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Abstract Coordinate descent algorithms solve optimization problems by suc-
cessively performing approximate minimization along coordinate directions or
coordinate hyperplanes. They have been used in applications for many years,
and their popularity continues to grow because of their usefulness in data anal-
ysis, machine learning, and other areas of current interest. This paper describes
the fundamentals of the coordinate descent approach, together with variants
and extensions and their convergence properties, mostly with reference to con-
vex objectives. We pay particular attention to a certain problem structure that
arises frequently in machine learning applications, showing that efficient im-
plementations of accelerated coordinate descent algorithms are possible for
problems of this type. We also present some parallel variants and discuss their
convergence properties under several models of parallel execution.

Keywords coordinate descent · randomized algorithms · parallel numerical
computing

1 Introduction

Coordinate descent (CD) algorithms for optimization have a history that dates
to the foundation of the discipline. They are iterative methods in which each
iterate is obtained by fixing most components of the variable vector x at their
values from the current iteration, and approximately minimizing the objective
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2 Stephen J. Wright

with respect to the remaining components. Each such subproblem is a lower-
dimensional (even scalar) minimization problem, and thus can typically be
solved more easily than the full problem.

CD methods are the archetype of an almost universal approach to algo-
rithmic optimization: solving an optimization problem by solving a sequence
of simpler optimization problems. The obviousness of the CD approach and
its acceptable performance in many situations probably account for its long-
standing appeal among practitioners. Paradoxically, the apparent lack of so-
phistication may also account for its unpopularity as a subject for investigation
by optimization researchers, who have usually been quick to suggest alterna-
tive approaches in any given situation. There are some very notable exceptions.
The 1970 text of Ortega and Rheinboldt [40, Section 14.6] included a compre-
hensive discussion of “univariate relaxation,” and such optimization specialists
as Luo and Tseng [30,31], Tseng [55], and Bertsekas and Tsitsiklis [5] made
important contributions to understanding the convergence properties of these
methods in the 1980s and 1990s.

The situation has changed in recent years. Various applications (includ-
ing several in computational statistics and machine learning) have yielded
problems for which CD approaches are competitive in performance with more
reputable alternatives. The properties of these problems (for example, the low
cost of calculating one component of the gradient, and the need for solutions
of only modest accuracy) lend themselves well to efficient implementations of
CD, and CD methods can be adapted well to handle such special features
of these applications as nonsmooth regularization terms and a small number
of equality constraints. At the same time, there have been improvements in
the algorithms themselves and in our understanding of them. Besides their
extension to handle the features just mentioned, new variants that make use
of randomization and acceleration have been introduced. Parallel implemen-
tations that lend themselves well to modern computer architectures have been
implemented and analyzed. Perhaps most surprisingly, these developments are
relevant even to the most fundamental problem in numerical computation:
solving the linear equations Aw = b.

In the remainder of this section, we state the problem types for which
CD methods have been developed, and sketch the most fundamental versions
of CD. Section 2 surveys applications both historical and modern. Section 3
sketches the types of algorithms that have been implemented and analyzed,
and presents several representative convergence results. Section 4 focuses on
parallel CD methods, describing the behavior of these methods under syn-
chronous and asynchronous models of computation.

Our approach throughout is to describe the CD methods in their simplest
forms, to illustrate the fundamentals of the applications, implementations, and
analysis. We focus almost exclusively on methods that adjust just one coordi-
nate on each iteration. Most applications use block coordinate descent meth-
ods, which adjust groups of blocks of indices at each iteration, thus searching
along a coordinate hyperplane rather than a single coordinate direction. Most
derivation and analysis of single-coordinate descent methods can be extended
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without great difficulty to the block-CD setting; the concepts do not change
fundamentally. We mention too that much effort has been devoted to devel-
oping more general forms of CD algorithms and analysis, involving weighted
norms and other features, that allow more flexible implementation and al-
low the proof of stronger and more general (though usually not qualitatively
different) convergence results.

1.1 Formulations

The problem considered in most of this paper is the following unconstrained
minimization problem:

min
x

f(x), (1)

where f : Rn → R is continuous. Different variants of CD make further as-
sumptions about f . Sometimes it is assumed to be smooth and convex, some-
times smooth and possibly nonconvex, and sometimes smooth but with a re-
stricted domain. (We will make such assumptions clear in each discussion of
algorithmic variants and convergence results.)

Motivated by recent popular applications, it is common to consider the
following structured formulation:

min
x

h(x) := f(x) + λΩ(x), (2)

where f is smooth, Ω is a regularization function that may be nonsmooth and
extended-valued, and λ > 0 is a regularization parameter. Ω is often convex
and usually assumed to be separable or block-separable. When separable, Ω
has the form

Ω(x) =

n∑
i=1

Ωi(xi). (3)

where Ωi : R → R for all i. The best known examples of separability are the
`1-norm (in which Ω(x) = ‖x‖1 and hence Ωi(xi) = |xi|) and box constraints
(in which Ωi(xi) = I[li,ui](xi) is the indicator function for the interval [li, ui]).
Block separability means that the n × n identity matrix can be partitioned
into column submatrices Ui, i = 1, 2, . . . , N such that

Ω(x) =

N∑
i=1

Ωi(U
T
i x). (4)

Block-separable examples include group-sparse regularizers in which Ωi(zi) :=
‖zi‖2. Formulations of the type (2), with separable or block-separable regu-
larizers, arise in such applications as compressed sensing, statistical variable
selection, and model selection.
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The class of problems known as empirical risk minimization (ERM) gives
rise to a formulation that is particularly amenable to coordinate descent; see
[52]. These problems have the form

min
w∈Rd

1

n

n∑
i=1

φi(c
T
i w) + λg(w), (5)

for vectors ci ∈ Rd, i = 1, 2, . . . , n and convex functions φi, i = 1, 2, . . . , n
and g. We can express linear least-squares, logistic regression, support vec-
tor machines, and other problems in this framework. Recalling the following
definition of the conjugate t∗ of a convex function t:

t∗(y) = sup
z

(zT y − t(z)), (6)

we can write the Fenchel dual [49, Section 31] of (5) as follows:

min
x∈Rn

1

n

n∑
i=1

φ∗i (−xi) + λg∗
(

1

λn
Cx

)
, (7)

where C is the d × n matrix whose columns are ci, i = 1, 2, . . . , n. The dual
formulation (7) is has special appeal as a target for coordinate descent, because
of separability of the summation term.

One interesting case is the system of linear equations

Aw = b, where A ∈ Rm×n, (8)

which we assume to be a feasible system. The least-norm solution is found by
solving

min
w∈Rn

1

2
‖w‖22 subject to Aw = b, (9)

whose Lagrangian dual is

min
x∈Rm

f(x) :=
1

2
‖ATx‖22 − bTx. (10)

(We recover the primal solution from (10) by setting w = ATx.) We can see
that (10) is a special case of the Fenchel dual (7) obtained from (5) if we set

C ← AT , g(w) =
1

2
‖w‖22, φi(ti) = I{bi}(ti), λ = 1/n,

where I{bi} denotes the indicator function for bi, which is zero at bi and infinite
elsewhere. (Its conjugate is I∗{bi}(si) = bisi.) The primal problem (9) can be
restated correspondingly as

min
w∈Rn

1

m

m∑
i=1

I{bi}(Aiw) +
1

n
‖w‖22,

where Ai denotes the ith row of the matrix A in (8), which has the form (5).
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1.2 Outline of Coordinate Descent Algorithms

The basic coordinate descent framework for continuously differentiable mini-
mization is shown in Algorithm 1. Each step consists of evaluation of a single
component ik of the gradient ∇f at the current point, followed by adjustment
of the ik component of x, in the opposite direction to this gradient compo-
nent. (Here and throughout, we use [∇f(x)]i to denote the ith component of
the gradient ∇f(x).) There is much scope for variation within this framework.
The components can be selected in a cyclic fashion, in which i0 = 1 and

ik+1 = [ik mod n] + 1, k = 0, 1, 2, . . . . (11)

They can be required to satisfy an “essentially cyclic” condition, in which for
some T ≥ n, each component is modified at least once in every stretch of T
iterations, that is,

∪Tj=0 {ik−j} = {1, 2, . . . , n}, for all k ≥ T . (12)

Alternatively, they can be selected randomly at each iteration (though not
necessarily with equal probability). Turning to steplength αk: we may per-
form exact minimization along the ik component, or choose a value of αk
that satisfies traditional line-search conditions (such as sufficient decrease), or
make a predefined “short-step” choice of αk based on prior knowledge of the
properties of f .

Algorithm 1 Coordinate Descent for (1)

Set k ← 0 and choose x0 ∈ Rn;
repeat

Choose index ik ∈ {1, 2, . . . , n};
xk+1 ← xk − αk[∇f(xk)]ikeik for some αk > 0;
k ← k + 1;

until termination test satisfied;

The CD framework for the separable regularized problem (2), (3) is shown
in Algorithm 2. At iteration k, a scalar subproblem is formed by making a
linear approximation to f along the ik coordinate direction at the current
iterate xk, adding a quadratic damping term weighted by 1/αk (where αk
plays the role of a steplength), and treating the relevant regularization term
Ωi explicitly. Note that when the regularizer Ωi is not present, the step is
identical to the one taken in Algorithm 1. For some interesting choices of Ωi
(for example Ωi(·) = | · |), it is possible to write down a closed-form solution
of the subproblem; no explicit search is needed. The operation of solving such
subproblems is often referred to as a “shrink operation,” which we denote by
Sβ and define as follows:

Sβ(τ) := min
χ

1

2β
‖χ− τ‖22 +Ωi(χ). (13)
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By stating the subproblem in Algorithm 2 equivalently as

min
χ

1

2λαk

∥∥χ− (xkik − αk[∇f(xk)]ik)
∥∥2 +Ωi(χ),

we can express the CD update as zkik ← Sλαk
(xkik − αk[∇f(xk)]ik).

Algorithm 2 Coordinate Descent for (2),(3)

Set k ← 0 and choose x0 ∈ Rn;
repeat

Choose index ik ∈ {1, 2, . . . , n};
zkik ← arg minχ (χ− xkik )T [∇f(xk)]ik + 1

2αk
‖χ− xkik‖

2
2 + λΩi(χ) for some αk > 0;

xk+1 ← xk + (zkik − x
k
ik

)eik ;

k ← k + 1;
until termination test satisfied;

Algorithms 1 and 2 can be extended to block-CD algorithms in a straight-
forward way, by updating a block of coordinates (denoted by the column
submatrix Uik of the identity matrix) rather than a single coordinate. In
Algorithm 2, it is assumed that the choice of block is consistent with the
block-separable structure of the regularization function Ω, that is, Uik is a
concatenation of several of the submatrices Ui in (4).

1.3 Application to Linear Equations

For the formulation (10) that arises from the linear system Aw = b, let us
assume that the rows of A are normalized, that is,

‖Ai‖2 = 1 for i = 1, 2, . . . ,m. (14)

Applying Algorithm 1 to (10) with αk ≡ 1, each step has the form

xk+1 ← xk − (AikA
Txk − bik)eik . (15)

If we maintain and update the estimate wk of the solution to the primal
problem (9) after each update of xk, according to wk = ATxk, we obtain

wk+1 ← wk − (AikA
Txk − bik)ATik = wk − (Aikw

k − bik)ATik , (16)

which is the update formula for the Kaczmarz algorithm [22]. Following this
update, we have using (14) that

Aikw
k+1 = Aikw

k − (Aikw
k − bik) = bik ,

so that the ik equation in the system Aw = b is now satisfied. This method if
sometimes known as the “method of successive projections” because it projects
onto the feasible hyperplane for a single constraint at every iteration.



Coordinate Descent Algorithms 7

1.4 Relationship to Other Methods

Stochastic gradient (SG) methods, also undergoing a revival of interest because
of their usefulness in data analysis and machine learning applications, minimize
a smooth function f by taking a (negative) step along an estimate gk of the
gradient ∇f(xk) at iteration k. It is often assumed that gk is an unbiased
estimate of ∇f(xk), that is, ∇f(xk) = E(gk), where the expectation is taken
over whatever random variables were used in obtaining gk from the current
iterate xk. Randomized CD algorithms can be viewed as a special case of
SG methods, in which gk = n[∇f(xk)]ikeik , where ik is chosen uniformly at
random from {1, 2, . . . , n}. Here, ik is the random variable, and we have

E(gk) =
1

n

n∑
i=1

n[∇f(xk)]iei = ∇f(xk),

certifying unbiasedness. However, CD algorithms have the advantage over gen-
eral SG methods that descent in f can be guaranteed at every iteration. More-
over, the variance of the gradient estimate gk shrinks to zero as the iterates
converge to a solution x∗, since every component of ∇f(x∗) is zero. By con-
trast, in general SG methods, the gradient estimates gk may be nonzero even
when xk is a solution.

The relationship between CD and SG methods can also be discerned from
the Fenchel dual pair (5) and (7). SG methods are quite popular for solving
formulation (5), where the estimate gk is obtained by taking a single term ik
from the summation and using ∇φik(cTikw)cik as the estimate of the gradient
of the full summation. This approach corresponds to applying CD to the dual
(7), where the component ik of x is selected for updating at iteration k. This
relationship is typified by the Kaczmarz algorithm for Aw = b, which can be
derived either as CD applied to the dual formulation (10) or as SG applied to
the sum-of-squares problem

min
w

1

2
‖Aw − b‖22 =

1

2

m∑
i=1

(Aiw − bi)2. (17)

CD is related in an obvious way to the Gauss-Seidel method for n×n sys-
tems of linear equations, which adjusts the ik variable to ensure satisfaction
of the ik equation, at iteration k. (Successive over-relaxation (SOR) modifies
this approach by scaling each Gauss-Seidel step by a factor (1 + ω) for some
constan ω ∈ [0, 1), chosen so as to improve the convergence rate.) Standard
Gauss-Seidel and SOR use the cyclic choice of coordinates (11), whereas a ran-
dom choice of ik would correspond to “randomized” versions of these methods.
To make the connections more explicit: The Gauss-Seidel method applied to
the normal equations for (8) — that is, ATAw = AT b — is equivalent to apply-
ing Algorithm 1 to the least-squares problem (17), when the steplength αk is
chosen to minimize the objective exactly along the given coordinate direction.
SOR also corresponds to Algorithm 1, with αk chosen to be a factor (1 + ω)
times the exact minimum. These equivalences allow the results of Section 3
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to be used to derive convergence rates for Gauss-Seidel applied to the normal
equations, including linear convergence when ATA is nonsingular. Note that
these results do not require feasibility of the original equations (8).

2 Applications

We mention here several applications of CD methods to practical problems,
some dating back decades and others relatively new. Our list is necessarily in-
complete, but it attests to the popularity of CD in a wide variety of application
communities.

Bouman and Sauer [7] discuss an application to positron emission tomog-
raphy (PET) in which the objective has the form (2) where f is smooth and
convex and Ω is a sum of terms of the form |xj − xl|q for some pairs of com-
ponents (j, l) of x and some q ∈ [1, 2]. Ye et al. [57] apply a similar method to
a different objective arising from optical diffusion tomography.

Liu, Paratucco, and Zhang [26] describe a block CD approach for linear
least squares plus a regularization function consisting of a sum of `∞ norms
of subvectors of x. The technique is applied to semantic basis discovery, which
learns from data how to identify and classify the functional MRI response of
a person’s brain when they hear certain English words.

Canutescu and Dunbrack [11] describe a cyclic coordinate descent method
for determining protein structure, adjusting the dihedral angles in a protein
chain so that the atom at the end of the chain comes close to a specified
position in space.

Florian and Chen [17] recover origin-destination matrices from observed
traffic flows by alternately solving a bilevel optimization problem over two
blocks of variables: the origin-destination demands and the proportion of each
origin-destination flow assigned to each arc in the network.

Breheny and Huang [10] discuss coordinate descent for linear and logistic
regression with nonconvex separable regularization terms, reporting results for
genetic association and gene expression studies. The SparseNet algorithm [33]
applied to problems with these same nonconvex separable regularizers uses
warm-started cyclic coordinate descent as an inner loop to solve a sequence of
problems in which the regularization parameter λ in (2) and the parameters
defining concavity of the regularization functions are varied.

Friedman, Hastie, and Tibshirani [18] propose a block CD algorithm for
estimating a sparse inverse covariance matrix, given a sample covariance ma-
trix S and taking the variable in their formulation to be a modification W of
S, such that W−1 is sparse. The resulting “graphical lasso” algorithm cycles
through the rows/columns of W (in the style of block CD), solving a standard
lasso problem to calculate each update. The same authors [19] apply CD to
generalized linear models such as linear least squares and logistic regression,
with convex regularization terms. Their framework include such formulations
as lasso, graphical lasso, elastic net, and the Dantzig selector, and is imple-
mented in the package glmnet.
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Chang, Hsieh, and Lin [12] use cyclic and stochastic CD to solve a squared-
loss formulation of the support vector machine (SVM) problem in machine
learning, that is,

min
w

m∑
i=1

max(1− yixTi w, 0)2 +
λ

2
wTw. (18)

where (xi, yi) ∈ RN × {0, 1} are feature vector / label pairs and λ is a reg-
ularization parameter. This problem is an important instance of the ERM
form (5). In the best known early application of coordinate descent to SVM,
Platt [42] deals with a hinge-loss formulation of SVM, which is identical to
(18) except that the square on each term of the summation is omitted. The
dual of this problem has bounds on its variables along with a single linear
constraint. Platt’s procedure SMO (for “sequential minimal optimization”),
applied to the dual, changes two variables at a time, with the variable pair
chosen according to a “greedy” criterion and the search direction chosen to
maintain feasibility of the linear constraint.

Sardy, Bruce, and Tseng [50] consider the basis-pursuit formulation of
wavelet denoising:

min
x

1

2
‖Φx− y‖22 + λ‖x‖1.

This formulation is equivalent to the well known lasso of Tibshirani [54] and has
become famous because of its applicability to sparse recovery and compressed
sensing. Although this formulation fits the ERM framework (5) and could thus
be dualized before applying CD, the approach of [50] applies block CD directly
to the primal formulation.

Applications of block CD approaches to transceiver design for cellular net-
works and to tensor factorization are discussed in Razaviyayn [45, Section 8].

Finally, we mention several popular problem classes and algorithms that
can be interpreted as CD algorithms, but for which such an interpretation may
not be particularly helpful in understanding the performance of the algorithm.
First, we consider low-rank matrix completion problems in which we are pre-
sented with limited information about a rectangular matrix M ∈ Rm×n and
seek matrices U ∈ Rn×r and V ∈ Rm×r (with r small) such that UV T is con-
sistent with the observations of M . When the observations satisfy a restricted
isometry property (an assumption commonly made in compressed sensing; see
[46, Definition 3.1] for a definition that applies to matrix completion), the block
CD approach of Jain, Netrapalli, and Sanghavi [21, Algorithm 1] converges to
a solution. This approach defines the objective to be the least-squares fit be-
tween the observations and their predicted values according to the product
UV T — a function that is nonconvex with respect to (U, V ) — and minimizes
alternately over U and V , respectively. Standard analysis of CD for nonconvex
functions would yield at best stationarity of accumulation points, but much
stronger results are attained in [21] because of special assumptions that are
made on the problem in this paper.
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Second, we consider the “alternating-direction method of multipliers” (ADMM)
[13,8], which has gained great currency in the past few years because of its
usefulness in solving regularized problems in statistics and machine learning,
and in designing parallel algorithms. Each major iteration of ADMM consists
of an (approximate) minimization of the augmented Lagrangian function for a
constrained optimization problem over each block of primal variables in turn,
followed by an update to the Lagrange multiplier estimates. It might seem
appealing to do multiple cycles of updating the primal variable blocks, in the
manner of cyclic block CD, thus finding a better approximation to the so-
lution of each subproblem over all primal variables and moving the method
closer to the standard augmented Lagrangian approach. Eckstein and Yao [14]
show, however, that this “approximate augmented Lagrangian” approach has
a fundamentally different theoretical interpretation from ADMM, and a com-
putational comparison between the two approaches [14, Section 5] appears to
show an advantage for ADMM.

3 Coordinate Descent: Algorithms, Convergence, Implementations

We now describe the most important variants of coordinate descent and present
their convergence properties, including the proofs of some fundamental results.
We also discuss the implementation of accelerated CD methods for problems
of the form (7) and for the Kaczmarz algorithm for Aw = b. As mentioned
in the introduction, we deal with the most elementary framework possible, to
expose the essential properties of the methods.

3.1 Powell’s Example

We start with a simple but intriguing example due to Powell [44, formula (2)]
of a function in R3 for which cyclic CD fails to converge to a stationary point.
The nonconvex, continuously differentiable function f : R3 → R is defined as
follows:

f(x1, x2, x3) = −(x1x2 + x2x3 + x1x3) +

3∑
i=1

(|xi| − 1)2+. (19)

It has minimizers at the corners (1, 1, 1)T and (−1,−1,−1)T of the unit cube,
but coordinate descent with exact minimization, started near (but just outside
of) one of the other vertices of the cube cycles around the neighborhoods of
six points that are close to the six non-optimal vertices. Powell shows that
the cyclic nonconvergence behavior is rather special and is destroyed by small
perturbations on this particular example, and we can note that a randomized
coordinate descent method applied to this example would be expected to con-
verge to the vicinity of a solution within a few steps. Still, this example and
others in [44] make it clear that we cannot expect a general convergence result
for nonconvex functions, of the type that are available for full-gradient descent.
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Fig. 1 Example of Powell [44] showing nonconvergence of cyclic coordinate descent.

Results are available for the nonconvex case under certain additional assump-
tions that still admit interesting applications. Bertsekas [4, Proposition 2.7.1]
describes convergence of a cyclic approach applied to nonconvex problems,
under the assumption that the minimizer along any coordinate direction from
any point x is unique. More recent work [1,6] focuses on CD with two blocks of
variables, applied to functions that satisfy the so-called Kurdyka- Lojasiewicz
(KL) property, such as semi-algebraic functions. Convergence of subsequences
or the full sequence {xk} to stationary points can be proved in this setting.

3.2 Assumptions and Notation

For most of this section, we focus on the unconstrained problem (1), where
the objective f is convex and Lipschitz continuously differentiable. In some
places, we assume strong convexity with respect to the Euclidean norm, that
is, existence of a modulus of convexity σ > 0 such that

f(y) ≥ f(x) +∇f(x)T (y − x) +
σ

2
‖y − x‖22, for all x, y. (20)

(Henceforth, we use ‖ · ‖ to denote the Euclidean norm ‖ · ‖2, unless otherwise
specified.) We define Lipschitz constants that are tied to the component direc-
tions, and are key to the algorithms and their analysis. The first set of such
constants are the component Lipschitz constants, which are positive quantities
Li such that for all x ∈ Rn and all t ∈ R we have

|[∇f(x+ tei)]i − [∇f(x)]i| ≤ Li|t|, (21)
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We define the coordinate Lipschitz constant Lmax to be such that

Lmax = max
i=1,2,...,n

Li. (22)

The standard Lipschitz constant L is such that

‖∇f(x+ d)−∇f(x)‖ ≤ L‖d‖, (23)

for all x and d of interest. By referring to relationships between norm and
trace of a symmetric matrix, we can assume that 1 ≤ L/Lmax ≤ n. (The
upper bound is achieved when f(x) = e(eTx), for e = (1, 1, . . . , 1)T .) We also
define the restricted Lipschitz constant Lres such that the following property
is true for all x ∈ Rn, all t ∈ R, and all i = 1, 2, . . . , n:

‖∇f(x+ tei)−∇f(x)‖ ≤ Lres|t|. (24)

Clearly, Lres ≤ L. The ratio

Λ := Lres/Lmax (25)

is important in our analysis of asynchronous parallel algorithms in Section 4. In
the case of f convex and twice continuously differentiable, we have by positive
semidefiniteness of the ∇2f(x) at all x that

|[∇2f(x)]ij | ≤
(
[∇2f(x)]ii[∇2f(x)]jj

)1/2
,

from which we can deduce that

1 ≤ Λ ≤
√
n.

However, we can derive stronger bounds on Λ for functions f in which the
coupling between components of x is weak. In the extreme case in which f
is separable, we have Λ = 1. The coordinate Lipschitz constant corresponds
Lmax to the maximal absolute value of the diagonal elements of the Hessian
∇2f(x), while the restricted Lipschitz constant Lres is related to the maximal
column norm of the Hessian. Therefore, if the Hessian is positive semidefinite
and diagonally dominant, the ratio Λ is at most 2.

The following assumption is useful in the remainder of the paper.

Assumption 1 The function f in (1) is convex and uniformly Lipschitz con-
tinuously differentiable, and attains its minimum value f∗ on a set S. There
is a finite R0 such that the level set for f defined by x0 is bounded, that is,

max
x∗∈S

max
x
{‖x− x∗‖ : f(x) ≤ f(x0)} ≤ R0. (26)
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Algorithm 3 Randomized Coordinate Descent for (1)

Choose x0 ∈ Rn;
Set k ← 0;
repeat

Choose index ik with uniform probability from {1, 2, . . . , n}, independently of choices
at prior iterations;

Set xk+1 ← xk − αk[∇f(xk)]ikeik for some αk > 0;
k ← k + 1;

until termination test satisfied;

3.3 Randomized Algorithms

In randomized CD algorithms, the update component ik is chosen randomly
at each iteration. In Algorithm 3 we consider the simplest variant in which
each ik is selected from {1, 2, . . . , n} with equal probability, independently of
the selections made at previous iterations. (We can think of this scheme as
“sampling with replacement” from the set {1, 2, . . . , n}.)

We denote expectation with respect to a single random index ik by Eik(·),
while E(·) denotes expectation with respect to all random variables i0, i1, i2, . . . .

We prove a convergence result for the randomized algorithm, for the sim-
ple steplength choice αk ≡ 1/Lmax. (The proof is a simplified version of the
analysis in Nesterov [37, Section 2]. A result similar to (27) is proved by
Shalev-Schwartz and Tewari [51] for certain types of `1-regularized problems.)

Theorem 1 Suppose that Assumption 1 holds. Suppose that αk ≡ 1/Lmax in
Algorithm 3. Then for all k > 0 we have

E(f(xk))− f∗ ≤ 2nLmaxR
2
0

k
. (27)

When σ > 0 in (20), we have in addition that

E
(
f(xk)

)
− f∗ ≤

(
1− σ

nLmax

)k
(f(x0)− f∗). (28)

Proof By application of Taylor’s theorem, and using (21) and (22), we have

f(xk+1) = f
(
xk − αk[∇f(xk)]ikeik

)
≤ f(xk)− αk[∇f(xk)]2ik +

1

2
α2
kLik [∇f(xk)]2ik

≤ f(xk)− αk
(

1− Lmax

2
αk

)
[∇f(xk)]2ik

= f(xk)− 1

2Lmax
[∇f(xk)]2ik , (29)
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where we substituted the choice αk = 1/Lmax in the last equality. Taking the
expectation of both sides of this expression over the random index ik, we have

Eikf(xk+1) ≤ f(xk)− 1

2Lmax

1

n

m∑
i=1

[∇f(xk)]2i

= f(xk)− 1

2nLmax
‖∇f(xk)‖2. (30)

(We used here the facts that xk does not depend on ik, and that ik was chosen
from among {1, 2, . . . , n} with equal probability.) We now subtract f(x∗) from
both sides this expression, take expectation of both sides with respect to all
random variables i0, i1, . . . , and use the notation

φk := E(f(xk))− f∗. (31)

to obtain

φk+1 ≤ φk −
1

2nLmax
E
(
‖∇f(xk)‖2

)
≤ φk −

1

2nLmax

[
E(‖∇f(xk)‖)

]2
. (32)

(We used Jensen’s Inequality in the second inequality.) By convexity of f we
have for any x∗ ∈ S that

f(xk)− f∗ ≤ ∇f(xk)T (xk − x∗) ≤ ‖∇f(xk)‖‖xk − x∗‖ ≤ R0‖∇f(xk)‖,

where the final inequality is because f(xk) ≤ f(x0), so that xk is in the level
set in (26). By taking expectations of both sides, we obtain

E(‖∇f(xk)‖) ≥ 1

R0
φk.

When we substitute this bound into (32), and rearrange, we obtain

φk − φk+1 ≥
1

2nLmax

1

R2
0

φ2k.

We thus have

1

φk+1
− 1

φk
=
φk − φk+1

φkφk+1
≥ φk − φk+1

φ2k
≥ 1

2nLmaxR2
0

.

By applying this formula recursively, we obtain

1

φk
≥ 1

φ0
+

k

2nLmaxR2
0

≥ k

2nLmaxR2
0

,

so that (27) holds, as claimed.
In the case of f strongly convex with modulus σ > 0, we have by taking

the minimum of both sides with respect to y in (20), and setting x = xk, that

f∗ ≥ f(xk)− 1

2σ
‖∇f(xk)‖2.
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By using this expression to bound ‖∇f(xk)‖2 in (32), we obtain

φk+1 ≤ φk −
σ

nLmax
φk =

(
1− σ

nLmax

)
φk.

Recursive application of this formula leads to (28).

Note that the same convergence expressions can be obtained for more re-
fined choices of steplength αk, by making minor adjustments to the logic in
(29). For example, the choice αk = 1/Lik leads to the same bounds (27) and
(28). The same bounds hold too when αk is the exact minimizer of f along
the coordinate search direction; we modify the logic in (29) for this case by
taking the minimum of all expressions with respect to αk, and use the fact
that αk = 1/Lmax is in general a suboptimal choice.

We can compare (27) with the corresponding result for full-gradient descent
with constant steplength αk = 1/L (where L is from (23)). The iteration

xk+1 = xk − 1

L
∇f(xk)

leads to a convergence expression

f(xk)− f∗ ≤ 2LR2
0

k
(33)

(see, for example, [36]). Since, as we have noted, L can be as large as nLmax,
the bound in this expression may be equivalent to (27) in extreme cases. More
typically, these two Lipschitz constants are comparable in size, and the ap-
pearance of the additional factor n in (27) indicates that we pay a price in
terms of slower convergence for using only one component of ∇f(xk), rather
than the full vector.

Expected linear convergence rates have been proved under assumptions
weaker than strong convexity; see for example the “essential strong convexity”
property of [28], the “optimal strong convexity” property of [27], the “gener-
alized error bound” property of [34], and [56, Assumption 2], which concerns
linear growth in a measure of the gradient with distance from the solution set.

A variant on Algorithm 3 uses “sampling without replacement.” Here the
computation proceeds in “epochs” of n consecutive iterations. At the start of
each epoch, the set {1, 2, . . . , n} is shuffled. The iterations then proceed by
setting ik to each entry in turn from the ordered set. This kind of randomiza-
tion has been shown in several contexts to be superior to the sampling-with-
replacement scheme analyzed above, but a theoretical understanding of this
phenomenon remains elusive.

Randomized Kaczmarz Algorithm. It is worth proving an expected linear con-
vergence result for the Kaczmarz iteration (16) for linear equations Aw = b
as a separate, more elementary analysis. In one sense, the result is a special
case of Theorem 1 since, as we showed above, the iteration (16) is obtained by
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applying Algorithm 3 to the dual formulation (10). In another sense, the re-
sult is stronger, since we obtain a linear rate of convergence without requiring
strong convexity of the objective (10), that is, the system Aw = b is allowed
to have multiple solutions.

We denote by λmin,nz the minimum nonzero eigenvalue of AAT and let P (·)
denote projection onto the solution set of Aw = b. We have

‖wk+1 − P (wk+1)‖2 ≤ ‖wk −ATik(Aikw
k − bik)− P (wk)‖2

=
1

2
‖wk − P (wk)‖2 − (Aikw

k − bik)2,

where we have used normalization of the rows (14) and the fact thatAikP (xk) =
bik . By taking expectations of both sides with respect to ik, we have

Eik‖wk+1 − P (wk+1)‖2 ≤ ‖wk − P (wk)‖2 − Eik(Aikw
k − bik)2

=
1

2
‖wk − P (wk)‖2 − 1

m
‖Awk − b‖2

≤
(

1− λmin,nz

m

)
‖wk − P (wk)‖2.

By taking expectations of both sides with respect to all random variables
i0, i1, . . . , and proceeding recursively, we obtain

E‖wk − P (wk)‖2 ≤
(

1− λmin,nz

m

)k
‖w0 − P (w0)‖2.

(This analysis is slightly generalized from Strohmer and Vershynin [53] to allow
for nonunique solutions of Aw = b; see also [24].)

3.4 Accelerated Randomized Algorithms

The accelerated randomized algorithm, specified here as Algorithm 4, was
proposed by Nesterov [37]. It assumes that an estimate is available of modulus
of strong convexity σ ≥ 0 from (20), as well as estimates of the component-wise
Lipschitz constants Li from (21). (The algorithm remains valid if we simply
use Lmax in place of Lik for all k.)

The approach is a close relative of the accelerated (full-)gradient methods
that have become extremely popular in recent years. These methods have
their origin in a 1983 paper of Nesterov [35] and owe much of their recent
popularity to a recent incarnation known as FISTA [2] and an exposition in
Nesterov’s 2004 monograph [36], as well as ease of implementation and good
practical experience. In their use of momentum in the choice of step — the
search direction combines new gradient information with the previous search
direction — these methods are also related to such other classical techniques
as the heavy-ball method (see [43]) and conjugate gradient methods.

Nesterov [37, Theorem 6] proves the following convergence result for Algo-
rithm 4.
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Algorithm 4 Accelerated Randomized Coordinate Descent for (1)

Choose x0 ∈ Rn;
Set k ← 0, v0 ← x0, γ−1 ← 0;
repeat

Choose γk to be the larger root of

γ2k −
γk

n
=

(
1−

γkσ

n

)
γ2k−1.

Set

αk ←
n− γkσ
γk(n2 − σ)

, βk ← 1−
γkσ

n
; (34)

Set yk ← αkv
k + (1− αk)xk;

Choose index ik ∈ {1, 2, . . . , n} with uniform probability and set dk = [∇f(yk)]ikeik ;

Set xk+1 ← yk − (1/Lik )dk;

Set vk+1 ← βkv
k + (1− βk)yk − (γk/Lik )dk;

k ← k + 1;
until termination test satisfied;

Theorem 2 Suppose that Assumption 1 holds, and define

S0 := sup
x∗∈S

Lmax‖x0 − x∗‖2 + (f(x0)− f∗)/n2.

Then for all k ≥ 0 we have

E(f(xk))− f∗

≤ S0
σ

Lmax

(1 +

√
σ/Lmax

2n

)k+1

−

(
1−

√
σ/Lmax

2n

)k+1
−2 (35)

≤ S0

(
n

k + 1

)2

. (36)

In the strongly convex case σ > 0, the term (1 +
√
σ/Lmax/(2n))k+1

eventually dominates the second term in brackets in (35), so that the lin-
ear convergence rate suggested by this expression is significantly faster than
the corresponding rate (28) for Algorithm 3. Essentially, the measure σ/Lmax

of conditioning in (28) is replaced by its square root in (35), suggesting a de-
crease by a factor of

√
Lmax/σ in the number of iterations required to meet a

specified error tolerance. In the sublinear rate bound (36), which holds even for
weakly convex f , the 1/k bound of (27) is replaced by a 1/k2 factor, implying
a reduction from O(1/ε) to O(1/

√
ε) in the number of iterations required to

meet a specified error tolerance.

3.5 Efficient Implementation of the Accelerated Algorithm

One fact detracts from the appeal of accelerated CD methods over standard
methods: the higher cost of each iteration of Algorithm 4. Both standard and
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Algorithm 5 Accelerated Randomized Kaczmarz for (8), (14)

Choose w0 ∈ Rn;
Set k ← 0, ṽ0 ← w0, γ−1 ← 0;
repeat

Choose γk to be the larger root of

γ2k −
γk

n
=

(
1−

γkσ

n

)
γ2k−1.

Set

αk ←
n− γkσ
γk(n2 − σ)

, βk ← 1−
γkσ

n
; (37)

Set ỹk ← αk ṽ
k + (1− αk)wk;

Choose index ik ∈ {1, 2, . . . ,m} with uniform probability and set d̃k = (Aik ỹ
k −

bik )ATik ;

Set wk+1 ← ỹk − d̃k;
Set ṽk+1 ← βk ṽ

k + (1− βk)ỹk − γkd̃k;
k ← k + 1;

until termination test satisfied;

accelerated variants require calculation of one element of the gradient, but
Algorithm 3 requires an update of just a single component of x, whereas Al-
gorithm 4 also requires manipulation of the generally dense vectors y and v.
Moreover, the gradient is evaluated at xk in Algorithm 3, where the argument
changes by only one component from the prior iteration, a fact that can be
exploited in several contexts. In Algorithm 4, the argument yk for the gradi-
ent changes more extensively from one iteration to the next, making it less
obvious whether such economies are available. However, by using a change of
variables due to Lee and Sidford [23], it is possible to implement the acceler-
ated randomized CD approach efficiently for problems with certain structure,
including the linear system Aw = b and certain problems of the form (5).

We explain the Lee-Sidford technique in the context of the Kaczmarz algo-
rithm for (8), assuming normalization of the rows of A (14). As we explained in
(16), the Kaczmarz algorithm is obtained by applying CD to the dual formu-
lation (10) with variables x, but operating in the space of “primal” variables w
using the transformation w = ATx. If we apply the transformations ṽk = AT vk

and ỹk = AT yk to the other vectors in Algorithm 4, and use the fact of nor-
malization (14) (and hence (AAT )ii = 1 for all i = 1, 2, . . . ,m) to note that
Li ≡ 1 in (21), we obtain Algorithm 5.

When the matrix A is dense, there is only a small factor of difference
between the per-iteration workload of the standard Kaczmarz algorithm and
its accelerated variant, Algorithm 5. Both require O(m + n) operations per
iteration. However, when A is sparse, the computational difference between the
two algorithms becomes substantial. At iteration k, the standard Kaczmarz
algorithm requires computation proportion to a small multiple of the number
of nonzeros in row Aik (which we denote by |Aik |). Meanwhile, iteration k
of Algorithm 5 requires manipulation of the dense vectors ṽk and ỹk — both
O(n) processes — and the benefits of sparsity are lost. This apparent defect was
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partly remedied in [29] by “caching” the updates to these vectors, resulting in
a number of cycles within which updates gradually “fill in.” The more effective
approach of [23] performs a change of variables from ṽk and ỹk to two other
vectors v̂k and ŷk that can be updated in O(|Aik |) operations. To describe this
representation, we start by noting that if we substitute for wk and wk+1 in the
formulas of Algorithm 5, we obtain the updates to ṽk and ỹk in the following
form: [

ṽk+1 ỹk+1
]

=
[
ṽk ỹk

]
Rk − Sk, (38)

where

Rk :=

[
βk αk+1βk

(1− βk) (1− αk+1βk)

]
,

Sk := (Aik ỹ
k − bik)ATik

[
γk (1− αk+1 + αk+1γk)

]
.

Note that Rk is a 2 × 2 matrix while Sk is an n × 2 matrix with nonzeros
only in those rows for which ATik has a nonzero entry. We define a change of
variables based on another 2× 2 matrix Bk, as follows:[

ṽk ỹk
]

=
[
v̂k ŷk

]
Bk, (39)

where we initialize with B0 = I. By substituting this representation into (38),
we obtain [

v̂k+1 ŷk+1
]
Bk+1 =

[
v̂k ŷk

]
BkRk − Sk,

so we can maintain validity of the representation (39) at iteration k + 1 by
setting

Bk+1 := BkRk,
[
v̂k+1 ŷk+1

]
:=
[
v̂k ŷk

]
− SkB−1k+1. (40)

The computations in (40) can be performed in O(|Aik |) operations, and can re-
place the relatively expensive computations of ỹk and ṽk+1 in Algorithm 5. The
only other operation of note in this algorithm — computation of Aik ỹ

k−bik —
can also be performed in O(|Aik |) operations using the (v̂k, ŷk) representation,
by noting from (39) that

Aik ỹ
k = (Aik v̂

k)(Bk)12 + (Aik ŷ
k)(Bk)22.

This efficient implementation can be extended to the dual empirical risk
minimization problem (7) for certain choices of regularization function g(·), for
example, g(z) = ‖z‖2/2; see [25]. As pointed out in [23], the key requirement
for the efficient scheme is that the gradient term [∇f(yk)]ik can be evaluated
efficiently after an update to the two vectors in the alternative representation
of yk, and to the two coefficients in this representation. Another variant of this
implementation technique appears in [16, Section 5].
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3.6 Cyclic Variants

We have the following result from [3] for the cyclic variant of Algorithm 1.

Theorem 3 Suppose that Assumption 1 holds. Suppose that αk ≡ 1/Lmax in
Algorithm 1, with the index ik at iteration k chosen according to the cyclic
ordering (11) (with i0 = 1). Then for k = n, 2n, 3n, . . . , we have

f(xk)− f∗ ≤ 4nLmax(1 + nL2/L2
max)R2

0

k + 8
. (41)

When σ > 0 in the strong convexity condition (20), we have in addition for
k = n, 2n, 3n, . . . that

f(xk)− f∗ ≤
(

1− σ

2Lmax(1 + nL2/L2
max)

)k/n
(f(x0)− f∗). (42)

Proof The result (41) follows from Theorems 3.6 and 3.9 in [3] when we note
that (i) each iteration of Algorithm BCGD in [3] corresponds to a “cycle” of
n iterations in Algorithm 1; (ii) we update coordinates rather than blocks, so
that the parameter p in [3] is equal to n; (iii) we set L̄max and L̄min in [3] both
to Lmax.

Comparing the complexity bounds for the cyclic variant with the corre-
sponding bounds proved in Theorem 1 for the randomized variant, we see that
since L ≥ Lmax in general, the numerator in (41) is O(n2), in contrast to
O(n) term in (27). A similar factor of n in seen in comparing (28) to (42),
when we note that (1 − ε)1/n ≈ 1 − ε/n for small values of ε. The bounds in
Theorem 3 are deterministic, however, rather than being bounds on expected
nonoptimality, as in Theorem 1.

We noted in Subsection 3.2 that the ratio L/Lmax lies in the interval [1, n]
when f is a convex quadratic function and both parameters are set to their
best values. Lower values of this ratio are attained on functions that are “more
decoupled” and larger values attained when there is a greater dependence
between the coordinates. Larger values lead to weaker bounds in Theorem 3,
which accords with our intuition; we expect CD methods to require more
iterations to resolve the coupling of the coordinates.

We are free to make other, larger choices of Lmax; they need only satisfy
the conditions (21) and (22). Larger values of Lmax lead to shorter steps αk =
1/Lmax and different complexity expressions. For Lmax = L, for example, the
bound in (41) becomes

4n(n+ 1)LR2
0

k + 8
,

which is worse by a factor of approximately 2n2 than the bound (33) for the
full-step gradient descent approach. For Lmax =

√
nL, we obtain

8n3/2LR2
0

k + 8
,

which still trails (33) by a factor of 4n3/2.
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3.7 Extension to Separable Regularized Case

In this section we consider the separable regularized formulation (2), (3) where
f is smooth and strongly convex, and each Ωi, i = 1, 2, . . . , n is convex. We
prove a result similar to the second part of Theorem 1 for a randomized version
of Algorithm 2. The proof is a simplified version of the analysis from [48]. It
makes use of the following assumption.

Assumption 2 The function f in (2) is uniformly Lipschitz continuously
differentiable and strongly convex with modulus σ > 0 (see (20)). The functions
Ωi, i = 1, 2, . . . , n are convex. The function h in (2) attains its minimum value
h∗ at a unique point x∗.

Our result uses the coordinate Lipschitz constant Lmax for f , as defined
in (22). Note that the modulus of convexity σ for f is also the modulus of
convexity for h. By elementary results for convex functions, we have

h(αx+ (1− α)y) ≤ αh(x) + (1− α)h(y)− 1

2
σα(1− α)‖x− y‖2. (43)

Theorem 4 Suppose that Assumption 2 holds. Suppose that the indices ik in
Algorithm 2 are chosen independently for each k with uniform probability from
{1, 2, . . . , n}, and that αk ≡ 1/Lmax. Then for all k ≥ 0, we have

E
(
h(xk)

)
− h∗ ≤

(
1− σ

nLmax

)k
(h(x0)− h∗). (44)

Proof Define the function

H(xk, z) := f(xk) +∇f(xk)T (z − xk) +
1

2
Lmax‖z − xk‖2 + λΩ(z),

and note that this function is separable in the components of z, and attains its
minimum over z at the vector zk whose ik component is defined in Algorithm 2.
Note by strong convexity (20) that

H(xk, z) ≤ f(z)− 1

2
σ‖z − xk‖2 +

1

2
Lmax‖z − xk‖2 + λΩ(z)

= h(z) +
1

2
(Lmax − σ)‖z − xk‖2. (45)

We have by minimizing both sides over z in this expression that

H(xk, zk) = min
z

H(xk, z)

≤ min
z

h(z) +
1

2
(Lmax − σ)‖z − xk‖2

≤ min
α∈[0,1]

h(αx∗ + (1− α)xk) +
1

2
(Lmax − σ)α2‖xk − x∗‖2

≤ min
α∈[0,1]

αh∗ + (1− α)h(xk) +
1

2

[
(Lmax − σ)α2 − σα(1− α)

]
‖xk − x∗‖2

≤ σ

Lmax
h∗ +

(
1− σ

Lmax

)
h(xk), (46)
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where we used (45) for the first inequality, (43) for the third inequality, and
the particular value α = σ/Lmax for the fourth inequality (for which value the
coefficient of ‖xk − x∗‖2 vanishes). Taking the expected value of h(xk+1) over
the index ik, we have

Eikh(xk+1) =
1

n

n∑
i=1

f(xk + (zki − xki )ei) + λΩi(z
k
i ) + λ

∑
j 6=i

Ωj(x
k
j )


≤ 1

n

n∑
i=1

{
f(xk) + [∇f(xk)]i(z

k
i − xki ) +

1

2
Lmax(zki − xki )2

+λΩi(z
k
i ) + λ

∑
j 6=i

Ωj(x
k
j )


=
n− 1

n
h(xk) +

1

n

[
f(xk) +∇f(xk)T (zk − xk)

+
1

2
Lmax‖zk − xk‖2 + λΩ(zk)

]
=
n− 1

n
h(xk) +

1

n
H(xk, zk).

By subtracting h∗ from both sides of this expression, and using (46) to sub-
stitute for H(xk, zk), we obtain

Eikh(xk+1)− h∗ ≤
(

1− σ

nLmax

)
(h(xk)− h∗).

By taking expectations of both sides of this expression with respect to the
random indices i0, i1, i2, . . . , ik−1, we obtain

E(h(xk+1))− h∗ ≤
(

1− σ

nLmax

)
(E(h(xk))− h∗).

The result follows from a recursive application of this formula.

A result similar to (27) can be proved for the case in which f is convex but
not strongly convex, but there are a few technical complications, and we refer
the reader to [48] for details.

An extension of the fixed-step approach to separable composite objectives
(2), (3) with nonconvex smooth part f is discussed in [41], where it is shown
that accumulation points of the sequence of iterates are stationary and that a
measure of optimality decreases to zero at a sublinear (1/k) rate.

3.8 Computational Notes

A full computational comparison between variants of CD (and between CD
and other methods) is beyond the scope of this paper. Nevertheless it is worth
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asking whether various aspects of the convergence analysis presented above
— in particular, the distinction between CD variants — can be observed in
practice. To this end, we used these methods to minimize a convex quadratic
f(x) = (1/2)xTQx (with Q symmetric and positive semidefinite) for which
x∗ = 0 and f∗ = 0. We constructed Q by choosing an integer r from 1, 2, . . . , n
and parameters η ∈ [0, 1] and ζ > 0, and defining

Q := Vr,ηΣV
T
r,η + ζ11T , (47a)

Vr,η := ηV + (1− η)Er, (47b)

Er := [Ir×r | 0r×(n−r)]T . (47c)

where V ∈ Rn×r is a random matrix with r ≤ n orthogonal columns, Σ
is an r × r positive diagonal matrix whose diagonal elements were chosen
from a log-uniform distribution to have a specified condition number (with
maximum diagonal of 1), and 1 is the vector (1, 1, . . . , 1)T . For convenience,
we normalized Q so that its maximum diagonal — and thus Lmax (22) — is
1.

By choosing η and ζ appropriately, we can obtain a range of values for
the quantities described in Subsection 3.2, which enter along with the smallest
singular value into the convergence expression. For example, by setting ζ = 0
and η = 0 we obtain a randomly oriented matrix, possibly singular, with
a specified range of nonzero eigenvalues. Nonzero values of η and ζ induce
different types of orientation bias. In particular, we see that Λ (25) increases
toward its upper bound of

√
n as ζ increases away from zero.

We tested three CD variants.

– CYCLIC: Cyclic CD, described in Subsection 3.6.
– IID: Randomized CD using sampling with replacement: Algorithm 3.
– EPOCHS: The “sampling without replacement” variant of Algorithm 3,

described following the proof of Theorem 1.

For each variant, we tried both a fixed steplength αk ≡ 1/Lmax and the
optimal steplength αk = 1/Qik,ik . Thus, there were a total of six algorithmic
variants tested.

The starting point x0 was chosen randomly, with all components from the
unit normal distribution N(0, 1). The algorithms were terminated when the
objective was reduced by a factor of 10−6 over its initial value f(x0).

The speed of convergence varied widely according to the problem construc-
tion parameters η, λ, and cond(Σ), but we can make some general observa-
tions. First, on problems that are not well conditioned, the function values
f(xk) decreased rapidly at first, then settled into a linear rate of decrease.
This linear rate held even for problems in which Q was singular — a signif-
icant improvement over the sublinear rates predicted by the theory. Second,
the EPOCHS variant of randomized CD tended to converge faster than the
IID version, though rarely more than twice as fast. Third, the use of the op-
timal step was usually better than the fixed step (with sometimes up to six
times fewer iterations), but this was by no means always the case. Fourth,
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while there were extensive regimes of parameter values in which all six vari-
ants performed similarly, there were numerous “stressed” settings in which the
CYCLIC variants are much slower than the randomized variants, by factors
of 10 or more.

4 Parallel CD Algorithms

CD methods lend themselves to different kinds of parallel implementation.
Even basic algorithm frameworks such as Algorithm 1 may be amenable to
application-specific parallelism, when the computations involved in evaluating
a single element of the gradient vector are substantial enough to be spread out
across cores of a multicore computer. We concern ourselves here with more
generic forms of parallelism, which involve multiple instances of the basic CD
algorithm, running in parallel on multiple processors.

We can distinguish different types of parallel CD algorithms. Synchronous
algorithms are those that partition the computation into pieces that can be
executed in parallel on multiple processors (or cores of a multicore machine),
but that synchronize frequently across all processors, to ensure consistency
of the information available to all processors at certain points in time. For
example, each processor could update a subset of components of x in parallel
(with the subsets being disjoint), and the synchronization step could ensure
that the results of all updates are shared across all processors before further
computation occurs. The synchronization step often detracts from the perfor-
mance of algorithms, not only because some processors may be forced to idle
while others complete their work, but also because the overheads associated
with (hardware and software) locking of memory accesses can be high. Thus,
asynchronous methods, which weaken or eliminate the requirement of consis-
tent information across processors, are preferred in practice. Analysis of such
methods is more difficult, but results have been obtained that accord with
practical experience of such methods. Indeed, it can be verified that in certain
regimes, linear speedup can be expected across a modest number of processors.

4.1 Synchronous Parallelism

We mention several synchronous parallel variants of CD that appear in the
recent literature. We note that in the some of these papers, the computa-
tional results were obtained by implementing the methods in an asynchronous
fashion, disregarding the synchronization step required by the analysis.

Bradley at al. [9] consider a bound-constrained problem that is a reformu-
lation of the problem (2) with specific choices of f and with Ω(x) = ‖x‖1.
Their algorithm performs short-step updates of individual components of x
in parallel on P processors, with synchronization after each round of parallel
updating. This scheme essentially updates a randomly-chosen block of P vari-
ables at each cycle. By modifying the analysis of [51], they show that the 1/k
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sublinear convergence rate bound is not affected provided that P is no larger
than n/L, where L is the Lipschitz constant from (23).

Jaggi et al. [20] perform a synchronized CD method on the dual ERM
model (7) for the case of g(w) = g∗(w) = (1/2)‖w‖2, partitioning components
of the dual variable x between cores and sharing a copy of the vector Ax across
cores, updating this vector at each synchronization point. The approach can
be thought of as a nonlinear block Gauss-Jacobi method (by contrast with the
coordinate Gauss-Seidel approaches discussed in Section 3).

Richtarik and Takac [47] describe a method for the separably regularized
formulation (2), (3) in which a subset of indices Sk ⊂ {1, 2, . . . , n} is updated
according to the formula in Algorithm 2. The work of updating the compo-
nents in Sk is divided between processors; essentially, a synchronization step
takes place at each iteration. This scheme is enhanced with an acceleration
step in [15]; the extra computations associated with the acceleration step too
are parallelized, using ideas from [23]. In the scheme of Marecek, Richtarik,
and Takac [32], the variable vector x is partitioned into subvectors, and each
processor is assigned the responsibility for updating one of these subvectors.
On each processor, the updating scheme described in [47] is applied, provid-
ing a second level of parallelism. Synchronization takes place at each outer
iteration. Details of the information-sharing between processors required for
accurate computation of gradients in different applications are described in
[32, Section 6].

4.2 Asynchronous Parallelism

In asynchronous variants of CD, the variable vector x is assumed to be acces-
sible to each processor, available for reading and updating. (For example, x
could be stored in the shared-memory space of a multicore computer, where
each core is viewed as a processor.) Each processor runs its own CD process,
shown here as Algorithm 6, without any attempt to coordinate or synchronize
with other processors. Each iteration on each processor chooses an index i,
loads the components of x that are needed to compute the gradient compo-
nent [∇f(x)]i, then updates the ith component xi. Note that this evaluation
may need only a small subset of the components of x; this is the case when
the Hessian ∇2f is structurally sparse, for example. On some multicore archi-
tectures (for example, the Intel Xeon), the update of xi can be performed as a
unitary operation; no software or hardware locking is required to block access
of other cores to the location xi.

Algorithm 6 Coordinate Descent for (1) (running on each Processor)
repeat

Choose index i ∈ {1, 2, . . . , n};
Evaluate [∇f(x)]i, reading components of x from shared memory as necessary;
Update xi ← xi − α[∇f(x)]i for some α > 0;

until termination;
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We can take a global view of the entire parallel process, consisting of mul-
tiple processors each executing Algorithm 6, by defining a global counter k
that is incremented whenever any processor updates an element of x: see Al-
gorithm 7. Note that the only difference with the basic framework of Algo-
rithm 1 is in the argument of the gradient component: In Algorithm 1 this is
the latest iterate xk whereas in Algorithm 7 it is a vector x̂k that is generally
made up of components of vectors from previous iterations xj , j = 0, 1, . . . , k.
The reason for this discrepancy is that between the time at which a processor
reads the vector x from shared storage in order to calculate [∇f(x)]i, and the
time at which it updates component i, other processors have generally made
changes to x. In consequence, each update step is using slightly stale informa-
tion about x. To prove convergence results, we need to make assumptions on
how much “staleness” can be tolerated, and to modify the convergence anal-
ysis quite substantially. Indeed, proofs of convergence even for the most basic
asynchronous algorithms are quite technical.

Algorithm 7 Asynchronous Coordinate Descent for (1)

Set k ← 0 and choose x0 ∈ Rn;
repeat

Choose index ik ∈ {1, 2, . . . , n};
xk+1 ← xk − αk[∇f(x̂k)]ikeik for some αk > 0;
k ← k + 1;

until termination test satisfied;

Asynchronous CD algorithms are distinguished from each other mostly by
the assumptions they make on the the choice of update components ik and
on the “ages” of the components of x̂k, that is, the iterations at which each
component of this vector was last updated. In the terminology of Bertsekas
and Tsitsiklis [5], the algorithm is totally asynchronous if

(a) each index i ∈ {1, 2, . . . , n} of x is updated at infinitely many iterations;
and

(b) if νkj denotes the iteration at which component j of the vector x̂k was last

updated, then νkj →∞ as k →∞ for all j = 1, 2, . . . , n.

In other words, each component of x is updated infinitely often, and all com-
ponents used in successive evaluation vectors x̂k are also updated infinitely
often.

The following convergence result for totally asynchronous variants of Al-
gorithm 7 is due to Bertsekas and Tsitsiklis; see in particular [5, Sections 6.1,
6.2, and 6.3.3].

Theorem 5 Suppose that the problem (1) has a unique solution x∗ and that
f is convex and continuously differentiable. Suppose that Algorithm 7 is imple-
mented in a totally asynchronous fashion. Suppose that the mapping T defined
by T (x) := x−α∇f(x) for some α > 0 (for which x∗ is the unique fixed point)
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is strictly contractive in the `∞ norm, that is,

‖T (x)− x∗‖∞ ≤ η‖x− x∗‖∞, for some η ∈ (0, 1). (48)

Then if we set αk ≡ α in Algorithm 7, the sequence {xk} converges to x∗.

We cannot expect to obtain a convergence rate in this setting (such as sublinear
with rate 1/k), given that the assumptions on the ages of the components in
x̂k are so weak. Although this result can be generalized impressively and its
proof is not too complex, we should note that the `∞ contraction assumption
(48) is quite strong. It is violated even by some strictly convex objectives f .
For example, when f(x) = (1/2)xTQx with

Q =

[
1 1
1 2

]
,

we have f strictly convex with minimizer x∗ = 0. However the mapping
T (x) = (I − αQ)x is not contractive for any α > 0; we have for example
that ‖T (x)‖∞ ≥ ‖x‖∞ when x = (1,−1)T .

We turn now to partly asynchronous variants of Algorithm 7, in which
we make stronger assumptions on the ages of the components of x̂k. Liu and
Wright [27] consider a version of Algorithm 7 that is the parallel analog of
Algorithm 3, in that each update component ik is chosen independently and
randomly with equal probability from {1, 2, . . . , n}. They assume that no com-
ponent of x̂k is older than a nonnegative integer τ — the “maximum delay”
— for any k. Specifically, they express the difference between xk and x̂k in
terms of “missed updates” to x, as follows:

xk = x̂k +
∑

l∈K(j)

(xl+1 − xl), (49)

where K(j) is a set of iteration numbers drawn from the set {j − q : q =
1, 2, . . . , τ}. The value of τ is related to the number of processors P involved
in the computation. If all processors are performing their updates at approx-
imately the same rates, we could expect τ to be a modest multiple of P —
perhaps τ = 2P or τ = 3P , to allow a safety margin for occasional delays.
Hence the value of τ is an indicator of potential parallelism in the algorithm.

In [27], the steplengths in Algorithm 7 are fixed as follows:

αk ≡
γ

Lmax
, (50)

where γ is chosen to ensure that Algorithm 7 progresses steadily toward a solu-
tion, but not too rapidly. Too-rapid convergence would cause the information
in x̂k to become too stale too quickly, so the gradient component [∇f(x̂k)]ik
would lose its relevance as a suitable update for the variable component xik
at iteration k. Steady convergence is enforced by choosing some ρ > 1 and
requiring that

E‖xk−1 − x̄k‖2 ≤ ρE‖xk − x̄k+1‖2, (51)
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where x̄k is the vector that would hypothetically be obtained if we were to
apply the the update to all components, that is,

x̄k+1 := xk − γ

Lmax
∇f(x̂k),

and the expectations E(·) are taken over all random variables i0, i2, . . . . Con-
dition (51) ensures that the “expected squared update norms” decrease by at
most a factor of 1/ρ at each iteration.

The main results in [27] apply to composite functions (2), (3), but for sim-
plicity here we state the result in terms of the problem (1), where f is convex
and continuously differentiable, with nonempty solution set S and optimal
objective value f∗. We use PS to denote projection onto S, and recall the
definition (25) of the ratio Λ between different varieties of Lipschitz constants.
The results also make use of an optimal strong convexity condition, which is
that the following inequality holds for some σ > 0:

f(x)− f∗ ≥ σ

2
‖x− PS(x)‖2, for all x. (52)

The following result is a modification of [27, Corollary 2].

Theorem 6 Suppose that Assumption 1 holds, and that

4eΛ(τ + 1)2 ≤
√
n. (53)

Then by setting γ = 1/2 in (50) (that is, choosing steplengths αk ≡ 1/(2Lmax)),
we have that

E
(
f(xk)

)
− f∗ ≤ n(Lmax‖x0 − PS(x0)‖2 + f(x0)− f∗)

n+ k
. (54)

Assuming in addition that (52) is satisfied for some σ > 0, we obtain the
following linear rate:

E
(
f(xk)

)
− f∗

≤
(

1− σ

n(σ + 2Lmax)

)k
(Lmax‖x0 − PS(x0)‖2 + f(x0)− f∗). (55)

A comparison with Theorem 1, which shows convergence rates for serial ran-
domized CD (Algorithm 3) shows a striking similarity in convergence bounds.
The factor-of-2 difference in steplength between the serial and parallel vari-
ants accounts for most of the difference between the linear rates (28) and (55),
while there is an extra term n in the denominator of the sublinear rate (54). We
conclude that we do not pay q high overhead (in terms of total workload) for
parallel implementation, and hence that near-linear speedup can be expected.
(Indeed, computational results in [27] and [28] observe near-linear speedup for
multicore asynchronous implementations.)

These encouraging conclusions depend critically on the condition (53),
which is an upper bound on the allowable delay τ in terms of n and the ratio
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Λ from (25). For functions f with weak coupling between the components of
x (for example, when off-diagonals in the Hessian ∇2f(x) are small relative to
the diagonals), we have Λ not much greater than 1, so the maximum delay can
be of the order of n1/4 before there is any attenuation of linear speedup. When
stronger coupling exists, the restriction on τ may be quite tight, possibly not
much greater than 1. A more general convergence result [27, Theorem 1] shows
that in this case, we can choose smaller values of γ in (50), allowing grace-
ful degradation of the convergence bounds while still obtaining fairly efficient
parallel implementations.

We note that an earlier analysis in [28] made a stronger assumption on x̂k

— that it is equal to some earlier iterate xj of Algorithm 7, where k ≥ j ≥ k−τ ,
that is, the earlier iterate is no more than τ cycles old. (A similar assumption
was used to analyze convergence of as asynchronous stochastic gradient algo-
rithm in [39].) This stronger assumption yields stronger convergence results,
in that the bound on τ in (53) can be loosened. However, the assumption may
not always hold, since some parts of x in memory may be altered by some
cores as they are being read by another core, a phenomenon referred to in [27]
as “inconsistent reading.”

5 Conclusion

We have surveyed the state of the art in convergence of coordinate descent
methods, with a focus on the most elementary settings and the most funda-
mental algorithms. The recent literature contains many extensions, enhance-
ments, and elaborations; we refer interested readers to the bibliography of this
paper, and note that new works are appearing at a rapid pace.

Coordinate descent method have become an important tool in the opti-
mization toolbox that is used to solve problems that arise in machine learning
and data analysis, particularly in “big data” settings. We expect to see fur-
ther developments and extensions, further customization of the approach to
specific problem structures, further adaptation to various computer platforms,
and novel combinations with other optimization tools to produce effective “so-
lutions” for key application areas.

Acknowledgements I thank Ji Liu for the pleasure of collaborating with him on this topic
over the past two years. I am grateful to the editors and referees of the paper, whose expert
and constructive comments led to numerous improvements.
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