 bk — o7 AT + To, Uk + A Akl — Ael (@, (Y<h—1, Ui, Yorg1): U5 2))
!

Thus, (101)) is proven to be true.
By direct calculations, we obtain from and that

~

o _ o l ~
ﬁg(uay;+1;y§l7vazax)_ﬁa(uayﬁl;yz_g_lvvazax) = Zi:1</8i,17u> = (61 u> (102)

By using (102) and Tz, = 77, we can reformulate problem equivalently as

~

. _ o " o _
ut = argmin, Lo(u, j<i;Y111,0, %, &) + (6, u) + §Hu — uH%-f (103)
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Then, from our induction assumption we know that problem (103 can be equivalently recast as

{ :'/J\; = argminyi [’O'(aa (gﬁi*by’ia3//\/21'+1);y2+1717727i')+%Hyi_gi||’27’9iv i:lal_lv'--717(104)
ut = argmin, Eg(u,yj’gl; yl’H, 0,2,%) + §||lu— a||27f

By using (101]) and observing

~

/ — = = / o _
Ld(uaygl;yl+1vv7zul‘) - *Ca(uaygluyl+1vvaz;x)7

we know that (104]) is equivalent to

+

y; = argminyi EU(ﬂv (?jfi*hyi?y,zi—i-l)vavz; j)—i_%Hyl_gZH?Tgl? i=101-1,...,1,
ut = argmin, Lo(u, (Y5, Y1,1),0,57) + §llu — ﬁngf,

which, together with , shows that the equivalence between and holds for p =1+ 1.
This completes the proof to the second part of this proposition. 0

Proposition 3.2 For any k > 0, the point (xF+1 y*+1 k1 k1) obtained by Algorithm SCB-
SPADMM for solving problem (@) can be generated exactly according to the following iteration:

(uk—&-l7 k+1)

YY) = argmin, , Lo (u,y, 0%, 2% 2%) + | (u, y<p-1) — (uk7yl%p71)”%\-f + Sl —usll%, -
P
(UkJrl? ZkJrl) = argminv,z £a(uk+1’ yk+17 v, %; xk) + %H(Ua qu—l) - (Ukv Zéq—l)”%q + %qu - Zf;”%;q7
xk—i—l — xk 4 TO'(.F*UIH—I 4 A*yk—i—l 4 g*vk—H 4 B*Zk'—i-l . C).
Proof. The (uf*! y**1) part directly follows from Proposition The conclusion for the
(v*+1, 2FF1) part can be obtained in similar arguments to the part about (u**! y*+1). Hence,
the required result follows. 0

Write ¥y, = Xy and ¥4 = X,. Define

I .
zfi;:< fia 73-_1)’ i=2,...,p+1
and
g, .
Zgj::( 9i-1 Qj1>’ j=2,...,q+1.

In order to prove the convergence of our algorithm SCB-SPADMM for solving problem , we
need the following proposition.

Proposition 3.3 It holds that

~

FprFp1+07'Sy,, + < 75 T > -~0& FF +o 'S, +T; =0, (105)
P
Gar1Gi1 +0 'S + < T T ) -0 GG + 018, + T, >~ 0. (106)
Pq

24



Proof. We only need to prove (105)) as (106 can be obtained in the similar manner. For i =
3,...,p+ 1, we have

_ T; FiFr + o 'S +Tp Fi1 AY
f‘Z]Z‘* + 12 o+ fi—1 — ? i—1 fi—1 fi—1 2 1—1 .
Pk ( To._, ) ( A1 Fiy Ai Al + 0" P+ To,

Since &y, , = Ai—1 A +0 P;i1 +Tp,_, = 0 for all i > 3, by the Schur complement condition for
ensuring the positive definiteness of linear operators, we have

( ‘E*l‘}-i*fl + 0_12fi—1 + ffi—l ‘7:1'*1“4;:1 ) “ 0
Ai—lff—l 591'71
i
FirFi + U_lzfi—l + 7}1'—1 - .7:1;1./4;;15922.41;1}}*,1 =0
i

FioaFi 1+ 0'_12]01.71 + ( Thiea > > 0.
72’1'72

Therefore, by taking ¢ = 3, we obtain that

fp+1f;+1+012fp+1+< 7}” > >0<:>.7:2.7:§+0712f2+ < 7}1 > > 0.
0p 7-91
Note that
- 7; FIFf + 0718, + T, FrA;
Fo F 5 1 _ 1 f f 1 )
e +< T, ) ( AT AA + 0P T,

Since &, = A1 A} + 0Py + Tp, = 0, again by the Schur complement condition for ensuring the
positive definiteness of linear operators, we have

< .7:1.7'?< —I-O'_IZfl +7\}1 flAT ) .0
AL F; &o,
~ )
FiFf+o0 1% +Tp — ]-"1,4{50‘11,41]-"{ =0

0
FF 40 'S+ T; > 0.

Thus, we have

Tt

fp+1f;‘+1+a—12fp+l+< > =0& FF +0 'S +T; = 0.

Op

The proof of this proposition is completed. U
Note that in the context of the multi-block convex optimization problem , Assumption
takes the following form:

Assumption 3.1 There exists (u,9,0,2) € ri(dom f) x Y X ri(dom g) X Z such that F*u + A*j +
G*0+ B*z = c.
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After all these preparations, we can finally state our main convergence theorem.

Theorem 3.1 Let ¥y and Xy be the two self-adjoint and positive semidefinite operators defined
by and (20), respectively. Suppose that the solution set of problem s nonempty and that
Assumption|3. 1| holds. Assume that Ty and Ty are chosen such that the sequence {(u, y¥, o, 2% 2P}
generated by Algorithm SCB-SPADMM is well defined. Recall that Ty, is defined in @) for1 <i<
p and Ty, is defined in @) for 1 < j < q. Then, under the condition either (a) T € (0,(1++/5)/2)
or (b) T = (1+V5)/2 but 337 ([G* (0P — oF) + B (P — 2F) |2 4 77| Fraftt 4 ATy 4
G*oF 1 4 B 2F L — ¢||?) < oo, the following results hold:

(i) If (u,y>°, v, zoo ,2>) is an accumulation point of {(u¥, y¥, vF, 2%, xF)}, then (u>®, y>,v>, 2>°)

solves problem and x°° solves , respectively.

(ii) If both o™ 'S + Ty + FF* and 0715y + Ty + GG* are positive definite, then the sequence
{(uF, yF, oF, 2% 2F)}, which is automatically well defined, converges to a unique limit, say,
(u™, Y™, v, 2%, x%°) with (u®,y>,v>, 2>°) solving problem and x> solving (A8)), re-
spectively.

(iii) When the u,y-part disappears, the corresponding results in parts (i)—(ii) hold under the con-
dition either 7 € (0,2) or 7 > 2 but > 5o, [|G*0F T + B*2FH — ¢||2 < o0.

Proof. By combining Theorem [2.T| with Proposition [3.2)and Proposition we can readily obtain
the conclusions of this theorem. 0

Remark 3.1 Our SCB-SPADMM algorithm actually provides a potentially efficient approach to
handle large-scale and dense linear constraints. When dealing with such difficult linear systems,
instead of being trapped with the possible convergence issues brought about by inexract solvers such
as conjugate gradient methods, one can always first decompose the large systems into serval smaller
pieces, and then apply our SCB-SPADMM algorithm to the decomposed problems. As a result,
these smaller systems can always be handled by adding suitable proximal terms or by solving them
ezactly.

4 Numerical experiments

We first examine the optimality condition for the general problem and its dual . Suppose
that the solution set of problem is nonempty and that Assumption holds. Then in order
that (u*,y*,v*, 2*) be an optimal solution for and z* be an optimal solution for , it is
necessary and sufficient that (u*, y*,v*, 2*) and x* satisfy

Fru+d0 Ay +G v+ 375 Bizj =,
fw) + f*(=Fz) = (=Fz,u), 0i(y:) + 0 (—Aix) = (—Aiz, i), i=1,....p, (107)

We will measure the accuracy of an approximate solution based on the above optimality condition.
If the given problem is properly scaled, the following relative residual is a natural choice to be used
in our stopping criterion:

n = max{np,nf, Mg, M0, e} (108)
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where

|F*u + A*y + G*v + B*z — ¢|| |lu — Proxs(u — Fux)|| . |lv — Proxg(v — Gz)||
P = ) = ) = ’
1+ [lell L [Jul) + || Fa] ! L+ [[o]l + [|G=]]
_ ly: — Proxg, (y; — Ai)|| _ |25 — Proij(zj — Bjz)||
7 = Mmax . Tp = max
i=leep T[]l + [ Ai] =l 14zl + [|Bjz]]

Additionally, we compute the relative gap by
objp —objp
1 + [objp| + |objp]|’

where objp := f(u) +3°0_ 0:(y:) +g(v) + 2201 ¢j(z5) and objp = (¢, x) + f*(s) + 37—, 07 (r:) +
g (t) + 2321 ©j(w;). We test the following problem sets.

Ngap =

4.1 Numerical results for convex quadratic SDP
Consider the following QSDP problem
min (X, 9X) + (C, X)

(109)
st. AgX =bg, A; X >0b;, Xe€ S_Tf_ NnK

and its dual problem

max —0x(—Z)+ (br, yr) — %<X/, QX') + (bg, yE)

110
st. Z4+Ajyr— QX' +S+Apye=C, yr>0, SeSt. (110)

We use X’ here to indicate the fact that X’ can be different from the primal variable X. Despite
this fact, we have that at the optimal point, QX = QX’. Since Q is only assumed to be a self-
adjoint positive semidefinite linear operator, the augmented Lagrangian function associated with
(110)) may not be strongly convex with respect to X’. Without further adding a proximal term, we
propose the following strategy to rectify this difficulty. Since Q is positive semidefinite, Q can be
decomposed as Q@ = B*B for some linear map B. By introducing a new variable & = —BX’, the
problem can be rewritten as follows:

max  —0x(=Z) + (br, yr) — 5||El% + (be, ye) (1)
st. Z+Ayr+BE+S+Apye=C, yr>0, SecSt.

Note that now the augmented Lagrangian function associated with (111]) is strongly convex with
respect to Z. Surprisingly, much to our delight, we can update the iterations in our SCB-SPADMM
without explicitly computing B or B*. Given Z, 47, S,yr and X, denote

1 _ _ _ _
ET := argming §||E||2 + %HZ + A5gr + B E+ S+ Ayyp — C + o' X|?* = —(Z+ oBB*)"'BR,
where R = X + o(Z + Ajyr + S + A%yr — C). In updating the SCB-SPADMM iterations, we
actually do not need Z explicitly, but only need Y+ := —B*=*. From the condition that (Z +
oBB*)(—ET) = BR, we get (Z + oB*B)(—B*=") = B*BR, hence we can compute Y via O:

TH = (Z+0Q) YQR).
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In fact, T := —B*E can be viewed as the shadow of QX’. Meanwhile, for the function d3-(—Z2), we
have the following useful observation that for any A > 0,

A g = 1 _
ZT = argmin §%(—2) + 512 - ZI’=7Z+ Tk(=A2), (112)

where ((112)) follows from the following Moreau decomposition:
r = Prox,p+(z) + 7Proxy, (z/7), VY7 >0.

In our numerical experiments, we test QSDP problems without inequality constraints (i.e., A;j
and by are vacuous). We consider first the linear operator Q given by Q(X) = 3(BX + X B) for
a given matrix B € SY. Suppose that we have the eigenvalue decomposition B = PAPT, where
A = diag(A\) and A = (A1, ..., A,)7 is the vector of eigenvalues of B. Then

(X, OX) = <X AX + XA) = ZZXQ (i + ) ZZX2H2 = (X, B*BX),

lel =1 j=1

where X = PTXP, H;; = (PTXP) and B*Z = P(H o Z)PT. In our numerical
experiments, the matrix B is a low rank random symmetric positive semidefinite matrix. Note
that when rank(B) = 0 and K is a polyhedral cone, problem reduces to the SDP problem
considered in [17]. In our experiments, we test both the cases where rank(B) = 5 and rank(B) = 10.
All the linear constraints are extracted from the numerical test examples in [I7] (Section 4.1). For
instance, we construct QSDP-BIQ problem sets based on the formulation in [I7] as follows:

min %(Xa QX> + %<Q> X0> + <Cv ‘/E>
s.t.  diag(Xg) —x =0, a=1,

X:(fﬁ Z)esn, XeK:i={Xes&: X >0}

In our numerical experiments, the test data for () and c are taken from Biq Mac Library maintained
by Wiegele, which is available at http://bigmac.uni-klu.ac.at/bigmaclib.html. In the same
sprit, we construct test problems QSDP-BIQ, QSDP-6,, QSDP-QAP and QSDP-RCP.

Here we compare our algorithm SCB-SPADMM with the directly extended ADMM (with step
length 7 = 1) and the convergent alternating direction method with a Gaussian back substitution
proposed in [9] (we call the method ADMMGB here and use the parameter a = 0.99 in the Gaus-
sian back substitution step). We have implemented all the algorithms SCB-sPADMM, ADMM and
ADMMGB in MATLAB version 7.13. The numerical results reported later are obtained from a PC
with 24 GB memory and 2.80GHz quad-core CPU running on 64-bit Windows Operating System.

We measure the accuracy of an approximate optimal solution (X, Z, =, S, yg) for QSDP (109)
and its dual by using the following relative residual obtained from the general optimality
condition ([107]):

Tlgsdp = maX{nP777Da77Z7775177752}a (113)
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Figure 1: Performance profiles of SCB-SPADMM,

ApMM and ADMMGB for the tested large scale

QSDP.
where
_ ABX —bg| _1Z+B=+ 5+ Apye — C ny = | X — T (X — 2)|
L+ gl L+ |C ’ L+ X+ Z]
. (S, X)| . [ X —Tsp (X))
S1 = T ol v S = T 1 . 1 vn___
o+ S+ X ’ 1+ [|X]]

We terminate the solvers SCB-sPADMM, ADMM and ADMMGB when 7qsqp < 106 with the maxi-
mum number of iterations set at 25000.

Table [ reports detailed numerical results for SCB-SPADMM, ADMM and ADMMGB in solving
some large scale QSDP problems. Here, we only list the results for the case of rank(B) = 10,
since we obtain similar results for the case of rank(B) = 5. From the numerical results, one can
observe that SCB-SPADMM is generally the fastest in terms of the computing time, especially when
the problem size is large. In addition, we can see that SCB-SPADMM and ADMM solved all instances
to the required accuracy, while ADMMGB failed in certain cases.

Figure (1] shows the performance profiles in terms of the number of iterations and computing
time for SCB-SPADMM, ADMM and ADMMGB, for all the tested large scale QSDP problems. We
recall that a point (x,y) is in the performance profiles curve of a method if and only if it can solve
(100y)% of all the tested problems no slower than = times of any other methods. We may observe
that for the majority of the tested problems, SCB-SPADMM takes the least number of iterations.

Besides, in terms of computing time, it can be seen that both SCB-SPADMM and ADMM outperform

ADMMGB by a significant margin, even though ADMM has no convergence guarantee.

4.2  Numerical results for nearest correlation matrix (NCM) approximations

In this subsection, we first consider the problem of finding the nearest correlation matrix (NCM)

to a given matrix G € §™:
(114)

min

slH o (X = GIIE+(C, X)

st. AgX = bg, XGSﬁﬂ’C,
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where H € S™ is a nonnegative weight matrix, Ag : S — R™F is a linear map, G € S", C € S"
and by € R™E are given data, K is a nonempty simple closed convex set, e.g., K ={W € §": L <
W < U} with L,U € 8™ being given matrices. In fact, this is also an instance of the general model
of problem with no inequality constraints, QX = Ho H o X and BX = H o X. We place this
special example of QSDP here since an extension will be considered next.

Now, let’s consider an interesting variant of the above NCM problem:

min ||H o (X — G)ll2 + (C, X)

(115)
st. ApX = bp, XeS8'NK.

Note, in ((115)), instead of the Frobenius norm, we use the spectral norm. By introducing a slack
variable Y, we can reformulate problem ((115]) as

min [[Ylz + (C, X)

116
st. Ho(X—-G)=Y, AgX=bg, XeS'nKk. (116)
The dual of problem ((116)) is given by
max —05(—Z)+ (H oG, E)+ (bg, yr) a17)
st. Z+Ho=Z+S+Apye=0C, |E|.<1, SeS&7,
which is obviously equivalent to the following problem
max —05(—Z)+ (HoG, E) + (bg, yg)
st. Z+HoZ+S+Apyp=0C, |T.<1, SeS8t, (118)

DT — D*E =0,

where D : §™ — S" is a nonsingular linear operator. Note that SCB-SPADMM can not be directly
applied to solve the problem thile the equivalent reformulation fits our model nicely.

In our numerical test, matrix G is the gene correlation matrix from [I3]. For testing purpose
we perturb G to

G:=(1-a)G+aFE,

where a € (0,1) and F is a randomly generated symmetric matrix with entries in [—1,1]. We also
set Gi; =1, i = 1,...,n. The weight matrix H is generated from a weight matrix Hy used by a
hedge fund company. The matrix Hy is a 93 x 93 symmetric matrix with all positive entries. It has
about 24% of the entries equal to 107> and the rest are distributed in the interval [2,1.28 x 103]. Tt
has 28 eigenvalues in the interval [~520, —0.04], 11 eigenvalues in the interval [-5x 10713, 2x 10713],
and the rest of 54 eigenvalues in the interval [107%,2 x 10*]. The MATLAB code for generating the
matrix H is given by

tmp = kron(ones(25,25),H0); H = tmp(l:n,1:n); H = (H’+H)/2.

The reason for using such a weight matrix is because the resulting problems generated are more
challenging to solve as opposed to a randomly generated weight matrix. Note that the matrices
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Table 1: The performance of SCB-SPADMM, ADMM, ADMMGB on Frobenius norm H-weighted NCM problems
(dual of (114))) (accuracy = 107°). In the table, “scb” stands for SCB-sSPADMM and “gb” stands for ADMMGB,

respectively. The computation time is in the format of “hours:minutes:seconds”.
iteration Ngsdp Ngap time
problem ns o scbladmm|gb scbladmm|gb scbladmm|gb scbladmm|gb
Lymph 587 0.10 | 263 | 522 [ 696 | 9.9-7 [ 9.9-7 ] 9.9-7 | -4.4-7 | -4.5-7 | -4.0-7 30 | 53 | 1:23
587 0.05 | 264|356 | 592 | 9.9-7]9.9-7]9.9-7 | -3.9-7 | -3.4-7 | -3.0-7 29 | 35| 1:08
ER 692 0.10 | 268 355 | 711 | 9.9-7 [ 9.9-7 | 9.9-7 | -5.1-7 | -4.7-7 | -4.2-7 43 [ 51 1:58
692 0.05 | 226 | 293|603 | 9.9-7]9.9-7]9.9-7 | -4.2-7 | -3.8-7 | -3.3-7 37|43 | 1:54
Arabidopsis 834  0.10 | 510 | 528 | 725 | 9.9-7 | 9.9-7 | 9.9-7 | -5.9-7 | -5.3-7 | -3.9-7 |  2:11 | 2:02 | 3:03
834 0.05 | 444|470 | 650 | 9.9-7 | 9.9-7 | 9.9-7 | -5.8-7 | -5.2-7 | -4.8-7 | 1:51 | 1:43 | 2:44
Leukemia 1255 0.10 | 202 ] 420 | 826 | 9.9-7 | 9.9-7 | 9.9-7 | -5.4-7 | -5.3-7 | -4.4-7 | 3:13 | 4:11 | 9:13
1255  0.05 | 251|408 | 670 | 9.9-7 | 9.7-7 | 9.6-7 | -5.4-7 | -4.9-7 | -4.0-7 |  2:48 | 4:03 | 7:35
hereditarybc 1869  0.10 | 555 | 634 | 871 | 9.9-7 | 9.9-7 | 9.9-7 | -9.1-7 | -9.1-7 | -7.0-7 | 17:39 | 18:38 | 28:01
1869 0.05 | 530|626 | 839 | 9.9-7 | 9.9-7 | 9.9-7 | -8.7-7 | -8.7-7 | -5.2-7 | 16:50 | 18:15 | 26:34

G and H are generated in the same way as in [I1]. For simplicity, we further set C' = 0 and
K={XeS§": X>-0.5}.

Generally speaking, there is no widely accepted stopping criterion for spectral norm H-weighted
NCM problem . Here, with reference to the general relative residue , we measure the
accuracy of an approximate optimal solution (X, Z,=,S,yg) for spectral norm H-weighted NCM

problem problem (115)) (equivalently (116))) and its dual (117)) (equivalently (118])) by using the
following relative residual derived from the general optimality condition (107]):

Tsnem = maX{T/PanD7772)7751a77527775}7 (119)
where
JAsX —bel | Z+HoS+S+ Al X -Te(X - 2)]
np=—"77"1 D = , Nz = s
1+ [lbe|l L+ [|Z]| + [IS]] L+ 1 X[| + (| Z]]
g, = — WS XL 1% — sy (X)] e — JE= T < (E = Ho (X = G|
e T K v 5 T2+ [He (X =0

Firstly, numerical results for solving F-norm H-weighted NCM problems are reported.
We compare all three algorithms, namely SCB-SPADMM, ADMM, ADMMGB using the relative residue
. We terminate the solvers when 7qsqp < 1079 with the maximum number of iterations set at
25000.

In Table [I we report detailed numerical results for SCB-SPADMM, ADMM and ADMMGB in
solving various instances of F-norm H-weighted NCM problem. As we can see from Table [I} our
SCB-SPADMM is certainly more efficient than the other two algorithms on most of the problems
tested.

The rest of this subsection is devoted to the numerical results of the spectral norm H-weighted
NCM problem . As mentioned before, SCB-SPADMM is applied to solve the problem ([118)
rather than . We implemented all the algorithms for solving problem using the relative
residue ([119). We terminate the solvers when ngnem < 107> with the maximum number of itera-
tions set at 25000. In Table [2] we report detailed numerical results for SCB-SPADMM, ADMM and
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Table 2: The performance of SCB-SPADMM, ADMM, ADMMGB on spectral norm H-weighted NCM problem

(118) (accuracy = 107°). In the table, “scb” stands for SCB-SPADMM and “gb” stands for ADMMGB,

respectively. The computation time is in the format of “hours:minutes:seconds”.

iteration Nsnem Ngap time
problem ns o scbladmm|gb scbladmm|gb scbladmm|gb scbladmm|gb
Lymph 587  0.10 | 41106048 | 7131 | 9.96 [ 9.96 | 1.05 | 3.45] 2.85] 2.75 13:21 [ 17:10 | 21:43
587 0.05 | 5001 | 7401 | 8101 | 9.8-6 | 9.9-6 | 9.9-6 | -2.0-5 | -2.3-5 | -8.1-6 19:41 | 21:25 | 25:13
ER 692 0.10 3251 | 4844 | 6478 9.9-6 | 9.9-6 | 1.0-5 | -3.1-5 | -2.6-5 | -6.0-6 15:06 | 19:30 | 28:03
692  0.05 | 4201 | 5851 | 7548 | 9.3-6 | 9.8-6 | 1.0-5 | -3.5-5 | -2.9-5 | -3.4-5 18:44 | 23:46 | 32:57
Arabidopsis 834 0.10 3344 | 6251 | 7965 9.9-6 | 9.7-6 | 1.0-5 | -3.8-5 | -2.0-5 | -3.7-5 23:20 | 40:12 | 54:31
834 0.05 | 2496 | 3101 | 3231 | 9.9-6 | 9.9-6 | 1.0-5 | -9.1-5 | -4.3-5 | -5.3-5 17:03 | 19:53 | 21:56
Leukemia 1255 0.10 | 4351 | 6102 | 7301 | 9.9-6 [ 9.9.6 [ 1.05 | 3.75 | -3.3.5 | 3.05 | 1:22:42 | 1:40:02 | 2:16:52
1255  0.05 | 3957 | 5851 | 10151 | 9.9-6 | 9.7-6 | 9.5-6 | -7.2-5 | -5.7-5 | -1.1-5 | 1:18:19 | 1:44:47 | 3:26:08

Table 3: The performance of LADMM, LADMMGB on spectral norm H-weighted NCM problem(117)) (ac-
curacy = 107°). In the table, “lgh” stands for LADMMGB. The computation time is in the format of
“hours:minutes:seconds”.

iteration Nsnem Ngap time
problem  ng @ ladmm|lgb ladmm|lgb ladmm|lgb ladmm|lgb
Lymph 587 0.10 | 8401 ] 25000 | 9.9-6 | \ 23:59 | 1:22:58
Lymph 587 0.05 | 13609 | 25000 | 9.9-6 | \ 39:29 | 1:18:50

ADMMGB in solving various instances of spectral norm H-weighted NCM problem. As we can see
from Table [2] our SCB-SPADMM is much more efficient than the other two algorithms.

Observe that although there is no convergence guarantee, one may still apply the directly
extended ADMM with 4 blocks to the original dual problem by adding a proximal term for
the = part. We call this method LADMM. Moreover, by using the same proximal strategy for =,
a convergent linearized alternating direction method with a Gausssian back substitution proposed
in [I0] (we call the method LADMMGB here and use the parameter o = 0.99 in the Gasussian back
substitution step) can also be applied to the original problem . We have also implemented
LADMM and LADMMGB in MATLAB. Our experiments show that solving the problem directly
is much slower than solving the equivalent problem . Thus, the reformulation of to
is in fact advantageous for both AbMM and ADMMGB. In Table [3] for the purpose of illustration
we list a couple of detailed numerical results on the performance of LADMM and LADMMGB.

5 Conclusions

In this paper, we have proposed a Schur complement based convergent yet efficient semi-proximal
ADMM for solving convex programming problems, with a coupling linear equality constraint, whose
objective function is the sum of two proper closed convex functions plus an arbitrary number of
convex quadratic or linear functions. The ability of dealing with an arbitrary number of convex
quadratic or linear functions in the objective function makes the proposed algorithm very flexible in
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solving various multi-block convex optimization problems. By conducting numerical experiments
on QSDP and its extensions, we have presented convincing numerical results to demonstrate the
superior performance of our proposed SCB-SPADMM. As mentioned in the introduction, our pri-
mary motivation of introducing this SCB-SPADMM is to quickly generate a good initial point so
as to warm-start methods which have fast local convergence properties. For standard linear SDP
and linear SDP with doubly nonnegative constraints, this has already been done by Zhao, Sun and
Toh in [22] and Yang, Sun and Toh in [21], respectively. Naturally, our next target is to extend
the approach of [22], 21] to solve QSDP with an initial point generated by SCB-SPADMM. We will
report our corresponding findings in subsequent works.
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Table 4: The performance of SCB-SPADMM, ADMM, ADMMGB on QSDP-6.,
QSDP-QAP, QSDP-BIQ and QSDP-RCP problems (accuracy = 10~%). In the
table, “scb” stands for SCB-sSPADMMand “gb” stands for ADMMGB, respectively.
The computation time is in the format of “hours:minutes:seconds”.

iteration Ngsdp Ngap time
problem mpg;ns rank(B) scbladmm|gb scbladmm|gb scbladmm|gb scbladmm|gb
thetab 4375 ;300 10 311 | 407 | 549 7.9-719.7-7 ] 9.9-7 2.1-6 ] -1.6-6 | -6.2-7 08109 |14
theta62 13390 ; 300 10 153 ] 196 | 229 96719971967 | -1.1-7]9.68 ] -4.5-7 04105 06
thetas 7905 ; 400 10 314 ] 384 | 616 9571967957 | 270 100547 171833
thetas? 23872 ; 400 10 158 [ 179 | 234 9571977 ]9.97 | 3.78]-2.87]-8.27 1070913
thetass 39862 ; 400 10 200 [ 177 | 219 937967947 | 629147127 110914
thetal0 12470 ; 500 10 329439 | 614 907857977 | 250150587 27 [ 33 | 50
thetal02 37467 ; 500 10 150 | 187 | 235 87719471907 | 647]2.97]-937 1515 21
thetal03 62516 ; 500 10 202 [ 184 | 222 987]957]997 | 428]698]-1.67 20 15| 21
thetalO4 87245 ; 500 10 181 | 181 | 242 9.4-719.5-7 | 9.9-7 6.9-8 | 2.0-7 | -2.8-7 20|15 23
thetal2 17979 ; 600 10 343 [ 441 | 703 9.97 [ 837 9.97 | 3.00]110]-887 1248 ] 1:27
thetal23 90020 ; 600 10 204 | 205 | 213 9.7-719.8-7]9.9-7 -9.1-8 1 6.6-8 | -1.9-7 29|25 |31
5an200-0.7-1 5971200 10 | 2150 4758 [ 5172 | 9.87]9.07]9.97 | 516200 350 1526 ] 36
sanr200-0.7 6033 ;200 10 177 | 223 | 280 9679771977 | 1.97]-6.08] L.7-8 0210203
-fat200-1 18367 ; 200 10 | 2257 | 3027 | 3268 | 9.9-7 ] 9.7-7]9.97 | 200] 200 220 24126 | 35
hamming 84 11777 ; 256 10 | 2820 | 2045 | 3517 | 9.9-7 | 9.0-7 | 9.07 | -6.0.7 | 6.47] 1.10 53149 [ 1.0
hamming-9-8 2305 ;512 10 3891 | 4980 | 5577 9.9-719.9-7 | 9.9-7 -3.4-6 | -5.8-7 | 9.9-7 3:54 | 4:12 | 5:50
hamming 834 16129 ; 256 10 202 [ 220 | 294 187807987 | 150507227 04704106
hamming-9-5-6 53761 ; 512 10 136 | 535 | 684 857 [ 87719.67 | 115 170]-1.67 36 137 | 57
brock200-1 5067 ; 200 10 108 [ 210 | 201 9771947987 | 998297 -6.9-10 02102]03
brock200-4 6812 ;200 10 209 | 186 | 263 9871997987 | 1.27]-269]-1.17 0310203
brock400-1 20078 ; 400 10 168 | 217 | 275 9.0-7 ] 9.6-7 | 9.7-7 8.6-7 | -4.9-8 | 6.2-9 11|10 15
kellerd 5101 ; 171 10 669 1 909 | 963 9971907997 | -1.38]4.69] 8438 06 10709
p-hat300-1 33918 ; 300 10 468 [ 829 | 2501 9.97]9.97 837 | 877]217] 100 1420 1:09
be250.1 251; 251 10 | 41267439 ] 25000 | 9.679.97| 100 | 5.87]-8.67]-1.38 59 [ 1:27 | 5:41
be250.2 251251 10 | 3604 | 6504 ] 16322 | 9.87 ] 9.07 | 9.9-7 | -4.97 | -6.87 | -7.4-0 52 [ 1:18 | 3:40
be250.3 251 ; 251 10 3562 | 5712 | 8501 9.9-719.9-7 | 9.7-7 -9.2-71-9.4-7 | 9.3-7 52 | 1:08 | 1:57
He250.4 251,251 10 | 4072|7668 ] 25000 | 9.0-7 [9.97 [ 110 | 210 250]-9.49 57 [ 1:32 | 5:41
be250.5 251; 251 10 | 32104635 ] 7406 | 9.07]9.0-7 | 9.9-7 | -8.6-7| 887|110 16 [ 55 | 141
be250.6 251 ; 251 10 3250 | 5580 | 9812 9.9-719.9-7 | 9.9-7 -2.8-7]-3.1-7 | -3.6-7 46 | 1:05 | 2:10
be250.7 251 ; 251 10 3699 | 6562 | 13501 9.9-719.9-7|9.9-7 -6.5-7 | -3.8-7 | 5.4-9 52| 1:17 | 3:03
be250.8 251 ; 251 10 3507 | 4712 | 7701 9.9-719.9-7 | 9.6-7 -9.7-7 1 -1.0-6 | 5.1-7 50 | 56 | 1:43
562500 251251 10 | 36787292 ] 21001 | 9.0-7 [ 9.9-7 | 9.9-7 | -4.1-7 | -7.2.7 | -1.2-8 53 [1:28 | 457
5e250.10 251; 251 10 | 3305|5752 ] 10500 | 9.0-7 ] 9.0-7 [ 9.9-7 | 1.10]-8.2-7]-3.7-8 19 1:06 | 2:10
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Table 4: The performance of SCB-SPADMM, ADMM, ADMMGB on QSDP-6.,
QSDP-QAP, QSDP-BIQ and QSDP-RCP problems (accuracy = 10~%). In the
table, “scb” stands for SCB-sSPADMMand “gb” stands for ADMMGB, respectively.
The computation time is in the format of “hours:minutes:seconds”.

iteration Ngsdp Ngap time

problem mpg;ns rank(B) scbladmm|gb scbladmm|gb scbladmm|gb scbladmm|gb
bqp100-1 101 ; 101 10 1376 | 2134 | 3067 9.9-719.9-7 | 9.9-7 2.6-7 | -1.9-7 | -5.1-7 05| 06 | 10
bap100-2 101; 101 10 3100 | 4319 | 7107 | 9.9-7] 9.9-7 | 9.9-7 | -1.8-7 | -7.2-7 | -5.3-7 101322
bqp100-3 101; 101 10 1751 | 2371|6276 | 9.9-7 [ 9.97 [ 9.97 | 270 3510477 06 ] 06 | 20
bap100-4 101101 10 | 2646 ] 3986 [ 13901 | 9.9-7 [ 9.0-7 [ 9.1-7 | -4.0-7 | -6.6-7 | -3.3-8 09 (1145
bqpl00-5 101; 101 10 1079 | 3001 | 6901 | 9.9-7 | 9.9-7 | 9.7-7 | -3.7-7 | -1.5-7 | 1.7-8 07 ] 08 | 22
bqp100-6 101 ; 101 10 1316 | 2083 | 2937 9.4-719.9-7 | 9.9-7 1.1-7 | 3.3-7 | -9.5-7 05|06 | 11
bqp100-7 101101 10 | 1787 23413664 | 9.97[9.07]9.97 | 557 517] 150 06 106 12
bqp100-8 101; 101 10 1820 | 3337 | 9612 | 9.9-7 | 9.9.7 | 9.97 | 7.37]8.98 | 1.18 06 [ 09 | 32
bap100-9 101; 101 10 | 1948 | 4146 15901 | 9.9-7 [ 9.97 ] 9.97 | 200 -6.7-7] 2.6 07 [ 1152
bqp100-10 101; 101 10 | 3207 | 5077 | 12101 | 9.9-7 [ 9.9-7 | 9.9.7 | 8.0-8]4.3-7]2.7-8 101538
bap250-1 251 ;251 10 | 3931|5941 | 11758 | 9.6-7 | 9.0-7 [ 9.9-7 | 120 ] 150|127 57 1:10 | 2:39
bqp250-2 251251 10 | 4007 [5774 9704 | 957 0.07 [ 9.9.7 | 6.67]2.37] 120 57 [1:.07 | 2:11
bqp250-3 251; 251 10 | 4112|5708 | 12202 | 9.9-7]9.9-7] 9.9-7 | 300 | 3.88]3.00 57 | 1:05 | 2:40
bap250-4 251251 10 | 3158|4290 | 9671 | 9.0-7 [ 9.07 [ 9.97 | 557] 210150 15 (52 2:13
bqp250-5 251; 251 10 | 4430 | 7349 | 22802 | 9.9-7]9.9-7]9.9-7 | 200|300 |-1.3-8 1:02 [ 1:29 | 5:13
bqp250-6 251 ; 251 10 2871 | 5122 | 7801 9.9-719.9-7 | 9.9-7 -1.2-6 | -1.3-6 | -2.5-7 42 ] 1:01 | 1:47
baqp250-7 251251 10 | 3991 5570 | 11508 | 9.0-7 [90.07[9.97 | 2206] 2006] 270 57 [ 1:04 | 2:31
bap250-8 251;251 10 | 2882|4008 | 5501 | 9.9-7 | 9.87]9.87 | -2.07]-7.1-7] 1.00 1045 1.4
bap250-9 251,251 10 | 4127|6279 ] 11998 | 9.7-7 [ 9.97 | 9.9.7 | -5.1-7|-3.9.7 | 550 58 [ 1:11 | 2:38
bqp250-10 251; 251 10 | 3044 | 4185|7986 | 9.0-7]9.9-7 | 9.9-7 | 937 ]-757] 250 1348 [ 1:43
bqgp500-1 501 ; 501 10 6003 | 8391 | 13416 9.9-719.9-7 | 9.9-7 -3.9-7 | -7.3-7 | -5.4-7 6:01 | 7:05 | 13:34
bap500-2 501501 10 | 6601 | 10203 | 25000 | 9.7-7 [ 9.97 | 300 | 427 [-1.2-7 | 1.85 6:52 | 8:43 | 25:23
bqp500-3 501;501 10 | 7450 | 10517 | 21140 | 9.9-7 [ 9.9-7 | 9.9.7 | 7.6:7] 130110 7:31 | 8:46 | 21:10
bqp500-4 501 ; 501 10 7035 | 9903 | 23551 9.6-7 1 9.9-7 | 9.9-7 -3.3-7 | -1.3-6 | 2.6-6 7:08 | 8:12 | 23:36
bgp500-5 501 ; 501 10 6164 | 8406 | 20533 9.9-719.9-7]9.9-7 -8.8-7 | -4.8-7 | 2.8-6 6:30 | 7:04 | 20:37
bgp500-6 501 ; 501 10 6905 | 8659 | 25000 9.8-7]19.9-7|1.4-4 | -3.87|-1.5-6]-1.8-4 7:13 | 7:30 | 25:44
bqp500-7 501501 10 | 6587 [ 9038 | 18072 | 9.0-7 [9.07 ] 9.9.7 | 687257250 6:41 [ 7:39 | 18:13
bqp500-8 501; 501 10 | 6300 ] 8832 | 16496 | 9.0-7 [9.9-7 [9.9.7 | 150] 100586 6:24 [ 7:17 | 16:20
bqp500-9 501 ; 501 10 6532 | 9015 | 18065 9.9-719.9-7 | 9.9-7 9.9-7 | -6.5-7 | -3.5-6 6:39 | 7:37 | 18:10
bqp500-10 501;501 10 | 7199|9787 | 24119 | 9.9-7 [9.9-7 | 9.9.7 | 100|210 250 7:09 | 812 | 24:15

gkald 101 ; 101 10 1600 | 2266 | 4068 9.8-719.9-7 | 9.7-7 -4.2-7 | -8.8-7 | 7.4-7 06| 06 | 13

gka2d 101101 10 | 1903 3097 [ 5601 | 9.9-7 [ 9.0-7 [9.37 | 5.0-7 | 2.47 | -3.88 07 00 21

gkasd 101; 101 10 | 2431 3101|5618 | 9.9.7 | 9.97 | 9.97 | 2.6-7 ] 3.87 | L.7-8 08 [09 ] 19

)
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Table 4: The performance of SCB-SPADMM, ADMM, ADMMGB on QSDP-6.,
QSDP-QAP, QSDP-BIQ and QSDP-RCP problems (accuracy = 10~%). In the
table, “scb” stands for SCB-sSPADMMand “gb” stands for ADMMGB, respectively.
The computation time is in the format of “hours:minutes:seconds”.

iteration Ngsdp Ngap time
problem mpg;ns rank(B) scbladmm|gb scbladmm|gb scbladmm|gb scbladmm|gb
gkadd 101 ; 101 10 2266 | 2787 | 6632 9.9-719.9-7 | 9.9-7 2.3-71-4.4-71]-1.9-8 08109 |22
soybean-large-2 308 ; 307 10 | 1267 | 1717 | 11208 | 0.07 ] 9.9-7 | 9.07 | 5.88 | 6.58 | -7.98 20 [ 23] 2:55
soybean-large-3 308 ; 307 10 936 [ 1362 [ 9261 | 8.3-7 | 9.1-7 | 987 | -5.1-8 | -5.7-8 | -1.7-8 717229
soybean-large-4 308 ; 307 10 1681 | 2132 | 13401 9.9-719.9-7]9.9-7 -1.0-7 | -1.0-7 | -4.3-8 29 | 28 | 3:49
soybean-large-5 308 ; 307 10 8341229 13937 | 9.07[9.07]9.97 | -3.28]-1.08 ] -2.3-8 1418 1.08
soybean-large-6 308 ; 307 10 310 | 475 | 707 9.4-7 | 8.9-7 | 8.3-7 -8.1-8 | -5.8-8 | -1.5-7 05|06 | 12
soybean-large7 308 ; 307 10 | 1028 ] 1327 [ 3970 | 9.0-7 [ 9.97 [ 9.0-7 | -3.68 ] -6.3-8 | -1.8-8 19720 1:12
soybean-large8 308 ; 307 10 782 [ 1001 | 2901 | 9.87 | 9.9-7 | 8.9-7 | -3.7-8 | -4.58 | -1.0-8 4] 1551
soybean-large-9 308 ; 307 10 928 | 1187 | 4901 9.8-719.8-7]9.9-7 1.1-7 | -6.0-8 | -1.7-8 17119 | 1:26
soybean-large-10 308 ; 307 10 300 [ 489 | 518 9.97[9.97 [ 977 | 2.07 | 3.17 | 147 06 107109
soybean-large-11 308 ; 307 10 877 | 1605 | 1755 9.9-7 | 8.6-7 | 9.5-7 -2.2-7 | 3.5-7 | -2.6-7 17231 32
Spambase-small-2 301 ; 300 10 109 [ 610 [ 2792 | 8.87 957 9.07 | 317|307 110 0607 |40
spambascsmall-3 301 ;300 10 176 | 665 | 1201 9.67]9.979.67 | 7.89]-3.7-8]-338 09108 17
Spambase-small-4 301 ; 300 10 | 13051083 | 6073 | 9.9-7 | 9.9-7] 9.97 | -4.5-96.69] -1.7-8 20 ] 28 | 1:36
spambase-small-5 301 ; 300 10 608 | 819 | 865 8571987997 | 737277147 1114
spambase-small-6 301 ; 300 10 811 | 1198 | 1334 9.9-719.9-7 | 9.9-7 -1.5-7 ] -2.0-7 | -1.3-7 14 | 17123
Spambase-small-7 301 ; 300 10 840 [ 1240 [ 1359 | 9.0-7 [ 9.97 [ 9.0-7 | 4.0-7 ] 2.87 | 1.8-7 15718125
spambascsmall-8 301 ;300 10 | 1100|1244 1501 | 9.9-7 | 9.9-7 | 8.87 | 7.1-8]9.3-8] 7.6-8 2018 27
Spambase-small-9 301 ; 300 10 | 1090 | 1415 | 1440 | 9.9-7 | 9.7-7 ] 9.97 | -1.7-7 | 2.9-8 | -1.3-8 202127
spambase-small-10 301 ; 300 10 1081 | 1341 | 1500 9.9-719.9-7 ] 9.9-7 1.7-7 | 1.5-7 | -1.5-7 20| 22| 27
spambase-small-11 301 ; 300 10 1319 | 1482 | 1653 9.9-719.9-7 | 9.9-7 -3.6-7 | -8.3-7 | -5.8-7 2512531
Spambase-medium-2 901 ; 900 10 2711 596 | 1201 9.97 (997897 | 100] 136] 100 142 [ 1:37 | 4:01
spambase-medium-3 901 ; 900 10 1205 | 1582 | 11000 | 9.9-7 | 9.9-7 | 9.9-7 | -2.0-7 | -1.8-7 | -2.2-7 4:18 | 4:16 | 36:54
spambase-medium-4 901 ; 900 10 2560 | 2990 | 4045 9.7-719.8-7 ] 9.9-7 -2.3-6 | 2.5-6 | 1.1-6 9:06 | 8:04 | 13:37
spambase-medium-5 901 ; 900 10 1414 | 1900 | 2901 9.9-719.9-7 | 9.0-7 7.4-813.8-8|-1.1-6 5:06 | 5:17 | 9:58
spambase-medium-6 901 ; 900 10 1607 | 2107 | 2698 9.9-719.9-7 | 9.9-7 -1.0-8 | 3.7-8 | -1.3-6 6:01 | 6:16 | 9:25
spambase-medium-7 901 ; 900 10 | 1805 | 2508 | 2846 | 9.9-7] 9.9-7 [ 9.9-7 | -8.7-8 | -4.58 | .10 | 6:55 | 7:36 | 10:00
spambase-medium-8 901 ; 900 10 1655 | 2309 | 2489 9.9-719.9-7 | 9.9-7 -2.6-8 | -6.7-8 | 4.6-7 6:19 | 6:54 | 8:47
spambase-medium-9 901 ; 900 10 1683 | 2330 | 2687 9.9-719.9-7 | 9.9-7 2.6-8 | -5.9-8 | 2.2-8 6:23 | 6:56 | 9:38
spambase-medium-10 901 ; 900 10 1641 | 2030 | 2617 9.9-719.9-7 | 9.8-7 -6.5-7 | -4.7-7 | 1.9-6 6:11 | 5:59 | 9:22
spambase-medium-11 901 ; 900 10 1608 | 1838 | 3210 9.9-719.9-7 | 9.9-7 -5.0-7 | 5.4-7 | 9.0-7 6:06 | 5:20 | 11:21
abalone-medium-2 401 ; 400 10 500 | 682 | 1301 9.97[9.07 857 | 748588348 1617140
abalone-medium-3 401 ; 400 10 715 [ 1011 | 1679 | 9.97 [ 9.9-7 | 9.9-7 | 2.50] 1.3-8 ] -L.18 24728 56
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Table 4: The performance of SCB-SPADMM, ADMM, ADMMGB on QSDP-6.,
QSDP-QAP, QSDP-BIQ and QSDP-RCP problems (accuracy = 10~%). In the
table, “scb” stands for SCB-sSPADMMand “gb” stands for ADMMGB, respectively.
The computation time is in the format of “hours:minutes:seconds”.

iteration Ngsdp Ngap time
problem mp;ns rank(B) scbladmm|gb scbladmm|gb scbladmm|gb scbladmm|gb
abalone-medium-4 401 ; 400 10 372 | 626 | 684 9.9-719.9-7 | 9.9-7 -5.3-8 | 3.6-9 | 6.3-9 1216 |24
abalone-medium-5 401 ; 400 10 524 [ 779 | 942 9.971907]9.97 | 388]-1.47]-0.68 182132
abalone-medium-6 401 ; 400 10 536 [ 946 | 1162 9771 9.97 [ 9.97 | -1.37 [ -2.3-7 | -1.87 222738
abalone-medium-7 401 ; 400 10 | 1046 | 1676 | 2013 | 9.97 [ 9.0-7 [ 9.9-7 | -8.0-8 | -4.2.8 | -3.3.8 3747 ] 1:09
abalone-medium-8 401 ; 400 10 745 [ 1123 | 1641 | 9.67 [ 9.77 | 9.07 | -3.98] 227 ] 9.1-8 2732 ] 55
abalone-medium-9 401 ; 400 10 1035 | 1504 | 1709 9.9-719.5-7 | 9.9-7 -8.3-8 ] 7.1-8 | -1.2-8 38 ] 43| 1:02
abalone-medium-10 401 ; 400 10 | 1349 | 1803 [ 1004 | 9.9-7 | 9.4-7 | 9.87 | -1.7-7 | -2.0-7 | -2.2-7 1951 1.07
abalone-medium-11 401 ; 400 10 | 1066 | 1504 [ 1704 | 9.9.7 [9.7-7 | 957 | -1.17 | -1.6-7 | -1.6-7 10 [ 45 | 1:02
abalone-large-2 1001 ; 1000 10 594 | 734 | 909 9.9-719.87]9.9-7 4.6-7 | 4.5-7 | 1.3-7 3:16 | 2:35 | 3:54
abalone-large-3 1001 ; 1000 10 656 | 1014 | 1901 9.9-719.9-7]|9.9-7 | -1.4-8|-7.2-8 | -4.4-8 3:03 | 3:37 | 8:20
abalone-large-4 1001 ; 1000 10 505 | 749 | 995 9.9-719.9-7 | 9.8-7 -1.3-9 | -1.6-8 | -6.6-8 2:42 | 2:39 | 4:24
abalone-large-5 1001 ; 1000 10 752 [ 1187 | 1550 | 0.8-7 [ 9.97 [ 9.0-7 | -6.88 [ -1.87 [ -1.2-7 111 4:16 | 6:53
abalone-large-6 1001 ; 1000 10 886 [ 1364 [ 1670 | 9.0-7 [9.0-7 | 9.97 | 958 | -L1-7 | -1.2-7 1.0 | 456 | 727
abalone-large—7 1001 ; 1000 10 | 1206 | 1614 | 2251 | 9.9-7 | 9.9-7 ] 9.9-7 | -1.1-7 | 1.8-8 | -7.5-8 5:40 | 5:47 | 9:50
abalone-large-8 1001 ; 1000 10 1092 | 1721 | 2046 9.9-719.9-7]9.9-7 | -3.1-7|-1.87|-2.9-7 5:08 | 6:14 | 9:07
abalone-large-9 1001 ; 1000 10 1557 | 2407 | 2746 9.8-719.9-7 | 9.9-7 -3.8-7]-3.5-7 | -2.8-7 8:30 | 8:47 | 12:15
abalone-large-10 1001 ; 1000 10 1682 | 2488 | 2821 9.9-719.9-7]9.9-7 -1.6-7 | -2.6-7 | -2.5-7 8:00 | 9:06 | 12:39
abalone-large-11 1001 ; 1000 10 | 1023 [ 3005 | 3723 | 9.87 ] 9.9-7 | 9.97 | 1.3-7]3.63 ] -3.5-8 9:17 | 11:00 | 16:39
segment-medium-2 701 ; 700 10 | 1016 | 1541 | 1880 | 9.7-7 | 9.87 [ 9.97 | 130 110257 2:07 [ 2:13 | 3:26
segment-medium-3 701 ; 700 10 713 | 714 | 1801 9.4-719.5-7|9.2-7 | -4.0-7|-9.7-7 | -8.7-7 1:24 ] 1:03 | 3:20
segment-medium-4 701 ; 700 10 2282 | 2710 | 17881 9.9-719.9-7 | 9.9-7 -7.1-8 | -6.5-8 | -6.5-8 4:30 | 4:25 | 34:11
segment-medium-5 701 ; 700 10 | 2322 | 3100 | 18701 | 9.9-7 [ 9.0-7 | 9.9-7 | -1.2-7 | -0.5-8 | -7.3-8 | 4:40 ] 5:02 | 35:56
segment-medium-6 701 ; 700 10 | 2966 | 3916 | 25000 | 9.97 [9.97 | 110 | -1.7-7 ] 147 [ -1.3.7 | 6:12]6:20 | 51:26
segment-medium-7 701 ; 700 10 | 3185 | 4268 | 25000 | 9.97 [ 9.0-7 | 1.0.0 | -1.7-7 | -1.7-7 | -1.6-7 | 7:03 | 7:34 | 53:28
segment-medium-8 701 ; 700 10 | 2998 | 4140 | 25000 | 9.97 [9.0-7 | 1106 | -1.6-7 | -1.7-7 | 6.7-8 | 6:28 | 7:00 | 52:54
segment-medium-9 701 ; 700 10 2123 | 2635 | 8801 9.9-719.9-7 | 9.9-7 -1.9-7 ] -3.0-8 | -4.3-8 4:32 | 4:25 | 18:04
segment-medium-10 701 ; 700 10 | 1695 | 2414 [ 6101 | 9.97 [ 9.0-7 | 9.87 | -2.47 | -1.2-7 | -2.2.8 | 3:35 | 4.07 | 12:27
segment-medium-11 701 ; 700 10 1454 | 2437 | 2101 9.4-7 1 9.7-7 | 8.6-7 6.4-8 | -6.3-7 | -1.5-7 3:01 | 4:00 | 4:13
segment-large-2 1001 ; 1000 10 1348 | 1823 | 2038 9.6-7 1 9.9-7 | 9.9-7 -1.3-6 | -1.3-6 | -1.4-6 6:30 | 6:15 | 8:40
segment-large-3 1001 ; 1000 10 479 | 533 | 1601 9.9-719.9-7]87-7 | -4.0-7|-1.0-6|-4.4-7 2:10 | 1:53 | 6:49
segment-large-4 1001 ; 1000 10 2157 | 2802 | 20226 9.9-719.9-7 | 9.9-7 -9.1-8 ] -9.5-8 | -7.1-8 9:57 | 9:57 | 1:27:58
segment-large-5 1001 ; 1000 10 | 2618 | 3404 [ 25000 | 9.9-7 [ 9.9-7 | 1.0.0 | -1.1-7 | -9.3-8 | -8.3-8 | 12:13 | 12:12 | 1:50:29
segment-large-6 1001 ; 1000 10 | 3236 | 4143 | 25000 | 9.9-7 [ 9.97 | 110 | -1.87 | -1.87 | -1.2-7 | 15:28 | 15:20 | 1:52:58
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Table 4: The performance of SCB-SPADMM, ADMM, ADMMGB on QSDP-6.,
QSDP-QAP, QSDP-BIQ and QSDP-RCP problems (accuracy = 10~%). In the
table, “scb” stands for SCB-sSPADMMand “gb” stands for ADMMGB, respectively.
The computation time is in the format of “hours:minutes:seconds”.

iteration Ngsdp Ngap time
problem mpg;ns rank(B) scbladmm|gb scbladmm|gb scbladmm|gb scbladmm|gb
segment-large-7 1001 ; 1000 10 3505 | 4318 | 25000 9.9-719.9-7 ] 1.86 -1.8-7 | -1.7-7 | -1.9-7 17:07 | 16:39 | 1:56:00
segment-large-8 1001 ; 1000 10 | 3063 | 3749 | 25000 | 9.9-7 [9.9-7 | 100 | -9.3-8 | -7.8-8 | -1.0-7 | 14:55 | 14:18 | 1:56:05
segment-large-9 1001 ; 1000 10 2497 | 3248 | 15649 9.9-719.9-7| 9.9-7 -1.4-7|-1.2-7 | -5.1-8 12:05 | 13:16 | 1:11:25
segment-large-10 1001 ; 1000 10 1723 | 2226 | 4901 9.9-719.9-7]9.9-7 7.4-911.4-8|-2.1-8 8:00 | 8:12 | 21:45
segment-large-11 1001 ; 1000 10 1571 | 2331 | 3417 9.9-719.7-7 ] 9.9-7 1.9-7]-5.1-7 | -1.7-8 7:20 | 8:30 | 15:23
housing-2 507 ; 506 10 3183 | 5358 | 4689 9.4-719.7-7 | 9.7-7 -1.9-7 | 1.8-7 | 2.0-7 2:54 | 3:22 | 3:48
housing-3 507 ;506 10 845 (1070 [ 1714 | 9.97[9.9.7 [ 9.07 | 157 1.2.7 | 2.2-8 B[ 116124
housing-4 507 ;506 10 805 [ 1742 | 2057 | 947 9.9-79.07 | 258 | -4.88 | -3.48 15[ 1:09 | 1:45
housing-5 507 ; 506 10 874 | 1262 | 1774 9.9-719.9-7 | 9.9-7 2.4-7]-2.3-7 | -2.6-7 1:10 | 1:14 | 3:08
housing-6 507 ;506 10 586 | 826 | 1005 9.971907]9.97 | -1.98]2.99] 8.68 T:A1 [ 1:26 | 1:39
housing-7 507 ; 506 10 583 | 906 | 1069 9.9-719.9-7 | 9.9-7 -1.3-7 | -2.7-7 | -1.7-7 32|37 | 56
housing 8 507 ;506 10 682 1004 | 1074 9971937997 | -1.1-7]-6.09 ] -6.6-8 393859
housing-9 507 ;506 10 765 [ 1208 | 1590 | 8.5-7 [ 9.9-7 [ 9.87 | -1.5-7 | -1.3-8 | 8.5-8 1453 1:26
housing-10 507 ; 506 10 1027 | 1381 | 1541 9.9-719.9-7 | 9.9-7 -6.4-8 | -1.6-7 | -1.0-7 58 | 1:02 | 1:27
housing 11 507 ;506 10 867 (1327 | 1359 | 9.97 [ 9.9-7 [ 9.07 | -1.0-7 ] -9.08 | -9.28 19 [ 1.01 | 1:10
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