
http://wrap.warwick.ac.uk

Original citation:
Chekuri, Chandra and Ene, Alina. (2014) The all-or-nothing flow problem in directed
graphs with symmetric demand pairs. Mathematical Programming Series B . ISSN 0025-
5610

Permanent WRAP url:
http://wrap.warwick.ac.uk/65523

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
“The final publication is available at Springer via http://dx.doi.org/10.1007/s10107-014-
0856-z "

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/65523
http://dx.doi.org/10.1007/s10107-014-0856-z
http://dx.doi.org/10.1007/s10107-014-0856-z
mailto:publications@warwick.ac.uk

Noname manuscript No.
(will be inserted by the editor)

The All-or-Nothing Flow Problem in Directed Graphs
with Symmetric Demand Pairs

Chandra Chekuri · Alina Ene

Received: date / Accepted: date

Abstract We study the approximability of the All-or-Nothing multicommod-
ity flow problem in directed graphs with symmetric demand pairs (SymANF).
The input consists of a directed graph G = (V,E) and a collection of (un-
ordered) pairs of nodes M = {s1t1, s2t2, . . . , sktk}. A subset M′ of the pairs
is routable if there is a feasible multicommodity flow in G such that, for each
pair siti ∈ M′, the amount of flow from si to ti is at least one and the
amount of flow from ti to si is at least one. The goal is to find a maximum
cardinality subset of the given pairs that can be routed. Our main result is
a poly-logarithmic approximation with constant congestion for SymANF. We
obtain this result by extending the well-linked decomposition framework of [9]
to the directed graph setting with symmetric demand pairs. We point out the
importance of studying routing problems in this setting and the relevance of
our result to future work.

Supported in part by NSF grants CCF-1016684 and CCF-1319376. Part of this work was
done while the author was supported by TTI Chicago on a sabbatical visit in Fall 2012.

Supported in part by NSF grants CCF-1016684 and CCF-0844872. Part of this work was
done while the author was an intern at TTI Chicago.

Chandra Chekuri
Department of Computer Science, University of Illinois at Urbana-Champaign
E-mail: chekuri@illinois.edu

Alina Ene
Center for Computational Intractability, Princeton University
Department of Computer Science and DIMAP, University of Warwick
E-mail: aene@cs.princeton.edu

2 Chandra Chekuri, Alina Ene

1 Introduction

We consider some fundamental maximum throughput routing problems in
directed graphs. In this setting, we are given a capacitated directed graph
G = (V,E) with n nodes and m edges. We are also given source-destination
pairs of nodes (s1, t1), (s2, t2), . . . , (sk, tk). The goal is to select a largest subset
of the pairs that are simultaneously routable subject to the capacities; a set
of pairs is routable if there is a multicommodity flow for the pairs satisfying
certain constraints that vary from problem to problem (e.g., integrality, un-
splittability, edge or node capacities). Two well-studied optimization problems
in this context are the Maximum Edge Disjoint Paths (MEDP) and the All-or-
Nothing Flow (ANF) problem. In MEDP, a set of pairs is routable if the pairs
can be connected using edge-disjoint paths. In ANF, a set of pairs is routable
if there is a feasible multicommodity flow that fractionally routes one unit of
flow from si to ti for each routed pair (si, ti). ANF, introduced in [12,8], can
be seen as a relaxed version of MEDP where the flow for the routed pairs is
not required to be integral.

MEDP and ANF are both NP-hard and their approximability has attracted
substantial attention. Over the last decade, several non-trivial results on both
upper bounds and lower bounds have led to a much better understanding of
these problems. At a high level, one can summarize this progress as follows.
MEDP and ANF admit poly-logarithmic approximation in undirected graphs
if one allows constant congestion1; in fact, a congestion of 2 is sufficient for
MEDP [16] and for ANF no extra congestion is needed [8]. Moreover, both

problems are hard to approximate to within a factor of Ω(log
1−ε
c+1 n) for any

constant congestion c ≥ 1 [2]; the hardness is under the assumption that NP 6⊆
ZPTIME(npolylog(n)). In sharp contrast, in directed graphs both problems are
hard to approximate to within a polynomial factor for any constant congestion
c ≥ 1; the hardness factor is nΩ(1/c) [14]. The upper bounds and lower bounds
on the approximability are closely related to corresponding integrality gap
bounds on a multicommodity flow relaxation for these problems.

In this paper, with several interrelated motivations in mind that we discuss
in detail subsequently, we initiate the study of maximum throughput routing
problems in directed graphs in the setting where the demand pairs are sym-
metric. Informally, in a symmetric demand pair instance, the input pairs are
unordered and a pair siti is routed only if both the ordered pairs (si, ti) and
(ti, si) are routed. In particular, we focus our attention on the SymANF prob-
lem. The input consists of a directed graph G = (V,E) and a collection of
(unordered) pairs of nodes M = {s1t1, s2t2, . . . , sktk}. A subset M′ of the
pairs is routable if there is a feasible multicommodity flow in G such that,
for each pair siti ∈ M′, the amount of flow from si to ti is one unit and the

1 A routing has congestion c if it violates the capacities by a factor of at most c.

Symmetric All-or-Nothing Flow in Directed Graphs 3

amount of flow from ti to si is one unit2. The goal is to find a maximum
cardinality subset of the given pairs that can be routed.

One issue is whether we assume capacities on edges or on nodes or on both.
In undirected graphs the node capacitated case is more general, however, in
directed graphs this is not the case. In this paper we will assume that G has
only node-capacities, in particular that each node has capacity one. The main
reason for our choice is to relate routability in the symmetric setting to the
notion of directed treewidth.

Our main result is the following theorem that gives a poly-logarithmic
approximation with constant congestion for SymANF.

Theorem 1 There is a polynomial time algorithm that, given any instance of
the SymANF problem in directed graphs, it routes Ω(OPT/ log2 k) pairs with
constant node congestion, where OPT is the value of an optimal fractional
solution for the instance.

The congestion that we guarantee is 64. We believe that the congestion can be
improved, but we have not attempted to optimize the constant. Our algorithm
uses a natural LP relaxation for the problem as a starting point and we also
show a poly-logarithmic upper bound on the integrality gap of the relaxation.
Some simple and natural extensions such as handling capacitated graphs and
pairs with demand values can be handled via known techniques and we do not
address them in this version.

We observe that, via existing results on the hardness of ANF in undirected
graphs with congestion [2], one can conclude that SymANF with congestion c
is hard to approximate to within a factor of (log n)Ω(1/c) for any fixed c unless
NP ⊆ ZPTIME

(
npolylog(n)

)
.

2 Motivation and connection to related problems

The study of routing problems is motivated by several real-world applications
but also by the fundamental role that flows and cuts play in algorithms, combi-
natorial optimization, and graph theory. For a single pair (s, t) it is well-known
that the value of a maximum s-t flow in a directed graph is equal to the value
of a minimum s-t cut; moreover, when the capacities are integral, the maxi-
mum fractional s-t flow is equal to the maximum integral s-t flow. These nice
structural properties do not hold in the multicommodity setting in undirected
or directed graphs even when the number of commodities is three.

The study of approximate flow-cut gap results, starting with the seminal
work of Leighton and Rao [27], has been extremely fruitful and we now have

2 There are alternative ways to define routability that captures symmetry. One option is
to require a flow of 1/2 unit in each direction which is compatible with a total of one unit of
flow entering and leaving each terminal. Another option is to require that for any orientation
of the demand pairs, there is a feasible multicommodity for the pairs with one unit for each
pair in the direction given by the orientation; however, deciding the routability according to
this definition is not easy. For simplicity we require one unit of flow in each direction which
results in a factor of 2 loss in the congestion when compared to other models.

4 Chandra Chekuri, Alina Ene

an optimal upper bound of Θ(log k) on multicommodity flow-cut gaps in undi-
rected graphs in a variety of settings [20,28,18,7]. Poly-logarithmic flow-cut
gaps are also known in directed graphs with symmetric demand pairs [26]. In
contrast to these results, the flow-cut gap in directed graphs can be polynomial
[30,15].

Maximum throughput routing problems, such as MEDP and the related
problem of congestion minimization, aim to construct integer flows. These
problems are typically tackled via relaxations based on multicommodity flows.
Culminating a series of papers that addressed special cases and developed var-
ious tools, in a recent breakthrough, Chuzhoy [13] showed a poly-logarithmic
upper bound with constant congestion in general undirected graphs. Subse-
quently, the congestion has been brought down to the optimal bound of 2 in
[16]. Building on Chuzhoy’s work, the authors of this paper obtained a poly-
logarithmic upper bound with constant congestion for the maximum node-
disjoint paths problem in undirected graphs. Our primary motivation is to
understand whether the gap between fractional flows and integral flows is also
small in directed graphs with symmetric demand pairs. We also believe that
addressing this question will have auxiliary benefits that we discuss below.

Structure of graphs with large (directed) treewidth: Recent progress on routing
problems has been accomplished via the following scheme. The well-linked de-
composition framework of [9] showed that one can use flow-cut gap results to
reduce the problem (to within poly-logarithmic factors) to a graph theoretic
question: if the graph G has a “well-linked” set of size k, does it have a rout-
ing structure (called a crossbar) of size3 Ω̃(k)? For node-capacitated routing
problems in undirected graphs, the question can be phrased in terms of the
well-understood notion of treewidth: If G has treewidth k, does G have a cross-
bar of size Ω̃(k)? The question was answered affirmatively (in [6], following
Chuzhoy’s framework for MEDP). The technical ingredients developed in [13],
and in subsequent work [16,6], have led to further graph theoretic results in-
cluding a polynomial relationship between treewidth and the size of a largest
grid-minor in a graph [5], and several applications [4].

An important motivation for studying routing problems in directed graphs
with symmetric demand pairs stems from their connections to directed
treewidth. Johnson, Robertson, Seymour, and Thomas [21] introduced the no-
tion of directed treewidth. In undirected graphs treewidth is defined via tree
decompositions and is reasonably intuitive. Directed treewidth is defined via
arboreal decompositions [21] and is less easy to grasp. We refer the reader
to [21,29,1] for some subtle issues that differentiate directed treewidth from
treewidth. It is believed that understanding directed treewidth better would
yield significant dividends in graph theory and algorithms. Fortunately, di-
rected treewidth, like treewidth, can be approximately understood via well-
linked sets [29]. In this paper, we extend the well-linked decomposition frame-
work of [9] to this setting and this leads to the following question: If a directed
graph G has directed treewidth k (equivalently, has a well-linked set of size

3 The Ω̃ notation hides poly-logarithmic factors.

Symmetric All-or-Nothing Flow in Directed Graphs 5

Ω(k)), does it have a “routing structure” of size Ω̃(k)? Answering this question
affirmatively would lead to algorithms for disjoint path routing for symmetric
pair instances. In addition it may lead to insights about the relationship be-
tween treewidth and cylindrical minors in directed graphs; we refer the reader
to [23,24] for recent progress on this question.

Flow-cut gap in planar graphs: Another interesting direction for future work,
and a motivation for us, is to show the following: if G is a planar directed
graph with directed treewidth k, then it has a crossbar of size Ω(k). A linear
relationship would have applications to routing on disjoint paths, and it would
also give an improved upper bound on the flow-cut gap for symmetric product
multicommodity flows in planar directed graphs. Currently, the flow-cut gap
for product multicommodity flows in both general and planar directed graphs
is known to be O(log n) [27]. The existence of a crossbar of size Ω(k) will
imply that the flow-cut gap is O(1) in planar directed graphs4, which in turn
will give constant factor approximation guarantees for problems such as the
Uniform Sparsest Cut problem in planar directed graphs; such results are known
for planar undirected graphs [25].

In this paper, we study the SymANF problem as a first step towards under-
standing maximum throughput routing problems in directed graphs. We now
give a high-level description of our algorithm and we describe in more detail
some specific technical contributions that enable us to prove Theorem 1.

2.1 Overview of the algorithm and technical contributions

Let (G,M) be an instance of SymANF. Let T be the set of all nodes that
participate in the pairs ofM; we refer to the nodes in T as the terminals. Our
algorithm for SymANF in directed graphs follows the framework of Chekuri,
Khanna, and Shepherd [8,9] for the ANF problem in undirected graphs. In a
nutshell, the framework decomposes an arbitrary instance of ANF into several
instances that are flow-well-linked. The set of terminals T = {s1, t1, . . . , sk, tk}
is flow-well-linked if any matching on the terminals is routable. This is essen-
tially equivalent (modulo a factor of 2 in congestion) to saying that G admits
a symmetric product multicommodity flow where the weight on each terminal
is 1 and is 0 on every non-terminal. If the terminals are flow-well-linked, we
can route all the input pairs. Thus the heart of the matter is showing that
an arbitrary instance can be decomposed into well-linked instances without
losing too much flow.

The decomposition has two main components. The first step is a weaker
decomposition in which we take a fractional solution to a natural multicom-
modity flow based LP (described in Section 3.3) and use it to decompose
the instance into instances that are only fractionally flow-well-linked. More
precisely, there is a weight function π : T → [0, 1] and the terminals are

4 The implications of crossbar results for product multicommodity flow-cut gaps is pointed
out in [9].

6 Chandra Chekuri, Alina Ene

flow-well-linked with respect to these weights; if all terminals have weight 1
then they are flow-well-linked. The second step is a clustering step in which
we take a fractionally flow-well-linked instance and we identify a large subset
of the pairs such that their endpoints are flow-well-linked. In this paper, we
show how to implement these two steps for the SymANF problem in directed
graphs. In the first step, we extend the approach of [9] to our setting; we refer
the reader to Section 4 for the details of the decomposition. We note that
the approximation factor that we lose in the decomposition is proportional to
the flow-cut gap; for symmetric instances, the flow-cut gap is only polylog(k).
The second step poses several technical difficulties in directed graphs and it is
our main technical contribution. We briefly highlight some of the difficulties
involved in the clustering step, and we refer the reader to Section 5 for the de-
tails. Chekuri, Khanna, and Shepherd [9] gave a simple clustering technique for
edge-capacitated undirected graphs. Roughly speaking, the approach is to take
a spanning tree and to partition it into edge-disjoint subtrees where each sub-
tree gathers roughly a unit weight from π. These subtrees are then used to find
the desired flow-well-linked subset of pairs/terminals; one terminal is picked
from each subtree. The clustering step is more involved in node-capacitated
undirected graphs. The spanning tree approach, combined with some prepro-
cessing to reduce the degree, gives a clustering for node-capacitated graphs
with slightly weaker parameters [9]. In [10], the authors gave a stronger clus-
tering for the node-capacitated setting; this approach is more involved than
the spanning tree clustering and it exploits a connection between well-linked
sets and treewidth; recent work [5] obtains a stronger result but requires more
involved ideas. In directed graphs, there is no simple clustering process akin to
using a spanning tree (or even an arborescence). Instead, our approach exploits
the connection between well-linked sets and directed treewidth. However, the
main challenge is to make this algorithmic. We also mention that, in addition
to finding a large flow-well-linked set Y from a fractionally flow-well-linked
set X, we also need to ensure that Y contains a large enough matching from
the original set of pairs. For this purpose, we rely on a flow augmentation
tool developed in [11]. These difficulties are also the reason why we are only
able to obtain a constant congestion for SymANF while ANF admits a poly-
logarithmic ratio with congestion 1 in edge-capacitated graphs [8] and with
congestion (1 + ε) in node-capacitated graphs [9].

2.2 Discussion of related work

The ANF problem, the MEDP problem and its node-capacitated counterpart,
the Maximum Node Disjoint Paths (MNDP) problem have been studied exten-
sively in both undirected and directed graphs. We first discuss the decision
versions of these problems where we are given G and the pairs, and the goal
is to decide if all of them can be routed. It is easy to see that the decision
version of ANF is polynomial-time solvable via linear programming — one
needs to check whether there is a multicommodity flow that routes one unit

Symmetric All-or-Nothing Flow in Directed Graphs 7

of flow for each input pair. On the other hand, the decision versions of MEDP
and MNDP, denoted by EDP and NDP respectively, are NP-complete if k is
part of the input [22,17]. If k is fixed, Robertson and Seymour, building on
their seminal work on graph minors, gave a polynomial-time algorithm for
NDP (and hence also for EDP) in undirected graphs. Interestingly, EDP is al-
ready NP-complete for k = 2 in directed graphs [19]. It is useful to note that
the undirected graph algorithm of Robertson and Seymour relies heavily on
treewidth and the structure of graphs with large treewidth.

ANF, MEDP and MNDP are optimization problems. Although the decision
version of ANF is poly-time solvable, ANF is NP-hard, and APX-hard to ap-
proximate, even in capacitated trees [20]; routing is trivial in trees, selecting
the pairs to route is not. The best approximation guarantees that are known for
the ANF problem in undirected graphs are an O(log2 k) approximation in edge-
capacitated graphs [9] and an O(log4 k log n) approximation with congestion
(1+ε) in node-capacitated graphs [9]; these ratios improve by a logarithmic fac-
tor for planar graphs. For node-capacitated graphs, an unpublished manuscript
[10] gives an O(log2 k)-approximation if constant congestion is allowed. The
MEDP problem with congestion c = o(log n/ log log n) is Ω

(
(log n)O(1/c)

)
-hard

to approximate in undirected graphs [3] and Ω(nO(1/c))-hard to approximate
in directed graphs [14], unless NP ⊆ ZPTIME

(
npolylog(n)

)
. It is useful to

note that these hardness results also hold for the ANF problem, which suggests
that the current techniques do not distinguish between the difficulty of ANF
and MEDP. For MEDP in undirected graphs there is an O(

√
n)-approximation

with congestion 1 [11] and as we already mentioned, recent work obtains a poly-
logarithmic approximation with congestion 2 [16]. In directed graphs, MEDP
has an nO(1/c)-approximation with congestion c [31], and this approximation
carries over to ANF as well. These approximation results use the natural mul-
ticommodity flow relaxations as a starting point and they also establish the
same upper bound on the integrality gap of the relaxations.

Organization: Section 3 introduces the main definitions and technical tools
that we use, and it describes the approximation algorithm for SymANF. Sec-
tion 4 and Section 5 describe the well-linked decomposition and clustering
technique for directed graphs with symmetric demand pairs.

3 Approximation Algorithm for SymANF

In the following, we work with an instance (G,M) of the SymANF problem,
where G = (V,E) is a directed graph with unit node capacities and M =
{s1t1, . . . , sktk} is a collection of node pairs. We refer to the nodes participating
in the pairs ofM as terminals, and we use T to denote the set of all terminals.
We assume that the pairsM form a perfect matching on T and each terminal
is a leaf in G, i.e., each terminal is connected to a single neighbor using an
edge in each direction. One can reduce an arbitrary instance to an instance
that satisfies these assumptions as follows. If a node v participates in several
pairs, we make a copy of v for each of the pairs it participates in, and attach

8 Chandra Chekuri, Alina Ene

the copy v′ to v using an edge in each direction; finally we replace v by v′ in
the pair. Similarly, if a terminal is not a leaf, we make a copy of the terminal,
we attach the copy to the original node as a leaf, and we replace the terminal
by its copy in the pairs that contain it. Note that, if a set of pairs was routable
in the original instance, then it is routable in the new instance with congestion
at most 2.

In the following subsection we describe some basic ingredients about (sym-
metric) multicommodity flows and node separators. Subsection 3.2 formally
defines well-linked sets and states the results on well-linked decompositions
and clustering that are used in the algorithm for SymANF.

3.1 Multicommodity flows and sparse node separators

Let G = (V,E, cap) be a directed node-capacitated graph with node capaci-
ties given by cap. In this paper, we work with path-based flows f that as-
sign a non-negative real value f(p) to each path in G. A flow f is feasi-
ble if it satisfies the capacity constraints; more precisely, for each node v,∑
p:v∈p f(p) ≤ cap(v). For any ordered pair (u, v) of nodes, the total flow from

u to v is
∑
p∈P(u,v) f(p), where P(u, v) is the set of all paths of G from u to v.

A multicommodity flow instance in G is a demand vector d that assigns
a non-negative real value d(u, v) to each ordered pair (u, v) of nodes of G;
we refer to d(u, v) as the demand of the pair (u, v). A multicommodity flow
instance is symmetric if d(u, v) = d(v, u) for all ordered pairs (u, v). A mul-
ticommodity flow instance d is a product multicommodity flow instance if
d(u, v) = w(u)w(v), where w : V → R+ is a weight function on the nodes of
G. Note that a product multicommodity flow instance is symmetric. In the
following, we only consider symmetric multicommodity flow instances. A mul-
ticommodity flow instance d is routable if there is a feasible multicommodity
flow in which, for each ordered pair (u, v), the total flow on the paths from u
to v is at least d(u, v). We work with the following quantities associated with a
symmetric multicommodity flow instance, the maximum concurrent flow and
the sparsest node separator. The maximum concurrent flow is the maximum
value λ ≥ 0 such that λd is routable. A node separator is a set C ⊆ V of nodes.
The removal of a node separator gives us one or more strongly connected com-
ponents; we say that a pair uv is separated by C if u and v are not in the same
strongly connected component of G−C. The demand separated by C, denoted
by demd(C), is the total demand of all of the unordered pairs separated by C;
more precisely, demd(C) =

∑
uv separated by C d(u, v). The sparsity of a node

separator C is cap(C)/demd(C). A sparsest node separator is a separator with
minimum sparsity. It is straightforward to verify that, for a symmetric multi-
commodity flow, the minimum sparsity of a node separator is an upper bound
on the maximum concurrent flow. The flow-cut gap in G is the maximum value
— over all symmetric multicommodity flow instances d in G — of the ratio
between the minimum sparsity of a node separator and the maximum concur-
rent flow. The flow-cut gap in any graph is O(log2 k), where k is the number of

Symmetric All-or-Nothing Flow in Directed Graphs 9

commodities (each pair (u, v) with non-zero demand is a commodity) [26]. For
product multicommodity flows, the flow-cut gap is O(log k) [27]. Moreover,
it was shown in [27] that there is a polynomial time algorithm that, given a
product multicommodity flow instance d in G, it constructs a node separator
C whose sparsity is at most O(log k)λ, where λ is the maximum concurrent
flow for d; we use such an algorithm in a black box fashion in the well-linked
decomposition step that we describe in more detail below.

A node separation in G is a partition (A,B,C) of the nodes of G such that
there is no edge of G from A to B (note that there can be an edge of G from B
to A). The following proposition shows that, given a weight function π on the
nodes, and a node separator C, one can choose a node separation (A,B,C)
that is “balanced” with respect to π.

Proposition 1 Let G = (V,E) be a directed graph and let π : V → R+ be a
weight function. Let d be the following product multicommodity flow: d(u, v) =
π(u)π(v)/π(V) for each pair (u, v) of nodes. Let C be a node separator in G.
There is a node separation (A,B,C) such that demd(C) ≤ 2 min {π(A), π(B)}.
Moreover, given C, we can compute such a node separation in polynomial time.

Proof: Let C be a node separator. Let K1,K2, . . . ,K` be a topological or-
dering of the strongly connected components of G− C in which each edge of
G − C connecting different strongly connected components is oriented from
right to left.

Suppose that π(Ki) ≤ π(V − C)/2 for each i. Let p be the smallest index
such that π(K1 ∪ · · · ∪Kp) ≥ π(V −C)/4. Let A = V (K1) ∪ · · · ∪ V (Kp) and
B = V (Kp+1) ∪ · · · ∪ V (K`). Since π(K1 ∪ · · · ∪ Kp−1) < π(V − C)/4 and
π(Kp) ≤ π(V − C)/2, we have π(A) ≤ 3π(V − C)/4 and therefore π(B) ≥
π(V −C)/4. Thus (A,B,C) is a node separation satisfying min {π(A), π(B)} ≥
π(V −C)/4. Note that the total demand of the pairs (u, v) ∈ (V −C)×(V −C)
is π(V −C)·π(V −C)/π(V) ≤ π(V −C). Therefore demd(C) ≤ π(V −C)/2 ≤
2 min {π(A), π(B)}.

Therefore we may assume that maxi π(Ki) > π(V − C)/2. Let Kq be
the strongly connected component with maximum π-weight; more precisely,
q = argmaxiπ(Ki). We define a partition (A,B) of V −C as follows. If π(K1∪
· · · ∪ Kq−1) ≥ π(Kq+1 ∪ · · · ∪ K`), we let A = V (K1) ∪ · · · ∪ V (Kq−1) and
B = V (Kq)∪· · ·∪V (K`). Otherwise, we let A = V (K1)∪· · ·∪V (Kq) and B =
V (Kq+1)∪· · ·∪V (K`). The partition (A,B,C) is a node separation satisfying
min {π(A), π(B)} ≥ π(V −(C∪Kq))/2. Note that the total demand of the pairs
(u, v) ∈ (V −(C∪Kq))×(V −(C∪Kq)) is π(V −(C∪Kq))·π(V −(C∪Kq))/π(V).
Additionally, the total demand of the pairs (u, v) ∈ Kq × (V − (C ∪ Kq)) is
π(Kq)π(V − (C ∪Kq))/π(V). Therefore we have

demd(C) ≤ π(Kq)π(V − (C ∪Kq))

π(V)
+
π(V − (C ∪Kq))π(V − (C ∪Kq))

2π(V)

=
π(V − (C ∪Kq))(π(Kq) + π(V − C))

2π(V)

≤ π(V − (C ∪Kq))

10 Chandra Chekuri, Alina Ene

Therefore demd(C) ≤ 2 min {π(A), π(B)}. �

3.2 Well-linked sets, decomposition, and clustering

There are two notions of well-linkedness that have been used for routing prob-
lems in undirected graphs [9]; one is based on a flow requirement and the
other is based on a cut requirement. In the following, we define directed node-
capacitated versions of these two notions and we show some basic properties
of these notions.

Flow-well-linked sets: Let G be a directed graph with unit capacities on the
nodes. We define a fractional version of flow-well-linkedness as follows. Let
π : X → [0, 1] be a weight function on X ⊆ V . Let d be the following demand
vector: d(u, v) = π(u)π(v)/π(X) for each ordered pair (u, v) of nodes in X.
The set X is π-flow-well-linked in G iff d is routable in G. For a scalar
c ∈ [0, 1], we say that X is c-flow-well-linked if X is π-flow-well-linked, where
π(v) = c for each vertex v ∈ X.

Cut-well-linked sets: A set X ⊆ V is cut-well-linked in G iff, for any two
disjoint subsets Y and Z of X of equal size, there are |Y | node-disjoint paths
from Y to Z in G. Recall that a node is a leaf in G if it is connected to a
single neighbor using an edge in each direction. If the nodes of X are leaves
in G, an equivalent definition is the following. The set X is cut-well-linked
iff, for any node separation (A,B,C) satisfying X ∩ C = ∅, we have |C| ≥
min {|X ∩A|, |X ∩B|}. We define a fractional version of cut-well-linkedness
as follows. Let X be a set of nodes of G and let π : X → [0, 1] be a weight
function on X. Suppose that all the nodes in X are leaves of G. The set
X is π-cut-well-linked in G if, for any node separation (A,B,C), we have
|C| ≥ min {π(A), π(B)}. Note that, since the nodes in X are leaves, it suffices
to check this condition for separations (A,B,C) for which π(C) = 0. Now
consider a set X that contains nodes that are not leaves. For each node x ∈ X,
we add a new node x′ and connect x′ to x using two edges, one in each
direction. Let X ′ be the set of new nodes, let G′ be the resulting graph, and
let π′ : X ′ → [0, 1] be the weight function π′(x′) = π(x) for each node x ∈ X.
The set X is π-cut-well-linked in G iff X ′ is π′-cut-well-linked in G′.

The following proposition relates the two notions of well-linkedness.

Proposition 2 Let G = (V,E) be a directed graph. Let X be a set of nodes
and let π : X → [0, 1] be a weight function on X. Let α = α(G) ≥ 1 be an
upper bound on the worst case flow-cut gap for product multicommodity flows
in G. If X is π-flow-well-linked in G then X is (π/2)-cut-well-linked in G. If
X is π-cut-well-linked in G then X is (π/(2α))-flow-well-linked in G.

Proof: Let d be the following product multicommodity flow: d(u, v) =
π(u)π(v)/π(X) for each pair (u, v) of nodes in X, and d(·) is zero for all
other pairs.

Symmetric All-or-Nothing Flow in Directed Graphs 11

Suppose that X is π-flow-well-linked. Recall that, in order to show that
X is (π/2)-cut-well-linked, it suffices to verify that, for each node separation
(A,B,C) such that π(C) = 0, we have |C| ≥ min {π(A), π(B)} /2. Consider a
node separation (A,B,C) such that π(C) = 0. Since X is π-flow-well-linked,
d is routable and therefore |C| ≥ demd(C) = π(A)π(B)/π(X). Since π(X) =
π(A) + π(B), we have π(A)π(B)/π(X) ≥ min {π(A), π(B)} /2, as desired.

Conversely, suppose that X is π-cut-well-linked. By definition, X is
(π/(2α))-flow-well-linked if d/(2α) is routable. Thus, in order to show that
X is (π/(2α))-flow-well-linked, it suffices to verify that each node separator
has sparsity at least 1/2.

Let C be a sparsest node separator. By Proposition 1, there is a node
separation (A,B,C) such that demd(C) ≤ 2 min {π(A), π(B)}. Since X is π-
cut-well-linked, we have |C| ≥ min {π(A), π(B)}. Therefore the sparsity of C
is at least 1/2. �

Well-linked decomposition: The following theorem is an extension to di-
rected graphs of the well-linked decomposition technique introduced by [9] for
routing problems in undirected graphs. The proof follows the outline of the
approach in [9] and it can be found in Section 4.

Theorem 2 Let OPT be the value of a solution to the symANF-LP relaxation5

for a given instance (G,M) of SymANF. Let α = α(G) ≥ 1 be an upper bound
on the worst case flow-cut gap for product multicommodity flows in G. There
is a partition of G into node-disjoint induced subgraphs G1, G2, . . . , G` and
weight functions πi : V (Gi) → R+ with the following properties. Let Mi be
the induced pairs of M in Gi and let Xi be the endpoints of the pairs in Mi.
We have

(a) πi(u) = πi(v) for each pair uv ∈Mi.
(b) Xi is πi-flow-well-linked in Gi.

(c)
∑`
i=1 πi(Xi) = Ω(OPT/(α log OPT)) = Ω(OPT/ log2 k).

Moreover, such a partition is computable in polynomial time if there is a poly-
nomial time algorithm for computing a node separator with sparsity at most
α(G) times the maximum concurrent flow.

From fractional well-linked sets to well-linked sets: The following the-
orem describes an algorithm that obtains a well-linked set from a fractionally
well-linked set. The proof is given in Section 5.

Theorem 3 Let X be a π-flow-well-linked set in G and let M be a perfect
matching on X such that π(u) = π(v) for each pair uv ∈ M. There is a
matching M′ ⊆ M on a set X ′ ⊆ X such that X ′ is 1/32-flow-well-linked in
G and |M′| = 2|X ′| = Ω(π(X)). Moreover, given X andM, we can construct
X ′ and M′ in polynomial time.

5 The symANF-LP relaxation is given in Subsection 3.3.

12 Chandra Chekuri, Alina Ene

Routing a flow-well-linked instance: Finally, we observe that, if an in-
stance of SymANF is c-flow-well-linked for some c ≤ 1, then we can route all
of the pairs with congestion at most 2/c.

Proposition 3 Let (G,M) be an instance of SymANF and let X be the set
of all vertices that participate in the pairs of M. If X is c-flow-well-linked for
some c ≤ 1, then we can route all of the pairs of M with congestion at most
2/c.

Proof: Note that it suffices to show that we can route c units of flow for each
pair using congestion at most 2; once we have this flow, we can simply scale
it by 1/c to get a flow that routes one unit of flow for each pair.

Let X1 be a set consisting of exactly one node from each pair of M, and
let X2 = X −X1 be the set of all partners of the nodes in X1. Let d be the
following demand vector: d(u, v) = c/|X| for each pair (u, v) of nodes in X,
and d(·) is zero for all other pairs. Since X is c-flow-well-linked, there is a
feasible flow f that routes d. Note that f gives us a feasible flow in which each
node in X1 sends c units of flow to its partner: consider a node u ∈ X1 and
let v be its partner; we combine the flow paths of f connecting u to X and
the flow paths of f connecting X to v in order to get flow paths from u to
v carrying at least c units of flow. Similarly, f also gives us a feasible flow in
which each node in X2 sends c units of flow to its partner. The sum of the two
flows gives us a congestion two flow that routes c units of flow for each pair of
M. �

3.3 The approximation algorithm for SymANF

We now describe our algorithm for SymANF. Let (G,M) be an instance of
SymANF. We consider a natural multicommodity flow relaxation for the prob-
lem. For each ordered pair (u, v) of nodes of G, let P(u, v) be the set of all
paths in G from u to v. Since M forms a matching on T , for all i 6= j,
the sets P(si, ti), P(ti, si), P(sj , tj), and P(tj , sj) are pairwise disjoint. Let

P =
⋃k
i=1(P(si, ti) ∪ P(ti, si)). For each path p ∈ P, we have a variable f(p)

that is equal to the amount of flow on p. For each unordered pair siti ∈ M
we have a variable xi to indicate whether to route the pair or not. The LP
relaxation ensures the symmetry constraint: there is a flow from si to ti of
value xi and a flow from ti to si of value xi. Recall that we will be working
with the node-capacitated problem and each node has unit capacity.

Symmetric All-or-Nothing Flow in Directed Graphs 13

(symANF-LP)

max

k∑
i=1

xi

s.t.
∑

p∈P(si,ti)

f(p) ≥ xi 1 ≤ i ≤ k

∑
p∈P(ti,si)

f(p) ≥ xi 1 ≤ i ≤ k

∑
p: v∈p

f(p) ≤ 1 v ∈ V (G)

xi ≤ 1 1 ≤ i ≤ k
f(p) ≥ 0 p ∈ P

The dual of the symANF-LP relaxation has polynomially many variables and
exponentially many constraints. The separation oracle for the dual is the short-
est path problem. Thus we can solve the relaxation in polynomial time. Alter-
natively, we can write an equivalent LP relaxation that is polynomial sized.

The algorithm is described below.

(1) Solve the relaxation symANF-LP to get an optimal fractional solution (x, f)
for the instance (G,M).

(2) Use the well-linked decomposition (Theorem 2) to get a collection
(G1,M1, π1), . . . , (G`,M`, π`) of disjoint instances and weight functions.

(3) For each instance (Gi,Mi, πi) in the decomposition, use the clustering
technique (Theorem 3) to get an instance (Gi,M′i).

(4) For each instance (Gi,M′i), route all of the pairs of M′i in Gi (Proposi-
tion 3). Output the union of these routings.

Let OPT be the value of the symANF-LP for the given instance, which lower
bounds the number of pairs routed in an optimum solution. Combining Theo-
rems 2 and 3 and Proposition 3, the number of pairs routed by the algorithm
is
∑`
i=1 |M′i| =

∑`
i=1Ω(π(V (Mi))) = Ω(OPT/ log2 k). Since each instance

(Gi,M′i) is 1/32-flow-well-linked, the routing in Gi has congestion at most
64. The graphs G1, . . . , G` are node disjoint and hence the pairs routed in
these graphs do not interfere with each other. This completes the proof of
Theorem 1.

4 Well-linked decomposition

In this section, we prove Theorem 2. We follow the notation and the approach
introduced in [9] for edge and node-capacitated multicommodity flow problems
in undirected graphs.

Let (x, f) be a solution to the symANF-LP with value OPT =
∑k
i=1 xi. The

flow f is a symmetric multicommodity flow; as before, we view f as a path-
based flow. Let H be a node-induced subgraph of G. For each ordered pair

14 Chandra Chekuri, Alina Ene

Decomposition Algorithm

Input: Strongly connected subgraph H.
Output: Node-disjoint subgraphs H1, H2, . . . , H` with associated
weight functions π1, π2, . . . , π`, where each Hi is a node-induced sub-
graph of H.

(1) Suppose that 0 < w(H) ≤ α log OPT. Let π(u) =
w(u;H)/(8α log OPT) for each node u ∈ V (H). Stop and output H
and π.

(2) Suppose that w(H) > α log OPT. Let d be the following demand
vector: d(u, v) = w(u;H)w(v;H)/w(H) for each ordered pair (u, v)
of nodes in H. Let λ be the maximum concurrent flow for d.
(a) If λ ≥ 1/(8α log OPT), stop the recursive procedure. Let

π(u) = w(u;H)/(8α log OPT) for each node u ∈ V (H). Output
H and π.

(b) Otherwise find a node separation (A,B,C) such that
|C| ≤ min

{∑
a∈A w(a;H),

∑
b∈B w(b;H)

}
/(4 log OPT). Re-

cursively decompose each strongly connected component of
H − C. Output the decompositions of the strongly connected
components.

(u, v) of nodes inH, let γ(u, v;H) be the total amount of f -flow on paths p from
u to v that are completely contained in H. For each unordered pair uv of nodes
in H, let γ′(u, v;H) = γ′(v, u;H) = min {γ(u, v;H), γ(v, u;H)}. For each node
u in H, let w(u;H) =

∑
v∈V (H) γ

′(u, v;H). Let w(H) =
∑
u∈V (H) w(u;H).

We will need the following observation. Recall that a node separation in G
is a partition (A,B,C) of the nodes of G such that there is no edge of G from
A to B.

Proposition 4 Let G = (V,E) be a directed graph. Let π : V → [0, 1]
be a weight function. Let α = α(G) ≥ 1 be an upper bound on the worst
case flow-cut gap for product multicommodity flows in G. Suppose that V is
not π-flow-well-linked in G. There is a node separation (A,B,C) such that
|C| ≤ 2αmin {π(A), π(B)}. Moreover, we can construct such a separation in
polynomial time if there is a polynomial time algorithm for computing a node
separator with sparsity at most α times the maximum concurrent flow.

Proof: Note that it follows from Proposition 2 that, for any weight function
π : V → [0, 1], either V is π-flow-well-linked or there is a node separation
(A,B,C) such that |C| ≤ 2αmin {π(A), π(B)}. Additionally, we can construct
such a separation in polynomial time as follows.

Let d be the following demand vector: d(u, v) = π(u)π(v)/π(V) for each
ordered pair (u, v) of nodes. Since d is not routable, we can compute in poly-
nomial time a node separator C such that |C| ≤ α demd(C). By Proposi-
tion 1, once we have C, we can compute in polynomial time a node separation
(A,B,C) such that demd(C) ≤ 2 min {π(A), π(B)}. The resulting separation
(A,B,C) satisfies |C| ≤ 2αmin {π(A), π(B)}. �

Note that, in the step (2b) of the algorithm, we used Proposition 4: let π(u) =
w(u;H)/(8α log OPT) for each node u in H; since λ < 1/(8α log OPT), V (H)

Symmetric All-or-Nothing Flow in Directed Graphs 15

is not π-flow-well-linked and therefore there is a node separation (A,B,C)
such that

|C| ≤ 2αmin {π(A), π(B)} = min

{∑
a∈A

w(a;H),
∑
b∈B

w(b;H)

}
/(4 log OPT).

We apply the decomposition algorithm to each strongly connected component
of G in order to get a decomposition of G into node-induced disjoint subgraphs
G1, G2, . . . , G` with associated weight functions π1, π2, . . . , π`. In the following,
we show that this decomposition has the properties required by Theorem 2. It
is straightforward to verify that the decomposition has the first two properties
and thus we focus on the third property.

From the terminating conditions, it follows that πi(Gi) ≥
w(Gi)/(8α log OPT) for each i. Therefore it suffices to show that∑k
i=1 w(Gi) ≥ w(G)/2 = OPT/2. Equivalently, the total flow lost is at

most w(G)/2, where the flow lost is w(G)−
∑k
i=1 w(Gi).

We upper bound the total flow lost as follows. We say that a node of G was
cut in the decomposition if the node belongs to a node separator C found in
the step (2b). We first note that the total flow lost is at most twice the number
of nodes that were cut by the decomposition. We can show this as follows. Let
Z be the set of all nodes that are cut by the decomposition. Recall that, for
each pair uv of nodes, the amount of f -flow from u to v is equal to the amount
of f -flow from v to u; we think of the flow from u to v and the flow from v
to u as partner flows. Now consider the f -flow that does not contribute to∑k
i=1 w(Gi): this flow can be partitioned into flows, each of which is on paths

that intersect Z or it is the partner of a flow whose paths intersect Z. Since
each node has unit capacity, the total f -flow on paths that intersect Z is at
most |Z| and thus the total flow lost is at most 2|Z|. Thus it suffices to show
that |Z| is at most w(G)/4.

Lemma 1 The number of nodes cut by the well-linked decomposition is at
most w(G)/4.

Proof: We charge the cut nodes as follows. Consider an iteration of the de-
composition algorithm that cuts a node. Let H denote the graph considered
in the current iteration and let (A,B,C) be the node separation found in Step
(2b). Recall that we have

|C| ≤ 1

4 log OPT
min

{∑
a∈A

w(a;H),
∑
b∈B

w(b;H)

}
.

We charge the nodes in C as follows. Let D = A if
∑
a∈A w(a;H) ≤∑

b∈B w(b;H) and D = B otherwise. We refer to D as the smaller
side of the separation (A,B,C). For each node u ∈ D, we charge
w(u;H)/(4 log OPT) to u. Note that the total charge to the nodes of D is∑
u∈D w(u;H)/(4 log OPT) ≥ |C|.

16 Chandra Chekuri, Alina Ene

The total amount charged by the charging scheme is at least the number
of nodes that are cut by the decomposition and thus it suffices to upper bound
the total amount charged. We can show that the total amount charged is at
most w(G)/4 as follows. For each node u, we claim that u is charged at most
w(u;G)/4. A node u is charged only if it is on the smaller side of the separation
found in Step (2b) and therefore it is charged at most log(w(G)) = log OPT
times. Additionally, each charge to u is at most w(u;G)/(4 log OPT). �

5 From fractional well-linked sets to well-linked sets

In this section, we prove Theorem 3. We prove the theorem in two steps. In
the first step, we show that there exists a set Y of cardinality Ω(π(X)) such
that Y is Ω(1)-flow-well-linked. Additionally, the set Y can send flow to X
and receive flow from X. In the second step, we use Y to select a matching
M′ ⊆M of size Ω(|Y |).

Before we give the details of this procedure, we first give an intuitive (and
non-constructive) argument that motivates the approach. The argument is
partly inspired by the work in [10] and it differs from the low-degree spanning
tree clustering that has been the main approach in the undirected case. The
reader can skip the following paragraph and go straight to the technical proof.

Intuitive argument: In the following, we give an informal argument that
illustrates the clustering for fractionally cut-well-linked sets. Suppose that G
has a set X that is π-cut-well-linked. Recall that the directed treewidth of
G is within a constant factor of the largest cut-well-linked set in G; this ap-
proximate duality relation is shown via the notion of havens [21]. Using a
similar argument, one can show that, if X is π-cut-well-linked in G, the di-
rected treewidth of G is Ω(π(X)). By applying the approximate duality again,
we get that there is a cut-well-linked Z in G of size |Z| = Ω(π(X)). Since the
existence of Z was shown via the π-cut-well-linkedness of X, it is intuitive that
there is such a set Z that is reachable from X in the following sense: there is a
(single commodity) flow from X to Z where each node in Z receives one unit
of flow and each node v in X sends π(v) units of flow; similarly there is a flow
from Z to X. The existence of these flows together with the fact that X is
π-cut-well-linked imply that Z is Ω(1)-cut-well-linked. We then have to iden-
tify a subset X ′ ⊂ X that is Ω(1)-cut-well-linked. Moreover, for the SymANF
problem, we need to ensure that for the initial matching M on X there is a
sufficiently large sub-matching of M induced on X ′. These latter arguments
require an incremental flow-augmentation technique from [11]. The main tech-
nical challenge is to efficiently find a Z reachable from X as described above.
Surprisingly, we are able to show that a simple greedy iterative approach based
on the intuition of the existence argument, with a careful argument, works to
give the desired set Z modulo constant congestion. We believe that this is a
useful technical building block for further work in this area. Now we give the
formal argument.

Symmetric All-or-Nothing Flow in Directed Graphs 17

First step: Finding a large well-linked set. In the first step, we find a set
Y with the following properties:

Theorem 4 Let G be a directed graph with unit node capacities. Let X be a
set of nodes of G and let π : X → (0, 1] be a weight function on X. Suppose
that X is π-flow-well-linked in G. There is a polynomial time algorithm that
constructs a set Y ⊆ V (G) with the following properties.

(P1) |Y | = bπ(X)/8c.
(P2) Y is 1/4-flow-well-linked in G.

Additionally, for any subset X ′ ⊆ X such that π(X ′) ≤ π(X)/15, we have

(Q1) There is a single commodity flow in G from X ′ to Y such that each node
x ∈ X ′ sends π(x)/64 units of flow and each node in Y receives at most
one unit of flow.

(Q2) There is a single commodity flow in G from Y to X ′ such that each node
x ∈ X ′ receives π(x)/64 units of flow and each node in Y sends at most
one unit of flow.

The main ingredient in the proof of Theorem 4 is the following lemma. The
lemma shows that, if we have a set X that is π-flow-well-linked, then there
exists a set Y of size Ω(π(X)) such that Y is Ω(1)-flow-well-linked. The main
idea behind the lemma is the following. If X is π-cut-well-linked and Z is a
node separator of size less than π(X)/4, there is a unique strongly connected
component β(Z) of G− Z whose π-weight is more than half the weight of X.
The main insight is that, if we consider the set Y of size bπ(X)/4c for which
|Y ∪ β(Y)| is minimum, this gives us the desired set. This gives us a non-
constructive proof of the existence of such a set Y . Using a simple iterative
procedure, we can find such a set Y in polynomial time.

Lemma 2 Let G be a directed graph with unit node capacities. Let X be a
set of nodes of G and let π : X → (0, 1] be a weight function on X. Suppose
that X is π-cut-well-linked in G. There is a polynomial time algorithm that
constructs a set Y ⊆ V (G) with the following properties.

(R1) |Y | = bπ(X)/4c.
(R2) There is a single commodity flow in G from X to Y such that each node

x ∈ X sends at most π(x) units of flow and each node in Y receives one
unit of flow.

(R3) There is a single commodity flow in G from Y to X such that each node
in Y sends one unit of flow and each node x ∈ X receives at most π(x)
units of flow.

We will need the following simple observation.

Proposition 5 Let G be a directed graph. Let X be a set of nodes of G and let
π : X → [0, 1] be a weight function on X. Suppose that X is π-cut-well-linked
in G. Then for any set Z such that |Z| < π(X)/4, there is a unique strongly
connected component β(Z) of G− Z such that π(β(Z)) > π(X)/2.

18 Chandra Chekuri, Alina Ene

Proof: Suppose for contradiction that there is a set Z such that |Z| < π(X)/4
and, for each strongly component H of G − Z, we have π(H) ≤ π(X)/2. Let
H1, H2, . . . ,H` be a topological ordering of the strongly connected components
of G−Z in which each edge of G−Z that connects different strongly connected
components is oriented from right to left. Let p be the smallest index such that
π(H1 ∪ · · · ∪ Hp) ≥ π(X)/4. Note that, since π(H1 ∪ · · · ∪ Hp−1) < π(X)/4
and π(Hp) ≤ π(X)/2, we have π(H1 ∪ · · · ∪ Hp) < 3π(X)/4. Thus we have
π(Hp+1 ∪ · · · ∪H`) > π(X)/4. Let A be the set of all vertices in H1 ∪ · · · ∪Hp

and let B be the set of all vertices in Hp+1 ∪ · · · ∪ H`. Note that (A,B,Z)
is a node separation in G. Since X is π-cut-well-linked, it follows that |Z| ≥
min {π(A), π(B)} ≥ π(X)/4, which is a contradiction. �

Proof of Lemma 2: We start by introducing some notation. If X is a π-cut-
well-linked set in G, it follows from Proposition 5 that, for each set Z ⊆ V (G)
such that |Z| < π(X)/4, there is a unique strongly connected component β(Z)
of G− Z such that π(β(Z)) > π(X)/2.

We will maintain a set Y satisfying the first condition. If Y does not satisfy
the second or the third condition, we show that we can find a set Y ′ satisfying
the first condition such that |Y ′ ∪ β(Y ′)| < |Y ∪ β(Y)|. Initially, Y is an
arbitrary subset of size bπ(X)/4c.

Suppose that Y does not satisfy the second condition. Let H1 be the follow-
ing network. We start with H1 = G; recall that each node in G has a capacity
of one. For each node x ∈ X, we add a node x′ to H1 and an edge from x′

to x; the node x′ receives a capacity of π(x). We add a source node s and a
directed edge from s to each node x′. We add a sink node t and an edge from
each node in Y to t.

Consider the network H1 and let X ′ be the set of all copies of the nodes
in X. A triple (A,B,C) is an s-t separation in H1 if the sets A,B,C partition
V (H1), s ∈ A, t ∈ B, and there is no edge of H1 from A to B. The capacity of
a separation (A,B,C) is the capacity of the nodes in C. Let (A,B,C) be an s-t
separation in H1 with minimum capacity. Since Y does not satisfy the second
condition, the capacity of C is smaller than |Y |. Let A′ = A − (X ′ ∪ {s}),
B′ = B − (X ′ ∪ {t}), and C ′ = C −X ′. Since t is in B and there is no edge of
H1 from A to B, we have Y ⊆ B′ ∪ C ′.

In the following, we show that β(C ′) ⊆ A′ ∩ β(Y). Since there is no edge
of H1 from A to B, for each node x ∈ X ∩ B, we have x′ ∈ C: if x′ is
in A, the edge from x′ to x is connecting A to B; if x′ is in B, the edge
from s to x′ is connecting A to B. Therefore cap(C) ≥ π(B) = π(B′) and thus
π(B′) ≤ π(X)/4. Since β(C ′) is a strongly connected component of G−C ′ and
there is no edge of G from A′ to B′, we have that β(C ′) is completely contained
in one of A′ and B′. Since π(β(C ′)) > π(X)/2 and π(B′) ≤ π(X)/2, we have
β(C ′) ⊆ A′. Since β(C ′) is contained in A′, β(C ′) is a strongly connected
subgraph of G − (B′ ∪ C ′). Since Y ⊆ B′ ∪ C ′, there is a unique strongly
connected component K of G− Y that contains β(C ′). Since β(C ′) and β(Y)
overlap at a vertex of X, we have K = β(Y). Therefore β(C ′) ⊆ β(Y) and
thus β(C ′) ⊆ A′ ∩ β(Y), as claimed.

Symmetric All-or-Nothing Flow in Directed Graphs 19

Since |C ′| < |Y |, we have |C ′ ∪ β(C ′)| = |C ′| + |β(C ′)| < |Y | + |β(Y)| =
|Y ∪ β(Y)|. We let Y ′ be the set consisting of C ′ together with an arbitrary
subset of β(C ′) of size bπ(X)/4c − |C ′|. Then Y ′ is the desired set.

Therefore we may assume that Y does not satisfy the third condition. The
argument is very similar to the previous case, and we include it for complete-
ness. Let H2 be the following network. We start with H2 = G. We add a source
node s and a directed edge from s to each node in Y . For each node x ∈ X, we
add a node x′ to H2 and an edge from x to x′; the node x′ receives a capacity
of π(x). We add a sink node t and a directed edge from each node x′ to t.

Consider the network H2 and let X ′ be the set of all copies of the nodes
in X. A triple (A,B,C) is an s-t separation in H2 if the sets A,B,C partition
V (H2), s ∈ A, t ∈ B, and there is no edge of H2 from A to B. The capacity
of a separation (A,B,C) is the capacity of the nodes in C. Let (A,B,C) be
an s-t separation in H2 with minimum capacity. Since Y does not satisfy the
third condition, the capacity of C is smaller than |Y |. Let A′ = A−(X ′∪{s}),
B′ = B − (X ′ ∪ {t}), and C ′ = C −X ′. Since s is in A there is no edge of H2

from A to B, we have Y ⊆ A′ ∪ C ′.
In the following, we show that β(C ′) ⊆ B′ ∩ β(Y). Since there is no edge

of H2 from A to B, for each node x ∈ X ∩ A, we have x′ ∈ C: if x′ is in
A, the edge from x′ to t is connecting A to B; if x′ is in B, the edge from
x to x′ is connecting A to B. Therefore cap(C) ≥ π(A) = π(A′) and thus
π(A′) ≤ π(X)/4. Since β(C ′) is a strongly connected component of G−C ′ and
there is no edge of G from A′ to B′, we have that β(C ′) is completely contained
in one of A′ and B′. Since π(β(C ′)) > π(X)/2 and π(A′) ≤ π(X)/2, we have
β(C ′) ⊆ B′. Since β(C ′) is contained in B′, β(C ′) is a strongly connected
subgraph of G − (A′ ∪ C ′). Since Y ⊆ A′ ∪ C ′, there is a unique strongly
connected component K of G− Y that contains β(C ′). Since β(C ′) and β(Y)
overlap at a vertex in X, we have K = β(Y). Therefore β(C ′) ⊆ β(Y) and thus
β(C ′) ⊆ B′ ∩ β(Y). Since |C ′| < |Y |, we have |C ′ ∪ β(C ′)| = |C ′|+ |β(C ′)| <
|Y |+ |β(Y)| = |Y ∪ β(Y)|. We let Y ′ be the set consisting of C ′ together with
an arbitrary subset of β(C ′) of size bπ(X)/4c − |C ′|. Then Y ′ is the desired
set. �

Lemma 3 Let G = (V,E) be a node-capacitated directed network. Let A and
B be two sets of nodes in G. Let π : A→ R+ and π′ : B → R+ be two weight
functions. Suppose that A and B satisfy the following conditions:

• A is π-flow-well-linked.
• There is a feasible single-commodity flow f1 in G from B to A such that

each node b ∈ B sends π′(b) units of flow to A and each node a ∈ A receives
at most π(a) units of flow.

• There is a feasible single-commodity flow f2 in G from A to B such that
each node a ∈ A sends at most π(a) units of flow and each node b ∈ B
receives π′(b) units of flow.

Then B is (π′/4)-flow-well-linked in G.

Proof: Let d1 be the following multicommodity flow instance: d1(b, a) =
π(a)π′(b)/π(A) for each pair (b, a) ∈ B × A, and d1(·) is zero for all other

20 Chandra Chekuri, Alina Ene

pairs. We claim that we can route d1 using congestion at most two. In order to
prove the claim, we combine the flow f1 and the flow f that routes the follow-
ing product multicommodity flow instance d: d(a, a′) = π(a)π(a′)/π(A) for all
pairs of nodes (a, a′) ∈ A × A. Let F1(b, a) be the amount of flow sent by f1
from b to a. We split the flow of f1 from b to a among the nodes of A as follows:
for each node a′ ∈ A, the amount of f1-flow from b to a that we allocate to a′

is F1(b, a)π(a′)/π(A). We split the flow of f from a to a′ among the nodes of B
as follows: for each node b ∈ B, the amount of f -flow from a to a′ that we al-
locate to b is F1(b, a)π(a′)/π(A); since

∑
b F1(b, a) = π(a)π′(B)/π(A) ≤ π(a),

there is enough f -flow from a to a′ to allocate to B. Finally, we concate-
nate the allocated flow paths as follows. Consider a node b ∈ B and two
nodes a, a′ ∈ A. We allocated F1(b, a)π(a′)/π(A) units of f1-flow to a′; we
can represent the allocated flow as a collection {(Pi, εi)}, where Pi is a path
from b to a and εi is the amount of f1-flow on Pi that we allocated. We allo-
cated F1(b, a)π(a′)/π(A) units of f -flow to a′; we can represent the allocated
flow as a collection {(Qj , δj)}, where Qj is a path from a to a′ and δj is
the amount of f -flow on Qj that we allocated. By making multiple copies of
each path, we may assume that εi = δj = ε for all i and j; that is, all flow
paths have the same amount ε of flow. For each i, we send ε units of flow
on the path obtained by concatenating Pi and Qi; more precisely, we replace
the flow paths {(Pi, ε)} and {(Qi, ε)} by the flow paths {(PiQi, ε)}. By con-
catenating all of the allocated flow paths, we get a flow with congestion at
most two. For each pair (b, a′) ∈ B × A, the amount of flow from b to a′ is∑
a∈A F1(b, a)π(a′)/π(A) = π′(b)π(a′)/π(A) = d1(b, a′).
Let d2 be the following multicommodity flow instance: d2(a, b) =

π(a)π′(b)/π(A) for each pair (a, b) ∈ A × B, and d2(·) is zero for all other
pairs. By combining the flows f2 and f , we can show that d2 is routable with
congestion at most two; the argument is very similar to the previous argument
and we omit it.

Let g1 and g2 be the congestion two flows that route d1 and d2, respec-
tively. In the following, we show how to combine g1 and g2 to get a congestion
four flow that routes the following product multicommodity flow instance d′:
d′(b, b′) = π′(b)π′(b′)/π′(B) for each pair of nodes (b, b′) ∈ B × B. Consider
a node a ∈ A and two nodes b1, b2 ∈ B. The amount of g1-flow from b1 to
a is π(a)π′(b1)/π(A); we allocate π(a)π′(b1)π′(b2)/(π(A)π′(B)) of this flow
to b2. The amount of g2-flow from a to b2 is π(a)π′(b2)/π(A); we allocate
π(a)π′(b1)π′(b2)/(π(A)π′(B)) of this flow to b1. By concatenating the allo-
cated flow paths, we can send π(a)π′(b1)π′(b2)(π(A)π′(B)) units of flow from
b1 to b2 through a; summing over all nodes a ∈ A, the total flow from b1 to b2
is π′(b1)π′(b2)/π′(B). Therefore d′ is routable with congestion at most four.
Thus B is (π′/4)-flow-well-linked. �

Now we are ready to prove Theorem 4.

Proof of Theorem 4: Since X is π-flow-well-linked in G, it follows from
Proposition 2 that X is (π/2)-cut-well-linked in G. By Lemma 2, there is a
set Y with the following properties.

Symmetric All-or-Nothing Flow in Directed Graphs 21

• |Y | = bπ(X)/8c.
• There is a single commodity flow f1 in G from X to Y such that each node
x ∈ X sends at most π(x)/2 units of flow and each node in Y receives one
unit of flow.

• There is a single commodity flow f2 in G from Y to X such that each node
in Y sends one unit of flow and each node x ∈ X receives at most π(x)/2
units of flow.

By Lemma 3, Y is 1/4-flow-well-linked; here we applied the lemma with A =
X, B = Y , π(x) = π(x) for each x ∈ X, and π′(y) = 1 for each y ∈ Y .

Let X1 ⊆ X be the set of all nodes x ∈ X such that x sends at least
π(x)/32 units of flow in f1. We can show that π(X1) ≥ π(X)/15 as follows.
For a set A ⊆ X, let F1(A) be the total amount of f1-flow sent by the nodes
in A. We have F1(X) = |Y | ≥ π(X)/16. Additionally, since each node x ∈
X − X1 sends at most π(x)/32 units of flow in f1, we have F1(X − X1) ≤
(π(X)−π(X1))/32. It follows that F1(X1) ≥ (π(X)+π(X1))/32 and therefore
π(X1)/2 ≥ F1(X1) ≥ (π(X) + π(X1))/32. Thus π(X1) ≥ π(X)/15.

Let X2 ⊆ X be the set of all nodes x ∈ X such that x receives at least
π(x)/32 units of flow in f2. As before, we have π(X2) ≥ π(X)/15.

Now consider a subset X ′ ⊆ X such that π(X ′) ≤ π(X)/15. Note that
π(X ′) ≤ π(X1) and π(X ′) ≤ π(X2). Consider the following multicommodity
flow instance d: d(x′, x) = π(x′)π(x)/(32π(X1)) for each pair (x′, x) ∈ X ′×X1,
d(x, x′) = π(x)π(x′)/(32π(X2)) for each pair (x, x′) ∈ X2 × X ′, and d(·) is
zero for all other pairs. Since d(a, b) ≤ π(a)π(b)/π(X) for all pairs of nodes
(a, b), there is a feasible flow g that routes d. The flow g satisfies the following
properties:

• Each node x ∈ X1 receives π(x)π(X ′)/(32π(X1)) ≤ π(x)/32 units of flow.
• Each node x′ ∈ X ′ sends π(x′)/32 units of flow.
• Each node x ∈ X2 sends π(x)π(X ′)/(32π(X2)) ≤ π(x)/32 units of flow.
• Each node x′ ∈ X ′ receives π(x′)/32 units of flow.

By combining the flows f1 and g, we get a congestion two flow from X ′ to
Y in which each node in Y receives at most one unit of flow and each node
x′ ∈ X ′ sends π(x′)/32 units of flow. Similarly, by combining the flows f2 and
g, we get a congestion two flow from Y to X ′ in which each node in Y sends
at most one unit of flow and each node x′ ∈ X ′ receives π(x′)/32 units of flow.
We scale down these flows by a factor of two to get feasible flows. �

Second step: Finding a matching. In the second step, we use the set Y
guaranteed by Theorem 4 in order to select a matching M′ ⊆M.

We will need the following theorem, which is a slight variant of Theorem 2.1
in [11]. Let G be a directed graph with integer arc capacities given by c. Let
s1, s2, . . . , sk be distinct source nodes and let t be a sink node. A non-negative
vector b = (b1, b2, . . . , bk) is a feasible flow vector if there is a feasible flow in

G in which each source si sends bi units of flow to t and t receives
∑k
i=1 bi

units of flow. Let B be the set of all feasible flow vectors. For a vector b ∈ B,
let F (b) =

∑k
i=1 bi denote the total flow and let I(b) be the set of all indices

i such that bi is an integer.

22 Chandra Chekuri, Alina Ene

Theorem 5 Given b ∈ B and j /∈ I(b) with bj > 0, we can compute b′ ∈ B
in polynomial time with b′j = dbje and F (b′) ≥ F (b) such that

• b′i ≤ bi for each i ∈ [k]− {j}, and
• b′i = bi for each i ∈ I(b).

The difference between Theorem 5 and Theorem 2.1 in [11] is that the former
theorem requires that b′i ≤ bi for each terminal i 6= j, whereas the latter theo-
rem requires that b′i ≤ dbie. One can prove the theorem above using essentially
the same argument as in [11].

Note that the flow augmentation theorem (Theorem 5) also applies to
single-source networks and flows, since we can simply reverse the directions of
all of the arcs. It also applies to node-capacitated routing using a standard re-
duction from node-capacitated directed networks to edge-capacitated directed
networks.

Now we are ready to complete the proof of Theorem 3. Note that we may
assume that π(X) ≥ c, for some large enough constant c, since otherwise we
can letM′ be a single pair (u, v) ofM that is routable in G. In the following,
we assume that π(X) ≥ 2048. Additionally, we may assume that π(x) > 0
for each node x ∈ X, since we can discard from X all the nodes x such that
π(x) = 0.

Using Theorem 5, we can identify a large matching whose terminals can
send one unit of flow to Y and receive one unit of flow from Y .

Lemma 4 There is a matching M′ ⊆ M with the following properties. Let
X ′1 be a set of nodes containing exactly one node from each pair in M′, and
let X ′2 = V (M′)−X ′1 be the partners of the nodes in X ′1. We have

(C1) |M′| = Ω(|Y |).
(C2) There is a feasible single-commodity flow in G in which each node in X ′1

sends one unit of flow to Y .
(C3) There is a feasible single-commodity flow in G in which each node in X ′1

receives one unit of flow from Y .
(C4) There is a feasible single-commodity flow in G in which each node in X ′2

sends one unit of flow to Y .
(C5) There is a feasible single-commodity flow in G in which each node in X ′2

receives one unit of flow from Y .

Proof: LetM′′ be any subset ofM such that π(X)/16 ≤ π(X ′′) ≤ π(X)/15,
where X ′′ is the set of nodes participating in the pairs ofM′′. Note that such
a setM′′ exists, since π(X) ≥ 240 and π(x) ≤ 1 for each node x ∈ X. Let X ′′1
be a set of nodes containing exactly one node from each pair in M′′, and let
X ′′2 = V (M′′)−X ′′1 be the partners of the nodes in X ′′1 .

In the following, we use the flow augmentation theorem (Theorem 5) to
select a matching M′ ⊆M′′ with the desired properties.

We make four copies of G; let G1, G2, G3, and G4 denote the four copies
of G. For each i ∈ {1, 3}, we construct a node-capacitated single-sink network
Hi from Gi as follows. We start with Hi = Gi and we assign a capacity of

Symmetric All-or-Nothing Flow in Directed Graphs 23

one to each node. We add to Hi a sink node ti and a directed edge from each
node in Y to ti. For each i ∈ {2, 4}, we construct a node-capacitated single-
source network Hi from Gi as follows. We start with Hi = Gi and we assign
a capacity of one to each node. We add to Hi a source node si and a directed
edge from si to each node in Y .

For each i ∈ {1, 2, 3, 4}, we maintain a feasible flow vector bi in Hi. If
i ∈ {1, 2}, bi has an entry bi(x) for each node x ∈ X ′′1 . If i ∈ {3, 4}, bi has an
entry bi(x) for each node x ∈ X ′′2 .

We initialize the flow vectors bi as follows. Let f1 be the flow from X ′′

to Y guaranteed by property (Q1) (see the statement of Theorem 4). Let f2
be the flow from Y to X ′′ guaranteed by property (Q2). Note that, for each
i ∈ {1, 3}, f1 translates to a flow in Hi from X ′′ to ti; we let bi(x) denote the
amount of flow from x to ti. Similarly, for each i ∈ {2, 4}, f2 translates to a
flow in Hi from si to X ′′; we let bi(x) denote the amount of flow from si to x.

Our goal is to use the flow augmentation theorem (Theorem 5) in order
to select a matching M′ ⊆ M′′. The main idea behind the approach is the
following. If we have a pair (u, v) ∈ M′′ whose flow is fractional (that is,
b1(u) = b2(u) = b3(v) = b4(v) ∈ (0, 1)), we use Theorem 5 in each copy Gi
to increase the flow of u and v to 1. We repeatedly apply this procedure until
the flow of each pair is either 0 or 1. The pairs with unit flow will give us the
desired matching. We now describe this approach more formally.

If b is a flow vector on Z ⊆ X ′′, we let F (b) =
∑
x∈Z b(x) be the total

flow and I(b) denote the set of all nodes x ∈ Z such that b(x) = 1. We will
maintain flow vectors bi that satisfy the following invariants:

(I1) For each u ∈ X ′′1 , we have b1(u) = b2(u) = b3(v) = b4(v), where v is the
partner of u.

(I2) For each i ∈ {1, 2, 3, 4}, we have F (bi) ≥ (|Y |/256)− 4|I(b1)|.

We can verify that the initial flow vectors satisfy the invariants as follows. For
each pair uv ∈ M, we have b1(u) = b2(u) = π(u)/64 and b3(v) = b4(v) =
π(v)/64. Since π(a) = π(b) for each pair ab ∈ M, the flow vectors satisfy
the first invariant. Note that I(bi) is empty, since bi(x) = π(x)/64 < 1 for
each x ∈ X ′′. Moreover, we have F (bi) = π(X ′′1)/64 = π(X ′′)/128. Since
π(X ′′) ≥ π(X)/16 and |Y | = bπ(X)/8c, we have F (bi) = π(X ′′)/128 ≥
π(X)/2048 ≥ |Y |/256. Thus the flow vectors satisfy the second invariant.

Now consider flow vectors bi that satisfy the invariants (I1) and (I2) above.
Suppose that, for each u ∈ X ′′1 , we have b1(u) ∈ {0, 1}. Let X ′1 = I(b1) and
X ′2 = I(b3); by (I1), X ′2 is the set of all partners of the nodes of X ′1. Let
M′ be the set of all pairs uv ∈ M′′ such that u ∈ X ′1 and v ∈ X ′2. We can
verify that M′ is the desired matching as follows. We have |X ′1| = F (b1) ≥
(|Y |/256) − 4|X ′1| and thus |X ′1| ≥ |Y |/1280. Thus X ′1 and X ′2 satisfy the
conditions (C1)-(C5) in the theorem statement and we are done.

Therefore we may assume that there is a node u ∈ X ′′1 such that b1(u) ∈
(0, 1). Let v be the partner of u. Recall that we have b1(u) = b2(u) = b3(v) =
b4(v). For each i ∈ {1, 2}, we apply Theorem 5 with G = Hi, b = bi, and
bj = u in order to get a feasible flow vector b′i such that I(b′i) ⊇ I(bi) ∪ {u}.

24 Chandra Chekuri, Alina Ene

For each i ∈ {3, 4}, we apply Theorem 5 with G = Hi, b = bi, and bj = v
in order to get a feasible flow vector b′i such that I(b′i) ⊇ I(bi) ∪ {v}. We
construct flow vectors b′′i as follows. For each pair zw ∈ M′′, we let b′′1(z) =
b′′2(z) = b′′3(w) = b′′4(w) = min {b′1(z),b′2(z),b′3(w),b′4(w)}.

In the following, we show that the flows b′′i satisfy the second invariant.
This follows from the properties guaranteed by Theorem 5. When we augment
the flow of u to 1 in G1 (or G2), we decrease the total flow of all other pairs
by at most 1. Similarly, when we augment the flow of v to 1 in G3 (or G4),
we decrease the total flow of all other pairs by at most 1. Thus the total flow
decrease in G1, G2, G3, and G4 is at most 4, and we charge this flow to the
pair uv.

More formally, we claim that F (b′′i) ≥ F (bi) − 4 for each i ∈
{1, 2, 3, 4}. Consider an index i ∈ {1, 2}. Note that it suffices to show that∑
z∈X′′1 −{u}

(
bi(z)− b′′i (z)

)
≤ 4. We have∑

z∈X′′1 −{u}

(
bi(z)− b′′i (z)

)
=

∑
zw∈M′′−{uv}

(
bi(z)−min {b′1(z),b′2(z),b′3(w),b′4(w)}

)
=

∑
zw∈M′′−{uv}

max {b1(z)− b′1(z),b2(z)− b′2(z),b3(w)− b′3(w),b4(w)− b′4(w)}

(
Since b1(z) = b2(z) = b3(w) = b4(w)

)
≤

∑
zw∈M′′−{uv}

(b1(z)− b′1(z) + b2(z)− b′2(z) + b3(w)− b′3(w) + b4(w)− b′4(w))

(
The terms in the max are non-negative by the first bullet in Theorem 5

)
=

4∑
i=1

(
F (bi)− F (b′i)

)
+

4∑
i=1

(
bi(u)− b′i(u)

)
+

4∑
i=1

(
bi(v)− b′i(v)

)
≤ 4

The last inequality follows from the fact that F (bi) ≤ F (b′i) for all i ∈
{1, 2, 3, 4}, bi(u)− b′i(u) is at most 0 if i ∈ {1, 2} and at most 1 if i ∈ {3, 4},
bi(v)− b′i(v) is at most 1 if i ∈ {1, 2} and at most 0 if i ∈ {3, 4}.

A very similar argument shows that, for each i ∈ {3, 4}, we have F (b′′i) ≥
F (bi)− 4. Thus we have F (b′′i) ≥ F (bi)− 4 ≥ (|Y |/256)− 4(|I(b1)|+ 1) for
each i ∈ {1, 2, 3, 4}. Since |I(b′′1)| ≥ |I(b1)|+ 1, we have F (b′′i) ≥ (|Y |/256)−
4|I(b′′1)| and thus the second invariant is also satisfied.

We repeatedly apply the flow augmentation procedure until the flow of
each pair is either zero or one. The pairs with unit flow will give us the desired
matching M′. �

Let M′ be the set of pairs guaranteed by Lemma 4 and let X ′ be the set
of terminals participating in the pairs of M′. We can show that X ′ is 1/32-
flow-well-linked as follows. Note that the properties (C2) − (C5) gives us the
following flows: a congestion two flow from X ′ to Y in which each node in

Symmetric All-or-Nothing Flow in Directed Graphs 25

X ′ sends one unit of flow and each node in Y receives at most two units of
flow, and a congestion two flow from Y to X ′ in which each node in Y sends
at most two units of flow and each node in X ′ receives one unit of flow. We
scale these flows by a factor of 8 to ensure that each node in Y sends and
receives at most 1/4 units of flow. Since Y is 1/4-flow-well-linked, it follows
from Lemma 3 that X ′ is 1/32-flow-well-linked; here we applied the lemma
with A = Y , π(y) = 1/4 for each y ∈ Y , B = X ′, π′(x′) = 1/8 for each
x′ ∈ X ′. This completes the proof of Theorem 3.

References

1. I. Adler. Directed tree-width examples. Journal of Combinatorial Theory, Series B,
97(5):718 – 725, 2007.

2. M. Andrews, J. Chuzhoy, V. Guruswami, S. Khanna, K. Talwar, and L. Zhang. Inap-
proximability of edge-disjoint paths and low congestion routing on undirected graphs.
Combinatorica, 30(5):485–520, 2010.

3. M. Andrews, J. Chuzhoy, S. Khanna, and L. Zhang. Hardness of the undirected edge-
disjoint paths problem with congestion. In Proc. of IEEE FOCS, pages 226–241, 2005.

4. C. Chekuri and J. Chuzhoy. Large-treewidth graph decompositions and applications.
In Proc. of ACM STOC, 2013.

5. C. Chekuri and J. Chuzhoy. Polynomial bounds for the grid-minor theorem. In Proc.
of ACM STOC, 2014.

6. C. Chekuri and A. Ene. Poly-logarithmic approximation for maximum node disjoint
paths with constant congestion. In Proc. of ACM-SIAM SODA, 2013.

7. C. Chekuri, S. Kannan, A. Raja, and P. Viswanath. Multicommodity flows and cuts in
polymatroidal networks. In Proc. of ITCS, pages 399–408, 2012.

8. C. Chekuri, S. Khanna, and F. B. Shepherd. The all-or-nothing multicommodity flow
problem. SIAM Journal on Computing, 42(4):1467–1493, 2013.

9. C. Chekuri, S. Khanna, and F.B. Shepherd. Multicommodity flow, well-linked terminals,
and routing problems. In Proc. of ACM STOC, pages 183–192, 2005.

10. C. Chekuri, S. Khanna, and F.B. Shepherd. Well-linked terminals for node-capacitated
routing problems. Manuscript, 2005.

11. C. Chekuri, S. Khanna, and F.B. Shepherd. An O(
√
n) approximation and integrality

gap for disjoint paths and unsplittable flow. Theory of Computing, 2(7):137–146, 2006.
12. C. Chekuri, M. Mydlarz, and F.B. Shepherd. Multicommodity demand flow in a tree

and packing integer programs. ACM Transactions on Algorithms, 3(3):27, 2007.
13. J. Chuzhoy. Routing in undirected graphs with constant congestion. ArXiv preprint

ArXiv:1107.2554, 2011. Extended abstract in STOC 2012.
14. J. Chuzhoy, V. Guruswami, S. Khanna, and K. Talwar. Hardness of routing with

congestion in directed graphs. In Proc. of ACM STOC, pages 165–178, 2007.
15. J. Chuzhoy and S. Khanna. Polynomial flow-cut gaps and hardness of directed cut

problems. Journal of the ACM, 56(2):6, 2009.
16. J. Chuzhoy and S. Li. A polylogarithimic approximation algorithm for edge-disjoint

paths with congestion 2. In Proc. of IEEE FOCS, 2012.
17. S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity

flow problems. SIAM Journal on Computing, 5(4):691–703, 1976.
18. U. Feige, M.T. Hajiaghayi, and J.R. Lee. Improved approximation algorithms for min-

imum weight vertex separators. SIAM Journal on Computing, 38:629–657, 2008.
19. S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem.

Theoretical Computer Science, 10(2):111–121, 1980.
20. N. Garg, V.V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for

integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.
21. T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed tree-width. Journal

of Combinatorial Theory, Series B, 82(1):138–154, 2001.

26 Chandra Chekuri, Alina Ene

22. R. M. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, pages 85–103, 1972.

23. K. Kawarabayashi and S. Kreutzer. An excluded grid theorem for digraphs with for-
bidden minors. In Proc. of ACM-SIAM SODA, 2014.

24. Yusuke Kobayashi Ken-ichi Kawarabayashi and Stephan Kreutzer. An excluded half-
integral grid theorem for digraphs and the directed disjoint paths problem. In Proc. of
ACM STOC, 2014.

25. P. N. Klein, S. A. Plotkin, and S. Rao. Excluded minors, network decomposition, and
multicommodity flow. In Proc. of ACM STOC, pages 682–690, 1993.

26. P. N. Klein, S. A. Plotkin, S. Rao, and E. Tardos. Approximation algorithms for Steiner
and directed multicuts. Journal of Algorithms, 22(2):241–269, 1997.

27. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM, 46(6):787–832, 1999.

28. N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its
algorithmic applications. Combinatorica, 15(2):215–245, 1995.

29. B. Reed. Introducing directed tree width. Electronic Notes in Discrete Mathematics,
3:222–229, 1999.

30. Michael E. Saks, Alex Samorodnitsky, and Leonid Zosin. A lower bound on the inte-
grality gap for minimum multicut in directed networks. Combinatorica, 24(3):525–530,
2004.

31. A. Srinivasan. Improved approximations for edge-disjoint paths, unsplittable flow, and
related routing problems. In Proc. of IEEE FOCS, pages 416–425, 1997.

