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STOCHASTIC GRADIENT DESCENT, WEIGHTED SAMPLING, AND THE
RANDOMIZED KACZMARZ ALGORITHM

DEANNA NEEDELL, NATHAN SREBRO, AND RACHEL WARD

ABSTRACT. We obtain an improved finite-sample guarantee on the linearconvergence of stochastic
gradient descent for smooth and strongly convex objectives, improving from a quadratic dependence
on the conditioning(L/µ)2 (whereL is a bound on the smoothness andµ on the strong convexity)
to a linear dependence onL/µ. Furthermore, we show how reweighting the sampling distribution
(i.e. importance sampling) is necessary in order to furtherimprove convergence, and obtain a linear
dependence in the average smoothness, dominating previousresults. We also discuss importance
sampling for SGD more broadly and show how it can improve convergence also in other scenarios.

Our results are based on a connection we make between SGD and the randomized Kaczmarz
algorithm, which allows us to transfer ideas between the separate bodies of literature studying each
of the two methods. In particular, we recast the randomized Kaczmarz algorithm as an instance of
SGD, and apply our results to prove its exponential convergence, but to the solution of a weighted
least squares problem rather than the original least squares problem. We then present a modified
Kaczmarz algorithm with partially biased sampling which does converge to the original least squares
solution with the same exponential convergence rate.

Keywords. distribution reweighting, importance sampling, Kaczmarzmethod, stochastic gradient
descent

1. INTRODUCTION

This paper connects two algorithms which until now have remained remarkably disjoint in the
literature: the randomized Kaczmarz algorithm for solvinglinear systems and the stochastic gra-
dient descent (SGD) method for optimizing a convex objective using unbiased gradient estimates.
The connection enables us to make contributions by borrowing from each body of literature to the
other. In particular, it helps us highlight the role of weighted sampling for SGD and obtain a tighter
guarantee on the linear convergence regime of SGD.

Recall that stochastic gradient descent is a method for minimizing a convex objectiveF (x)
based on access to unbiased stochastic gradient estimates,i.e. to an estimateg for the gradient at a
given pointx, such thatE[g] = ∇F (x). ViewingF (x) as an expectationF (x) = Ei[fi(x)], the
unbiased gradient estimate can be obtained by drawingi and using its gradient:g = ∇fi(x). SGD
originated as “Stochastic Approximation” in the pioneering work of Robbins and Monroe [41],
and has recently received renewed attention for confronting very large scale problems, especially
in the context of machine learning [4, 42, 31, 2]. Classical analysis of SGD shows a polynomial
rate on the sub-optimality of the objective value,F (xk) − F (x⋆), namely1/

√
k for non-smooth

objectives, and1/k for smooth, or non-smooth but strongly convex objectives. Such convergence
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can be ensured even if the iteratesxk do not necessarily converge to a unique optimumx⋆, as might
be the case ifF (x) is not strongly convex. Here we focus on the strongly convex case, where the
optimum is unique, and on convergence of the iteratesxk to the optimumx⋆.

Bach and Moulines [1] recently provided a non-asymptotic bound on the convergence of the
iterates in strongly convex SGD, improving on previous results of this kind [26, Section 2.2][3,
Section 3.2][43][31]. In particular, they showed that if each fi(x) is smooth and ifx⋆ is a min-
imizer of (almost) allfi(x), i.e.Pi(∇fi(x⋆) = 0) = 1, thenE‖xk − x⋆‖ goes to zero exponen-
tially, rather than polynomially, ink. That is, reaching a desired accuracy ofE‖xk − x⋆‖2 ≤ ε
requires a number of steps that scales only logarithmicallyin 1/ε. Bach and Moulines’s bound
on the required number of iterations further depends on the averagesquaredconditioning number
E[(Li/µ)

2], whereLi is the Lipschitz constant of∇fi(x) (i.e.fi(x) are “L-smooth”), andF (x) is
µ-strongly convex. Ifx⋆ is not an exact minimizer of eachfi(x), the bound degrades gracefully as
a function ofσ2 = E‖∇fi(x⋆)‖2, and includes an unavoidable term that behaves asσ2/k.

In a seemingly independent line of research, theKaczmarz methodwas proposed as an iterative
method for solving (usually overdetermined) systems of linear equations [19]. The simplicity of
the method makes it useful in a wide array of applications ranging from computer tomography to
digital signal processing [16, 27, 18]. Recently, Strohmerand Vershynin [46] proposed a variant
of the Kaczmarz method using a random selection method whichselect rows with probability
proportional to their squared norm, and showed that using this selection strategy, a desired accuracy
of ε can be reached in the noiseless setting in a number of steps that scales likelog(1/ε) andlinearly
in the condition number.

1.1. Importance sampling in stochastic optimization. From a birds-eye perspective, this paper
aims to extend the notion of importance sampling from stochastic sampling methods for numerical
linear algebra applications, to more general stochastic convex optimization problems. Strohmer
and Vershynin’s incorporation of importance sampling intothe Kaczmarz setup [46] is just one
such example, and most closely related to the SGD set-up. Butimportance sampling has also
been considered in stochastic coordinate-descent methods[33, 40]. There also, the weights are
proportional to some power of the Lipschitz constants (of the gradient coordinates).

Importance sampling has also played a key role in designing sampling-based low-rank matrix
approximation algorithms – both row/column based samplingand entry-wise sampling – where
it goes by the name ofleverage scoresampling. The resulting sampling methods are again pro-
portional to the squared Euclidean norms of rows and columnsof the underlying matrix. See
[5, 25, 44, 9], and references therein for applications to the column subset selection problem
and matrix completion. See [14, 24, 48] for applications of importance sampling to the Nyström
Method.

Importance sampling has also been introduced to the compressive sensing framework, where it
translates to sampling rows of an orthonormal matrix proportionally to their squared inner products
with the rows of a second orthonormal matrix in which the underlying signal is assumed sparse.
See [39, 20] for more details.

1.2. Contributions. Inspired by the analysis of Strohmer and Vershynin and Bach and Moulines,
we prove convergence results for stochastic gradient descent as well as for SGD variants where
gradient estimates are chosen based on aweighted sampling distribution, highlighting the role of
importance sampling in SGD.
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We first show (Corollary 2.2 in Section 2) that without perturbing the sampling distribution, we
can obtain a linear dependence on theuniform conditioning(supLi/µ), but it is not possibleto
obtain a linear dependence on theaverage conditioningE[Li/µ]. This is aquadratic improve-
ment over the previous results [1] in regimes where the components have similar Lipschitz
constants.

We then turn to importance sampling, using a weighted sampling distribution. We show that
weighting components proportionally to their Lipschitz constantsLi, as is essentially done by
Strohmer and Vershynin, can reduce the dependence on the conditioning to a linear dependence
on the average conditioningE[Li/µ]. However, this comes at an increased dependence on the
residualσ2. But, we show that by onlypartially biasingthe sampling towardsLi, we can enjoy the
best of both worlds, obtaining a linear dependence on the average conditioningE[Li/µ], without
amplifying the dependence on the residual. Thus,using importance sampling, we obtain a
guarantee dominating, and improving over the previous best-known results [1] (Corollary 3.1
in Section 2).

In Section 4, we consider the benefits of reweighted SGD also in other scenarios and regimes.
We show how also for smooth but not-strongly-convex objectives,importance sampling can im-
prove a dependence on a uniform bound over smoothness, (supLi), to a dependence on the
average smoothness E[Li]—such an improvement is not possible without importance sampling.
For non-smooth objectives, we show that importance sampling can eliminate a dependence on the
variance in the Lipschitz constants of the components. In parallel work we recently became aware
of, Zhao and Zhang [51] also consider importance sampling for non-smooth objectives, including
composite objectives, suggesting the same reweighting as we obtain here.

Finally, in Section 5, we turn to the Kaczmarz algorithm, explain how it is an instantiation of
SGD, and how using partially biased sampling improves knownguarantees in this context as well.
We show that the randomized Kaczmarz method with uniform i.i.d. row selection can be recast as
an instance of preconditioned Stochastic Gradient Descentacting on a re-weighted least squares
problem and through this connection, provide exponential convergence rates for this algorithm. We
also consider the Kaczmarz algorithm corresponding to SGD with hybrid row selection strategy
which shares the exponential convergence rate of Strohmer and Vershynin [46] while also sharing a
small error residual term of the SGD algorithm. This presents a clear tradeoff between convergence
rate and the convergence residual, not present in other results for the method.

2. SGDFOR STRONGLY CONVEX SMOOTH OPTIMIZATION

We consider the problem of minimizing a smooth convex function,

(2.1) x⋆ = argmin
x

F (x)

whereF (x) is of the formF (x) = Ei∼Dfi(x) for smooth functionalsfi : H → R overH = Rd

endowed with the standard Euclidean norm‖·‖2, or over a Hilbert spaceH with the norm‖·‖2.
Herei is drawn from somesource distributionD over an arbitrary probability space. Throughout
this manuscript, unless explicitly specified otherwise, expectations will be with respect to indices
drawn from the source distributionD. That is, we writeEfi(x) = Ei∼Dfi(x). We also denote by
σ2 the “residual” quantity at the minimum,

σ2 = E‖∇fi(x⋆)‖22.
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We will instate the following assumptions on the functionF :

(1) Eachfi is continuously differentiable and the gradient function∇fi has Lipschitz constant
Li; that is,‖∇fi(x)−∇fi(y)‖2 ≤ Li‖x− y‖2 for all vectorsx andy.

(2) F has strong convexity parameterµ; that is,〈x− y,∇F (x)−∇F (y)〉 ≥ µ‖x− y‖22 for
all vectorsx andy.

We denotesupL the supremum of the support ofLi, i.e. the smallestL such thatLi ≤ L a.s.,
and similarly denoteinf L the infimum. We denote the average Lipschitz constant asL = ELi.

A unbiased gradient estimate forF (x) can be obtained by drawingi ∼ D and using∇fi(x) as
the estimate. The SGD updates with (fixed) step sizeγ based on these gradient estimates are then
given by:

(2.2) xk+1 ← xk − γ∇fik(xk)

where{ik} are drawn i.i.d. fromD. We are interested in the distance‖xk − x⋆‖22 of the iterates
from the unique minimum, and denote the initial distance byε0 = ‖x0 − x⋆‖22.

Bach and Moulines [1, Theorem 1] considered this setting1 and established that

(2.3) k = 2 log(ε/ε0)
(

EL2
i

µ2
+

σ2

µ2ε

)

SGD iterations of the form (2.2), with an appropriate step-size, are sufficient to ensureE‖xk − x⋆‖22 ≤
ε, where the expectations is over the random sampling. As longasσ2 = 0, i.e. the same minimizer
x⋆ minimizes all componentsfi(x) (though of course it need not be a unique minimizer of any of
them), this yields linear convergence tox⋆, with a graceful degradation asσ2 > 0. However, in
the linear convergence regime, the number of required iterations scales with the expectedsquared
conditioningEL2

i /µ
2. In this paper, we reduce this quadratic dependence to a linear dependence.

We begin with a guarantee ensuring linear dependence, though with a dependence onsupL/µ
rather thanELi/µ:

Theorem 2.1. Let eachfi be convex where∇fi has Lipschitz constantLi, with Li ≤ supL a.s.,
and letF (x) = Efi(x) beµ-strongly convex. Setσ2 = E‖∇fi(x⋆)‖22, wherex⋆ = argminx F (x).
Suppose thatγ < 1

supL
. Then the SGD iterates given by(2.2)satisfy:

(2.4) E‖xk − x⋆‖22 ≤
[

1− 2γµ(1− γ supL)
)]k

‖x0 − x⋆‖22 +
γσ2

µ
(

1− γ supL
) ,

where the expectation is with respect to the sampling of{ik}.

If we are given a desired tolerance,‖x− x⋆‖22 ≤ ε, and we know the Lipschitz constants and
parameters of strong convexity, we may optimize the step-sizeγ, and obtain:

Corollary 2.2. For any desiredε, using a step-size of

γ =
µε

2εµ supL+ 2σ2

1Bach and Moulines’s results are somewhat more general. Their Lipschitz requirement is a bit weaker and more
complicated, but in terms ofLi yields (2.3). They also study the use of polynomial decayingstep-sizes, but these do
not lead to improved runtime if the target accuracy is known ahead of time.
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we have that after

(2.5) k = 2 log(2ε0/ε)
(supL

µ
+

σ2

µ2ε

)

SGD iterations,E‖xk − x⋆‖22 ≤ ε, whereε0 = ‖x0 − x⋆‖22 and where the expectation is with
respect to the sampling of{ik}.

Proof. Substitutingγ = µε

2εµ supL+2σ2 into the second term of (2.4) and simplifying gives the bound

γσ2

µ
(

1− γ supL
) ≤ ε/2.

Now asking that
[

1− 2γµ(1− γ supL)
)]k

ε0 ≤ ε/2,

substituting forγ, and rearranging to solve fork, shows that we needk such that

k log

(

1− µ2ε(µε supL+ 2σ2)

2(µε supL+ σ2)2

)

≤ − log

(

2ε0
ε

)

.

Utilizing the fact that−1/ log(1 − x) ≤ 1/x for 0 < x ≤ 1 and rearranging again yields the
requirement that

k ≥ log

(

2ε0
ε

)

· 2(µε supL+ σ2)2

µ2ε(µε supL+ 2σ2)
.

Noting that this inequality holds whenk ≥ 2 log
(

2ε0
ε

)

· µε supL+σ2

µ2ε
yields the stated number of steps

k in (2.5). Since the expression on the right hand side of (2.4)decreases withk, the corollary is
proven. �

Proof sketch. The crux of the improvement over Bach and Moulines is in a tighter recursive equa-
tion. Bach and Moulines rely on the recursion

‖xk+1 − x⋆‖22 ≤
(

1− 2γµ+ 2γ2L2
i

)

‖xk − x⋆‖22 + 2γ2σ2,

whereas we use the Co-Coercivity Lemma A.1, with which we canobtain the recursion

‖xk+1 − x⋆‖22 ≤
(

1− 2γµ+ 2γ2µLi

)

‖xk − x⋆‖22 + 2γ2σ2,

whereLi is the Lipschitz constant of the component used in the current iterate. The significant
difference is that one of the factors ofLi (an upper bound on the second derivative), in the third
term inside the parenthesis, is replaced byµ (a lower bound on the second derivative ofF ). A
complete proof can be found in the appendix.

Comparison to results of Bach and Moulines. Our bound (2.5) replaces the dependence on the
averagesquareconditioning (EL2

i /µ
2) with a linear dependence on theuniform conditioning

(supL/µ). When all Lipschitz constantsLi are of similar magnitude, this is a quadratic improve-
ment in the number of required iterations. However, when different componentsfi have widely
different scaling, i.e.Li are highly variable, the supremum might be larger then the average square
conditioning.
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Tightness. Considering the above, one might hope to obtain a linear dependence on the average
conditioningL/µ = ELi/µ. However, as the following example shows, this is not possible.
Consider a uniform source distribution overN + 1 quadratics, with the first quadraticf1 being
N
2
(x[1] − b)2 and all others being1

2
x[2]2, andb = ±1. Any method must examinef1 in order to

recoverx to within error less then one, but by uniformly sampling indicesi, this takes(N + 1)
iterations in expectation. It is easy to verify that in this case,supLi = L1 = N , L = 2 N

N+1
< 2

EL2
i = N, andµ = N

N+1
. For largeN , a linear dependence onL/µ would mean that a constant

number of iterations suffice (asL/µ = 2), but we just saw thatanymethod that sampledi uniformly
must consider at least(N + 1) samples in expectation to get non-trivial error. Note that both
supLi/µ = N + 1 andEL2

i /µ
2 ≃ N + 1 indeed correspond to the correct number of iterations

required by SGD.
We therefore see that the choice between a dependence on the averagequadraticconditioning

EL2
i /µ

2, or a linear dependence on theuniform conditioningsupL/µ, is unavoidable. A linear
dependence on the average conditioningL/µ is not possible with any method that samples from
the source distributionD. In the next Section, we will show how wecanobtain a linear dependence
on the average conditioningL/µ, using importance sampling, i.e. by sampling from a modified
distribution.

3. IMPORTANCE SAMPLING

We will now consider stochastic gradient descent, where gradient estimates are sampled from a
weighted distribution.

3.1. Reweighting a Distribution. For a weight functionw(i)which assigns a non-negative weight
w(i) ≥ 0 to each indexi, the weighted distributionD(w) is defined as the distribution such that

PD(w) (I) ∝ Ei∼D [1I(i)w(i)] ,

whereI is an event (subset of indices) and1I(·) its indicator function. For a discrete distribution
D with probability mass functionp(i) this corresponds to weighting the probabilities to obtain a
new probability mass function:

p(w)(i) ∝ w(i)p(i).

Similarly, for a continuous distribution, this corresponds to multiplying the density byw(i) and
renormalizing.

One way to construct the weighted distributionD(w), and sample from it, is throughrejection
sampling: samplei ∼ D, and accept with probabilityw(i)/W , for someW ≥ supi w(i). Other-
wise, reject and continue to re-sample until a suggestioni is accepted. The accepted samples are
then distributed according toD(w).

We useE(w)[·] = Ei∼D(w) [·] to denote an expectation where indices are sampled from the
weighted distributionD(w). An important property of such an expectation is that for anyquan-
tity X(i) that depends oni:

(3.1) E
(w)

[

1
w(i)

X(i)
]

= E [X(i)] /E [w(i)] ,

where recall that the expectations on the r.h.s. are with respect toi ∼ D. In particular, when

E[w(i)] = 1, we have thatE(w)
[

1
w(i)

X(i)
]

= EX(i). In fact, we will consider only weights

s.t.E[w(i)] = 1, and refer to such weights asnormalized.
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3.2. Reweighted SGD. For any normalized weight functionw(i), we can weight each component
fi, defining:

(3.2) f
(w)
i (x) =

1

w(i)
fi(x)

and obtain

(3.3) F (x) = E
(w)[f

(w)
i (x)].

The representation (3.3) is an equivalent, and equally valid, stochastic representation of the objec-
tive F (x), and we can just as well base SGD on this representation. In this case, at each iteration
we samplei ∼ D(w) and then use∇f (w)

i (x) = 1
w(i)
∇fi(x) as an unbiased gradient estimate. SGD

iterates based on the representation (3.3), which we will also refer to asw-weighted SGD, are then
given by

(3.4) xk+1 ← xk −
γ

w(ik)
∇fik(xk)

where{ik} are drawn i.i.d. fromD(w).
The important observation here is that all SGD guarantees are equally valid for thew-weighted

updates (3.4)–the objective is the same objectiveF (x), the sub-optimality is the same, and the
minimizerx⋆ is the same. We do need, however, to calculate the relevant quantities controlling
SGD convergence with respect to the modified componentsf

(w)
i and the weighted distribution

D(w).

3.3. Strongly Convex Smooth Optimization using Weighted SGD. We now return to the anal-
ysis of strongly convex smooth optimization and investigate how re-weighting can yield a better
guarantee. To do so, we must analyze the relevant quantitiesinvolved.

The Lipschitz constantL(w)
i of each componentf (w)

i is now scaled, and we have,L
(w)
i = 1

w(i)
Li.

The supremum is given by:

(3.5) supL(w) = sup
i

L
(w)
i = sup

i

Li

w(i)
.

It is easy to verify that (3.5) is minimized by the weights

(3.6) w(i) =
Li

L
,

and that with this choice of weights

(3.7) supL(w) = sup
i

Li

Li/L
= L.

Note that the average Lipschitz constantL = E[Li] = E
(w)[L

(w)
i ] is invariant under weightings.

Before applying Corollary 2.2, we must also calculate:

σ2
(w) = E

(w)[‖∇f (w)
i (x⋆)‖22] = E

(w)[
1

w(i)2
‖∇fi(x⋆)‖22](3.8)

= E[
1

w(i)
‖∇fi(x⋆)‖22] = E[

L

Li

‖∇fi(x⋆)‖22] ≤
L

inf L
σ2.
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Now, applying Corollary 2.2 to thew-weighted SGD iterates (3.4) with weights (3.6), we have
that, with an appropriate stepsize,

k = 2 log(2ε0/ε)
(supL(w)

µ
+

σ2
(w)

µ2ε

)

(3.9)

≤ 2 log(2ε0/ε)
(L

µ
+

L

inf L
· σ

2

µ2ε

)

iterations are sufficient forE(w)‖xk − x⋆‖22 ≤ ε, wherex⋆, µ andε0 are exactly as in Corollary
2.2.

3.4. Partially biased sampling. If σ2 = 0, i.e. we are in the “realizable” situation, with true
linear convergence, then we also haveσ2

(w) = 0. In this case, we already obtain the desired

guarantee: linear convergence with a linear dependence on the average conditioningL/µ, strictly
improving over Bach and Moulines. However, the inequality in (3.8) might be tight in the presence
of components with very smallLi that contribute towards the residual error (as might well bethe
case for a small component). Whenσ2 > 0, we therefore get a dissatisfying scaling of the second
term, relative to Bach and Moulines, by a factor ofL/inf L.

Fortunately, we can easily overcome this factor. To do so, consider sampling from a distribution
which is amixtureof the original source distribution and its re-weighting using the weights (3.6).
That is, sampling using the weights:

(3.10) w(i) =
1

2
+

1

2
· Li

L
.

We refer to this aspartially biased sampling. Using these weights, we have

(3.11) supL(w) = sup
i

1
1
2
+ 1

2
· Li

L

Li ≤ 2L

and

(3.12) σ2
(w) = E[

1
1
2
+ 1

2
· Li

L

‖∇fi(x⋆)‖22] ≤ 2σ2.

Plugging these into Corollary 2.2 we obtain:

Corollary 3.1. Let eachfi be convex where∇fi has Lipschitz constantLi and let F (x) =
Ei∼D[fi(x)], whereF (x) isµ-strongly convex. Setσ2 = E‖∇fi(x⋆)‖22, wherex⋆ = argminx F (x).
For any desiredε, using a stepsize of

γ =
µε

4(εµL+ σ2)

we have that after

(3.13) k = 4 log(2ε0/ε)
(L

µ
+

σ2

µ2ε

)

iterations ofw-weighted SGD(3.4)with weights specified by(3.10), E(w)‖xk − x⋆‖22 ≤ ε, where
ε0 = ‖x0 − x⋆‖22 andL = ELi.
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We now obtain the desired linear scaling onL/µ, without introducing any additional factor to
the residual term, except for a constant factor of two. We thus obtain a result which dominates
Bach and Moulines (up to a factor of 2) and substantially improves upon it (with a linear rather
than quadratic dependence on the conditioning).

One might also ask whether the previous best known result (2.3) could be improved using
weighted sampling. The relevant quantity to consider is theaverage square Lipschitz constant
for the weighted representation: (3.3):

L2
(w)

.
=E

(w)

[

(

L
(w)
i

)2
]

= E
(w)[

L2i

w(i)2
] = E[

L2
i

w(i)
].(3.14)

Interestingly, this quantity is minimized by the same weights assupL(w), given by (3.6), and with
these weights we have:

L2
(w) = E[

L2
i

Li/L
] = LELi = L

2
.(3.15)

Again, we can use the partially biased weights give in (3.10), which yieldsL2
(w) ≤ 2L

2
and also

ensuresσ2
(w) ≤ 2σ2. In any case, we get a dependence onL

2
= (ELi)

2 ≤ E[L2
i ] instead of

L2 = E[L2
i ], which is indeed an improvement. Thus, the Bach and Moulinesguarantee is also

improved by using biased sampling, and in particular the partially biased sampling specified by the
weights (3.10). However, relying on Bach and Moulines we still have a quadratic dependence on
(L/µ)2, as opposed to the linear dependence we obtain in Corollary 3.1.

3.5. Implementing Importance Sampling. As discussed above, when the magnitudes ofLi are
highly variable, importance sampling is necessarily in order to obtain a dependence on the av-
erage, rather than worst-case, conditioning. In some applications, especially when the Lipschitz
constants are known in advance or easily calculated or bounded, such importance sampling might
be possible by directly sampling fromD(w). This is the case, for example, in trigonometric ap-
proximation problems or linear systems which need to be solved repeatedly, or when the Lipschitz
constant is easily computed from the data, and multiple passes over the data are needed anyway.
We do acknowledge that in other regimes, when data is presented in an online fashion, or when we
only have sampling access to the source distributionD (or the implied distribution over gradient
estimates), importance sampling might be difficult.

One option that could be considered, in light of the above results, is to use rejection sampling
to simulate sampling fromD(w). For the weights (3.6), this can be done by accepting samples
with probability proportional toLi/ supL. The overall probability of accepting a sample is then
L/ supL, introducing an additional factor ofsupL/L. This results in a sample complexity with
a linear dependence onsupL, as in Corollary 2.2 (for the weights (3.10), we can first accept with
probability 1/2, and then if we do not accept, perform this procedure). Thus, if we are presented
samples fromD, and the cost of obtaining the sample dominates the cost of taking the gradient
step, we do not gain (but do not lose much either) from rejection sampling. We might still gain
from rejection sampling if the cost of operating on a sample (calculating the actual gradient and
taking a step according to it) dominates the cost of obtaining it and (a bound on) the Lipschitz
constant.
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3.6. A Family of Partially Biased Schemes. The choice of weights (3.10) corresponds to an
equal mix of uniform and fully biased sampling. More generally, we could consider sampling
according to any one of a family of weights which interpolatebetween uniform and fully biased
sampling:

(3.16) wλ(i) = λ+ (1− λ)
Li

L
, λ ∈ [0, 1].

To be concrete, we summarize below the a template algorithm for SGD with partially biased
sampling:

Algorithm 3.1: Stochastic Gradient Descent with Partially Biased Sampling

Input:
• Initial estimatex0 ∈ R

d

• Bias parameterλ ∈ [0, 1]
• Step sizeγ > 0
• Tolerance parameterδ > 0
• Access to the source distributionD
• If λ < 1: bounds on the Lipschitz constantsLi; the weightswλ(i) derived from them

(see eq. 3.16); and access to the weighted distributionD(λ).

Output: Estimated solution̂x to the problemminx F (x)

k ← 0
repeat

k ← k + 1
Draw an indexi ∼ D(λ).
xk ← xk−1 − γ

wλ(i)
∇fi(xk−1)

until ∇F (x) ≤ δ
x̂← xk

For arbitraryλ ∈ [0, 1], we have the bounds

supL(wλ) = sup
i

Li

λ+ (1− λ)Li

L

≤ min

(

L

1− λ
,
supi Li

λ

)

and

σ2
(wλ) = E[

1

λ + (1− λ)Li

L

‖∇fi(x⋆)‖22] ≤ max

(

1

λ
,

L

(1− λ) infi Li

)

σ2

Plugging these quantities into Corollary 2.2, we obtain:

Corollary 3.2. Let eachfi be convex where∇fi has Lipschitz constantLi and let F (x) =
Ei∼D[fi(x)], whereF (x) isµ-strongly convex. Setσ2 = E‖∇fi(x⋆)‖22, wherex⋆ = argmin

x
F (x).

For any desiredε, using a stepsize of

γ =
µε

2εµmin
(

L
1−λ

, supi Li

λ

)

+ 2max
(

1
λ
, L
(1−λ) infi Li

)

σ2
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we have that after

k = 2 log(2ε0/ε)





min
(

L
1−λ

, supi Li

λ

)

µ
+

max
(

1
λ
, L
(1−λ) infi Li

)

σ2

µ2ε





iterations ofw-weighted SGD(3.4) with partially biased weights(3.16), E(w)‖xk − x⋆‖22 ≤ ε,
whereε0 = ‖x0 − x⋆‖22 andL = ELi.

In this corollary, even ifλ is close to 1, i.e. we add only a small amount of bias to the sampling,
we obtain a bound with a linear dependence on the average conditioning L/µ (multiplied by a

factor of 1
λ
), since we can boundmin

(

L
1−λ

, supi Li

λ

)

≤ L
1−λ

.

4. IMPORTANCE SAMPLING FOR SGD IN OTHER SCENARIOS

In the previous Section, we considered SGD for smooth and strongly convex objectives, and
were particularly interested in the regime where the residual σ2 is low, and the linear convergence
term is dominant. Weighted SGD could of course be relevant also in other scenarios, and we now
briefly survey them, as well as relate them to our main scenario of interest.

4.1. Smooth, Not Strongly Convex. When each componentfi is convex, non-negative, and has
anLi-Lipschitz gradient, but the objectiveF (x) is not necessarily strongly convex, then after

(4.1) k = O

(

(supL)‖x⋆‖22
ε

· F (x⋆) + ε

ε

)

iterations of SGD with an appropriately chosen step-size wewill haveF (xk) ≤ F (x⋆) + ε, where
xk is an appropriate averaging of thek iterates Srebro et al. [45]. The relevant quantity here de-
termining the iteration complexity is againsupL. Furthermore, Srebro et al. [45], relying on an
example from Foygel and Srebro [13], point out that the dependence on the supremum is unavoid-
able andcannotbe replaced with the average Lipschitz constantL. That is, if we sample gradients
according to the source distributionD, we must have a linear dependence onsupL.

The only quantity in the bound (4.1) that changes with a re-weighting issupL—all other quan-
tities (‖x⋆‖22, F (x⋆), and the sub-optimalityε) are invariant to re-weightings. We can therefor
replace the dependence onsupL with a dependence onsupL(w) by using a weighted SGD as in
(3.4). As we already calculated, the optimal weights are given by (3.6), and using them we have
supL(w) = L. In this case, there is no need for partially biased sampling, and we obtain that with
an appropriate step-size,

(4.2) k = O

(

L‖x⋆‖22
ε

· F (x⋆) + ε

ε

)

iterations of weighed SGD updates (3.4) using the weights (3.6) suffice.
We again see that using importance sampling allows us to reduce the dependence onsupL,

which is unavoidable without biased sampling, to a dependence onL.
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4.2. Non-Smooth Objectives. We now turn to non-smooth objectives, where the componentsfi
might not be smooth, but each component isGi-Lipschitz. Roughly speaking,Gi is a bound on
the first derivative (gradient) offi, whileLi is a bound on the second derivatives offi. Here, the
performance of SGD depends on the second momentG2 = E[G2

i ]. The precise iteration complexity
depends on whether the objective is strongly convex or whetherx⋆ is bounded, but in either case
depends linearly onG2 (see e.g. [32, 43]).

By using weighted SGD we can replace the linear dependence onG2 with a linear dependence

on G2
(w) = E

(w)
[

(G
(w)
i )2

]

, whereG(w)
i is the Lipschitz constant of the scaledf (w)

i and is given

by G
(w)
i = Gi/w(i). Again, this follows directly from the standard SGD guarantees, where we

consider the representation (3.3) and use any subgradient from∂f
(w)
i (x).

We can calculate:

(4.3) G2
(w) = E

(w)

[

G2
i

w(i)2

]

= E

[

G2
i

w(i)

]

which is minimized by the weights:

(4.4) w(i) =
Gi

G

whereG = EGi. Using these weights we haveG2
(w) = E[Gi]

2 = G
2
. Using importance sampling,

we can thus reduce the linear dependence onG2 to a linear dependence onG
2
. Its helpful to recall

thatG2 = G
2
+Var[Gi]. What we save is therefore exactly the variance of the Lipschitz constants

Gi.
In parallel work, Zhao and Zhang [51] also consider importance sampling for stochastic op-

timization for non-smooth objectives. Zhao and Zhang consider a more general setting, with a
composite objective that is only partially linearized. Butalso there, the iteration complexity de-
pends on the second moment of the gradient estimates, and theanalysis performed above applies
(Zhao and Zhang perform a specialized analysis instead).

4.3. Non-Realizable Regime. Returning to the smooth and strongly convex setting of Sections 2
and 3, let us consider more carefully the residual termσ2 = E‖∇fi(x⋆)‖22. This quantity defini-
tively depends on the weighting, and in the analysis of Section 3.3, we avoided increasing it too
much, introducing partial biasing for this purpose. However, if this is the dominant term, we might
want to choose weights so as to minimize this term. The optimal weights here would be pro-
portional to‖∇fi(x⋆)‖2. The problem is that we do not know the minimizerx⋆, and so cannot
calculate these weights. Approaches which dynamically update the weights based on the current
iterates as a surrogate forx⋆ are possible, but beyond the scope of this paper.

An alternative approach is to bound‖∇fi(x⋆)‖2 ≤ Gi and soσ2 ≤ G2. Taking this bound, we
are back to the same quantity as in the non-smooth case, and the optimal weights are proportional
toGi. Note that this is a different weighting then using weights proportional toLi, which optimize
the linear-convergence term as studied in Section 3.3.

To understand how weighting according toGi andLi are different, consider a generalized linear
objective wherefi(x) = φi(〈zi, x〉), andφi is a scalar function with|φ′

i| ≤ Gφ and|φ′′
i | ≤ Lφ.

We have thatGi ∝ ‖zi‖2 whileLi ∝ ‖zi‖22. Weighting according to the Lipschitz constants of the
gradients, i.e. the “smoothness” parameters, as in (3.6), versus weighting according to the Lipschitz
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constants offi as in (4.4), thus corresponds to weighting according to‖zi‖22 versus‖zi‖2, and are
rather different. We can also calculate that weighing byLi ∝ ‖zi‖22 (i.e. following (3.6)), yields
G2

(w) = G2 > G
2
. That is, weights proportional toLi yield a suboptimal gradient-dependent term

(the same dependence as if no weighting at all was used). Conversely, using weights proportional
to Gi, i.e. proportional to‖zi‖2 yields supL(w) = (E[

√
Li])
√
supL – a suboptimal dependence,

though better then no weighting at all.
Again, as with partially biased sampling, we can weight by the average,w(i) = 1

2
· Gi

Ḡ
+ 1

2
· Li

L̄

and ensure both terms are optimal up to a factor of two.

5. THE LEAST SQUARES CASE AND THERANDOMIZED KACZMARZ METHOD

A special case of interest is the least squares problem, where

(5.1) F (x) =
1

2

n
∑

i=1

(〈ai,x〉 − bi)
2 =

1

2
‖Ax− b‖22

with b ann-dimensional vector,A ann× d matrix with rowsai, andx⋆ = argminx

1
2
‖Ax− b‖22

is the least-squares solution. Writing the least squares problem (5.1) in the form (2.1), we see that
the source distributionD is uniform over{1, 2, . . . , n}, the components arefi = n

2
(〈ai,x〉 − bi)

2,
the Lipschitz constants areLi = n‖ai‖22, the average Lipschitz constant is1

n

∑

i Li = ‖A‖2F , the
strong convexity parameter isµ = 1

‖(ATA)−1‖2
, so thatK(A) := L/µ = ‖A‖2F‖(ATA)−1‖2, and

the residual isσ2 = n
∑

i‖ai‖22| 〈ai, x⋆〉 − bi|2. Note that in the case thatA is not full-rank, one
can instead replaceµ with the smallest nonzero eigenvalue ofA∗A as in [23, Equation (3)]. In
that case, we instead writeK(A) = ‖A‖2F‖(ATA)†‖2 as the appropriate condition number.

The randomizedKaczmarz method[46, 7, 17, 27, 49, 8, 47, 15, 52, 28] for solving the least
squares problem (5.1) begins with an arbitrary estimatex0, and in thekth iteration selects a row
i = i(k) i.i.d. at random from the matrixA and iterates by:

(5.2) xk+1 = xk + c · bi − 〈ai,xk〉
‖ai‖22

ai,

where the step sizec = 1 in the standard method.
Strohmer and Vershynin provided the first non-asymptotic convergence rates, showing that

drawing rows proportionally to‖ai‖22 leads to provable exponential convergence in expectation
for the full-rank case [46]. Their method can easily be extended to the case when the matrix is not
full-rank to yield convergence to some solution, see e.g. [23, Equation (3)]. Recent works use ac-
celeration techniques to improve convergence rates [22, 34, 11, 38, 52, 12, 10, 6, 35, 36, 37, 30, 29].

However, one can easily verify that the iterates (5.2) are precisely weighted SGD iterates (3.4)
with the fully biased weights (3.6).

The reduction of the quadratic dependence on the conditioning to a linear dependence in The-
orem 2.1, as well as the use of biased sampling which we investigate here was motivated by
Strohmer and Vershynin’s analysis of the randomized Kaczmarz method. Indeed, applying Theo-
rem 2.1 to the weighted SGD iterates (2.2) for (5.1) with the weights (3.6) and a stepsize ofγ = 1
yields precisely the Strohmer and Vershynin [46] guarantee.

Understanding the randomized Kaczmarz method as SGD allowsus also to obtain improved
methods and results for the randomized Kaczmarz method:
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Using Step-sizes. As shown by Strohmer and Vershynin [46] and extended by Needell [28], the
randomized Kaczmarz method with weighted sampling exhibits exponential convergence, but only
to within a radius, orconvergence horizon, of the least-squares solution. This is because a step-
size ofγ = 1 is used, and so the second term in (2.4) does not vanish. It hasbeen shown [49,
8, 47, 15, 30] that changing the step size can allow for convergence inside of this convergence
horizon, although non-asymptotic results have been difficult to obtain. Our results allow for finite-
iteration guarantees with arbitrary step-sizes and can be immediately applied to this setting. Indeed,
applying Theorem 2.1 with the weights (3.6) gives

Corollary 5.1. LetA be ann×d matrix with rowsai. Sete = Ax⋆−b, wherex⋆ is the minimizer
of the problem

x⋆ = argmin
x

1

2
‖Ax− b‖22.

Suppose thatc < 1. Seta2min = inf i‖ai‖22, a2max = supi‖ai‖22. Then the expected error at the
kth iteration of the Kaczmarz method described by(5.2) with row ai selected with probability
pi = ‖ai‖22/‖A‖2F satisfies

(5.3) E‖xk − x⋆‖22 ≤
[

1− 2c(1− c)

K(A)

]k

‖x0 − x⋆‖22 +
c

1− c
K(A)r,

with r = σ2

n‖A‖2
F
·a2min

. The expectation is taken with respect to the weighted distribution over the
rows.

When e.g.c = 1
2
, we recover the exponential rate of Strohmer and Vershynin [46] up to a factor

of 2, and nearly the same convergence horizon. For arbitraryc, Corollary 5.1 implies a tradeoff
between a smaller convergence horizon and a slower convergence rate.

Uniform Row Selection. The Kaczmarz variant of Strohmer and Vershynin [46] calls for weighted
row sampling, and thus requires pre-computing all the row norms. Although certainly possible in
some applications, in other cases this might be better avoided. Understanding the randomized
Kaczmarz as SGD allows us to apply Theorem 2.1 also with uniform weights (i.e. to the unbiased
SGD), and obtain a randomized Kaczmarz using uniform sampling, which converges to the least-
squares solution and enjoys finite-iteration guarantees:

Corollary 5.2. LetA be ann × d matrix with rowsai. LetD be the diagonal matrix with terms
dj,j = ‖ai‖2, and consider the composite matrixD−1A. Setew = D−1(Axw

⋆ − b), wherexw
⋆ is

the minimizer of the weighted least squares problem

xw
⋆ = argmin

x

1

2
‖D−1(Ax− b)‖22.

Suppose thatc < 1. Then the expected error afterk iterations of the Kaczmarz method described
by (5.2)with uniform row selection satisfies

E‖xk − xw
⋆ ‖22 ≤

[

1− 2c(1− c)

K(D−1A)

)

]k

‖x0 − xw
⋆ ‖22 +

c

1− c
K(D−1A)rw,

whererw = ‖ew‖22/n.
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Note that the randomized Kaczmarz algorithm with uniform row selection converges exponen-
tially to a weightedleast-squares solution, to within arbitrary accuracy by choosing sufficiently
small stepsizec. Thus, in general, the randomized Kaczmarz algorithms withuniform and biased
row selection converge (up to a convergence horizon) towards different solutions.

Partially Biased Sampling. As in our SGD analysis, using the partially biased sampling weights
is applicable also for the randomized Kaczmarz method. Applying Theorem 2.1 using weights
(3.10) gives

Corollary 5.3 (Randomized Kaczmarz with partially biased sampling). LetA be ann× d matrix
with rowsai. Sete = Ax⋆ − b, wherex⋆ is the minimizer of the problem

x⋆ = argmin
x

1

2
‖Ax− b‖22.

Supposec < 1/2. Then the iteratexk of the modified Kaczmarz method described by

(5.4) xk+1 = xk + 2c · bi − 〈ai,xk〉
‖A‖2F/n+ ‖ai‖22

ai

with rowai selected with probabilitypi =
1
2
· ‖ai‖22
‖A‖2

F

+ 1
2
· 1
n

satisfies

(5.5) E‖xk − x⋆‖22 ≤
[

1− 2c(1− 2c)

K(A)

]k

‖x0 − x⋆‖22 +
cK(A)

1− 2c
· 2σ2

n‖A‖2F
The partially biased randomized Kaczmarz method describedabove (which does have modified

update equation (5.4) compared to the standard update equation (5.2)) yields the same convergence
rate as the fully biased randomized Kaczmarz method [46] (upto a factor of 2), but gives a better
dependence on the residual error over the fully biased sampling, as the final term in (5.5) is smaller
than the final term in (5.3).

6. NUMERICAL EXPERIMENTS

In this section we present some numerical results for the randomized Kaczmarz algorithm with
partially biased sampling, that is, applying Algorithm 3.1to the least squares problemF (x) =
1
2
‖Ax − b‖22 (so fi(x) = n

2
(〈ai, x〉 − bi)

2) and consideringλ ∈ [0, 1]. Recall thatλ = 0 cor-
responds to the randomized Kaczmarz algorithm of Strohmer and Vershynin with fully weighted
sampling [46].λ = .5 corresponds to the partially biased randomized Kaczmarz algorithm outlined
in Corollary 5.3. We demonstrate how the behavior of the algorithm depends onλ, the condition-
ing of the system, and the residual error at the least squaressolution. We focus on exploring the
role of λ on the convergence rate of the algorithm for various types ofmatricesA. We consider
five types of systems, described below, each using a1000×10 matrixA. In each setting, we create
a vectorx with standard normal entries. For the described matrixA and residuale, we create the
systemb = Ax + e and run the randomized Kaczmarz method with various choicesof λ. Each
experiment consists of100 independent trials and uses the optimal step size as in Corollary 3.2
with ε = .1; the plots show the average behavior over these trials. The settings below show the
various types of behavior the Kazcmarz method can exhibit.
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Case 1: Each row of the matrixA has standard normal entries, except the last row which has
normal entries with mean0 and variance102. The residual vectore has normal entries with
mean0 and variance0.12.

Case 2: Each row of the matrixA has standard normal entries. The residual vectore has
normal entries with mean0 and variance0.12.

Case 3: Thejth row ofA has normal entries with mean0 and variancej. The residual vector
e has normal entries with mean0 and variance202.

Case 4: Thejth row ofA has normal entries with mean0 and variancej. The residual vector
e has normal entries with mean0 and variance102.

Case 5: Thejth row ofA has normal entries with mean0 and variancej. The residual vector
e has normal entries with mean0 and variance0.12.

Figure 1 shows the convergence behavior of the randomized Kaczmarz method in each of these
five settings. As expected, when the rows ofA are far from normalized, as in Case 1, we see
different behavior asλ varies from0 to 1. Here, weighted sampling (λ = 0) significantly outper-
forms uniform sampling (λ = 1), and the trend is monotonic inλ. On the other hand, when the
rows ofA are close to normalized, as in Case 2, the variousλ give rise to similar convergence
rates, as is expected. Out of theλ tested (we tested increments of0.1 from 0 to 1), the choice
λ = 0.7 gave the worst convergence rate, and again purely weighted sampling gives the best. Still,
the worst-case convergence rate was not much worse, as opposed to the situation with uniform
sampling in Case 1. Cases 3, 4, and 5 use matrices with varyingrow norms and cover “high”,
“medium”, and “low” noise regimes, respectively. In the high noise regime (Case 3), we find that
fully weighted sampling,λ = 0, is relatively very slow to converge, as the theory suggests, and
hybrid sampling outperforms both weighted and uniform selection. In the medium noise regime
(Case 4), hybrid sampling still outperforms both weighted and uniform selection. Again, this is not
surprising, since hybrid sampling allows a balance betweensmall convergence horizon (important
with large residual norm) and convergence rate. As we decrease the noise level (as in Case 5), we
see that again weighted sampling is preferred.

Figure 2 shows the number of iterations of the randomized Kaczmarz method needed to obtain
a fixed approximation error. For the choiceλ = 1 for Case 1, we cut off the number of iterations
after 50,000, at which point the desired approximation error was still not attained. As seen also
from Figure 1, Case 1 exhibits monotonic improvements as we scaleλ. For Cases 2 and 5, the
optimal choice is pure weighted sampling, whereas Cases 3 and 4 prefer intermediate values ofλ.

7. SUMMARY AND OUTLOOK

We consider this paper as making three contributions: the improved dependence on the condi-
tioning for smooth and strongly convex SGD, the discussion of importance sampling for SGD, and
the connection between SGD and the randomized Kaczmarz method.

For simplicity, we only considered SGD iterates with a fixed step-sizeγ. This is enough for
getting the optimal iteration complexity if the target accuracyε is known in advance, which was
our approach in this paper. It is easy to adapt the analysis, using standard techniques, to incorporate
decaying step-sizes, which are appropriate if we don’t knowε in advance.

We suspect that the assumption of strong convexity can be weakened torestricted strong con-
vexity [21, 50] without changing any of the results of this paper; weleave this analysis to future
work.
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FIGURE 1. The convergence rates for the randomized Kaczmarz methodwith var-
ious choices ofλ in the five settings described above. The vertical axis is in log-
arithmic scale and depicts the approximation error‖xk − x⋆‖22 at iterationk (the
horizontal axis).



18 NEEDELL, SREBRO, WARD

0 0.2 0.4 0.6 0.8 1
10

3

10
4

λ

Ite
ra

tio
ns

 (
lo

g)

FIGURE 2. Number of iterationsk needed by the randomized Kaczmarz method
with partially biased sampling, for various values ofλ, to obtain approximation er-
ror ‖xk − x⋆‖22 ≤ ε = 0.1 in the five cases described above: Case 1 (blue with cir-
cle marker), Case 2 (red with square marker), Case 3 (black with triangle marker),
Case 4 (green with x marker), and Case 5 (purple with star marker).

Finally, our discussion of importance sampling is limited to a static reweighting of the sampling
distribution. A more sophisticated approach would be to update the sampling distribution dynami-
cally as the method progresses, and as we gain more information about the relative importance of
components. Although such dynamic importance sampling is sometimes attempted heuristically,
we are not aware of any rigorous analysis of such a dynamic biasing scheme.
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APPENDIX A. PROOFS

Our main results utilize an elementary fact about smooth functions with Lipschitz continuous
gradient, called the co-coercivity of the gradient. We state the lemma and recall its proof for
completeness.

A.1. The Co-coercivity Lemma.

Lemma A.1 (Co-coercivity). For a smooth functionf whose gradient has Lipschitz constantL,

‖∇f(x)−∇f(y)‖22 ≤ L 〈x− y,∇f(x)−∇f(y)〉 .

Proof. Since∇f has Lipschitz constantL, if x⋆ is the minimizer off , then [see e.g. 32, page 26]
(A.1)

1

2L
‖∇f(x)−∇f(x⋆)‖22 =

1

2L
‖∇f(x)−∇f(x⋆)‖22 + 〈x− x⋆,∇f(x⋆)〉 ≤ f(x)− f(x⋆);

Now define the convex functions

G(z) = f(z)− 〈∇f(x), z〉 , and H(z) = f(z)− 〈∇f(y), z〉 ,

http://dx.doi.org/10.1007/s00041-008-9030-4
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and observe that both have Lipschitz constantsL and minimizersx andy, respectively. Applying
(A.1) to these functions therefore gives that

G(x) ≤ G(y)− 1

2L
‖∇G(y)‖22, and H(y) ≤ H(x)− 1

2L
‖∇H(y)‖22.

By their definitions, this implies that

f(x)− 〈∇f(x),x〉 ≤ f(y)− 〈∇f(x),y〉 − 1

2L
‖∇f(y)−∇f(x)‖22

f(y)− 〈∇f(y),y〉 ≤ f(x)− 〈∇f(y),x〉 − 1

2L
‖∇f(x)−∇f(y)‖22.

Adding these two inequalities and canceling terms yields the desired result.
�

A.2. Proof of Theorem 2.1. With the notation of Theorem 2.1, and wherei is the random index
chosen at iterationk, andw = wλ, we have

‖xk+1 − x⋆‖22 = ‖xk − x⋆ − γ∇fi(xk)‖22
= ‖(xk − x⋆)− γ(∇fi(xk)−∇fi(x⋆))− γ∇fi(x⋆)‖22
= ‖xk − x⋆‖22 − 2γ 〈xk − x⋆,∇fi(xk)〉+ γ2‖∇fi(xk)−∇fi(x⋆) +∇fi(x⋆)‖22
≤ ‖xk − x⋆‖22 − 2γ 〈xk − x⋆,∇fi(xk)〉+ 2γ2‖∇fi(xk)−∇fi(x⋆)‖22 + 2γ2‖∇fi(x⋆)‖22
≤ ‖xk − x⋆‖22 − 2γ 〈xk − x⋆,∇fi(xk)〉

+ 2γ2Li 〈xk − x⋆,∇fi(xk)−∇fi(x⋆)〉+ 2γ2‖∇fi(x⋆)‖22,

where we have employed Jensen’s inequality in the first inequality and the co-coercivity Lemma
A.1 in the final line. We next take an expectation with respectto the choice ofi. By assumption,
i ∼ D such thatF (x) = Efi(x) andσ2 = E‖∇fi(x⋆)‖2. ThenE∇fi(x) = ∇F (x), and we
obtain:

E‖xk+1 − x⋆‖22 ≤ ‖xk − x⋆‖22 − 2γ 〈xk − x⋆,∇F (xk)〉+ 2γ2
E [Li 〈xk − x⋆,∇fi(xk)−∇fi(x⋆)〉]

+ 2γ2
E‖∇fi(x⋆)‖22

≤ ‖xk − x⋆‖22 − 2γ 〈xk − x⋆,∇F (xk)〉+ 2γ2 sup
i

LiE 〈xk − x⋆,∇fi(xk)−∇fi(x⋆)〉

+ 2γ2
E‖∇fi(x⋆)‖22

= ‖xk − x⋆‖22 − 2γ 〈xk − x⋆,∇F (xk)〉+ 2γ2 supL 〈xk − x⋆,∇F (xk)−∇F (x⋆)〉+ 2γ2σ2

We now utilize the strong convexity ofF (x) and obtain that

≤ ‖xk − x⋆‖22 − 2γµ(1− γ supL)‖xk − x⋆‖22 + 2γ2σ2

= (1− 2γµ(1− γ supL))‖xk − x⋆‖22 + 2γ2σ2
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whenγ ≤ 1
supL

. Recursively applying this bound over the firstk iterations yields the desired result,

E‖xk − x⋆‖22 ≤
(

1− 2γµ(1− γ supL)
))k

‖x0 − x⋆‖22 + 2

k−1
∑

j=0

(

1− 2γµ(1− γ supL)
))j

γ2σ2

≤
(

1− 2γµ(1− γ supL)
))k

‖x0 − x⋆‖22 +
γσ2

µ
(

1− γ supL
) .
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