
ar
X

iv
:1

41
0.

45
36

v2
 [

m
at

h.
N

A
]

 1
9

Fe
b

20
15

Noname manuscript No.
(will be inserted by the editor)

Numerical Optimization for Symmetric Tensor

Decomposition

Tamara G. Kolda

Draft: February 20, 2015 / Received: date / Accepted: date

Abstract We consider the problem of decomposing a real-valued symmetric
tensor as the sum of outer products of real-valued vectors. Algebraic methods
exist for computing complex-valued decompositions of symmetric tensors, but
here we focus on real-valued decompositions, both unconstrained and nonneg-
ative, for problems with low-rank structure. We discuss when solutions exist
and how to formulate the mathematical program. Numerical results show the
properties of the proposed formulations (including one that ignores symmetry)
on a set of test problems and illustrate that these straightforward formulations
can be effective even though the problem is nonconvex.

Keywords symmetric · outer product · canonical polyadic · tensor decom-
position · completely positive · nonnegative

1 Introduction

We consider the problem of decomposing a real-valued symmetric tensor as
the sum of outer products of real-valued vectors. Let A represent an m-way,
n-dimension symmetric tensor. Given a real-valued vector x of length n, we let
xm denote them-way, n-dimensional symmetric outer product tensor such that
(xm)i1i2···im = xi1xi2 · · ·xim . Comon et al. [15] showed that any real-valued

This material is based upon work supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research, Applied Mathematics pro-
gram. Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

Tamara G. Kolda
Sandia National Laboratories, Livermore, CA
E-mail: tgkolda@sandia.gov

http://arxiv.org/abs/1410.4536v2

2 Tamara G. Kolda

symmetric tensor A can be decomposed as

A =

p
∑

k=1

λk xm
k , (1)

with λk ∈ R and xk ∈ Rn for k = 1, . . . , p; see the illustration in Figure 1.
We assume that the tensor is low-rank, i.e., p is small relative to the typical
rank of a random tensor. We survey the methods that have been proposed
for related problems and discuss several optimization formulations, including
a surprisingly effective method that ignores the symmetry.

A

= λ1 x1

x1

x1

+λ2 x2

x2

x2

+ · · ·+ λp xp

xp

xp

Fig. 1: Symmetric tensor factorization for m = 3.

We also consider the related problem of decomposing a real-valued nonneg-
ative symmetric tensor as the sum of outer products of real-valued nonnegative
vectors. Let A ≥ 0 represent an m-way, n-dimension nonnegative symmetric
tensor. In this case, the goal is a factorization of the form

A =

p
∑

k=1

xm
k with xk ≥ 0. (2)

If such a factorization exists, we say that A is completely positive [39]. If such
a factorization does not exist, then we propose to solve a “best fit” problem
instead.

The paper is structured as follows. Section 2 provides notation and back-
ground material. Related decompositions, including the best symmetric rank-1
approximation, the symmetric Tucker decomposition, partially symmetric de-
compositions, and the complex-valued canonical decompositions are discussed
in Section 3. We describe two optimization formulations for symmetric decom-
position in Section 4, and a mathematical program for the nonnegative prob-
lem in Section 5. Numerical results, including the methodology for generating
challenging problems, is presented in Section 6. Finally, Section 7 discusses
our findings and future challenges.

Numerical Optimization for Symmetric Tensor Decomposition 3

2 Background

2.1 Notation and preliminaries

A tensor is a multidimensional array. The number of ways or modes is called
the order of a tensor. For example, a matrix is a tensor of order two. Tensors
of order three or greater are called higher-order tensors.

Let n1×n2×· · ·×nm denote the size of an m-way tensor. We say that the
tensor is cubic if all the modes have the same size, i.e., n = n1 = n2 · · · = nm.
In other words, “cubic” is the tensor generalization of “square.” In this case,
we refer to n as the dimension of the tensor. We let R[m,n] denote the space of
all cubic real-valued tensors of order m and dimension n. As appropriate, we
use multiindex notation to compactly index tensors so that i = (i1, i2, . . . , im).
Thus, ai denotes ai1i2···im .

The norm of a tensor A ∈ R[m,n] is the square root of the sum of squares
of its elements, i.e.,

‖A‖ =

√

√

√

√

n
∑

i1=1

n
∑

i2=1

· · ·
n
∑

im=1

a2
i
.

Unless otherwise noted, all norms are the (elementwise) ℓ2-norm.

2.2 Symmetric tensors

A tensor is symmetric if its entries do not change under permutation of the
indices. Formally, we let π(m) denote the set of permutations of length m. For
instance,

π(3) = { (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) } .

It is well known that |π(m)| = m!. We say a real-valued m-way n-dimensional
tensor A is symmetric [15] if

aip(1)···ip(m)
= ai1···im for all i1, . . . , im ∈ { 1, . . . , n } and p ∈ π(m).

Such tensors are also sometimes referred to as supersymmetric. For a 3-way
tensor A of dimension n, symmetry means

aijk = aikj = ajik = akij = ajki = akji for all i, j, k ∈ { 1, . . . , n } .

We let S[m,n] ⊂ R[m,n] denote the subspace of all symmetric tensors.

4 Tamara G. Kolda

2.3 Symmetric outer product tensors

A tensor in S[m,n] is called rank one if it has the form λxm where λ ∈ R and
x ∈ Rn. If m is odd or λ > 0, then the mth real root of λ always exists, so we
can rewrite the tensor as

λxm = ym where y =
(

m
√
λ
)

x. (3)

If m is even, however, the mth real root does not exist if λ < 0, so the scalar
cannot be absorbed as in (3).

2.4 Model parameters

For the symmetric decomposition, we let λ denote the vector of weights and
X denote the matrix of component vectors, i.e.,

λ =
[

λ1 λ2 · · ·λp

]T

and X =
[

x1 x2 · · · xp

]

.

The notation xik refers to the ith entry in the kth column, so recalling the
multiindex notation i = (i1, . . . , im), we have

(xm
k)i = xi1kxi2k · · ·ximk.

3 Related problems

3.1 Canonical polyadic tensor decomposition

Canonical polyadic (CP) tensor decomposition has been known since 1927
[26,25]. It is known under several names, two of the most prominent being
CANDECOMP as proposed by Carroll and Chang [14] and PARAFAC by
Harshman [24]. Originally, the term CP was proposed as a combination of these
two names [29], but more recently has been re-purposed to mean “canonical
polyadic.” For details on CP, we refer the reader to the survey [31]. Here, we
describe the problem in the case of a cubic tensor A ∈ R[m,n]. Our goal is to
discover a decomposition of the form

A =

p
∑

k=1

u
(1)
k ◦ u(2)

k ◦ · · · ◦ u(m)
k . (4)

The circle denotes the vector outer product so the i = (i1, i2, . . . , im) entry is
(

u(1) ◦ u(2) ◦ · · · ◦ u(m)
)

i

= u
(1)
i1

u
(2)
i2

· · ·u(m)
im

.

Each summand is called a component. An illustration is shown in Figure 2.
One of the most effective methods for this problem is alternating least squares.
We solve for each factor matrix

U(j) =
[

u
(j)
1 u

(j)
2 · · · u(j)

p

]

,

Numerical Optimization for Symmetric Tensor Decomposition 5

in turn by solving a linear least squares problem, cycling through all modes
(i.e., j = 1, . . . ,m) repeatedly until convergence. See, e.g., [31, Figure 3.3] for
details.

A

= u
(2)
1

u
(3)
1

u
(1)
1

+ u
(2)
2

u
(3)
2

u
(1)
2

+ · · ·+ u
(2)
p

u
(3)
p

u
(1)
p

Fig. 2: CP tensor factorization for m = 3.

3.2 Canonical decomposition with partial symmetry

Partial symmetry has been considered since the work of Carroll and Chang [14].
At the same time Carroll and Chang [14] introduced CANDECOMP, they also
defined INDSCAL which assumes two modes are symmetric. For simplicity of
discussion, we assume a cubic tensor A ∈ R[m,n]. For m = 3 and the last two
dimensions being symmetric, this means

aijk = aikj for all i, j, k ∈ { 1, . . . , n } ,

and the factorization should be of the form

A =

p
∑

k=1

uk ◦ vk ◦ vk.

In other words, the last two vectors in each component are equal. An illustra-
tion is provided in Figure 3.

A

= v1

v1

u1

+ v2

v2

u2

+ · · ·+ vp

vp

up

Fig. 3: INDSCAL tensor factorization for m = 3.

Carroll and Chang [14] proposed to use an alternating method that ignores
symmetry, with the idea that it will often converge to a symmetric solution
(up to diagonal scaling). Later work showed that not all KKT points satisfy
this condition [18]. In §4.7, we show how a generalization of this method can

6 Tamara G. Kolda

be surprisingly effective for symmetric tensor decomposition and provide some
motivation for why this might be the case.

We also note that the methods proposed in this manuscript can be extended
to partial symmetries.

3.3 Best symmetric rank-1 approximation

The best symmetric rank-1 approximation problem is

min ‖A− λxm‖2 subject to λ ∈ R, x ∈ R
n. (5)

An illustration is shown in Figure 4. This problem was first considered in
De Lathauwer et al. [17], but their proposed symmetric higher-order power
method was not convergent. The power method has been improved so that it
is convergent in subsequent work [30,41,32,33].

A

≈ λ x

x

x

Fig. 4: Best symmetric rank-1 decomposition for m = 3.

This problem is directly related to the problem of computing tensor Z-
eigenpairs. A pair (λ,x) is a Z-eigenpair [34,38] of a tensor A ∈ S[m,n] if

Axm−1 = λx and ‖x‖ = 1,

where Axm−1 denotes a vector in Rn such that
(

Axm−1
)

i1
=
∑

i2

· · ·
∑

im

aixi2 · · ·xim for i1 ∈ { 1, . . . , n } .

The problems are related because any Karush-Kuhn-Tucker (KKT) point of
(5) is a Z-eigenpair of A; see, e.g., [32].

Han [23] has considered an unconstrained optimization formulation of the
problem (5). Cui, Dai, and Nie [16] use Jacobian SDP relaxations in polynomial
optimization to find all real eigenvalues sequentially, from the largest to the
smallest. Nie and Wang [36] consider semidefinite relaxations.

3.4 Symmetric Tucker decomposition

A related problem is symmetric Tucker decomposition. Here the goal is to find
an orthogonal matrix U ∈ Rn×p and a symmetric tensor B ∈ S[m,p] that solves

min
∥

∥

∥
A− Â

∥

∥

∥

2

subject to âi =

p
∑

j1=1

p
∑

j2=1

· · ·
p
∑

jm=1

bj1j2···jm ui1j1ui2j2 · · ·uimjm .

Numerical Optimization for Symmetric Tensor Decomposition 7

An illustration is shown in Figure 5. This topic has been considered in [13,
40,27] and is useful for compression and signal processing applications. Alas,
the computational techniques are quite different, so we do not consider them
further in this work.

A

≈

U
UB

U

Fig. 5: Symmetric Tucker decomposition for m = 3.

3.5 Complex-valued symmetric tensor decomposition

An alternative version of the problem allows a complex decomposition, i.e.,

A =

p
∑

k=1

xm
k with xk ∈ C

n for k = 1, . . . , p. (6)

Techniques from algebraic geometry have been proposed to solve (6) in [12,
10,11,37]. More recently, Nie [35] devised has a combination of algebraic and
numerical approaches for solving this problem. Generally, these approaches do
not scale to large n, though Nie’s numerical method scales much better than
previous approaches.

In the complex case, the typical rank (i.e., with probability one) is given
by the theorem below. To the best of our knowledge, for the real case, no
analogous results are known [15].

Theorem 1 (Alexander-Hirschowitz [4,15]) For m > 2, the typical sym-
metric rank (over C) of an order-m symmetric tensor of dimension n is

⌈

1

n

(

n+ k − 1

k

)⌉

except for (m,n) ∈ { (3, 5), (4, 3), (4, 4), (4, 5)} where it should be increased by
one.

4 Optimization formulations for symmetric tensor decomposition

4.1 Index multiplicities

A tensor A ∈ S[m,n] has nm entries, but not all are distinct. Let the set of all
possible indices be denoted by

R = { (i1, . . . , im) | i1, . . . , im ∈ { 1, . . . , n } } .

8 Tamara G. Kolda

Clearly, |R| = nm.
Following [9], we define an index class as a set of tensor indices such that the

corresponding tensor entries all share a value due to symmetry. For example,
for m = 3 and n = 2, the tensor indices (1, 1, 2) and (1, 2, 1) are in the
same index class since a112 = a121. For each index class, we specify an index
representation which is an index such that the entries are in nondecreasing
order. For instance, (1, 1, 2) is the index representation for the index class that
includes a121. The set

I = { (i1, . . . , im) | i1, . . . , im ∈ { 1, . . . , n } and i1 ≤ i2 ≤ · · · ≤ im } ⊂ R
denotes all possible index representations.

Each index class also has a monomial representation [9]. For each i ∈ I
there is a corresponding monomial representation c such that

xi1xi2 · · ·xim ,= xc1
1 xc2

2 · · ·xcn
n .

Specifically, cj represents that number of occurrences of index j in i for j =
1, . . . , n. Clearly,

∑

j cj = m. Conversely, for a given c, we build an index
i with c1 copies of 1, c2 copies of 2, etc. This results in an m-long index
representation. The set of monomial representations is denoted by

C = { (c1, . . . , cn) | c1, . . . , cn ∈ { 0, . . . ,m } and c1 + · · ·+ cn = m } .
From [9], we have that the number of distinct entries of A is given by

|I| = |C| =
(

m+ n− 1

m

)

=
nm

m!
+O(nm−1).

It can be shown [9] that the multiplicity of the entry corresponding to a
monomial representation c is

σc =

(

m

c1, c2, · · · , cn

)

=
m!

c1! c2! · · · cn!
. (7)

Table 1 shows an example of index and monomial representations for S[3,2],
including the multiplicities of each element.

Index (I) Monomimal (C) Multiplicity (σ)
(1,1,1) (3,0) 1
(1,1,2) (2,1) 3
(1,2,2) (1,2) 3
(2,2,2) (0,3) 1

Table 1: Index and monomial representations for S[3,2].

Without loss of generality, we exploit the one-to-one correspondence be-
tween index and monomial representations to change between them. For ex-
ample,

‖A‖2 =
∑

i∈R

a2
i
=
∑

i∈I

σia
2
i
=
∑

c∈C

σca
2
c
,

Numerical Optimization for Symmetric Tensor Decomposition 9

and
(xm

k)i = xi1kxi2k · · ·ximk = (xm
k)c = xc1

1kx
c2
2k · · ·xcn

nk.

4.2 Two formulations

For given A ∈ S[m,n] and p, our goal is to find λ and X such that (1) is
satisfied in a minimization sense. We consider two optimization formulations.
The first formulation is the standard least squares formulation, i.e.,

f1(λ,X) =
∑

i∈R

(

ai −
p
∑

k=1

λk (xm
k)i

)2

=
∑

i∈I

σi

(

ai −
p
∑

k=1

λk (xm
k)i

)2

. (8)

Observe that this counts each unique entry multiple times, according to its
multiplicity. The second formulation counts each unique entry only once, i.e.,

f2(λ,X) =
∑

i∈I

(

ai −
p
∑

k=1

λk(x
m
k)i

)2

. (9)

Either formulation can be expressed generically as

fw(λ,X) =
∑

i∈I

wi

(

ai −
p
∑

k=1

λk(x
m
k)i

)2

=
∑

i∈I

wiδ
2
i .

Choosing wi = σi yields f1 whereas wi = 1 yields f2. The value δi denotes
the difference between the model and the tensor at entry i. Note that this
formulation easily adapts to the case of missing data, i.e., missing data should
have weight of zero in the optimization formulation [2,3].

4.3 Gradients

Using the generic formulation, the gradients are given by

∂fw
∂λk

= −2
∑

i∈I

wi δi (x
m
k)i,

∂fw
∂xjk

= −2λk

∑

c∈C

cj wc δc

(

xc1
1k · · ·x

cj−1
jk · · ·xcn

nk

)

.

(10)

For f1, we mention an alternate gradient expression because it is more
efficient to compute for larger values n and m. The derivation follows [1], and
the gradients are given by

∂f1
∂λk

= −2Axm
k + 2

p
∑

ℓ=1

λℓ

(

xT

kxℓ

)m
,

∂f1
∂xk

= −2mλkAxm−1
k + 2mλk

p
∑

ℓ=1

λℓ

(

xT

kxℓ

)m−1
xℓ.

(11)

This formulation does not easily accommodate missing data sincew is implicit.

10 Tamara G. Kolda

4.4 Scaling ambiguity

Observe that either objective function suffers from scaling ambiguity. Suppose
we have two equivalent models defined by

p
∑

k=1

λk xm
k =

p
∑

k=1

λ̂k x̂m
k ,

related by a positive scaling vector ρ ∈ R
p
+ such that

λ̂k = ρmk λk and x̂k = xk/ρk for k = 1, . . . , p.

To avoid this ambiguity, it is convenient to require ‖xk‖ = 1 for all k. We
could enforce this condition as an equality constraint, but instead we treat it
as a exact penalty, i.e.,

pγ(X) = γ

p
∑

k=1

(

xT

kxk − 1
)2

. (12)

It is straightforward to observe that the gradient is given by

∂pγ
∂xk

= 4γ
(

xT

kxk − 1
)

xk.

In the experimental results, we see that choosing γ = 0.1 appears to be ade-
quate for enforcing the penalty.

4.5 Sparse component weights

We assume so far that p is known, but this is not always the case. One technique
to get around this problem is to guess a large value for p and then add a sparsity
penalty on λ, the weight vector. Specifically, we can use an approximate ℓ1
penalty of the form suggested by [42]:

pα,β(λ) =
β

α

p
∑

k=1

log(1 + exp(−αλk)) + log(1 + exp(αλk)) ≈ β‖λ‖1

In this case, the gradient is

∂pα,β
∂λk

= β
[

(1 + exp(−αλk))
−1 + (1 + exp(αλk))

−1
]

.

Note that the β term is not part of the approximation but rather the weight of
the penalization. In our experiments, the results are insensitive to the precise
choices of α and β.

Numerical Optimization for Symmetric Tensor Decomposition 11

4.6 Putting it all together

The final function to be optimized is

f̂(λ,X) = fw(λ,X) + pγ(X) + pα,β(λ).

The choice of w determines the choice of objective function. We can also set
wi = 0 for any missing values. The choice of γ determines the weight of the
penalty on the norm of the columns of X. Since this constraint is easy to
satisfy and mostly convenience, the exact choice of γ is not critical. We later
show experiments with γ = 0 and γ = 0.1, to contrast the difference between
no penalty and a small penalty. (Increasing γ beyond 0.1 did not have any
impact on the experiments.) The parameter α determines the “steepness” of
the approximate ℓ1 penalty function, and the choice of β determines the weight
of the sparsity-encouraging penalty. In [42], they start with a small value of
α and gradually increase it. In our experiments, we use fixed values α = 10.
The β term is the weight given to the penalty, which is usually determined
heuristically; we use β = 0.1 in our experiments.

4.7 Ignoring symmetry

Another approach to symmetric decomposition is to ignore the symmetry alto-
gether and use a standard CP tensor decomposition method such as alternating
least squares (ALS) [19,31]; surprisingly, there are situations under which this
non-symmetric method yields a symmetric solution.

Under mild conditions, the CP decomposition (4) is unique up to permu-
tation and scaling of the components, i.e., essentially unique. Sidiropoulos and
Bro [43, Theorem 3] have a general a posteriori result on the essential unique-
ness of the CP decompositions for tensors. If we specialize this result to the
symmetric case by assuming U(j) = X for j = 1, . . . ,m, the result says that a
sufficient condition for the uniqueness of (4) is

2p+ (m− 1) ≤ m k-rank(X). (13)

Here, the k-rank of the matrix X is the largest number k such that every
subset of k columns of X is linearly independent. Table 2 shows sufficient k-
rank’s for various values of m and p. For instance, if m = 3 and p = 25, then
k-rank(X) ≥ 18 is sufficient for uniqueness. The table does not directly depend
on n; however, recall that X is an n× p matrix, so k-rank(X) ≤ min{n, p}.

The importance of essential uniqueness is that the global solution of the
unconstrained problem (4) is the same as for the symmetric problem (1) so
long as X satisfies (13). If we normalize the factors in (4) and, without loss
of generality, ignore the permutation ambiguity, then uniqueness implies, for
k = 1, . . . , p,

λk = ±‖u(k)
1 ‖ · · · ‖u(k)

m ‖ and xk = ±u
(1)
k /‖u(k)

1 ‖ = · · · = ±u
(m)
k /‖u(k)

m ‖

12 Tamara G. Kolda

components (p)
2 3 4 5 10 25 50 100

o
rd

er
(m

) 3 2 3 4 4 8 18 34 68
4 2 3 3 4 6 14 26 51
5 2 2 3 3 5 11 21 41
6 2 2 3 3 5 10 18 35

Table 2: Minimal k-rank(X) sufficient for uniqueness of symmetric outer prod-
uct factorization.

A bit of care must be taken to convert from a solution that ignores symmetry

since it could be the case, e.g., that u
(1)
k = −u

(2)
k . Algorithm 1 gives a simple

procedure to “symmetrize” a tensor so that the signs align. It also averages
the final sign-aligned factor matrices in case they are not exactly equal.

The benefit of ignoring symmetry is that we can use existing software for
the CP decomposition. The disadvantage is that it requires m times as much
storage, i.e., it must store the matrices U(1) thru U(m) rather than just X.
Moreover, there is no guarantee that the optimization algorithm will find the
global minimum.

Algorithm 1 Symmetrize Kruskal tensor

Input: CP decomposition defined by U(1), . . . ,U(m)

Output: Symmetric CP decomposition defined by λ and X

1: for k = 1, . . . , p do

2: λk ← 1
3: for j = 1, . . . ,m do

4: η ← ‖u
(j)
k
‖2

5: λk ← ηλk and u
(j)
k
← u

(j)
k

/η ⊲ Normalize

6: if j > 1 and 〈u
(1)
k

,u
(j)
k
〉 < 0 then

7: λk ← −λk and u
(j)
k
← −u

(j)
k

⊲ Flip u
(j)
k

to align with u
(1)
k

8: end if

9: end for

10: end for

11: X←
∑

j U
(j)/m.

5 Optimization formulation for nonnegative symmetric
factorization

The notion of completely positive tensors has been introduced by Qi, Xu, and
Xu [39]. It is a natural extension of completely positive matrices. A nonnegative
tensor A ∈ S[m,n] is called completely positive if it has a decomposition of the
form in (2).

The formulation is analogous to the unconstrained case, except that there
is no λ (or equivalently, we constrain λ = 1) and we add nonnegativity con-

Numerical Optimization for Symmetric Tensor Decomposition 13

straints. For given A ∈ S[m,n], our goal is to find X such that (2) is satisfied.
We again assume p is known. The mathematical program is given by

min f+(X) =
∑

i∈I

wi

(

ai −
p
∑

k=1

(xm
k)i

)2

=
∑

i∈I

wiδ
2
i s.t. X ≥ 0.

Choosing wi = σi yields the analogue of f1 whereas wi = 1 yields the analogue
f2. The value δi is the difference between the model and the tensor at entry i.

Using the generic formulation and following (10) without λk, the gradients
are given by

∂f+
∂xjk

= −2
∑

c∈C

cj wc δc

(

xc1
1k · · ·x

cj−1
jk · · ·xcn

nk

)

.

Our formulation finds the best nonnegative factorization. Fan and Zhou [20]
consider the problem of verifying that a tensor is completely positive.

6 Numerical results

For our numerical results, we assume the tensor has underlying low-rank struc-
ture, as is typical in comparisons of numerical methods for tensor factoriza-
tion (see, e.g., [44]). Hence, we assume there is some underlying λ∗ ∈ Rp

and X∗ ∈ Rn×p to be recovered, where p is lower than the typical rank. The
noise-free data tensor is given by

A
∗ =

p
∑

k=1

λ∗
k(x

∗
k)

m. (14)

The data tensor A may also be contaminated by noise as controlled by the
parameter η ≥ 0, i.e.,

A = A
∗ + η

‖A∗‖
‖N‖ N where ni ∼ N (0, 1). (15)

Here N is a noise tensor such that each element is drawn from a normal
distribution, i.e., ni ∼ N (0, 1). The parameters m, n, p control the size of the
problem. If the vectors in X∗ are collinear, then the problem is generally more
difficult [28,44].

For the f1 objective function in (8), we calculate the gradients as specified
in (11). For small problems this may not be as fast as (10), but for larger
problems it makes a significant difference in speed, as shown in the results.
For f2, we precompute the index set I as well as the corresponding monomial
representations C and multiplicities σ. This means that these values need not
be computed each time the objective function and gradient are evaluated. The
time for this preprocessing is included in the reported runtimes.

All tests were conducted on a laptop with an Intel Dual Core i7-3667U
CPU and 8 GB of RAM, using MATLAB R2013a. For the optimization, unless

14 Tamara G. Kolda

otherwise noted, all tests are based on SNOPT, Version 7.2-9 [21,22], using the
MATLABMEX interface. SNOPT default parameters were used except for the
following: Major iteration limit = 10,000, New superbasics limit / Superbasics
limit = 999, Major optimality tolerance = 1e-8. All tensor computations use
the Tensor Toolbox for MATLAB, Version 2.5 [6,7,8] as well as additional
codes for symmetric tensors (e.g., to calculate the index sets) that will be
included in the next release.

6.1 Numerical results on a collection of test problems

We consider the impact of the problem formulation resulting from the choice of
objective function and column normalization penalty. The objective function
can weighted, based on the standard least squares formulation denoted by f1
in (8), or unweighted, which counts each unique entry only once denoted by
f2 in (9). The column normalization penalty is either γ = 0 (no penalty) or
γ = 0.1. Higher values of γ did not change the results.

We test the choices for several test problems as follows. We consider four
sizes:

– m = 3, n = 4, p = 2;
– m = 4, n = 3, p = 5;
– m = 4, n = 25, p = 3; and
– m = 6, n = 6, p = 4.

In the first case, since m is odd, we have the option to exclude λ from the
optimization, but we include it here for consistency in this set of experiments.
For each size, we also consider three noise levels: η ∈ { 0, 0.01, 0.1}.

A random instance is created as follows. We generate a true solution defined
by λ∗ ∈ Rp and X∗ ∈ Rn×p. The weight vector has entries selected uniformly
from {−1, 1}, i.e.,

λ∗ ∈ R
p such that λ∗

k ∈ U{−1, 1}.

The factor matrix is computed by first generating a matrix with random values
from the normal distribution, i.e.,

X̂
∗ ∈ R

n×p such that x̂∗
ik ∈ N (0, 1),

and then normalizing each column to length one, i.e., x∗
k = x̂∗

k/‖x̂∗

k‖ = 1.
Finally, given λ∗ and X∗, we can compute the tensor A

∗ from (14) and add
noise at the level specified by η per (15). For each problem size and noise level,
we generate ten instances.

For each problem size, we generate five random starting points by choos-
ing entries of X from a Gaussian distribution (no column normalization) and
entries of λ uniformly at random from {−1, 1 }. The same five starting points
are used for all problems of that size.

For each problem formulation corresponding to a choice for objective func-
tion and for normalization penalty, we do fifty runs, i.e., ten instances with five

Numerical Optimization for Symmetric Tensor Decomposition 15

Size Noise Unweighted f2 Weighted f1
m n p η γ = 0 γ = 0.1 γ = 0 γ = 0.1
3 4 2 0.00 48/10/9e-07 50/ 10/1e-06 35/10/7e-07 42/ 10/4e-07

0.01 43/10/8e-03 46/ 10/8e-03 32/ 9/8e-03 39/ 10/8e-03
0.10 48/10/8e-02 48/ 10/8e-02 39/10/8e-02 41/ 10/8e-02

4 3 5 0.00 34/ 9/5e-02 38/ 10/6e-03 27/10/9e-02 37/ 10/4e-02
0.01 31/ 9/5e-02 39/ 9/6e-03 29/10/7e-02 39/ 10/9e-03
0.10 36/10/6e-02 39/ 9/4e-02 38/10/5e-02 40/ 10/4e-02

4 25 3 0.00 6/ 5/7e-01 40/ 10/2e-05 4/ 4/6e-01 16/ 9/6e-01
0.01 10/ 7/7e-01 44/ 10/1e-02 10/ 8/6e-01 19/ 10/6e-01
0.10 11/ 7/7e-01 44/ 10/1e-01 11/ 6/6e-01 26/ 10/1e-01

6 6 4 0.00 23/10/4e-01 39/ 10/2e-05 7/ 5/5e-01 18/ 9/4e-01
0.01 15/ 9/5e-01 40/ 10/1e-02 9/ 8/5e-01 25/ 10/1e-01
0.10 1/ 1/5e-01 5/ 1/1e-01 7/ 7/5e-01 18/ 10/3e-01

Total 306/97/1e-01 472/109/1e-02 248/97/3e-01 360/118/9e-02

(a) Relative error: runs ≤ 0.1, instances ≤ 0.1, and median.

Size Noise Unweighted f2 Weighted f1
m n p η γ = 0 γ = 0.1 γ = 0 γ = 0.1
3 4 2 0.00 48/10/ 1.00 50/10/ 1.00 35/10/ 1.00 42/10/ 1.00

0.01 43/10/ 0.99 46/10/ 1.00 32/ 9/ 0.99 39/10/ 1.00
0.10 34/ 7/ 0.97 34/ 7/ 0.97 30/ 8/ 0.93 32/ 8/ 0.93

4 3 5 0.00 3/ 2/ 0.43 5/ 3/ 0.64 0/ 0/ 0.42 6/ 4/ 0.60
0.01 0/ 0/ 0.43 1/ 1/ 0.54 0/ 0/ 0.37 2/ 2/ 0.52
0.10 0/ 0/ 0.25 0/ 0/ 0.45 0/ 0/ 0.32 1/ 1/ 0.51

4 25 3 0.00 7/ 6/ 0.55 40/10/ 1.00 9/ 7/ 0.66 16/ 9/ 0.67
0.01 10/ 7/ 0.53 44/10/ 1.00 11/ 8/ 0.67 19/10/ 0.67
0.10 13/ 7/ 0.51 44/10/ 1.00 16/ 9/ 0.67 26/10/ 1.00

6 6 4 0.00 21/10/ 0.72 38/10/ 1.00 6/ 4/ 0.72 15/ 8/ 0.75
0.01 15/ 9/ 0.73 40/10/ 1.00 9/ 8/ 0.67 25/10/ 0.87
0.10 18/ 8/ 0.72 32/10/ 0.98 7/ 7/ 0.73 18/10/ 0.74

Total 212/76/7e-01 374/91/1e+00 155/70/6e-01 241/92/7e-01

(b) Solution score: runs ≥ 0.9, instances ≥ 0.9, and median.

Size Noise Unweighted f2 Weighted f1
m n p η γ = 0 γ = 0.1 γ = 0 γ = 0.1
3 4 2 0.00 0.10 ± 0.02 0.13 ± 0.03 0.71 ± 0.99 0.69 ± 0.63

0.01 0.31 ± 0.74 0.21 ± 0.27 0.92 ± 1.09 1.03 ± 1.19
0.10 0.12 ± 0.08 0.17 ± 0.28 0.92 ± 1.47 1.02 ± 1.48

4 3 5 0.00 1.19 ± 1.81 0.75 ± 0.87 4.67 ± 3.29 6.28 ± 5.44
0.01 0.96 ± 1.25 0.77 ± 0.72 5.60 ± 3.88 7.07 ± 5.16
0.10 1.43 ± 1.48 0.98 ± 0.78 6.35 ± 4.60 6.05 ± 4.85

4 25 3 0.00 41.38 ± 20.20 54.90 ± 13.09 3.80 ± 2.03 5.02 ± 1.45
0.01 44.96 ± 25.17 55.69 ± 21.31 4.42 ± 2.34 5.47 ± 1.99
0.10 44.32 ± 24.24 56.11 ± 13.29 5.01 ± 2.65 8.95 ± 3.42

6 6 4 0.00 1.79 ± 1.31 1.64 ± 0.48 4.91 ± 2.76 6.55 ± 2.29
0.01 1.52 ± 0.89 1.57 ± 0.41 7.20 ± 5.17 8.09 ± 2.88
0.10 1.57 ± 0.74 1.76 ± 0.73 6.16 ± 2.88 8.56 ± 4.08

(c) Run time: mean and standard deviation.

Table 3: Results of different formulations for a set of test problems. For each
size and noise combination, the number of runs is fifty and the number of
instances is ten (five random starts per instance).

16 Tamara G. Kolda

random starts each. The same instances and starting points are used across
all formulations. The output of each run is a weight vector λ and a matrix
X. Table 3a compares the relative error which measures the proportion of the
observed data that is explained by the model, i.e.,

relative error =

∥

∥

∥

∥

∥

A−
p
∑

k=1

λk xm
k

∥

∥

∥

∥

∥

/‖A‖.

In the case of no noise, the ideal relative error is zero; otherwise, we hope for
something near the noise level, i.e., η. In our experiments, we say a run or
instance is successful if the relative error is ≤ 0.1. For each formulation, three
values are reported. The first value is the number of successful runs. Since we
are using five starting points per instance, the second value is the number of
instances such that at least one starting point is successful. Finally, the last
value is the median relative error across all fifty runs. Summary totals are
provide in the last line for the 600 runs and 150 instances. Clearly, γ = 0.1
is superior to γ = 0 in terms of number of successful runs and instances.
The comparison of unweighted (f2) and weighted (f1) is less clear cut —
the unweighted formulation is successful for many more runs overall, but the
weighted formulation is successful for more instances overall.

Table 3b compares the solution scores which is a measure of how accurately
λ and X are as compared to λ∗ and X∗. Without loss of generality, we assume
both X and X∗ have normalized columns. (If ‖xk‖2 6= 1, then we rescale
λk = λk

m
√

‖xk‖ and xk = xk/‖xk‖.) There is a permutation ambiguity, but
we permute the computed solution so as to maximize the following score:

solution score =
1

p

p
∑

k=1

(

1− |λk − λ∗
k|

max{|λk|, |λ∗
k|}

)

∣

∣xT

kx
∗
k

∣

∣ .

A solution score of 1 indicates a perfect match, and we say a run or instance
is successful if its solution score is ≥ 0.9. As with the relative error, we report
three values. The first value is the number of runs out of fifty that are success-
ful, the second value is the number of instances out of ten that are successful
(i.e., at least one starting point was successful), and the third value is the
median solution score. We also report totals for each formulation across the
600 runs and 150 instances. Consistent with Table 3a, using γ = 0.1 is more
successful than γ = 0. The unweighted is once again successful for more runs,
but the two methods are nearly tied in terms of number of instances.

Observe in Table 3b that the second size (m = 4, n = 3, p = 5) has very
low solution scores despite having good performance in terms of relative error.
This is because the solution may not be unique, i.e., the k-rank of X∗ is no
more than 3, but the minimum k-rank that is sufficient for uniqueness is 4 per
Table 2. If the solution is not unique, then multiple solutions exist and there
is no reason to expect that the particular solution we find will be that one. For
example, a particular instance for m = 4, n = 3, p = 5 with η = 0 is defined

Numerical Optimization for Symmetric Tensor Decomposition 17

by

λ∗ =

1
1
1

−1
−1

and X∗ =

−0.3859 −0.9285 0.4922 −0.1094 0.4107
0.8403 −0.1678 −0.6975 0.8395 0.0308
0.3807 0.3313 −0.5208 −0.5322 0.9112

 .

The alternate model given by

λ =

1
1
1

−1
−1

and X =

−0.7872 0.5136 −0.7809 −0.1081 0.4157
−0.1928 −0.9150 −0.0704 0.8249 0.0387
0.2039 −0.5355 0.3678 −0.5477 0.9065

has a relative error less than 10−6. The last two columns generally agree, but
the first three do not and the solution score is only 0.65. It may be interesting to
know that in the matrix case (m = 2), we would never compare the computed
solution without imposing additional constraints such as orthogonality.

Table 3c compares the total runtimes for each method. As with any non-
convex optimization problem, there is significant variation from run to run,
but we can gain a sense of the general expense for each method. As a reminder,
we computed the gradient in the weighted case as shown in (11). If we compute
it instead using (10), the runtimes for the weighted and unweighted methods
are roughly the same. For size m = 4, n = 25, p = 3, the computation in (11)
yields a 5-15X speed improvement because n is large; otherwise for smaller n,
the computation in (10) will generally be faster.

Size Noise Unweighted f2 Weighted f1
m n p η γ = 0 γ = 0.1 γ = 0 γ = 0.1
3 4 2 0.00 0/6.73e+00 50/1.17e-06 1/3.54e+02 50/1.87e-06

0.01 1/3.76e+01 50/9.11e-05 1/2.04e+02 49/9.47e-04
0.10 0/4.32e+01 50/9.32e-07 0/3.16e+02 48/6.36e-04

4 3 5 0.00 0/7.99e+01 46/7.34e-03 0/9.24e+01 40/9.76e-03
0.01 0/6.56e+01 46/2.40e-03 0/6.47e+01 39/1.09e-02
0.10 0/2.76e+02 44/3.20e-03 0/1.05e+02 39/1.71e-02

4 25 3 0.00 0/1.70e+03 50/2.63e-06 0/8.36e+02 49/3.65e-02
0.01 0/1.76e+03 50/4.35e-06 0/6.52e+02 50/1.17e-06
0.10 0/1.53e+03 50/2.99e-06 0/1.13e+03 49/6.29e-02

6 6 4 0.00 1/2.44e+01 50/6.04e-05 0/6.13e+00 50/5.46e-05
0.01 1/2.45e+01 50/1.74e-05 0/2.11e+01 50/3.29e-04
0.10 0/3.12e+01 50/3.34e-05 0/4.42e+01 49/4.75e-04

Table 4: Constraint violation: runs ≤ 0.01 and mean.

18 Tamara G. Kolda

Finally, we briefly consider the impact on γ with respect to the constraint
violation from (12), i.e.,

constraint violation =

p
∑

k=1

(

xT

kxk − 1
)2

.

In Table 4, we report the number of runs where the constraint violation is ≤
0.01 and the mean value. Recall that the addition of the constraint violation
is mainly a convenience, but it does improve the formulation by eliminating a
manifold of equivalent solutions.

Size Noise Unweighted f2 Weighted f1
m n p η γ = 0 γ = 0.1 γ = 0 γ = 0.1
3 4 2 0.00 48/10/9e-07 50/10/1e-06 35/10/7e-07 42/10/4e-07

0.01 43/10/8e-03 46/10/8e-03 32/ 9/8e-03 39/10/8e-03
0.10 48/10/8e-02 48/10/8e-02 39/10/8e-02 41/10/8e-02

4 25 3 0.00 8/ 7/7e-01 40/10/2e-05 4/ 4/6e-01 16/ 9/6e-01
0.01 9/ 6/7e-01 44/10/1e-02 10/ 8/6e-01 19/10/6e-01
0.10 11/ 6/7e-01 44/10/1e-01 11/ 6/6e-01 26/10/1e-01

6 6 4 0.00 11/ 6/3e-01 26/ 9/2e-02 2/ 2/3e-01 6/ 5/2e-01
0.01 17/10/2e-01 30/ 9/1e-02 4/ 3/3e-01 16/10/2e-01
0.10 3/ 2/2e-01 8/ 2/1e-01 11/ 8/2e-01 19/10/1e-01

(a) Relative error: runs ≤ 0.1, instances ≤ 0.1, and median.

Size Noise Unweighted f2 Weighted f1
m n p η γ = 0 γ = 0.1 γ = 0 γ = 0.1
3 4 2 0.00 48/10/9e-07 50/10/1e-06 35/10/7e-07 42/10/4e-07

0.01 43/10/8e-03 46/10/8e-03 32/ 9/8e-03 39/10/8e-03
0.10 48/10/8e-02 48/10/8e-02 39/10/8e-02 41/10/8e-02

4 25 3 0.00 8/ 7/7e-01 40/10/2e-05 4/ 4/6e-01 16/ 9/6e-01
0.01 9/ 6/7e-01 44/10/1e-02 10/ 8/6e-01 19/10/6e-01
0.10 11/ 6/7e-01 44/10/1e-01 11/ 6/6e-01 26/10/1e-01

6 6 4 0.00 11/ 6/3e-01 26/ 9/2e-02 2/ 2/3e-01 6/ 5/2e-01
0.01 17/10/2e-01 30/ 9/1e-02 4/ 3/3e-01 16/10/2e-01
0.10 3/ 2/2e-01 8/ 2/1e-01 11/ 8/2e-01 19/10/1e-01

(b) Solution score: runs ≥ 0.9, instances ≥ 0.9, and median.

Table 5: Results of different formulations for “collinear test problems. For
each size and noise combination, the number of runs is fifty and the number
of instances is ten (five random starts per instance).

Table 5 shows results for more difficult test problems whereX∗ has collinear
normalized columns,i.e., (x∗

k)
Tx∗

ℓ = 0.9 for all k 6= ℓ with k, ℓ ∈ {1, . . . , p}. The
procedure for generating the collinear columns is described by Tomasi and Bro
[44]. The setup is the same as in the previous subsection except for the change
in how we generate X∗ and the omission of size m = 4, n = 3, p = 5 (since the
procedure we are using does not allow p > n). The results in Table 5 are are
analogous to those in Table 3. We omit the runtimes since they are similar.
Although fewer runs are successful, the number of instances solved is similar.

Numerical Optimization for Symmetric Tensor Decomposition 19

From these results, we have a sense that the symmetric factorization prob-
lem can be solved using standard optimization techniques. Because the prob-
lems are nonconvex, multiple starting points are needed to improve the odds
of finding a global minimizer. Our results also indicate that it is helpful to
add a penalty to remove the scaling ambiguity; otherwise, with no penalty,
the Jacobian at the solution is singular which seems to have a negative impact
on the solution quality.

6.2 Ignoring symmetry

As noted previously, Carroll and Chang [14] ignored symmetry with the idea
that it may not be required. Ideally, the solution that is computed by a stan-
dard method, like CP-ALS [19,31] or CP-OPT [1], will be symmetric up to
scaling.

Using the same problems from Table 3, we apply CP-ALS (as implemented
in the Tensor Toolbox), followed by Algorithm 1 to symmetrize the solution.
Three of the four sizes generically satisfy the sufficient uniqueness condition
in (13).

– For m = 3 and p = 2, we require k-rank(X∗) ≥ 2. Since X∗ is an n × p
matrix with n = 4 whose columns are randomly generated, k-rank(X∗) = 2
with probability 1.

– For m = 4 and p = 5, we require k-rank(X∗) ≥ 4. Since X∗ is an n × p
matrix with n = 3, it cannot satisfy the condition because k-rank(X∗) ≤
rank(X∗) ≤ min {n, p} = 3. Hence, the solutions may not be unique, and
an example of a non-unique solution is provided in the previous subsection.

– For m = 4 and p = 3, we require k-rank(X∗) ≥ 3. Since X∗ is an n × p
matrix with n = 25 whose columns are randomly generated, k-rank(X∗) =
3 with probability 1.

– For m = 6 and p = 6, we require k-rank(X∗) ≥ 3. Since X∗ is an n × p
matrix with n = 4 whose columns are randomly generated, k-rank(X∗) = 4
with probability 1.

Table 6 shows the results, which are analogous to those in Table 3. CP-ALS
with symmetrization is highly competitive. In terms of the relative error, its
total number of 442 successful runs is near the high of 472 for the symmetric
optimization methods; likewise, it has 116 successful instances versus 118 for
symmetric optimization. Its scores are not as impressive in terms of the solu-
tion score, though this is mainly a problem for the size m = 4, n = 3, p = 5, as
expected due to lack of symmetry. The major advantage of CP-ALS is runtime,
where it is typically ten times faster or more. Despite the fact that CP-ALS
may not find a symmetric solution, using a standard CP solution procedure
followed by symmetrization is indeed an effective approach in many situations.

20 Tamara G. Kolda

Size Noise CP-ALS + Symmetrization
m n p η Relative Error Soln. Score Runtime
3 4 2 0.00 44/ 10/2e-04/2e-04 44/10/ 1.00 0.07 ± 0.05

0.01 42/ 10/8e-03/8e-03 40/10/ 0.99 0.06 ± 0.04
0.10 47/ 10/8e-02/8e-02 40/ 9/ 0.97 0.04 ± 0.04

4 3 5 0.00 39/ 10/3e-02/3e-02 3/ 3/ 0.63 0.23 ± 0.08
0.01 36/ 10/4e-02/2e-02 1/ 1/ 0.57 0.22 ± 0.10
0.10 37/ 10/4e-02/4e-02 0/ 0/ 0.59 0.21 ± 0.09

4 25 3 0.00 37/ 9/9e-07/1e-06 37/ 9/ 1.00 0.07 ± 0.04
0.01 44/ 10/1e-02/1e-02 44/10/ 1.00 0.07 ± 0.03
0.10 46/ 10/1e-01/1e-01 46/10/ 1.00 0.07 ± 0.03

6 6 4 0.00 29/ 9/3e-04/3e-04 26/ 8/ 1.00 0.13 ± 0.11
0.01 18/ 8/5e-01/5e-01 18/ 8/ 0.73 0.08 ± 0.06
0.10 23/ 10/4e-01/4e-01 23/10/ 0.74 0.09 ± 0.07

Total 442/116/5e-02/4e-02 322/88/1e+00

Table 6: Results of CP-ALS plus symmetrization on test problems from Ta-
ble 3. Relative error: runs ≤ 0.1, instances ≤ 0.1, median symmetrized, and
median unsymmetrized. Solution score: runs ≥ 0.9, instances ≥ 0.9, and
median Runtime: mean and standard deviation.

6.3 Sparsity penalty for rank determination

In Example 5.5(i) of [35], Nie considers an method for determining the rank
of a tensor. The example tensor is of order m = 4 and defined by

λ∗ =

[

676
196

]

and X∗ =

0 3/
√
14

1/
√
26 2/

√
14

−5/
√
26 −1/

√
14

 =

0.00 0.80
0.20 0.53

−0.98 −0.27

 .

Using our optimization approach with f1 and γ = 0.1, we impose the approx-
imate ℓ1 penalty of the form suggested by [42], using α = 10 and β = 0.1 to
arrive at the following result:

λ =

675.998
195.965
0.001
0.001
0.001
0.001

and X =

−0.00 0.80 −0.80 0.80 −0.79 −0.02
−0.20 0.53 −0.53 0.54 −0.55 −0.26
0.98 −0.27 0.27 −0.25 0.27 0.97

 .

We calculate the similarity score as described previously, selecting the two
components that yield the best match for a score of 0.999865. The calculation
takes approximately 2 seconds. Using α = 1000 causes numerical blow-up, but
α = 100 or α = 1 work nearly as well as α = 10, i.e., the solution score is
0.9998 (with β = 0.1). Likewise, varying β has little impact on the solution
quality (with α = 10).

Using the same penalty parameters (α = 10 and β = 0.1), we construct
10 instances of problems of size m = 4, n = 3, and p = 2 for each noise level
η ∈ { 0, 0.01, 0.1}. We use a solution with 3 components but once again apply

Numerical Optimization for Symmetric Tensor Decomposition 21

Soln. Score ≥ 0.9 Median Runtime
Noise Instances Runs Rel. Error (mean ± std.)

η = 0.00 10 50 3.4e-04 0.60± 0.20
η = 0.01 9 45 6.9e-03 0.54± 0.19
η = 0.10 4 19 6.4e-02 0.47± 0.13

Table 7: Impact of sparsity penalty for problems of size m = 4, n = 3, and
p = 2 with a solution that has p = 3.

the sparsity penalty, using the same parameters as above. We use five random
starts per instance. The results as shown in Table 7. The second column shows
the number of instances (out of 10) where the solution score was ≥ 0.9, and
the third column is the total number of runs that are successful (out of 50)
for which this condition was satisfied. The fourth column shows that median
relative error, and the last column shows the mean and standard deviation
of the runtime. In the noise-free case, the correct solution is found in every
run. For η = 0.01, the correct solution is obtained for 9 out of 10 instances.
For η = 0.1, the problem is only solved to the desired accuracy in 4 out of 10
instances.

Alas, the penalty approach is a heuristic; forthcoming work [5] will use
statistical validation to select the rank.

6.4 Nonnegative factorization

Lastly, we consider the problem of nonnegative factorization. We use the same
problem setup as in §6.1 with the exception that we set all entries λ∗ equal to
one and choose entries of X∗ to be uniform on [0, 1], i.e., x∗

ij ∈ U [0, 1]. The op-
timization formulation excludes λ, so there is no penalty on the columns norms
of X (γ = 0). We add bound constraints that all entries of X are nonnegative.
We compare only the weighted and unweighted formulations. Table 8 shows
the results, which are analogous to Table 3. There is little difference between
the two formulations, except runtimes as discussed previously.

7 Conclusions and future challenges

We consider straightforward optimization formulations for real-valued sym-
metric and nonnegative symmetric tensor decompositions. These methods can
be used as a baselines for comparison as new methods are developed. In par-
ticular, these methods should be useful for larger problems with inherent low-
rank structure. For instance, the size m = 4 and n = 25 is larger in terms of
dimension than most other symmetric tensor decomposition problems in the
literature, though other works consider larger values of p [35]. Furthermore, we
consider noise-contaminated problems, which may be problematic for algebraic
methods.

22 Tamara G. Kolda

Size Noise Relative Error Solution Score Runtime
m n p η Unweighted Weighted Unw. Wei. Unw. Wei.
3 4 2 0.00 50/10/4e-07 49/10/1e-07 48/10/1.00 49/10/1.00 0.08 0.48

0.01 50/10/8e-03 50/10/8e-03 30/ 6/0.95 29/ 6/0.93 0.11 0.53
0.10 50/10/8e-02 50/10/7e-02 10/ 2/0.71 10/ 2/0.77 0.07 0.31

4 3 5 0.00 50/10/1e-04 50/10/3e-05 2/ 1/0.72 8/ 6/0.76 0.30 4.64
0.01 50/10/3e-03 50/10/3e-03 0/ 0/0.56 0/ 0/0.60 0.40 4.72
0.10 50/10/5e-02 50/10/4e-02 0/ 0/0.58 0/ 0/0.56 0.21 2.53

4 25 3 0.00 50/10/1e-08 50/10/1e-08 50/10/1.00 50/10/1.00 20.28 2.30
0.01 50/10/1e-02 50/10/1e-02 50/10/1.00 50/10/1.00 21.59 2.38
0.10 50/10/1e-01 50/10/1e-01 50/10/1.00 50/10/1.00 21.58 2.27

6 6 4 0.00 50/10/2e-07 50/10/1e-08 50/10/1.00 50/10/1.00 0.91 3.17
0.01 50/10/1e-02 50/10/1e-02 50/10/0.99 50/10/0.99 0.88 2.70
0.10 8/ 2/1e-01 47/10/1e-01 18/ 4/0.77 15/ 3/0.84 0.86 2.64

Table 8: Results of nonnegative optimization on test problems. Relative er-
ror: runs ≤ 0.1, instances ≤ 0.1, median. Solution score: runs ≥ 0.9, in-
stances ≥ 0.9, and median. Runtime: mean.

Although the symmetric and nonnegative symmetric tensor decomposition
problems are nonconvex, these numerical optimization approaches are effec-
tive at recovering the known solution in our experiments, especially when we
use multiple random starting points. These optimization formulations can be
adapted to the case of partial symmetries. Moreover, we show that if the solu-
tion is essentially unique (and the optimization method finds a global minima),
then symmetry need not be directly enforced by the optimization method. In
this case, efficient tools for the nonsymmetric CP problem may be employed
directly.

We expect many further improvements, including different optimization
formulations that exploit structure and consideration of other optimization
methods.

Acknowledgements The anonymous referees provided extremely useful feedback that has
greatly improved the manuscript. This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced Scientific Computing Research,
Applied Mathematics program. Sandia National Laboratories is a multi-program labora-
tory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE–AC04–94AL85000.

References

1. Acar, E., Dunlavy, D.M., Kolda, T.G.: A scalable optimization approach for fitting
canonical tensor decompositions. Journal of Chemometrics 25(2), 67–86 (2011). DOI
10.1002/cem.1335

2. Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations with
missing data. In: SDM10: Proceedings of the 2010 SIAM International Conference on
Data Mining, pp. 701–712 (2010). DOI 10.1137/1.9781611972801.61

3. Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations for in-
complete data. Chemometrics and Intelligent Laboratory Systems 106(1), 41–56 (2011).
DOI 10.1016/j.chemolab.2010.08.004

Numerical Optimization for Symmetric Tensor Decomposition 23

4. Alexander, J., Hirschowitz, A.: Polynomial interpolation in several variables. Journal
of Algebraic Geometry 4, 201–222 (1995)

5. Austin, W., Kolda, T.G., Plantenga, T.: Tensor rank prediction via cross validation. In
preparation (2015)

6. Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algorithm
prototyping. ACM Transactions on Mathematical Software 32(4), 635–653 (2006). DOI
10.1145/1186785.1186794

7. Bader, B.W., Kolda, T.G.: Efficient MATLAB computations with sparse and factored
tensors. SIAM Journal on Scientific Computing 30(1), 205–231 (2007). DOI 10.1137/
060676489

8. Bader, B.W., Kolda, T.G., et al.: Matlab tensor toolbox version 2.5. Available online
(2012). URL http://www.sandia.gov/~tgkolda/TensorToolbox/

9. Ballard, G., Kolda, T.G., Plantenga, T.: Efficiently computing tensor eigenvalues on
a GPU. In: IPDPSW’11: Proceedings of the 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops and PhD Forum, pp. 1340–1348. IEEE
Computer Society (2011). DOI 10.1109/IPDPS.2011.287

10. Ballico, E., Bernardi, A.: Decomposition of homogeneous polynomials with low rank.
Mathematische Zeitschrift 271(3-4), 1141–1149 (2011). DOI 10.1007/s00209-011-0907-6

11. Bernardi, A., Gimigliano, A., Id, M.: Computing symmetric rank for symmetric tensors.
Journal of Symbolic Computation 46(1), 34–53 (2011). DOI 10.1016/j.jsc.2010.08.001.
URL http://www.sciencedirect.com/science/article/pii/S0747717110001240

12. Brachat, J., Comon, P., Mourrain, B., Tsigaridas, E.: Symmet-
ric tensor decomposition. Linear Algebra and its Applications
433(11-12), 1851–1872 (2010). DOI 10.1016/j.laa.2010.06.046. URL
http://www.sciencedirect.com/science/article/B6V0R-50M0TVJ-2/2/060f24da5301d406f2c2504cce6fff9e

13. Cambre, J., De Lathauwer, L., De Moor, B.: Best rank (R, R, R) super-
symmetric tensor approximation-a continuous-time approach. In: Pro-
ceedings of the IEEE 1999 Signal Processing Workshop on Higher-Order
Statistics, pp. 242–246 (1999). DOI 10.1109/HOST.1999.778734. URL
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=778734

14. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling
via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35, 283–
319 (1970). DOI 10.1007/BF02310791

15. Comon, P., Golub, G., Lim, L.H., Mourrain, B.: Symmetric tensors and symmetric
tensor rank. SIAM Journal on Matrix Analysis and Applications 30(3), 1254–1279
(2008). DOI 10.1137/060661569

16. Cui, C.F., Dai, Y.H., Nie, J.: All real eigenvalues of symmetric tensors, arXiv:1403.3720
(2014)

17. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-
(R1, R2, . . . , RN) approximation of higher-order tensors. SIAM Journal on Matrix Anal-
ysis and Applications 21(4), 1324–1342 (2000). DOI 10.1137/S0895479898346995

18. Dosse, M.B., Ten Berge, J.M.F.: The assumption of proportional components when
CANDECOMP is applied to symmetric matrices in the context of INDSCAL.
Psychometrika 73(2), 303–307 (2008). DOI 10.1007/s11336-007-9044-x. URL
http://www.springerlink.com/content/l683x3734320025h/fulltext.pdf

19. Faber, N.K.M., Bro, R., Hopke, P.K.: Recent developments in CANDE-
COMP/PARAFAC algorithms: A critical review. Chemometrics and Intelligent Labo-
ratory Systems 65(1), 119–137 (2003). DOI 10.1016/S0169-7439(02)00089-8

20. Fan, J., Zhou, A.: Completely positive tensor decomposition, arXiv:1411.5149 (2014)
21. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-

scale constrained optimization. SIAM Review 47(1), 99–131 (2005). DOI 10.1137/
S0036144504446096

22. Gill, P.E., Murray, W., Saunders, M.A.: User’s Guide for SNOPT Version 7: Software
for Large-Scale Nonlinear Programming (2008)

23. Han, L.: An unconstrained optimization approach for finding real eigenvalues of even
order symmetric tensors. Numerical Algebra, Control and Optimization (NACO) 3(3),
583–599 (2012). DOI 10.3934/naco.2013.3.583

http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sciencedirect.com/science/article/pii/S0747717110001240
http://www.sciencedirect.com/science/article/B6V0R-50M0TVJ-2/2/060f24da5301d406f2c2504cce6fff9e
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=778734
http://arxiv.org/abs/1403.3720
http://www.springerlink.com/content/l683x3734320025h/fulltext.pdf
http://arxiv.org/abs/1411.5149

24 Tamara G. Kolda

24. Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions for an
“explanatory” multi-modal factor analysis. UCLA working papers in phonetics 16, 1–84
(1970). Available at http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf

25. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. Journal
of Mathematics and Physics 6(1), 164–189 (1927)

26. Hitchcock, F.L.: Multilple invariants and generalized rank of a p-way matrix or tensor.
Journal of Mathematics and Physics 7(1), 39–79 (1927)

27. Ishteva, M., Absil, P.A., Van Dooren, P.: Jacobi algorithm for the best low multi-
linear rank approximation of symmetric tensors. SIAM Journal on Matrix Anal-
ysis and Applications 34(2), 651–672 (2013). DOI 10.1137/11085743X. URL
http://dx.doi.org/10.1137/11085743X

28. Kiers, H.A.L.: A three-step algorithm for CANDECOMP/PARAFAC analysis of large
data sets with multicollinearity. Journal of Chemometrics 12(3), 255–171 (1998). DOI
10.1002/(SICI)1099-128X(199805/06)12:3〈155::AID-CEM502〉3.0.CO;2-5

29. Kiers, H.A.L.: Towards a standardized notation and terminology in multiway analysis.
Journal of Chemometrics 14(3), 105–122 (2000). DOI 10.1002/1099-128X(200005/06)
14:3〈105::AID-CEM582〉3.0.CO;2-I

30. Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-
order supersymmetric tensors. SIAM Journal on Matrix Analysis and Ap-
plications 23(3), 863–884 (2002). DOI 10.1137/S0895479801387413. URL
http://link.aip.org/link/?SML/23/863/1

31. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review
51(3), 455–500 (2009). DOI 10.1137/07070111X

32. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM
Journal on Matrix Analysis and Applications 32(4), 1095–1124 (2011). DOI 10.1137/
100801482

33. Kolda, T.G., Mayo, J.R.: An adaptive shifted power method for computing generalized
tensor eigenpairs, arXiv:1401.1183 (2014)

34. Lim, L.H.: Singular values and eigenvalues of tensors: A variational approach. In: CAM-
SAP’05: Proceedings of the IEEE International Workshop on Computational Advances
in Multi-Sensor Adaptive Processing, pp. 129–132 (2005). DOI 10.1109/CAMAP.2005.
1574201

35. Nie, J.: Generating polynomials and symmetric tensor decompositions, arXiv:1408.5664
(2014)

36. Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM
Journal on Matrix Analysis and Applications 35(3), 1155–1179 (2014). DOI 10.1137/
130935112

37. Oeding, L., Ottaviani, G.: Eigenvectors of tensors and algorithms for waring decomposi-
tion. Journal of Symbolic Computation 54, 9–35 (2013). DOI 10.1016/j.jsc.2012.11.005.
URL http://dx.doi.org/10.1016/j.jsc.2012.11.005

38. Qi, L.: Eigenvalues of a real supersymmetric tensor. Journal of Symbolic Computation
40, 1302–1324 (2005). DOI 10.1016/j.jsc.2005.05.007

39. Qi, L., Xu, C., Xu, Y.: Nonnegative tensor factorization, completely positive tensors
and an hierarchical elimination algorithm, arXiv:1305.5344 (2013)

40. Regalia, P.A.: Monotonically convergent algorithms for symmet-
ric tensor approximation. Linear Algebra and its Applications
438(2), 875–890 (2013). DOI 10.1016/j.laa.2011.10.033. URL
http://www.sciencedirect.com/science/article/pii/S0024379511007300

41. Regalia, P.A., Kofidis, E.: Monotonic convergence of fixed-point algorithms for ICA.
IEEE Transactions on Neural Networks 14(4), 943–949 (2003). DOI 10.1109/TNN.
2003.813843

42. Schmidt, M., Fung, G., Rosales, R.: Fast optimization methods for L1 regular-
ization: A comparative study and two new approaches. Lecture Notes in Com-
puter Science pp. 286–297 (2007). DOI 10.1007/978-3-540-74958-5 28. URL
http://dx.doi.org/10.1007/978-3-540-74958-5_28

43. Sidiropoulos, N.D., Bro, R.: On the uniqueness of multilinear decomposition of N-way ar-
rays. Journal of Chemometrics 14(3), 229–239 (2000). DOI 10.1002/1099-128X(200005/
06)14:3〈229::AID-CEM587〉3.0.CO;2-N

http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
http://dx.doi.org/10.1137/11085743X
http://link.aip.org/link/?SML/23/863/1
http://arxiv.org/abs/1401.1183
http://arxiv.org/abs/1408.5664
http://dx.doi.org/10.1016/j.jsc.2012.11.005
http://arxiv.org/abs/1305.5344
http://www.sciencedirect.com/science/article/pii/S0024379511007300
http://dx.doi.org/10.1007/978-3-540-74958-5_28

Numerical Optimization for Symmetric Tensor Decomposition 25

44. Tomasi, G., Bro, R.: A comparison of algorithms for fitting the PARAFAC model.
Computational Statistics & Data Analysis 50(7), 1700–1734 (2006). DOI 10.1016/j.
csda.2004.11.013

	1 Introduction
	2 Background
	3 Related problems
	4 Optimization formulations for symmetric tensor decomposition
	5 Optimization formulation for nonnegative symmetric factorization
	6 Numerical results
	7 Conclusions and future challenges

