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STOCHASTIC GRADIENT DESCENT, WEIGHTED SAMPLING, AND THE
RANDOMIZED KACZMARZ ALGORITHM

DEANNA NEEDELL, NATHAN SREBRO, AND RACHEL WARD

ABSTRACT. We obtain an improved finite-sample guarantee on the lio@arergence of stochastic
gradient descent for smooth and strongly convex objectigsoving from a quadratic dependence
on the conditioningdZ /1) (whereL is a bound on the smoothness andn the strong convexity)
to a linear dependence dryu. Furthermore, we show how reweighting the sampling distiin
(i.e. importance sampling) is necessary in order to furitn@rove convergence, and obtain a linear
dependence in the average smoothness, dominating preesuiss. We also discuss importance
sampling for SGD more broadly and show how it can improve eogence also in other scenarios.
Our results are based on a connection we make between SGharmhtlomized Kaczmarz
algorithm, which allows us to transfer ideas between the separatedodliiterature studying each
of the two methods. In particular, we recast the randomizacdziharz algorithm as an instance of
SGD, and apply our results to prove its exponential converggebut to the solution of a weighted
least squares problem rather than the original least sgjymoblem. We then present a modified
Kaczmarz algorithm with partially biased sampling whicled@onverge to the original least squares
solution with the same exponential convergence rate.
Keywords. distribution reweighting, importance sampling, Kaczmanrethod, stochastic gradient
descent

1. INTRODUCTION

This paper connects two algorithms which until now have lieetremarkably disjoint in the
literature: the randomized Kaczmarz algorithm for solMingar systems and the stochastic gra-
dient descent (SGD) method for optimizing a convex objecatising unbiased gradient estimates.
The connection enables us to make contributions by borig¥vom each body of literature to the
other. In particular, it helps us highlight the role of weligthsampling for SGD and obtain a tighter
guarantee on the linear convergence regime of SGD.

Recall that stochastic gradient descent is a method formiiitig a convex objectiveé’(x)
based on access to unbiased stochastic gradient estimatésan estimatg for the gradient at a
given pointz, such thatf|g] = VF(x). Viewing F'(x) as an expectatiof'(x) = E;[f;(x)], the
unbiased gradient estimate can be obtained by drainang using its gradieny = V f;(x). SGD
originated as “Stochastic Approximation” in the pionegrinork of Robbins and Monro&hl],
and has recently received renewed attention for confrgntery large scale problems, especially
in the context of machine Iearnin 31, 2]. Classicallgsis of SGD shows a polynomial
rate on the sub-optimality of the objective valu&x;) — F(x,), namelyl/v/k for non-smooth
objectives, and /k for smooth, or non-smooth but strongly convex objectivagchSconvergence
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can be ensured even if the iteratgsdo not necessarily converge to a unique optimgyyas might
be the case if’(x) is not strongly convex. Here we focus on the strongly convasecwhere the
optimum is unique, and on convergence of the iterajet the optimume,.

Bach and Moulines[[l] recently provided a non-asymptotiarizbon the convergence of the
iterates in strongly convex SGD, improving on previous hssaf this kind @ Section 2.2ﬁt3,
Section 3.21@3 ]. In particular, they showed that ithg;(x) is smooth and ife, is a min-
imizer of (almost) allf;(x), i.e.P;(V fi(z,) = 0) = 1, thenE||z; — x| goes to zero exponen-
tially, rather than polynomially, irk. That is, reaching a desired accuracyfidffc;, — .|| < ¢
requires a number of steps that scales only logarithmidally/=. Bach and Moulines’s bound
on the required number of iterations further depends onvbegesquaredconditioning number
E[(L;/1)?], whereL; is the Lipschitz constant &7 f;(x) (i.e. f:(x) are “L-smooth”), andF'(z) is
u-strongly convex. lfe, is not an exact minimizer of eagh(x), the bound degrades gracefully as
a function ofo? = E||V f;(«,)||?, and includes an unavoidable term that behaveg k.

In a seemingly independent line of research,Klhezmarz methodias proposed as an iterative
method for solving (usually overdetermined) systems afdinequations [19]. The simplicity of
the method makes it useful in a wide array of applicationgiramfrom computer tomography to
digital signal processin@@lﬂm]. Recently, Strohiared Vershynin@l6] proposed a variant
of the Kaczmarz method using a random selection method wdeédct rows with probability
proportional to their squared norm, and showed that usisg#iection strategy, a desired accuracy
of e can be reached in the noiseless setting in a number of stpsctiies likéog(1/¢) andlinearly
in the condition number.

1.1. Importance sampling in stochastic optimization. From a birds-eye perspective, this paper
aims to extend the notion of importance sampling from ststtbaampling methods for numerical
linear algebra applications, to more general stochastiweoooptimization problems. Strohmer
and Vershynin’s incorporation of importance sampling itite Kaczmarz setuﬂhG] IS just one
such example, and most closely related to the SGD set-up.inBadrtance sampling has also
been considered in stochastic coordinate-descent me@ ]. There also, the weights are
proportional to some power of the Lipschitz constants (efghadient coordinates).

Importance sampling has also played a key role in desigrangping-based low-rank matrix
approximation algorithms — both row/column based sampding entry-wise sampling — where
it goes by the name déverage scorsampling. The resulting sampling methods are again pro-
portional to the squared Euclidean norms of rows and coluafriee underlying matrix. See
[@, ,,BB], and references therein for applications ® ¢blumn subset selection problem
and matrix completion. Sea 48] for applicationsmoportance sampling to the Nystrom
Method.

Importance sampling has also been introduced to the cosipeesensing framework, where it
translates to sampling rows of an orthonormal matrix propoally to their squared inner products
with the rows of a second orthonormal matrix in which the uhdeg signal is assumed sparse.
See @@0] for more details.

1.2. Contributions. Inspired by the analysis of Strohmer and Vershyninland BachMoulines,

we prove convergence results for stochastic gradient dessewell as for SGD variants where
gradient estimates are chosen based amighted sampling distributigmighlighting the role of
importance sampling in SGD.
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We first show (Corollarj 2]2 in Sectidn 2) that without pebiag the sampling distribution, we
can obtain a linear dependence on timform conditioning(sup L; /), but it is not possibleo
obtain a linear dependence on tieerage conditionindt[L;/x]. This is aquadratic improve-
ment over the previous results [E|] in regimes where the components have similar Lipschitz
constants.

We then turn to importance sampling, using a weighted sangmistribution. We show that
weighting components proportionally to their LipschitzetantsL;, as is essentially done by
Strohmer and Vershynin, can reduce the dependence on tlgioomg to a linear dependence
on the average conditioning[Z;/u|. However, this comes at an increased dependence on the
residual>?. But, we show that by onlgartially biasingthe sampling towards;, we can enjoy the
best of both worlds, obtaining a linear dependence on theageeconditioninde[L; /1], without
amplifying the dependence on the residual. Thusng importance sampling, we obtain a
guar antee dominating, and improving over the previous best-known results [@? (Corollary(3.1
in Sectior2).

In Sectior( 4, we consider the benefits of reweighted SGD alshier scenarios and regimes.
We show how also for smooth but not-strongly-convex obyestimportance sampling can im-
prove a dependence on a uniform bound over smoothness, (sup L;), to a dependence on the
aver age smoothness E[L;]—such an improvement is not possible without importancepdiag
For non-smooth objectives, we show that importance sampgkm eliminate a dependence on the
variance in the Lipschitz constants of the components. tallghwork we recently became aware
of, Zhao and Zhan@l] also consider importance samplingdo-smooth objectives, including
composite objectives, suggesting the same reweightingeasbtain here.

Finally, in SectiorLb, we turn to the Kaczmarz algorithm, lakphow it is an instantiation of
SGD, and how using partially biased sampling improves knguarantees in this context as well.
We show that the randomized Kaczmarz method with uniformh. irow selection can be recast as
an instance of preconditioned Stochastic Gradient Desasirtg on a re-weighted least squares
problem and through this connection, provide exponentialergence rates for this algorithm. We
also consider the Kaczmarz algorithm corresponding to S@D kybrid row selection strategy
which shares the exponential convergence rate of StrohmléVeashynin] while also sharing a
small error residual term of the SGD algorithm. This presarttlear tradeoff between convergence
rate and the convergence residual, not present in othdtgésuthe method.

2. SGDFOR STRONGLY CONVEX SMOOTH OPTIMIZATION
We consider the problem of minimizing a smooth convex fuorcti

(2.1) x, = argmin F'(x)

whereF'(z) is of the formF'(x) = E,.p f;(x) for smooth functionalg; : # — R overH = R¢
endowed with the standard Euclidean ndfr,, or over a Hilbert spac@{ with the norm||-|,.
Herei is drawn from someource distributioriD over an arbitrary probability space. Throughout
this manuscript, unless explicitly specified otherwisgextations will be with respect to indices
drawn from the source distributidd. That is, we writeE f;(x) = E;p f;(). We also denote by
o2 the “residual” quantity at the minimum,

o =E[Vfi(z.)|5-
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We will instate the following assumptions on the functibn

(1) Eachf; is continuously differentiable and the gradient funct\yi has Lipschitz constant
L;;thatis,||V fi(z) — Vfi(y)|l2 < Li||x — y||- for all vectorsz andy.

(2) F has strong convexity parameterthat is,(x — y, VF (z) — VF(y)) > pllz — y||3 for
all vectorsx andy.

We denotesup L the supremum of the support 6f, i.e. the smallest such thatZ; < L a.s.,
and similarly denoténf L the infimum. We denote the average Lipschitz constarit asEL;.

A unbiased gradient estimate féi{(x) can be obtained by drawinig~ D and usingV f;(x) as
the estimate. The SGD updates with (fixed) step sibased on these gradient estimates are then
given by:

(2.2) Tit1 & T — WVfik(wk)

where{i,} are drawn i.i.d. fromD. We are interested in the distante, — x.||3 of the iterates
from the unique minimum, and denote the initial distancepy: ||z, — . |3.
Bach and Moulineeﬂl, Theorem 1] considered this seﬁliimgi established that

EL? o2
(2.3) k= 210g(5/50)< o u26>
SGD iterations of the forni.(2.2), with an appropriate stee;sare sufficient to ensulé|z;, — =, ||3 <
e, where the expectations is over the random sampling. Asadsnag = 0, i.e. the same minimizer
x, minimizes all component§ (x) (though of course it need not be a unique minimizer of any of
them), this yields linear convergenceg, with a graceful degradation @ > 0. However, in
the linear convergence regime, the number of requiredtiberascales with the expectedquared
conditioningEL? /2. In this paper, we reduce this quadratic dependence to arldependence.
We begin with a guarantee ensuring linear dependence, ltheith a dependence osup L/
rather thank' L, / u:

Theorem 2.1. Let eachf; be convex wher¥ f; has Lipschitz constant;, with L, < sup L a.s.,
and letF'(z) = Ef;(x) beu-strongly convex. Set = E||V fi(x,)||5, wherex, = argmin,, F(x).
Suppose that < ——. Then the SGD iterates given [B.2) satisfy:

sup

yo?

u(l —vsupL)’

k
(24)  Ellay - a3 < [1- 29001 - ysup 1))] llwo — .3+

where the expectation is with respect to the sampling of.

If we are given a desired tolerandgy — x.||3 < ¢, and we know the Lipschitz constants and
parameters of strong convexity, we may optimize the step=siand obtain:

Corollary 2.2. For any desired, using a step-size of

_ K
~ 2epsup L + 202

v

1Bach and Moulines's results are somewhat more general.r Thgichitz requirement is a bit weaker and more
complicated, but in terms df; yields [Z.3). They also study the use of polynomial decagieg-sizes, but these do
not lead to improved runtime if the target accuracy is knoWweaal of time.
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we have that after
supL o2
"t T)
e

(2.5) k=2 log(2€0/€)<

SGD iterations[E||x), — x.||3 < ¢, whereey = ||zy — x.||3 and where the expectation is with
respect to the sampling ¢f,}.

Proof. Substitutingy = into the second term df (2.4) and simplifying gives the bound

ue
2ep sup L+202

o

,u(l — VsupL)

<e/2.

Now asking that

k
[1 — 2yp(1 — ~ysup L))] g0 < €/2,
substituting fory, and rearranging to solve fét shows that we neefdsuch that

2 2
Flog 1_,u€(,uesupL+2a) < log 2e9 .
2(pesup L + 02)? €

Utilizing the fact that—1/log(1 — z) < 1/x for 0 < = < 1 and rearranging again yields the
requirement that

e > 1 2e0 2(pesup L + 02)?
og | — ) - :
=8\ ple(pesup L + 202)

Noting that this inequality holds wheén> 21log (%2 ) - “‘EL{W‘Q yields the stated number of steps
kin (2.8). Since the expression on the right hand sidé of (@etyeases witl, the corollary is
proven. 0

Proof sketch. The crux of the improvement over Bach and Moulines is in atéigrecursive equa-
tion. Bach and Moulines rely on the recursion

[@ri1 — 23 < (1= 290+ 29°L3) [l — 2. ][5 + 27707,
whereas we use the Co-Coercivity LemimalA.1, with which weatatain the recursion
51— zull5 < (1= 290+ 29°uLs) |2 — 2.5 + 29707,

where L; is the Lipschitz constant of the component used in the ctiiterate. The significant
difference is that one of the factors 6f (an upper bound on the second derivative), in the third
term inside the parenthesis, is replacedibga lower bound on the second derivativeiof. A
complete proof can be found in the appendix.

Comparison to results of Bach and Moulines. Our bound [(2.b) replaces the dependence on the
averagesquare conditioning (EL?/?) with a linear dependence on thmiform conditioning
(sup L/p). When all Lipschitz constants; are of similar magnitude, this is a quadratic improve-
ment in the number of required iterations. However, whefedtht componentg; have widely
different scaling, i.eL; are highly variable, the supremum might be larger then tleeame square
conditioning.
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Tightness. Considering the above, one might hope to obtain a linearrdbgee on the average
conditioning L/ = EL;/u. However, as the following example shows, this is not pdesib
Consider a uniform source distribution ov&r+ 1 quadratics, with the first quadratj¢ being

2 (x[1] — b)? and all others beingx[2]?, andb = +1. Any method must examing in order to
recoverx to within error less then one, but by uniformly sampling tefis, this takeg N + 1)
iterations in expectation. It is easy to verify that in thise,supL; = L; = N, L = QNLH < 2
EL? = N,andy = NLH For largeN, a linear dependence dry;: would mean that a constant
number of iterations suffice (ds/ i = 2), but we just saw thatnymethod that sampleicuniformly
must consider at leastV + 1) samples in expectation to get non-trivial error. Note thathb
supL;/pu = N + 1 andEL?/u* ~ N + 1 indeed correspond to the correct number of iterations
required by SGD.

We therefore see that the choice between a dependence ovetiagequadraticconditioning
EL?/u?, or a linear dependence on thaiform conditioningsup L/, is unavoidable. A linear
dependence on the average conditioning: is not possible with any method that samples from
the source distributio®. In the next Section, we will show how veanobtain a linear dependence
on the average conditioning/u, usingimportance samplingi.e. by sampling from a modified
distribution.

3. IMPORTANCE SAMPLING

We will now consider stochastic gradient descent, wherdigra estimates are sampled from a
weighted distribution

3.1. ReweightingaDistribution. For aweight functionu(:) which assigns a non-negative weight
w(i) > 0 to each index, the weighted distributio®™) is defined as the distribution such that

Ppw (1) o Eiup [11(0)w(i)]

where/ is an event (subset of indices) ahd-) its indicator function. For a discrete distribution
D with probability mass functiop(i) this corresponds to weighting the probabilities to obtain a
new probability mass function:

P (@) oc w(i)p(i).
Similarly, for a continuous distribution, this correspsré multiplying the density byv (i) and
renormalizing.

One way to construct the weighted distributiB*), and sample from it, is througtejection
sampling samplei ~ D, and accept with probability (i) /W, for someWW > sup, w(i). Other-
wise, reject and continue to re-sample until a suggestisraccepted. The accepted samples are
then distributed according ™).

We useE™)[] = E, ,w[] to denote an expectation where indices are sampled from the
weighted distributiorD™). An important property of such an expectation is that for gagn-
tity X (¢) that depends on
(3.1) E® [5X(0)] = E[X(0)] /B [w()],
where recall that the expectations on the r.h.s. are withesto: ~ D. In particular, when
E[w(i)] = 1, we have thafe() [L.X(i)} = EX(i). In fact, we will consider only weights

w(i)
s.t.E[w(i)] = 1, and refer to such weights asrmalized
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3.2. Reweighted SGD. For any normalized weight functian(i), we can weight each component
f:, defining:

(3.2) () = ﬁﬂ(m)
and obtain
(3.3) F(z) =E™[f")(x)].

The representatiof (3.3) is an equivalent, and equallyyvslochastic representation of the objec-
tive F'(x), and we can just as well base SGD on this representationidicdlse, at each iteration
we sample ~ D™) and then us@fi(w)(m) = wti)Vfi(w) as an unbiased gradient estimate. SGD
iterates based on the representation| (3.3), which we gitl edfer to asv-weighted SGD, are then
given by

i
(3.4) Tyl < T w(iz) szk(wk)
where{i;} are drawn i.i.d. fronD®),

The important observation here is that all SGD guarantezsaually valid for thev-weighted
updates[(3]4)-the objective is the same objecke), the sub-optimality is the same, and the
minimizer x, is the same. We do need, however, to calculate the relevamititjgs controlling
SGD convergence with respect to the modified componﬁiﬁ‘t)sand the weighted distribution
D),

3.3. Strongly Convex Smooth Optimization using Weighted SGD. We now return to the anal-
ysis of strongly convex smooth optimization and invesegabw re-weighting can yield a better
guarantee. To do so, we must analyze the relevant quantiielsed.

The Lipschitz constant"’ of each component™ is now scaled, and we have") = wti) L;.
The supremum is given by:

L

(3.5) sup L) = sup ng) = Sup ——.

i i w(i)
It is easy to verify thaf(3]5) is minimized by the weights
L
3.6 ) = =,
(3:6) w(i) = =
and that with this choice of weights

=L

L.
3.7 sup L) = su L
(3.7) P Lw) ipLi/L

Note that the average Lipschitz constant E[L;] = E(UJ)[LZ(.“’)] is invariant under weightings.
Before applying Corollarfy 212, we must also calculate:

1 2
1

= E[mnwmnz] = E[L%Ilvfi(w*)llg] <

(3.8) o2, = EW[||V ) (x,)]3] = E™]

L,
infLa'
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Now, applying Corollary Z2]2 to the-weighted SGD iterate§ (3.4) with weighks (3.6), we have
that, with an appropriate stepsize,

2
sup Luw) N “(w))
2
1 ple

L L o2
< 2log(2e0/ 5>(; T E)

(3.9) k=2 10g(250/€)<

iterations are sufficient foE™)||x; — x,||2 < e, wherex,, 1 ande, are exactly as in Corollary

2.2.

3.4. Partially biased sampling. If o2 = 0, i.e. we are in the “realizable” situation, with true
linear convergence, then we also hax(%) = 0. In this case, we already obtain the desired

guarantee: linear convergence with a linear dependendeecaverage conditioning/p, strictly
improving over Bach and Moulines. However, the inequalit{d@.8) might be tight in the presence
of components with very small; that contribute towards the residual error (as might welihae
case for a small component). Wheh > 0, we therefore get a dissatisfying scaling of the second
term, relative to Bach and Moulines, by a factoriofinf L.

Fortunately, we can easily overcome this factor. To do sosicler sampling from a distribution
which is amixtureof the original source distribution and its re-weightingngsthe weights[(3]6).
That is, sampling using the weights:

1 1 L

-1 ) = —_— — s .
(3.10) w(7) 5 + 3 T
We refer to this apartially biased samplingUsing these weights, we have

1 _
i3t T
and
1
(3.12) 0ty = Eli——1 IV fi(z,)]3] < 207
33 T

Plugging these into Corollafy 2.2 we obtain:

Corollary 3.1. Let eachf; be convex wherd/ f; has Lipschitz constant; and let F(x) =
E,p[fi(x)], whereF (x) is u-strongly convex. Set = E||V fi(x,)||3, wherez, = argmin,, F'(x).
For any desired, using a stepsize of

JUE
4(epL + o?)
we have that after
L o2
3.13 k= 4log(2 -+ —
(3.13) og(220/¢) (1 + 1)

iterations ofw-weighted SG{3.4) with weights specified bf8.10) E™) ||, — x, |5 < ¢, where
Eog = ||ac0 — iB*H% andL = EL;.
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We now obtain the desired linear scaling byy:, without introducing any additional factor to
the residual term, except for a constant factor of two. Wes thiotain a result which dominates
Bach and Moulines (up to a factor of 2) and substantially meps upon it (with a linear rather
than quadratic dependence on the conditioning).

One might also ask whether the previous best known res) (huld be improved using
weighted sampling. The relevant quantity to consider isawerage square Lipschitz constant
for the weighted representatiof: (13.3):

— 2 L?i L?
14 L2 =E® | (L") | = E®) = E[—L].
Interestingly, this quantity is minimized by the same wesghssup L., given by [3.6), and with
these weights we have:

- 12

(3.15) [ =FE[-"]=IEL =L
Li/L

(w)

Again, we can use the partially biased weights givéin (3.a0jich yieldsL?, < 9L” and also
ensuresr?,, < 20%. In any case, we get a dependenceldn= (EL,)? < E[L?] instead of
L? = E[L?], which is indeed an improvement. Thus, the Bach and Mouliugsantee is also
improved by using biased sampling, and in particular théadbrbiased sampling specified by the

weights [3.1D). However, relying on Bach and Moulines wi Istive a quadratic dependence on
(L/u)?, as opposed to the linear dependence we obtain in Corblldry 3

3.5. Implementing Importance Sampling. As discussed above, when the magnitudes;adre
highly variable, importance sampling is necessarily ineortb obtain a dependence on the av-
erage, rather than worst-case, conditioning. In some egijpins, especially when the Lipschitz
constants are known in advance or easily calculated or yrsdich importance sampling might
be possible by directly sampling frof). This is the case, for example, in trigonometric ap-
proximation problems or linear systems which need to beesbtepeatedly, or when the Lipschitz
constant is easily computed from the data, and multiplegzasser the data are needed anyway.
We do acknowledge that in other regimes, when data is preg@main online fashion, or when we
only have sampling access to the source distribuflofor the implied distribution over gradient
estimates), importance sampling might be difficult.

One option that could be considered, in light of the abovaltgsis to use rejection sampling
to simulate sampling fronD™). For the weights[(3]6), this can be done by accepting samples
with probability proportional ta_; / sup L. The overall probability of accepting a sample is then
L/ sup L, introducing an additional factor efip L/L. This results in a sample complexity with
a linear dependence enp L, as in Corollary 2.P (for the weights (3]10), we can first @tceith
probability 1/2, and then if we do not accept, perform thisgedure). Thus, if we are presented
samples fronD, and the cost of obtaining the sample dominates the coskofgdhe gradient
step, we do not gain (but do not lose much either) from regacsiampling. We might still gain
from rejection sampling if the cost of operating on a sampédulating the actual gradient and
taking a step according to it) dominates the cost of obtgimirand (a bound on) the Lipschitz
constant.
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3.6. A Family of Partially Biased Schemes. The choice of weightd(3.10) corresponds to an
equal mix of uniform and fully biased sampling. More genlgraie could consider sampling
according to any one of a family of weights which interpolagtween uniform and fully biased
sampling:
(3.16) W i) = A+ (1 — )\)%, Neo,1].

To be concrete, we summarize below the a template algorithr8&D with partially biased
sampling:

Algorithm 3.1: Stochastic Gradient Descent with Partially Biased Sargplin

I nput:

e Initial estimater, € R?

e Bias parametek € [0, 1]

e Step sizey > 0

e Tolerance parametér> 0

e Access to the source distributi@n

e If A < 1: bounds on the Lipschitz constants the weightsw? (i) derived from them
(see eq_3.16); and access to the weighted distrib@ioh

Output: Estimated solutiog: to the problemuin,, F'(x)

k+ 0
repeat
k+—k+1
Draw an index ~ DW.
Ly < L—1 — #@Vfi(wk—ﬂ
until VF(x) < ¢
T T

For arbitrary\ € [0, 1], we have the bounds
I L; < m (
sup Ly») = sSup ————— < min | ——~, ——
HE L WA Ry Yy =X A

and
1

1 L
2 R |[Vfi(x)|F < S ——
ot = Bl IV ] < (5= ©
Plugging these quantities into Corolldry2.2, we obtain:

Corollary 3.2. Let eachf; be convex wherd&/ f; has Lipschitz constant; and let F(x) =
E,p[fi(x)], whereF (x) is u-strongly convex. Set = E||V fi(x,)||3, wherez, = argmin,, F'(x).
For any desired, using a stepsize of

UE

. L sup; L; 1 ) 2
2e 1 min (—1—>\’ 3 ) + 2max (A, AN inf I Li) o

’y:
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we have that after

T s Li 1 13 >
Tx A ) max <>\’ 1N inf; Li> g
+ 2
7 p2e

HHD.(
k = 2log(2¢y/¢)

iterations ofw-weighted SGO3.4) with partially biased weight§3.16) E™)||z;, — z,|? < «,
whereg = ||y — .|| and L = EL;.

In this corollary, even ifd is close to 1, i.e. we add only a small amount of bias to the §agp
we obtain a bound with a linear dependence on the averagetiooing L /u (multiplied by a

factor of 1), since we can bounthin ( L sup; Li) < L

1-X\7 A — 1-A"

4. IMPORTANCE SAMPLING FOR SGDIN OTHER SCENARIOS

In the previous Section, we considered SGD for smooth amhgly convex objectives, and
were particularly interested in the regime where the redidtiis low, and the linear convergence
term is dominant. Weighted SGD could of course be relevaat ial other scenarios, and we now
briefly survey them, as well as relate them to our main scerwdrinterest.

4.1. Smooth, Not Strongly Convex. When each componerft is convex, hon-negative, and has
an L;-Lipschitz gradient, but the objectivé(x) is not necessarily strongly convex, then after

(4.1) k= O ((SupL)llw*H% F(z,) +5)

€ 9

iterations of SGD with an appropriately chosen step-sizenlidave F(z;) < F(x,) + ¢, where

T, IS an appropriate averaging of thdterates Srebro et aELI45]. The relevant quantity here de-
termining the iteration complexity is agasap L. Furthermore, Srebro et aU45], relying on an
example from Foygel and Srebro [13], point out that the ddpane on the supremum is unavoid-
able anccannotbe replaced with the average Lipschitz constanthat is, if we sample gradients
according to the source distributi@ we must have a linear dependencesop L.

The only quantity in the bound (4.1) that changes with a reghteng issup L—all other quan-
tities (|z.||3, F(z,), and the sub-optimality) are invariant to re-weightings. We can therefor
replace the dependence eup L with a dependence afup L,y by using a weighted SGD as in
B.4). As we already calculated, the optimal weights aremivy [3.6), and using them we have
sup L) = L. In this case, there is no need for partially biased sampéing we obtain that with
an appropriate step-size,

(4.2) k=0 <f||:v*||§ F(z,) +5)

€ 9

iterations of weighed SGD updatés (3.4) using the wei@h® &ffice.
We again see that using importance sampling allows us toceethe dependence onp L,
which is unavoidable without biased sampling, to a depecelenL.
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4.2. Non-Smooth Objectives. We now turn to non-smooth objectives, where the compongnts
might not be smooth, but each componengisLipschitz. Roughly speakindy; is a bound on
the first derivative (gradient) of;, while L; is a bound on the second derivativesfaf Here, the
performance of SGD depends on the second mo@enrt E[G?]. The precise iteration complexity
depends on whether the objective is strongly convex or véenathis bounded, but in either case
depends linearly o2 (see e.g.@ﬂfﬂ]).

By using weighted SGD we can replace the linear dependen¢® with a linear dependence
on% = E® [(GE“’))?}, Wherer.w) is the Lipschitz constant of the scalgfﬁ”) and is given

by G\) = G, /w(i). Again, this follows directly from the standard SGD guaems, where we

consider the representatidn (3.3) and use any subgradhafnﬁffi(w)(m).
We can calculate:

- G? G?
2 (w) i _ i
“2) T == |m) =2 |acs]
which is minimized by the weights:
G;
4.4 ) = —
(4.4) wii) =2

whereG = EG;. Using these weights we haﬂﬁw) = E[Gy* = G Using importance sampling,
we can thus reduce the linear dependencé&®to a linear dependence GH. Its helpful to recall
thatG? = G~ + Var|[G;]. What we save is therefore exactly the variance of the Ligsclnstants
G;.

In parallel work, Zhao and ZhanﬂSl] also consider impareaeampling for stochastic op-
timization for non-smooth objectives. Zhao and Zhang abersa more general setting, with a
composite objective that is only partially linearized. Bugo there, the iteration complexity de-
pends on the second moment of the gradient estimates, amaahesis performed above applies

(Zhao and Zhang perform a specialized analysis instead).

4.3. Non-Realizable Regime. Returning to the smooth and strongly convex setting of 8esil
and[3, let us consider more carefully the residual tefm= E||V f;(x.)||3. This quantity defini-
tively depends on the weighting, and in the analysis of 8af8.3, we avoided increasing it too
much, introducing partial biasing for this purpose. Howegif¢his is the dominant term, we might
want to choose weights so as to minimize this term. The optmesghts here would be pro-
portional to||V f;(x,)||s. The problem is that we do not know the minimizer, and so cannot
calculate these weights. Approaches which dynamicallyatgpthe weights based on the current
iterates as a surrogate for are possible, but beyond the scope of this paper.

An alternative approach is to bouti f;(x,)||; < G; and sar? < G2. Taking this bound, we
are back to the same quantity as in the non-smooth case, awngtimal weights are proportional
to GG;. Note that this is a different weighting then using weightsgortional toL;, which optimize
the linear-convergence term as studied in Se¢tion 3.3.

To understand how weighting accordingpandL; are different, consider a generalized linear
objective wheref;(x) = ¢;((z;, x)), andg; is a scalar function with¢;| < G4 and|¢!| < L.
We have that?; o ||2;]|» while L;  ||2;||3. Weighting according to the Lipschitz constants of the
gradients, i.e. the “smoothness” parameters, ds ih (36us weighting according to the Lipschitz
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constants off; as in [4.4), thus corresponds to weighting accordinfitdi2 versus|| z; ||», and are
rather different. We can also calculate that weighingbyx |z;||3 (i.e. following (3.8)), yields
% — G2 > G That is, weights proportional tb; yield a suboptimal gradient-dependent term
(the same dependence as if no weighting at all was used).e@s®ely, using weights proportional
to G;, i.e. proportional td|z;|» yieldssup L) = (E[v/L;])v/sup L — a suboptimal dependence,
though better then no weighting at all.

Again, as with partially biased sampling, we can weight by dlheragew(i) =
and ensure both terms are optimal up to a factor of two.

1 .

1.9y

C)lLQ
Nl
Sl

5. THE LEAST SQUARES CASE AND THERANDOMIZED KACZMARZ METHOD
A special case of interest is the least squares problemgwher

1

5.1) Fl@) = 53 ((a, @) b)’ = 1| Az — b]}

i=1

n

with b ann-dimensional vectord ann x d matrix with rowsa;, andz, = argmin,, ;|| Az — b||3
is the least-squares solution. Writing the least squamsigym [5.1) in the form(2]1), we see that
the source distributio® is uniform over{1, 2, ..., n}, the components arg = % ((a;, z) — b;)?,
the Lipschitz constants ade = n|a; |3, the average Lipschitz constantisy". L; = || A%, the
strong convexity parameter is= gz, SO thati' (A) == L/p = || A|/1[|(ATA)~"||,, and
the residual is? = n Y, |la:|/3| (a:;, z.) — b;|*. Note that in the case that is not full-rank, one
can instead replace with the smallest nonzero eigenvalue Af A as in @ Equation (3)]. In
that case, we instead wrifé(A) = || A||%|[(AT A)T||, as the appropriate condition number.

The randomizedKaczmarz metho¢4é, @@@dﬂﬂ 5@28] for solving the least
squares probleni (3.1) begins with an arbitrary estimgteand in thekth iteration selects a row

i =i(k) i.i.d. at random from the matrix and iterates by:

bi - iy
(5.2) Tiy1 = T +C- M

laiz

where the step size= 1 in the standard method.

Strohmer and Vershynin provided the first non-asymptoticveayence rates, showing that
drawing rows proportionally tda;||% leads to provable exponential convergence in expectation
for the full-rank caselEG]. Their method can easily be ed&zhto the case when the matrix is not
full-rank to yield convergence to some solution, see e.§, Ejuation (3)]. Recent works use ac-
celeration techniques to improve convergence r@@ jﬂ@ @E@ , 29].

However, one can easily verify that the iterafes](5.2) aeeipely weighted SGD iteratds (B.4)
with the fully biased weights (3.6).

The reduction of the quadratic dependence on the conditjota a linear dependence in The-
orem[2.1, as well as the use of biased sampling which we igatsthere was motivated by
Strohmer and Vgrshydin’s analysis of the randomized Kaczmmeethod. Indeed, applying Theo-
rem[2.] to the weighted SGD iteratés {2.2) for{5.1) with theéghts [3.6) and a stepsize pf= 1
yields precisely the Strohmer and Vershynin [46] guarantee

Understanding the randomized Kaczmarz method as SGD alisvadso to obtain improved
methods and results for the randomized Kaczmarz method:
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Using Step-sizes. As shown by Strohmer and Vershynm[46] and extended by Nb@, the
randomized Kaczmarz method with weighted sampling exhéiponential convergence, but only
to within a radius, oconvergence horizgrof the least-squares solution. This is because a step-
size ofy = 1 is used, and so the second term[in}(2.4) does not vanish. héers shown|E9,

, @ Eb] that changing the step size can allow for caarmere inside of this convergence
horizon, although non-asymptotic results have been diffiowbtain. Our results allow for finite-
iteration guarantees with arbitrary step-sizes and cambeediately applied to this setting. Indeed,
applying Theorerh 211 with the weighfs (B.6) gives

Corollary 5.1. Let A be ann x d matrix with rowsa;. Sete = Ax, — b, wherex, is the minimizer
of the problem

1
x, = argmin §HA£B — b5
Suppose that < 1. Seta?, = inf;||a;||?, a2, = sup;||a;||3. Then the expected error at the
kth iteration of the Kaczmarz method described(By2) with row a; selected with probability
pi = llaill3/[|All% satisfies

2¢(1 —¢)1" c
(5.3) Elz) — x5 < [1 - W] [0 — a3 + :K(A)Tv
with r = A Aﬁ’f.aQ . The expectation is taken with respect to the weightediligion over the
F “min
rows.

When e.gc = % we recover the exponential rate of Strohmer and Versh@]u[p to a factor
of 2, and nearly the same convergence horizon. For arbitra@orollary[5.1 implies a tradeoff
between a smaller convergence horizon and a slower comargate.

Uniform Row Selection. The Kaczmarz variant of Strohmer and Vershy@ [46] caltsifeighted
row sampling, and thus requires pre-computing all the romso Although certainly possible in
some applications, in other cases this might be better adoidUnderstanding the randomized
Kaczmarz as SGD allows us to apply Theofem 2.1 also with tmifeeights (i.e. to the unbiased
SGD), and obtain a randomized Kaczmarz using uniform sangpivhich converges to the least-
squares solution and enjoys finite-iteration guarantees:

Corollary 5.2. Let A be ann x d matrix with rowsa;. Let D be the diagonal matrix with terms
d;; = ||lail|l2, and consider the composite matdx' A. Sete,, = D~'(Az" — b), wherez? is
the minimizer of the weighted least squares problem

1
x, = argmin §||D_1(Aw —b)||3.
Suppose that < 1. Then the expected error aftériterations of the Kaczmarz method described
by (5.2) with uniform row selection satisfies

2¢(1—c)

k
el —c) w2, ¢ ~1
pepers)| o= et 4 KD A,

Ellz, — 2|2 < [1 -

wherer,, = ||e,||3/n.
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Note that the randomized Kaczmarz algorithm with unifornv selection converges exponen-
tially to a weightedleast-squares solution, to within arbitrary accuracy bgasing sufficiently
small stepsize. Thus, in general, the randomized Kaczmarz algorithms wiiform and biased
row selection converge (up to a convergence horizon) tosvdifterent solutions.

Partially Biased Sampling. As in our SGD analysis, using the partially biased samplieggits
is applicable also for the randomized Kaczmarz method. ipglTheoreni ZJ1 using weights

(310) gives

Corollary 5.3 (Randomized Kaczmarz with partially biased samplingt A be ann x d matrix
with rowsa;. Sete = Ax, — b, wherex, is the minimizer of the problem

1
x, = argmin iHAw —blf3.

Suppose < 1/2. Then the iterater;, of the modified Kaczmarz method described by

b; — <ai7 $k>

(5.4) X1 = X + 2 a;
! [A[I%/n+ a3

with row a; selected with probability; = 1 - + 1 - 1 satisfies

cK(A) 202
=2 nlAJ

lzo — .13 +

(5.5) Ell, — 2.2 < {1 - M]

K(A)

The partially biased randomized Kaczmarz method descabege (which does have modified
update equatioml (5.4) compared to the standard updateéeq{&R)) yields the same convergence
rate as the fully biased randomized Kaczmarz methad [461dwpfactor of 2), but gives a better
dependence on the residual error over the fully biased sagypls the final term i (5.5) is smaller
than the final term in(513).

6. NUMERICAL EXPERIMENTS

In this section we present some numerical results for theéamized Kaczmarz algorithm with
partially biased sampling, that is, applying Algoritthim]3althe least squares problef(x) =
2| Az — b3 (so fi(z) = 2({a;, ) — b;)?) and considering\ € [0, 1]. Recall that\ = 0 cor-
responds to the randomized Kaczmarz algorithm of Strohmen&rshynin with fully weighted
sampling].)\ = .5 corresponds to the partially biased randomized Kaczmguorighm outlined
in Corollary[5.3. We demonstrate how the behavior of the riigm depends on, the condition-
ing of the system, and the residual error at the least sqsatason. We focus on exploring the
role of A on the convergence rate of the algorithm for various typesatricesA. We consider
five types of systems, described below, each usifgha x 10 matrix A. In each setting, we create
a vectorx with standard normal entries. For the described matriand residuak, we create the
systemb = Ax + e and run the randomized Kaczmarz method with various chates Each
experiment consists dfd0 independent trials and uses the optimal step size as in l@orfd.2
with ¢ = .1; the plots show the average behavior over these trials. &timgs below show the
various types of behavior the Kazcmarz method can exhibit.
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Case 1: Each row of the matrix4 has standard normal entries, except the last row which has
normal entries with meamand variance0?. The residual vecta# has normal entries with
mean0 and variance.12.

Case 2: Each row of the matrixA has standard normal entries. The residual veetbas
normal entries with meamand variance.12.

Case 3: Thejthrow of A has normal entries with me@rand variancg. The residual vector
e has normal entries with me@nand varianc&0?.

Case4: Thejthrow of A has normal entries with me@rand variancg. The residual vector
e has normal entries with me@nand variance 0.

Case5: Thejthrow of A has normal entries with me@rand variancg. The residual vector
e has normal entries with me@nand variance.12.

Figureld shows the convergence behavior of the randomizedrfarz method in each of these
five settings. As expected, when the rowsAfare far from normalized, as in Case 1, we see
different behavior as varies from0 to 1. Here, weighted sampling\(= 0) significantly outper-
forms uniform samplingX = 1), and the trend is monotonic ik On the other hand, when the
rows of A are close to normalized, as in Case 2, the varibggve rise to similar convergence
rates, as is expected. Out of theested (we tested increments @f from 0 to 1), the choice
A = 0.7 gave the worst convergence rate, and again purely weightaglsg gives the best. Siill,
the worst-case convergence rate was not much worse, asemppmshe situation with uniform
sampling in Case 1. Cases 3, 4, and 5 use matrices with vargimgnorms and cover “high”,
“medium”, and “low” noise regimes, respectively. In the nigoise regime (Case 3), we find that
fully weighted samplingA = 0, is relatively very slow to converge, as the theory suggestd
hybrid sampling outperforms both weighted and uniform&@a. In the medium noise regime
(Case 4), hybrid sampling still outperforms both weighted aniform selection. Again, this is not
surprising, since hybrid sampling allows a balance betveeeall convergence horizon (important
with large residual norm) and convergence rate. As we dsertge noise level (as in Case 5), we
see that again weighted sampling is preferred.

Figure[2 shows the number of iterations of the randomizedzKacz method needed to obtain
a fixed approximation error. For the choigde= 1 for Case 1, we cut off the number of iterations
after 50,000, at which point the desired approximationrewas still not attained. As seen also
from Figure[1, Case 1 exhibits monotonic improvements ascaes. For Cases 2 and 5, the
optimal choice is pure weighted sampling, whereas Cased & arefer intermediate values &f

7. SUMMARY AND OUTLOOK

We consider this paper as making three contributions: tiprosed dependence on the condi-
tioning for smooth and strongly convex SGD, the discussiomportance sampling for SGD, and
the connection between SGD and the randomized Kaczmarouoheth

For simplicity, we only considered SGD iterates with a fixéepssizey. This is enough for
getting the optimal iteration complexity if the target ay < is known in advance, which was
our approach in this paper. Itis easy to adapt the analysisgstandard techniques, to incorporate
decaying step-sizes, which are appropriate if we don’t knamwadvance.

We suspect that the assumption of strong convexity can b&emed torestricted strong con-
vexity, ] without changing any of the results of this paper;leae this analysis to future
work.
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FIGURE 1. The convergence rates for the randomized Kaczmarz methbdar-
ious choices of\ in the five settings described above. The vertical axis i@ |
arithmic scale and depicts the approximation effof — x,||3 at iterationk (the
horizontal axis).
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=
o

N

Iterations (log)

FIGURE 2. Number of iteration needed by the randomized Kaczmarz method
with partially biased sampling, for various valuesXotto obtain approximation er-
ror ||z, — o, ||3 < e = 0.1 in the five cases described above: Case 1 (blue with cir-
cle marker), Case 2 (red with square marker), Case 3 (blattktringle marker),
Case 4 (green with x marker), and Case 5 (purple with starengark

Finally, our discussion of importance sampling is limitedatstatic reweighting of the sampling
distribution. A more sophisticated approach would be tocatpdhe sampling distribution dynami-
cally as the method progresses, and as we gain more infameabout the relative importance of
components. Although such dynamic importance samplingnsesimes attempted heuristically,
we are not aware of any rigorous analysis of such a dynamsirigjacheme.
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APPENDIX A. PROOFS

Our main results utilize an elementary fact about smootletfans with Lipschitz continuous
gradient, called the co-coercivity of the gradient. Weestidte lemma and recall its proof for
completeness.

A.1l. The Co-coercivity Lemma.
Lemma A.1 (Co-coercivity) For a smooth functiorf whose gradient has Lipschitz constdnt

IVf(z) = Vil: < Lz —y Vi) - V).

Proof. SinceV f has Lipschitz constart, if x, is the minimizer off, then [see e.@Z, page 26]
(A.1)

1
%Ilvf(w) — V()5 = 57 IV (@)~ Vi@l + (& -z, Vf(x.)) < flz) - flx.);
Now define the convex functions

G(z) = f(z) = (Vf(z),z), and H(z)=f(z) = (V[(y),2),
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and observe that both have Lipschitz constdngd minimizerse andy, respectively. Applying
(A.J) to these functions therefore gives that

G(@) < Gly) ~ o IVG@E and H(y) < H@) - 5| VH ()3

By their definitions, this implies that

f(@) = (Vf(z),z) < fly) — (Vf(z),y) - %Ilvf(y) - Vi@)l3
fy) = (V). y) < fl®) = (Vf(y),z) - %va(w) — Vi)l

Adding these two inequalities and canceling terms yieldsisired result.
0

A.2. Proof of Theorem 2.1l With the notation of Theorein 2.1, and whéris the random index
chosen at iteratioh, andw = w,, we have

ki — 23 = l@r — 20 = AV filzi)I3

= (@ — =) = ¥(VSilzw) = VSi(z.)) =7V fi(z)|3

= ok — 2 )l3 — 2 (@ — 20, Vil@e)) + 2|V filzr) = Vi) + V fi(z)]l3

<k — @3 — 29 (@ — 20, Vfilan)) + 207V filzr) = Vi) |2 + 292V fi(z) |13

< e — 23 — 2y (2 — 2, Vi)

+29%Li (@ — 2, V fi() — Vi) + 297V fil) 5,
where we have employed Jensen’s inequality in the first iak#guand the co-coercivity Lemma
[ATin the final line. We next take an expectation with respe¢he choice of. By assumption,
i ~ D such thatF'(z) = Ef;(x) ande? = E|Vf;(z,)||?>. ThenEVf;(x) = VF(z), and we
obtain:
Bl — .3 < [l — 23 — 29 (@4 — 20, VF (1)) + 29°E [L; (3 — 2., V fi(@r) = V i)
+ 29°E||V fi(z.)Il3
< |k — 2|5 — 27 {xp — o, VF(2)) + 297 Sli_p LE (x) — x, V fi(xr) — V fi(x,))

+ 27°E||V f;(.) 13
= ||z — :c*||§ — 2y (x), — x,, VF(x})) + 2v%sup L (xp — s, VF(xy) — VF(x,)) + 2% 0

We now utilize the strong convexity df () and obtain that

< ok — 242 — 2901 — 7y 5up Dl — 2, 3 + 24202
= (1= 2yp(1 — ysup L)) ||zx — .5 + 27%0”
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1
su

wheny < A Recursively applying this bound over the fiksterations yields the desired result,
i k—1 ;
Ellzy — 2.3 < (1 — 2vp(1 — ysup L))) |z — |5 + QZ (1 — 2yp(1 — ysup L))) v2o?
7=0
2

k g
< (1 —2ypu(1 —vsupL))) o — .3 + ! :
,u(l —vsupL)




	1. Introduction
	1.1. Importance sampling in stochastic optimization
	1.2. Contributions

	2. SGD for Strongly Convex Smooth Optimization
	3. Importance Sampling
	3.1. Reweighting a Distribution
	3.2. Reweighted SGD
	3.3. Strongly Convex Smooth Optimization using Weighted SGD
	3.4. Partially biased sampling
	3.5. Implementing Importance Sampling
	3.6. A Family of Partially Biased Schemes

	4. Importance Sampling for SGD in Other Scenarios
	4.1. Smooth, Not Strongly Convex
	4.2. Non-Smooth Objectives
	4.3. Non-Realizable Regime

	5. The least squares case and the Randomized Kaczmarz Method
	6. Numerical Experiments
	7. Summary and outlook
	Acknowledgements
	References
	Appendix A. Proofs
	A.1. The Co-coercivity Lemma
	A.2. Proof of Theorem 2.1


