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Abstract Motivated by machine learning problems over large data sets and dis-
tributed optimization over networks, we develop and analyze a new method called
incremental Newton method for minimizing the sum of a large number of strongly
convex functions. We show that our method is globally convergent for a variable
stepsize rule. We further show that under a gradient growth condition, conver-
gence rate is linear for both variable and constant stepsize rules. By means of an
example, we show that without the gradient growth condition, incremental New-
ton method cannot achieve linear convergence. Our analysis can be extended to
study other incremental methods: in particular, we obtain a linear convergence
rate result for the incremental Gauss-Newton algorithm under a variable stepsize
rule.

Keywords Incremental methods · Convex optimization · Newton method ·
Gauss-Newton method · Strong convexity · EKF algorithm

1 Introduction

We consider the following unconstrained optimization problem where the objective
function is the sum of component functions:

minimize f(x) =

m∑

i=1

fi(x) (1.1)

subject to x ∈ R
n,

where each fi : R
n → R is a strongly convex and twice continuously differentiable

function. This problem arises in many applications including least squares or more
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2 M. Gürbüzbalaban et al.

general parameter estimation problems (where fi(x) is the loss function represent-
ing the error between prediction of a parametric model obtained from data and the
actual output), distributed optimization over networks (where fi(x) is the local
objective function of agents connected through a network), dual formulation of
problems with many constraints, and minimization of expected value of a function
(where the expectation is taken over a finite probability distribution or approxi-
mated by an m-sample average) (see e.g., [4, 8, 9, 22, 23, 25, 31, 33]). An important
feature of these problems is that the number of component functions fi is large
and not all simultaneously available. One is therefore interested in optimization
algorithms that can iteratively update the estimate for an optimal solution using
partial information about component functions.

One widely studied approach is the incremental gradient method, which cycles
through the component functions using a deterministic order and updates the it-
erates using the gradient of a single component function. This method typically
outperforms non-incremental methods in numerical studies since each inner iter-
ation makes reasonable progress. However, it typically has sublinear convergence
rate as it requires the stepsize to go to zero to obtain convergence to the optimal
solution of problem (1.1) (see [4]).

In this paper, we present an incremental Newton (IN) method that cycles
deterministically through the component functions fi and uses the gradient of fi
to determine the direction of motion and the Hessian of fi to construct the Hessian
of the sum of component functions, f . Our main results can be summarized as
follows:

First, we adopt a variable stepsize rule, which was introduced in Moriyama et
al. [20] for the analysis of the incremental Gauss-Newton method with an adap-
tive stepsize rule. The stepsize measures the progress of the iterates over a cycle
relative to the progress in the inner iterations and aims to dampen the oscillations
associated with incremental methods in the “region of confusion” (i.e., the set over
which the component functions have non-aligned gradients; see e.g. [3, Example
1.5.5]). We show that our IN algorithm is globally convergent with this variable
stepsize rule.

Second, we adopt an assumption, which we refer to as the gradient growth as-
sumption, which states that norms of gradients of fi’s are bounded from above by
a linear function of the norm of f . Under this assumption we show that the normal-
ized stepsize sequence (normalization of stepsize by the iteration number k is used
since the Hessians are accumulated at each step) remains bounded away from zero
and provide an explicit characterization of this bound in terms of problem parame-
ters. Our analysis relies on viewing the IN method as an inexact perturbed Newton
method. We use the lower and upper bounds on the stepsize sequence together
with bounds on the Hessian of iterates to provide bounds on the Hessian error and
the gradient error of the method. This allows us to use the convergence rate results
on inexact perturbed Newton methods to show that IN method converges locally
linearly to the optimal solution of problem (1.1). Under some additional assump-
tions, we show that IN method achieves asymptotically error-free curvature (or
Hessian matrix of f) estimates which do not extend to many incremental quasi-
Newton methods (see Remark 3.4). However, our global convergence and linear
convergence rate results admit extensions to incremental quasi-Newton methods.
Our analysis can also be extended to study incremental Gauss-Newton method
under a variable stepsize rule for solving least square problems, also known as the
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extended Kalman filter (EKF) method with variable stepsize or equivalently the
EKF-S algorithm [20], and shows linear convergence rate for this method, thus
answering a problem left open in Moriyama et al. [20, §7]. Note that the incremen-
tal Gauss-Newton method without the variable stepsize shows typically sublinear
convergence behavior [1, 3, 12].

Third, we show that under the gradient growth condition, the IN method
converges globally linearly to the optimal solution for a sufficiently small constant
stepsize. The analysis of our algorithm under a constant stepsize rule uses bounds
on the gradient errors, which may be of independent interest.

Fourth, we provide an example that shows that without the gradient growth
condition, IN method cannot converge faster than sublinear, thus highlighting the
importance of gradient growth condition in the performance of the IN method.

Our work is related to the literature on incremental gradient (IG) methods
(see [2–4, 32]). The randomized version of the IG method, also referred to as the
stochastic gradient descent (SGD) [8,26,29], has been popular and used extensively
for solving machine learning problems [7,8,36]. Many variants of the IG method are
proposed to accelerate its convergence, including the IG method with momentum
of Tseng [34] and Mangasarian et al. [18]. Tseng’s approach with momentum [34]
requires once in a while constructing the gradient of f , and can be hard to im-
plement in problems where the entire objective function is not available. Another
interesting class of methods includes the incremental aggregated gradient (IAG)
method of Blatt et al. (see [5,35]) and closely-related stochastic methods including
the stochastic average gradient (SAG) method [27], the SAGA method [13] and
the MISO method [17]. These methods process a single component function at a
time as in incremental methods, but keeps a memory of the most recent gradients
of all component functions so that a full gradient step is taken at each iteration.
They have been shown to have fast convergence properties but may require an
excessive amount of memory when m is large.

There has also been a recent interest in incremental and stochastic quasi-
Newton methods, motivated by numerical evidence showing that second-order
methods are faster than first-order methods in many practical problems [6, 10,
19,31]. In particular, Mokhtari et al. propose a stochastic BFGS algorithm with a
O(1/k) convergence result [19]. Byrd et al. [10] develop a stochastic quasi-Newton
algorithm that avoids the potentially harmful effects of differencing stochastic
gradients that can be noisy, although no convergence analysis is given. SGD-QN
algorithm [6], AdaGrad algorithm [16], oBFGS and oLBFGS algorithms [29], SFO
algorithm [31] are among other recent second-order stochastic methods that use
quasi-Newton approaches. DANE algorithm [30] is a Newton-like method based on
mirror-descent type updates with a linear convergence rate when the functions fi
are quadratics, although to the best of our knowledge no convergence rate results
are currently known beyond quadratic objective functions.

Outline. In Section 2, we motivate and introduce the IN method deriving key
lemmas for its analysis. In Section 3, first we show its global convergence under
a variable stepsize rule. Then, we introduce the gradient growth assumption and
under this assumption we prove local linear convergence. We also discuss impli-
cations of our analysis to the incremental quasi-Newton methods and the EKF-S
algorithm. In Section 4, we start with deriving upper bounds on the norm of the
gradient error in our method for an arbitrary stepsize and then show global linear
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convergence with a constant stepsize under the gradient growth assumption. In
Section 5, we give examples illustrating the possible sublinear convergence of the
IN method in case this assumption does not hold. We conclude by Section 6 with
a summary of our results.

2 The IN Method

Newton’s method is an important classical method for solving smooth uncon-
stained optimization problems of the form

minimize f(x)

subject to x ∈ R
n.

The standard Newton iteration is

xk+1 = xk −
(
∇2f(xk)

)−1∇f(xk), (2.1)

where ∇f(x) and ∇2f(x) denote the gradient and Hessian of f at x ∈ R
n respec-

tively. In this paper, we focus on problem (1.1) where

f(x) =
m∑

i=1

fi(x).

Computing∇f(xk) and ∇2f(xk) in (2.1) necessitates summing gradients and Hes-
sian matrices of each of the component functions fi which may be costly when the
number of the functions m is large. For such problems, it may be more effective to
use an incremental method, which cycles through each of the component functions
fi and update xk based on the gradient ∇fi and the Hessian ∇2fi (see e.g. [3]).
Our aim is to provide an incremental version of the Newton method. A natural
idea would be to approximate ∇f with ∇fi, where i ∈ {1, 2, . . . ,m} varies in
a cyclic manner and to construct ∇2f by incrementally summing ∇2fi’s. These
observations motivate the following algorithm, which we call the incremental New-
ton (IN) algorithm. Given an initial point x11 ∈ R

n and m > 1, we consider the
iterations

(IN) xki+1 := xki − αk(Hk
i

)−1∇fi(xki ), i = 1, 2, . . . ,m, (2.2)

xk+1
1 := xkm+1, (2.3)

where Hk
i is a symmetric matrix updated by

Hk
i := Hk

i−1 +∇2fi(x
k
i ), i = 1, 2, . . . ,m, (2.4)

Hk+1
0 := Hk

m, H1
0 := 0, (2.5)

and αk > 0 is the stepsize. The matrices Hk
i accumulate and capture the second-

order information at the iterates. For a fixed value of k ≥ 1 and i ∈ {1, 2, . . . ,m},
we refer to the update (2.2) as an inner iteration. Consecutivem iterations starting
with i = 1 will be denoted as a cycle of our algorithm.

Algorithm IN is reminiscent of the EKF algorithm (when αk = 1) [1] or the
EKF algorithm with variable stepsize (EKF-S algorithm) [20], but there are major



Incremental Newton 5

differences: EKF and EKF-S are Gauss-Newton based methods designed specifi-
cally for the least square problems using only first-order derivatives whereas Al-
gorithm IN applies not only to least square problems, but also to problem (1.1)
and is a Newton-based method that uses second-order derivatives in addition to
first-order derivatives. When αk = 1, it can be shown that the IN iterations satisfy

xki+1 = arg min
x∈Rn

i∑

j=1

f̂j(x, x
k
j ), i = 1, 2, . . . ,m, (2.6)

where f̂j(x, x
k
j ) is the standard quadratic approximation to fj around the point

xkj formed by the Taylor’s series expansion given by

f̂j(x, x
k
j ) = fj(x

k
j ) +∇fj(xkj )T (x− xkj ) +

1

2
(x− xkj )

T∇2fj(x
k
j )(x− xkj ). (2.7)

Thus, when each function fj is a quadratic, we have f̂j = fj for j = 1, 2, . . . ,m and
it suffices to have only one cycle (m inner iterations) of the IN method to reach
out to the globally optimal solution. This is clearly much faster than first-order
methods or the Newton-like methods such as the DANE method [30] which has
only linear convergence for quadratic fi’s. However, the trade-off for this accuracy
in our method is increased memory requirement O(n × n) and the additional
computation of the second-order derivatives.

We start with a lemma that provides a characterization for the evolution of
inner iterations.

Lemma 2.1 Let {xk1 , xk2 , . . . , xkm} be the iterates formed by the IN algorithm given
by (2.2)–(2.5). Then, for i = 1, 2, . . . ,m, we have

xki+1 = xk1 − αk(Hk
i )

−1
i∑

j=1

(
∇fj(xkj ) +

1

αk
∇2fj(x

k
j )(x

k
1 − xkj )

)
. (2.8)

Proof Let xk1 be given. The iterations (2.2) can be rewritten as

xki+1 = xki −
(
Hk

i

)−1(
αk∇fi(xki )

)
, i = 1, 2, . . . , m,

which is equivalent to

xki+1 = xki +
(
Hk

i

)−1(
Ck

i

)T
(zki − Ck

i x
k
i ), i = 1, 2, · · · , m, (2.9)

where Ck
i is a positive definite matrix satisfying

(Ck
i )

TCk
i = ∇2fi(x

k
i ), Hk

i = Hk
i−1 + (Ck

i )
TCk

i ,

zki = −
(
Ck

i

)−T (
αk∇fi(xki )−∇2fi(x

k
i )x

k
i

)
.

(Such a matrix Ck
i exists and can for instance be obtained by a Cholesky de-

composition of the positive definite matrix ∇2fi(x
k
i )). Then, the update formula

(2.9) is equivalent to a Kalman filter update that solves the incremental quadratic
optimization problem

xki+1 = arg min
x∈Rn

i∑

j=1

‖zkj − Ck
j x‖2, for i = 1, 2, · · · ,m,
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(see [3, Proposition 1.5.2]). Using existing results on Kalman filters, (in particular
[3, Proposition 1.5.2]), we obtain

xki+1 = xk1 +
(
Hk

i

)−1
i∑

j=1

(Ck
j )

T (zkj − Ck
j x

k
1)

= xk1 −
(
Hk

i

)−1
( i∑

j=1

αk∇fj(xkj ) +∇2fj(x
k
j )(x

k
1 − xkj )

)

which is equivalent to (2.8). This completes the proof. ⊓⊔

Using Lemma 2.1, for i = 1, 2, . . . ,m, we can write

xki+1 = xk1 − αkDk
i h

k
i (2.10)

where

Dk
i = (Hk

i )
−1, hki =

i∑

j=1

(
∇fj(xkj ) +

1

αk
∇2fj(x

k
j )(x

k
1 − xkj )

)
. (2.11)

We make the following two assumptions which have been used in a number
of papers for analyzing incremental and stochastic methods (see e.g. [1], [20], [18,
Theorem 3.1], [19, Assumption 1], [30], [13]).

Assumption 2.1 (Boundedness) The sequence {xk1 , xk2 , . . . , xkm}k=1,2,... gener-
ated by the IN iterations (2.2)-(2.5) is contained in a compact set X ∈ R

n whose
diameter is

R := max
x,y∈X

‖x− y‖. (2.12)

Assumption 2.2 (Hessian boundedness) The functions fi, i = 1, 2, . . . ,m are
twice continuously differentiable, and there exists constants c > 0 and C > 0 such
that1

cI � ∇2fi(x) � CI, (2.13)

for all x ∈ R
n and i = 1, 2, . . . ,m.

A consequence of Assumption 2.2 is that the function f is strongly convex with
parameter cm > 0 as each fi is strongly convex with parameter c > 0. Thus, the
optimization problem (1.1) admits a unique optimal solution. Another consequence
is that the gradients have a Lipschitz constant C, i.e.,

‖fi(x)− fi(y)‖ ≤ C‖x− y‖, i = 1, 2, . . . ,m, (2.14)

for all x, y ∈ R
n, where we use ‖ · ‖ to denote the 2-norm (Euclidean norm) of

a vector or the 2-norm (spectral norm) of a matrix depending on the context
throughout this paper. We note that, by (2.13), the ratio

Q :=
C

c
(2.15)

1 Note that the existence of the upper bound C on the Hessian is an immediate implication
of Assumption 2.1 as f is twice continuously differentiable. We include it here to highlight the
Hessian bounds in the same place.
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is an upper bound for the condition number of the Hessian matrices at the iterates.
Therefore, we will refer to it as the condition number of problem (1.1).

We now investigate the evolution of the Hessian matrices Hk
i with k. It is

straightforward to see from the Hessian update formula (2.4) that

Hk
i =

k−1∑

i=1

m∑

j=1

∇2fj(x
i
j) +

i∑

j=1

∇2fj(x
k
j ). (2.16)

The next lemma shows that the matrices {Hk
i }i,k≥1 have a norm (2-norm) growing

linearly with k.

Lemma 2.2 Suppose that Assumptions 2.1 and 2.2 hold. Then, for any i =
1, 2, . . . ,m and k ≥ 1, we have

ckI � c
(
(k − 1)m+ i

)
I � Hk

i � CmkI, (2.17)

1

Cmk
I � Dk

i � 1

c
(
(k − 1)m+ i

)I � 1

ck
I. (2.18)

It follows that, for any i = 1, 2, . . . ,m and k ≥ 2,

ckm

2
I � Hk

i , Dk
i � 2

ckm
I. (2.19)

Proof The first inequality on the left of (2.17) is a direct consequence of the
inequality k ≤

(
(k−1)m+ i

)
for k ≥ 1 and i ∈ {1, 2, . . . ,m}. Other inequalities in

(2.17) and (2.18) follow directly from applying the Hessian bounds (2.13) to the
representation of Hk

i given by the formula (2.16) and the fact that Dk
i = (Hk

i )
−1.

Inequalities (2.19) follow from (2.17) and (2.18) using the fact that k/(k− 1) ≤ 2
for k ≥ 2. ⊓⊔

3 Convergence with variable stepsize

In this section, we introduce a variable stepsize rule and study global convergence
of the IN method under this stepsize. We use the variable stepsize that was pro-
posed in Moriyama et al. [20] for showing convergence of the EKF-S method.

Assumption 3.1 (Variable stepsize) The stepsize used in the Algorithm IN
defined by (2.2)–(2.5) satisfies

1 ≤ αk ≤ max(1, αk
∗), k = 1, 2, . . . ,

where

α
k
∗ =





1−η
C

(xk+1
1 −xk

1)
THk

m(xk+1
1 −xk

1)

‖xk+1
1 −xk

1‖
∑m

i=2 ‖x
k
i −xk

1‖+
m
2
‖xk+1

1 −xk
1‖

2
, if xk1 6= x

k+1
1 ,

0, otherwise,
(3.1)

for some η ∈ (0, 1), which we refer to as the stepsize control parameter.
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The form of this stepsize can be motivated as follows: The representation formulae
for the inner iterates (2.10)–(2.11) show that if the norm of ∇f is very small
compared to the norm of ∇fi for some i, unless the stepsize αk is small, we could
be in a situation where the total distance traveled during one cycle of the iteration
‖xk+1

1 − xk1‖ is very small compared to that of the inner iterations ‖xki − xk1‖,
resulting in large oscillations. This suggests to have a variable stepsize that takes
smaller steps if the ratio ‖xk+1

1 −xk1‖/
∑

i ‖xki −xk1‖ gets smaller as in Assumption
3.1. Such a variable stepsize would kill undesired oscillations, enabling moving
towards the optimal solution in a more efficient way. This stepsize can also be
motivated by a descent condition, which leads to the monotonic decrease of the
function values {f(xk1)}k asymptotically (when k is large enough) as long as the
iterates stay bounded (see [20, Lemma 4.1]). Furthermore, it is easy to implement
by a simple adaptive stepsize algorithm (see Remark 3.2).

By Assumptions 2.1 and 2.2 on the boundedness of the iterates, gradients
and Hessian matrices, we see that hkm defined by (2.11) is bounded. Hence, by
Lemma 2.2 that provides bounds for the matrices Dk

m and (2.10) on the evolution
of inner iterates, it follows that the distance between the consecutive iterates at
the beginning of each cycle satisfies

‖xk+1
1 − xk1‖ = αk‖Dk

mh
k
m‖ = O(αk/k).

Thus, the normalized stepsize

γk = αk/k (3.2)

can be thought as the effective stepsize whose behavior determines the convergence
rate. If αk is bounded, then γk → 0 in which case we would expect sublinear con-
vergence in general as Example 5.1 in Section 5 shows. For faster convergence, we
would need αk and (hence αk

∗ by Assumption 3.1) to grow with k. This motivates
us to define

γk∗ = αk
∗/k, γ = lim inf

k→∞
γk∗ and γ = lim sup

k→∞

γk∗ , (3.3)

requiring a lower bound on the growth rate γ. For linear convergence, we would also
typically need an upper bound on the stepsize, because even the simplest methods
(such as the steepest descent method) with constant stepsize require the stepsize
to be small enough in order to be able to guarantee linear convergence [24, Section
1.4.2]. This motivates the next result which provides an upper bound for γ.

Lemma 3.1 Suppose that Assumptions 2.1, 2.2 and 3.1 hold. Then, we have

γ ≤ φ and γk∗ ≤ φ for all k = 1, 2, . . . , (3.4)

with

φ = 2(1− η)Q > 0 (3.5)

where η is the stepsize control parameter as in (3.1) and Q is the condition number
of the problem (1.1) defined by (2.15).
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Proof If hkm 6= 0, then for k ≥ 2,

αk
∗ =

1− η

C

(hkm)TDk
mh

k
m

‖Dk
mhkm‖∑m

i=2 ‖Dk
i−1h

k
i−1‖+ m

2 ‖Dk
mhkm‖2

≤ 1− η

C

1
cmk‖h

k
m‖2

(1/Cmk)2(‖hkm‖∑m
i=2 ‖hki−1‖+ m

2 ‖hkm‖2)

= φ
1

(2/m)
∑m

i=2 ‖hki−1‖/‖hkm‖+ 1
k

≤ φk

where the first equality follows from (2.10), the first inequality is obtained by using
the bound on Dk

i for i = 1, 2, . . . ,m in Lemma 2.2 and the second inequality fol-
lows since the term (2/m)

∑m
i=2 ‖hki−1‖/‖hkm‖ is non-negative. This implies (3.4).

Otherwise, if hkm = 0, then αk
∗ = γk∗ = 0 satisfying (3.4) clearly. ⊓⊔

The next theorem shows the global convergence of the iterates generated by
the IN method to the unique optimal solution of problem (1.1). The proof uses a
similar line of argument as in the proof of [20, Theorem 4.1]; so we skip it here
due to space considerations.

Theorem 3.1 (Global convergence with variable stepsize) Suppose that As-
sumptions 2.1, 2.2 and 3.1 hold. Then the iterates {xk1}∞k=1 generated by the IN
method (2.2)–(2.5) satisfy

lim
k→∞

‖∇f(xk1)‖ = 0

and converge to the unique optimal solution of the optimization problem (1.1).

3.1 Linear Convergence

We use the following assumption which was also adopted in [20, 28, 32, 34] for
analyzing stochastic and incremental gradient methods.

Assumption 3.2 (Gradient growth condition) There exists a positive constant
M such that

‖∇fi(x)‖ ≤M‖∇f(x)‖
for all i = 1, 2, . . . ,m.

Assumption 3.2 states that the norm of ∇f1,∇f2, . . . ,∇fm is bounded by a linear
function of the norm of ∇f . Thus, it limits the oscillations that might arise due to
an imbalance between the norm of ∇fi (for some i) and the norm of ∇f which led
us previously to adopt a variable stepsize that gets smaller when such oscillations
arise (see the paragraph after Assumption 3.1). Indeed, we show in Theorem 3.2
that this assumption, by limiting such oscillations, can avoid the variable stepsize
rule of Assumption 3.1 getting too small (keeping the normalized stepsize bounded
away from zero).

Note that Assumption 3.2 requires ∇f1(x) = ∇f2(x) = · · · = ∇fm(x) = 0 at a
stationary point x of f . This requirement, although restrictive, is not completely
unrealistic for certain applications such as neural network training problems or
non-linear least square problems when the residual error is zero [28, 34]. Under
this assumption,
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– Tseng [34] shows that his incremental gradient method is either linearly con-
vergent or the stepsize is bounded away from zero in which case convergence
rate is not known. It is not clear whether his method can achieve linear conver-
gence under stronger conditions. This method is not applicable to our setting
as it requires constructing and evaluating the full gradient, ∇f .

– Solodov [32] shows global convergence of the IG method with a constant step-
size, although no convergence rate results are given.

– Moriyama et al. [20] show that EKF-S method is globally convergent with a
stepsize αk that grows linearly with k but do not provide an explicit lower
bound on the growth rate or any convergence rate results.

– Schmidt [28] proves that the SGD method is linearly convergent in expectation
in a stochastic setting but the analysis and results are not deterministic and
do not apply directly to our method.

In this paper, we show the linear convergence of our method under Assumption
3.2 when the stepsize control parameter η in Assumption 3.1 is appropriately
chosen. As a by-product, our analysis also implies the linear convergence of the
EKF-S algorithm (see Corollary 3.1) which was left open in [20, §7].

By adapting a result from Moriyama et al. [20, Theorem 4.2], it is not hard
to show that γ is positive under Assumption 3.2. However, Moriyama et al. do
not provide an explicit lower bound on γ (in terms of the problem constants m,
c, C and M). For estimating an explicit lower bound, we will need the following
lemma.

Lemma 3.2 Suppose that Assumptions 2.1, 2.2, 3.1 and 3.2 hold. Let the it-
erates {xk1}∞k=1 be generated by the IN method (2.2)–(2.5). Then, for each i ∈
{1, 2, . . . ,m}, we have

‖xki − xk1‖ ≤ γkBk
i (φ)‖∇f(xk1)‖, for all k ≥ 2, (3.6)

where Bk
i (φ) is given by the recursion

Bk
i+1(φ) =

(
1 +

2Q

m
max(1/k, φ)

)
Bk

i (φ) +
2M

cm
and Bk

1 = 0, (3.7)

and the limits Bi(φ) := limk→∞ Bk
i (φ) satisfy

Bi+1(φ) =

(
1 +

2Q

m
φ

)
Bi(φ) +

2M

cm
and B1(φ) = 0, (3.8)

where φ is given by (3.5).

Proof Fix k. We will proceed by induction on i. For i = 1, the left-hand side of
(3.6) is zero, so the result holds. For simplicity of the notation, we will write Bk

i
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for Bk
i (φ). Suppose that (3.6) holds for all 1 ≤ i ≤ j ≤ m. Then,

‖xkj+1 − xk1‖ ≤ Bk
j γ

k‖∇f(xk1)‖+ ‖xkj+1 − xkj ‖

≤ Bk
j γ

k‖∇f(xk1)‖+
2γk

cm

∥∥∇fj(xkj )
∥∥

≤ Bk
j γ

k‖∇f(xk1)‖+
2γk

cm

(
M

∥∥∇f(xk1)
∥∥+ C

∥∥xkj − xk1
∥∥
)

≤ Bk
j γ

k‖∇f(xk1)‖+
2γk

cm

(
M

∥∥∇f(xk1)
∥∥+ CBk

j γ
k‖∇f(xk1)‖

)

=

(
Bk

j

(
1 +

2Q

m
γk

)
+

2M

cm

)
γk‖∇f(xk1)‖, (3.9)

where we used the induction hypothesis in the first and the fourth inequality,
the inner update equation (2.2) for relating the distance between inner iterates
to gradients and Lemma 2.2 for bounding the norm of (Hk

j )
−1 in the second

inequality, and the third inequality follows from Assumption 3.2 on the gradient
growth, the triangle inequality over the gradients and (2.14) on the Lipschitzness
of the gradients. Using Assumption 3.1 on the variable stepsize and the bound on
the normalized stepsize from Lemma 3.1, we have for any k ≥ 1,

γk ≤ max(1/k, γk∗ ) ≤ max(1/k, φ),

which, once combined with (3.9), implies that the inequality (3.6) is true for i =
j + 1. This completes the induction-based proof of the equality (3.7). Then, (3.8)
follows directly from (3.7) by taking the limit as k → ∞ and using the fact that
φ > 0. ⊓⊔

We use the preceding result to provide a lower bound on the asymptotic be-
havior of the normalized stepsize.

Theorem 3.2 (Asymptotic stepsize behavior) Suppose that Assumptions 2.1,
2.2, 3.1 and 3.2 hold. Then, there exists a constant κ such that

0 < κ ≤ γ. (3.10)

Furthermore, if φ < 1
B(φ)C where φ is defined by (3.5),

B(φ) :=

m∑

j=2

Bj(φ) (3.11)

and Bj(φ) is given by (3.7), then a choice of

κ = φ
1

Q2

1
2B(φ)C

1−B(φ)Cφ + 1
(3.12)

satisfies (3.10).
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Proof The existence of such κ follows by a reasoning along the lines of [20, Theorem
4.2]. To prove the second part, suppose that φ < 1

B(φ)C and Assumptions 2.1, 2.2,

3.1 and 3.2 hold. Using the definition of hkm from (2.11),

‖∇f(xk1)− hkm‖ ≤
m∑

j=1

(
‖∇fj(xkj )−∇fj(xk1)‖+

1

αk
‖∇2fj(x

k
j )(x

k
1 − xkj )‖

)

≤ C(1 + 1/αk)

m∑

j=2

‖xkj − xk1‖, (3.13)

where we used (2.13) and (2.14) in the second inequality. Let k ≥ 2. Using Lemma
3.2, we have

m∑

j=2

‖xkj − xk1‖ ≤ γkBk(φ)‖∇f(xk1)‖ (3.14)

where

Bk(φ) :=
m∑

j=2

Bk
i (φ); lim

k→∞
Bk(φ) = B(φ). (3.15)

Combining (3.13) and (3.14),

‖hkm‖ ≥ ‖∇f(xk1)‖ − ‖∇f(xk1)− hkm‖

≥ C

(
1

Bk(φ)Cγk
− (1 + 1/αk)

) m∑

j=2

‖xkj − xk1‖

= C

(
1

Bk(φ)Cγk
−

(
1 +

1

kγk
)) m∑

j=2

‖xkj − xk1‖, (3.16)

where γk is the normalized stepsize given by (3.2). By assumption B(φ)Cφ < 1.
Using Lemma 3.1, this implies that B(φ)Cγ < 1. Since γ > 0 by the first part, the
right hand side of (3.16) stays positive for k large enough. Then, by re-arranging
(3.16), there exists k̄ such that for k ≥ k̄,

Ik :=

∑m
j=2 ‖xkj − xk1‖

‖hkm‖ ≤ Bk(φ)γk

1−Bk(φ)Cγk −Bk(φ)C/k
.

Thus,

lim sup
k→∞

Ik
γk

≤ B(φ)

1−B(φ)Cγ
≤ B(φ)

1− B(φ)Cφ
, (3.17)

where we used Lemma 3.1 to bound γ and (3.15) for taking the limit superior of
the sequence {Bk(φ)}. We also have

αk
∗ ≥ 1− η

C

cmk(αk)2‖Dk
mh

k
m‖2

αk‖Dk
mhkm‖

∑m
j=2 ‖xkj − xk1‖+ (m/2)(αk)2‖Dk

mhkm‖2

≥ (1− η)

C

cmk

Ik/(αk/Cmk) +m/2
=

(
2
(1− η)

Q

1

2C(Ik/γk) + 1

)
k, (3.18)
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where we used Lemma 2.2 to boundHk
m andDk

m in the first and second inequalities
respectively. Combining (3.17) and (3.18) and letting k → ∞,

γ ≥ 2
(1− η)

Q

1

2C lim supk→∞(Ik/γk) + 1
≥ φ

1

Q2

1
2B(φ)C

1−B(φ)Cφ + 1
> 0,

which is the desired result. ⊓⊔

Remark 3.1 Since η ∈ (0, 1), we have φ ∈ (0, 2Q) by the definition (3.5) of φ.
Taking limits in (3.8), we obtain

lim
φ→0

Bj(φ) =
2M

cm
(j − 1), for j = 1, 2, . . . ,m.

Then, as Bj(φ) is a monotonically non-decreasing function of φ for every j (see
(3.8)), B(φ) defined by (3.11) is also non-decreasing in φ satisfying,

Bmin := inf
φ∈(0,2Q)

B(φ) = lim
φ→0

B(φ) =

m∑

j=2

2M

cm
(j − 1) =

M(m− 1)

c
> 0.

This shows that B(φ)C can never vanish so that the condition φ < 1
B(φ)C in

Theorem 3.2 is well-defined. To see that this condition is always satisfied when φ
is positive and small enough, note that the monotonicity of B(φ) leads to

Bmax := sup
φ∈(0,2Q)

B(φ) = lim
φ→2Q

B(φ) <∞

as well. Hence, φ ∈ (0, 1
B

max
C ) always satisfies this condition.

We now analyze Algorithm IN as an inexact perturbed Newton method. Using
the representation (2.10) and the formula (2.16) for the Hessian matrices at the
iterates, we can express IN iterations as

xk+1
1 = xk1 − γk(H̄k)

−1(∇f(xk1) + ek
)

(3.19)

where

H̄k :=
Hk

m

k
=

∑k
i=1

(∑m
j=1 ∇2fj(x

i
j)
)

k
=

∑k
i=1 ∇2f(xi1)

k
+ êk (3.20)

is the average of the Hessian of f at the previous iterates up to an error term

êk =

∑k
i=1

∑m
j=1

(
∇2fj(x

i
j)−∇2fj(x

i
1)

)

k
, (3.21)

and the gradient error is

ek =

m∑

j=1

(
∇fj(xkj )−∇fj(xk1) +

1

αk
∇2fj(x

k
j )(x

k
1 − xkj )

)
. (3.22)

Applying (2.13) on the Hessian bounds to the first equality in (3.20), the Hessian
term H̄k satisfies

cmI � H̄k � CmI, (3.23)
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where I is the n × n identity matrix and the Hessian error êk admits the simple
bound

‖êk‖ ≤ (C − c)m = cm(Q− 1). (3.24)

We can also bound the gradient error in terms of the norm of the gradient for
k ≥ 2 as

‖ek‖ ≤
m∑

j=1

(
‖∇fj(xkj )−∇fj(xk1)‖+

1

αk
‖∇2fj(x

k
j )‖‖xk1 − xkj ‖

)

≤ (C + C/αk)γk
m∑

j=1

Bk
j (φ)‖∇f(xk1)‖ = C(γk + 1/k)Bk(φ)‖∇f(xk1)‖,

where we used (2.13) on the boundedness of the Hessian matrices, (2.14) on the
Lipschitzness of the gradients and Lemma 3.2 on the distance between the iterates
in the second inequality, the (last) equality holds by the definitions (3.2) and
(3.15). This leads to

lim sup
k→∞

(
‖ek‖/‖∇f(xk1)‖

)
≤ CB(φ)γ ≤ CB(φ)φ, (3.25)

by Lemma 3.1.
We prove our rate results using the next theorem regarding sufficient conditions

for linear convergence of the inexact perturbed Newton methods of the form

(F ′(yk) +∆k)s
k = −F (yk) + δk (3.26)

yk+1 = yk + sk, y1 ∈ R
n, (3.27)

where the map F : Rn → R
n and F ′ denotes the Jacobian matrix of F , δk is the

perturbation to F and∆k is the perturbation to the Jacobian matrix F ′. The local
convergence of such iterates to a solution y∗ satisfying F (y∗) = 0 is well-studied.
Under the following conditions,

– there exists y∗ such that F (y∗) = 0, (C1)
– The Jacobian matrix F ′(y∗) is invertible, (C2)
– F is differentiable on a neighborhood of y∗ and F ′ is continuous at y∗, (C3)
– ∆k are such that F ′(yk) +∆k are non-singular for all k = 1, 2, . . . , (C4)

the following local linear convergence result is known in the literature.

Theorem 3.3 ( [11, Theorem 2.2], based on [14]) Assume conditions (C1)–
(C4) are satisfied. Given 0 ≤ ξk ≤ ξ̄ < t < 1, k = 1, 2, . . . , there exists ǫ > 0 such
that if ‖y1 − y∗‖ ≤ ǫ and if the iterates {yk} generated by (3.26)–(3.27) satisfy

∥∥∥∥∥∆k

(
F ′(yk) +∆k

)−1

F (yk) +

(
I −∆k(F

′(yk) +∆k)
−1

)
δk

∥∥∥∥∥ ≤ ξk‖F (yk)‖,

then the convergence is linear in the sense that

‖yk+1 − y∗‖∗ ≤ t‖yk − y∗‖∗, k = 1, 2, . . . .

where ‖z‖∗ := ‖F ′(y∗)z‖.
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When ∆k = 0, Theorem 3.3 says roughly that as long as the perturbation δk
is a relative error in the right-hand side of (3.26), i.e. ‖δk‖/‖F (yk)‖ ≤ ξk < ξ̄ < 1,
we have local linear convergence. This result was first proven by Dembo et al. [14]
and was later extended to the ∆k 6= 0 case in [11] by noticing that (3.26) can be
re-arranged and put into the form

F ′(yk)sk = −F (yk) + δ̄k

with

δ̄k = ∆k

(
F ′(yk) +∆k

)−1

F (yk) +

(
I −∆k(F

′(yk) +∆k)
−1

)
δk

(see [11, Theorem 2.2]). Then, the result of Dembo et al. for the ∆k = 0 case is
directly applicable, leading to a proof of Theorem 3.3.

In order to be able to apply Theorem 3.3, we rewrite the IN iteration given by
(3.19) in the form of (3.26)–(3.27) by setting

yk = xk1 , F (·) = ∇f(·), δk = −ek, y∗ = x∗,

F ′(·) = ∇2f(·), ∆k = (H̄k/γ
k)−∇2f(xk1).

In this formulation, the perturbation δk and the gradient error ek are equal up to
a sign factor. The additive Hessian error êk is similar to ∆k but is not exactly the
same because ∆k has also a division by the normalized stepsize in it.

Note that the previous lower bound on κ obtained in Theorem 3.2 for the
growth rate of αk

∗ is achieved in the limit as k goes to infinity. But, αk
∗ can achieve

any growth rate strictly less than κ, say νk for some ν ∈ (0, 1), in finitely many
steps. To capture such growth in stepsize for some finite k, we define the following
stepsize rule that satisfies Assumption 3.1.

Assumption 3.3 (Variable stepsize with linear growth) The stepsize αk de-
pends on the parameters (η̂, ν̂, κ̂) and satisfies

αk = αk(η̂, ν̂, κ̂) =

{
(ν̂κ̂)k, if 1 ≤ (ν̂κ̂)k ≤ max

(
1, αk

∗

)

1, otherwise,
(3.28)

for some κ̂ > 0 and η̂, ν̂ ∈ (0, 1) where αk
∗ is defined by (3.1) with stepsize control

parameter η equal to η̂.

We argue now how this choice of stepsize with linear growth can lead to linear
convergence if parameters (η̂, ν̂, κ̂) are chosen appropriately. Suppose that Assump-
tions 2.1 and 2.2 on the boundedness of iterates and Hessian matrices, Assumption
3.3 on the variable stepsize with parameters (η, ν, κ) where η, ν ∈ (0, 1) and κ is
given by (3.12) and Assumption 3.2 on the gradient growth hold. Suppose also
that2

φ < min

(
1

Q
,

1

B(φ)C

)
(3.29)

2 Remark 3.1 shows that this condition is always satisfied when φ is small enough. It is
adopted both to use the κ bound from Theorem 3.2 (by having φ < 1/

(

B(φ)C
)

and also to

keep the normalized stepsize small enough (by having φ < 1/Q which implies γk < 1/Q by
Lemma 3.1) to control the norm of the perturbations in the estimates (3.33) and (3.34).
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where B(φ) is given by (3.11). Using Lemma 3.1 and Theorem 3.2, αk
∗ grows

linearly with an asymptotic rate bounded from below by κ and bounded from
above by φ so that the stepsize defined by (3.28) with parameters (η, ν, κ) satisfies

lim
k→∞

γk = lim
k→∞

αk

k
= νκ < lim sup

k→∞

αk
∗

k
≤ φ. (3.30)

Note that by (2.13) and (3.23) on the boundedness of the Hessian matrices∇2f(yk)
and the averaged Hessian H̄k, we have

1

Q
I � ∇2f(yk)H̄−1

k � QI. (3.31)

As φ < 1/Q by the condition (3.29), the inequalities (3.30) and (3.31) imply that
there exists a positive integer k̄ such that for k ≥ k̄, we have γk < 1/Q and

0 ≺
(
1− γkQ

)
I �

(
I − γk∇2f(yk)H̄−1

k

)
�

(
1− γk

Q

)
I. (3.32)

Combining (3.31) and (3.32) leads to

lim sup
k→∞

∥∥∥∥∆k

(
F ′(yk) +∆k

)−1∥∥∥∥ = lim sup
k→∞

∥∥∥∥I − γk∇2f(yk)H̄−1
k

∥∥∥∥

≤ 1− lim infk→∞ γk

Q
= 1− νκ

Q
(3.33)

and similarly to

lim sup
k→∞

∥∥∥∥∥

(
I −∆k

(
F ′(yk) +∆k

)−1)∥∥∥∥∥ = lim sup
k→∞

∥∥∥∥γ
k∇2f(yk)H̄−1

k

∥∥∥∥

≤ φQ (3.34)

where we used (3.30) for bounding the limit superior of γk and (3.31) to bound
the norm of the matrix products. Hence,

lim sup
k→∞

∥∥∥∥∥

(
I −∆k

(
F ′(yk) +∆k

)−1)
δk

∥∥∥∥∥
‖F (yk)‖ ≤ φQ lim sup

k→∞

(‖δk‖/‖F (yk)‖)

≤ φ2QB(φ)C (3.35)

where we used (3.34) in the first inequality and (3.25) in the second inequality.
Combining (3.33) and (3.35),

η∞ : = lim sup
k→∞

∥∥∥∥∥∆k

(
F ′(yk) +∆k

)−1

F (yk) +

(
I −∆k(F

′(xk) +∆k)
−1

)
δk

∥∥∥∥∥
‖F (yk)‖

≤ 1− νκ

Q
+ φ2QB(φ)C.

= 1− φ
ν

Q3

1
2B(φ)C

1−B(φ)Cφ + 1
+ φ2QB(φ)C := rν(φ), (3.36)
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where we used the definition of κ from (3.12) in the last equality. By Assumption
2.2 on the strong convexity and the regularity of f , the conditions (C1)–(C4) are
satisfied for F (·) = ∇f(·). Hence, we can apply Theorem 3.3, which says that it
suffices to have

rν(φ) < 1 (3.37)

for local linear convergence. It is straightforward to see from (3.36) that this con-
dition is satisfied for φ positive and around zero as rν(0) = 1 and the derivative
r′ν(0) < 0. Remembering the assumption (3.29), we conclude that there exists a
positive constant φν such that we have linear convergence when

0 < φ < φν ≤ min

(
1

Q
,

1

B(φ)C

)
. (3.38)

We discuss how φν can be determined later in Remark 3.5. This condition for
linear convergence (3.38) is satisfied if

0 < 1− η <
φν

2Q
, (3.39)

by the definition of φ in (3.5). Thus, by choosing the stepsize control parameter
η ∈ (0, 1) close enough to 1, we can satisfy (3.39) and hence guarantee local linear
convergence of the IN algorithm. These findings provide a proof of the following
linear convergence result.

Theorem 3.4 (Linear convergence with variable stepsize) Suppose that As-
sumptions 2.1, 2.2 and 3.2 hold. Let ν ∈ (0, 1) be given and the stepsize control
parameter η ∈ (0, 1) satisfy the inequality (3.39). Then, the IN method with the
stepsize rule (3.28) defined by Assumption 3.3 with parameters (η, ν, κ) where κ
is given by (3.12) is locally linearly convergent with rate t where t is any number
satisfying

0 ≤ rν(φ) < t < 1,

φ is defined by (3.5) and rν(φ) is given by (3.36).

Our arguments and proof techniques apply also to the EKF method with vari-
able stepsize rule (EKF-S algorithm) which also uses the stepsize defined by As-
sumption 3.1 and makes similar assumptions such as the boundedness of iterates
and Lipschitzness of the gradients for achieving global convergence [20]. Our rea-
soning with minor modifications leads to the following linear convergence result
whose proof is skipped due to space considerations.

Corollary 3.1 (Linear convergence of EKF-S) Consider the problem (1.1)
with fi = 1

2g
2
i where each gi : R

n → R is continuously differentiable for i =
1, 2, . . . ,m (non-linear least squares). Consider the EKF-S algorithm of Moriyama
et al. with variable stepsize αk [20]. Let ν ∈ (0, 1) be given and η ∈ (0, 1). Suppose
that Assumptions 3.1–3.2, 3.4–3.5 and 4.1 from Moriyama et al. [20] hold. It
follows that there exists constants κ̃ > 0 and φ̃ν > 0 such that if

0 < 1− η < φ̃ν ,

then the EKF-S algorithm with the variable stepsize rule (3.28) with parameters
(η, ν, κ̃) given in Assumption 3.3 is locally linearly convergent.
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We continue by several remarks about satisfying the variable stepsize rules
we introduced by a simple adaptive stepsize algorithm, improving the conver-
gence rate results with additional regularity assumptions, extensions to incremen-
tal quasi-Newton methods, some advantages of an incremental Newton approach
over incremental quasi-Newton approaches in our framework and determining the
constant φν .

Remark 3.2 By definition, the exact value of αk
∗ can only be computed at the end

of the k-th iteration as it requires the knowledge of Hk
m. However, it is possible to

guarantee that Assumption 3.1 on the variable stepsize holds by a simple bisection-
type adaptive algorithm as follows:

Adaptive stepsize with bisection:

1. At the start of the k-th cycle, i.e. right after xk1 is available, set αk to an initial
value, say αk(j) with j = 1.

2. Compute αk
∗ (depending on αk(j)) by running one cycle of the algorithm.

3. If Assumption 3.1 is satisfied, accept the step, set αk = αk(j) and exit. Else,
bisect by setting αk(j + 1) = max

(
1, ταk(j)

)
for some τ ∈ (0, 1), increment j

by 1 and go to step 2.

There is no risk of an infinite loop during the bisections, as the step αk = 1 is
always accepted. Theorem 3.2 shows that when Assumption 3.2 on the gradient
growth holds, by setting αk(1) = (νκ)k in the above iteration as in the stepsize
rule (3.28) with ν ∈ (0, 1) and κ as in (3.12), αk(1) will be immediately accepted
requiring no bisection steps, except for finitely many k.

Remark 3.3 Main estimates used for proving Theorem 3.4 are the inequalities
(3.33) and (3.34) which require only (3.23) on the boundedness of the averaged Hes-
sian. If one replaces actual Hessians∇2fi(x

k
i ) with approximate Hessians∇2f̃i(x

k
i )

as long as the eigenvalues of ∇2f̃i(x
k
i ) are bounded (with the same constant for all

i and k) by a lower bound c̃ > 0 and an upper bound C̃ > 0, all these inequalities
as well as Theorem 3.4 would still hold with c and C replaced by c̃ and C̃. Thus,
the IN method admits straightforward generalizations to the incremental quasi-
Newton methods while preserving its global convergence and linear convergence
results.

Remark 3.4 In the setting of Theorem 3.4, if we assume slightly more regularity
than the continuity of the Hessian of f implied by Assumption 2.2, the Hessian
error upper bound (3.24) and convergence rates can be improved as follows: As-
sume that the Hessian of f is not only continuous but also Hölder continuous on
the compact set X defined in Assumption 2.1 with some Hölder exponent λ and
Hölder coefficient Lλ satisfying 0 < λ ≤ 1 and Lλ < ∞ (reduces to the Lipschitz
condition if λ = 1), then the Hessian error bound êk defined in (3.21) satisfies

‖êk‖ ≤
∑k

i=1

∑m
j=1 Lλ‖xij − xi1‖λ

k

≤ Lλ

∑k
i=1

∑m
j=1

(
1 +Bi

j(φ)
)
(1 + γi)‖∇f(xi1)‖λ

k

≤ Lλ

∑k
i=1

∑m
j=1

(
1 +Bi(φ)

)
(1 + γi)‖∇f(xi1)‖λ

k

= Lλm

∑k
i=1

(
1 +Bi(φ)

)
(1 + γi)‖∇f(xi1)‖λ
k

, (3.40)
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where we used the definition of Hölder continuity in the first inequality, Lemma
3.2 that provide bounds on the distances between inner iterates together with the
fact that zλ ≤ 1 + z for z ≥ 0 and 0 < λ ≤ 1 in the second inequality and the
upper bound Bi

j(φ) ≤ ∑m
j=1B

i
j(φ) = Bi(φ) for all j (by the non-negativity of

Bi
j(φ)) in the third inequality. Note that the summand term in (3.40) satisfies

lim
i→∞

(
1 +Bi(φ)

)
(1 + γi)‖∇f(xi1)‖λ = 0 (3.41)

because the gradient term ∇f(xi1) goes to zero by Theorem 3.1 on the global
convergence, the sequence {Bi(φ)}i≥1 is bounded admitting B(φ) <∞ as a limit
by (3.15) and the normalized stepsize γi is bounded for any of the stepsize rules
we discuss, including Assumptions 3.1 and 3.3 (see Lemma 3.1). Combining (3.40)
and (3.41) shows that the Hessian error êk goes to zero, i.e.

‖êk‖ → 0, (3.42)

improving the trivial bound (3.24). Using (3.20) and the global convergence of
{xk1} to the optimal solution x∗ by Theorem 3.1, this implies that

∇2fi(x
k
1) → ∇2fi(x

∗), H̄k → ∇2f(x∗), ∇2f(yk)H̄−1
k → I, (3.43)

with yk = xk1 . This allows us to replace the upper bounds
(
1− νκ

Q

)
in (3.33) and

φQ in (3.34) with (1− νκ) and φ respectively, eliminating some of the Q terms in
the condition rν(φ) < 1 for linear convergence (see (3.36) and (3.37)) and leading
to the less restrictive condition

1− φ
ν

Q2

1
2B(φ)C

1−B(φ)Cφ + 1
+ φ2B(φ)C := r̂ν(φ) < 1

for linear convergence as r̂ν(φ) ≤ rν(φ) (with equality only in the special case
Q = 1). This relaxed condition would not extend to many classes of incremental
quasi-Newton methods (such as DFP and its variants) that uses approximations
∇2f̃i instead of the true Hessian ∇2fi because such methods do not lead to an
asymptotically correct Hessian approximation, i.e. it is possible that ∇2f̃ 6→ ∇2f
(see [15, Section 4]) so that (3.43) does not always hold. In this sense, using an
incremental Newton approach instead of an incremental quasi-Newton approach
in our algorithm allows us to get stronger convergence results.

Remark 3.5 It is possible to compute φν as follows. By a straightforward compu-
tation, the condition on linear convergence rν(φ) < 1 (see (3.37)) where rν(φ) is
given by (3.36) is equivalent to

rν(φ) < 1 ⇐⇒ 0 < φ <
1

B(φ)C

ν

Q4

1
2B(φ)C

1−B(φ)Cφ + 1
(3.44)

and φ < min

(
1

Q
,

1

B(φ)C

)
(3.45)

⇐⇒ 0 < B(φ)2C2φ2 −
(
2B(φ)C + 1 + ψ

)
B(φ)Cφ+ ψ =: p1(φ),

0 < φ := p2(φ), 0 <
1

Q
− φ := p3(φ) and

0 < 1− φB(φ)C =: p4(φ),
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with ψ = ν
Q4 . It is straightforward to check that these four inequalities {0 < pi(φ)}4i=1

are always satisfied for φ positive and around zero. Furthermore, they are all
polynomial inequalities as B(φ) is a polynomial in φ. Thus, by a standard root-
finding algorithm, we can compute all the roots of these four polynomial equa-
tions {0 = pi(φ)}4i=1 accurately and set φν to the smallest positive root among all
the roots. With this choice of φν , the inequalities (3.44)–(3.45) are satisfied for
0 < φ < φν leading to local linear convergence.

4 Linear convergence with constant stepsize

Consider the IN iteration (3.19). In this section, we will analyze the case when γk

is equal to a constant γ without requiring the variable stepsize rule (Assumption
3.1) to hold. We start with two lemmas that provide bounds on the norm of
the difference of gradients at inner iterates xkj and xk1 , and also on the overall
gradient error defined in (3.22). Note that both these lemmas hold for arbitrary
(normalized) stepsizes γk. The first lemma is inspired by Solodov [32].

Lemma 4.1 Suppose that Assumptions 2.1 and 2.2 hold. Let {xk1 , xk2 , . . . , xkm}∞k=1

be the IN iterates generated by (2.2)–(2.5). For any given k ≥ 1, let

δkj := ‖∇fj(xkj )−∇fj(xk1)‖, j = 1, 2, . . . ,m. (4.1)

Then,

δkj ≤ rk
j−1∑

i=1

(1 + rk)j−1−i‖∇fi(xk1)‖ for all k ≥ 2, (4.2)

with the convention that the right-hand side of (4.2) is zero for j = 1, where

rk =
2Q

m
γk (4.3)

and γk is the normalized stepsize defined in (3.2).

Proof Let k ≥ 2 be given. When j = 1, δk1 = 0 so the statement is clearly true.
For j = 2,

δk2 ≤ C‖xk2 − xk1‖ = Cαk
∥∥Dk

1∇f1(xk1)
∥∥ ≤ rk

∥∥∇f1(xk1)
∥∥

where we used (2.14) on the Lipschitzness of the gradients in the (first) inequality,
the representation of inner iterates by the formula (2.11) in the first equality and
Lemma 2.2 to bound Dk

1 in the second inequality. Thus, the statement is also true
for j = 2. We will proceed with an induction argument. Suppose (4.2) is true for
j = 1, 2, . . . , ℓ with ℓ < m. Then, we have the upper bounds

‖∇fj(xkj )‖ ≤ ‖∇fj(xk1)‖+ δkj

≤ ‖∇fj(xk1)‖+ rk
j−1∑

i=1

(1 + rk)j−1−i‖∇fi(xk1)‖, (4.4)
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for j = 1, 2, . . . , ℓ. We will show that (4.2) is also true for j = ℓ+ 1. Using similar
estimates as before,

δkℓ+1 ≤ C‖xkℓ+1 − xk1‖ (4.5)

≤ C

l∑

i=1

‖xki+1 − xki ‖ = C

l∑

j=1

αk‖Dk
j∇fj(xkj )‖

≤ rk
ℓ∑

j=1

‖∇fj(xkj )‖

≤ rk
ℓ∑

j=1

(
‖∇fj(xk1)‖+ rk

j−1∑

i=1

(1 + rk)j−1−i‖∇fi(xk1)‖
)

= rk
ℓ∑

j=1

(1 + rk)ℓ−j‖∇fj(xk1)‖ (4.6)

where we used (2.14) on the Lipschitzness of the gradients in the first inequality,
Lemma 2.2 to bound Dk

j terms in the third inequality and (4.4) to bound gradients
in the fourth inequality. Thus, the inequality (4.2) is also true for j = ℓ+ 1. This
completes the proof. ⊓⊔

The next result gives an upper bound on the norm of the gradient errors.

Lemma 4.2 Suppose that Assumptions 2.1 and 2.2 hold. The gradient error ek

defined by (3.22) satisfies

‖ek‖ ≤
(
rk +

2Q

km

) m∑

j=2

j−1∑

i=1

(1 + rk)j−1−i‖∇fi(xk1)‖ for all k ≥ 2, (4.7)

where rk is defined by (4.3).

Proof Using triangle inequality and the upper bound (2.13) on the Hessian, the
gradient error given by (3.22) admits the bound

‖ek‖ ≤
m∑

j=2

(
δkj +

1

kγk
C‖xkj − xk1‖

)
(4.8)

where γk is the normalized stepsize defined by (3.2). By the estimates (4.5)–(4.6),
we have also

δkl+1 ≤ C‖xkℓ+1 − xk1‖ ≤ rk
ℓ∑

j=1

(1 + rk)ℓ−j‖∇fj(xk1)‖ (4.9)

for any ℓ = 1, 2, . . . ,m− 1. Combining (4.8) and (4.9),

‖ek‖ ≤ (1 +
1

kγk
)rk

m∑

j=2

j−1∑

i=1

(1 + rk)ℓ−i‖∇fi(xk1)‖

=

(
rk +

2Q

km

) m∑

j=2

j−1∑

i=1

(1 + rk)j−1−i‖∇fi(xk1)‖

as desired. ⊓⊔
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Lemma 4.2 shows that under Assumptions 2.1 and 2.2 on the boundedness
of the iterates, gradients and Hessian matrices, the gradient error ek is bounded
as long as γk is bounded and it goes to zero as k → ∞ if γk → 0. Then, by [24,
Theorem 1, Section 4.2.2], the iterates {xk1}∞k=1 generated by (3.19) with a constant
stepsize γk = γ converge to an ε-neighborhood of the optimal solution linearly for
some ε > 0 and the size of the neighborhood shrinks down as the stepsize is
decreased, i.e. ε → 0 as γ → 0. This type of result was also achieved for the
subgradient method [21] and the incremental gradient method for least square
problems [3, Section 1.5.2]. In this paper, our focus will be the optimal solution
rather than approximate solutions.

The next theorem shows that under Assumption 3.2 on the gradient growth,
we have global linear convergence with a constant stepsize rule if the stepsize
is small enough. This is stronger than the local linear convergence obtained for
the variable stepsize rule, however unlike the variable stepsize rule, if Assumption
3.2 does not hold, the constant stepsize rule does not guarantee convergence to
the optimal solution but only convergence to an ε-neighborhood of the optimal
solution for some ε > 0. We first prove a lemma.

Lemma 4.3 Consider the IN iterates {xk1}∞k=1 generated by (3.19) with a constant
stepsize γk = γ. Suppose that Assumptions 2.1 and 2.2 hold and there exists a
positive integer k̂ such that the gradient error ek defined by (3.22) satisfies

‖ek‖ ≤ ξ̄‖∇f(xk1)‖ for all k ≥ k̂, 0 ≤ ξ̄ <
1

Q
. (4.10)

It follows that there exists constants γ̂ > 0, Â > 0 and 0 < ρ̂ < 1 such that if
0 < γ < γ̂, then

‖xk1 − x∗‖ ≤ Âρ̂k for all k ≥ k̂, (4.11)

where x∗ is the unique optimal solution of the problem (1.1).

Proof Take V (x) = f(x) − f(x∗) as a Lyapunov function, following the proof
of [24, Theorem 2, Section 4.2.3] closely. The iteration (3.19) is equivalent to

xk+1
1 = xk1 − γsk, sk = D̄k(∇f(xk1) + ek

)
, D̄k := (H̄k)

−1,

where
1

Cm
I � D̄k � 1

cm
I (4.12)

by taking the inverse of the bounds for H̄k given in (3.23). Let 〈·, ·〉 denote the
Euclidean dot product on R

n. We compute

〈∇V (xk1), s
k〉 = 〈∇f(xk1), D̄k∇f(xk1) + D̄ke

k〉

≥ 1

Cm
‖∇f(xk1)‖2 −

1

cm
ξ̄‖∇f(xk1)‖2 =

1

Cm
(1− ξ̄Q)‖∇f(xk1)‖2

≥ 2

Q
(1− ξ̄Q)V (xk1) ≥ 0,

where we used (4.12) for bounding D̄k from below in the first inequality and the
strong convexity with constant cm of f implied by Assumption 2.2 in the second
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inequality. Similarly, from (2.14), it follows that the gradients of f are Lipschitz
with constant Cm, leading to, for k ≥ k̂,

‖sk‖2 ≤ ‖D̄k(∇f(xk1) + ek
)
‖2 ≤ (1 + ξ̄)2

(cm)2
‖∇f(xk1)‖2 ≤ 2Cm

(1 + ξ̄)2

(cm)2
V (xk1),

where we used (4.12) to bound D̄k from above together with the bound (4.10)
on the gradient error in the second inequality. Then, by [24, Theorem 4, Section
2.2], there exists constants γ̂ > 0 and ρ ∈ (0, 1) such that for any 0 < γ < γ̂, the
iterations are linearly convergent after the k̂–th step, satisfying

f(xk1)− f(x∗) ≤
(
f(xk̂1)− f(x∗)

)
ρk−k̂ for all k ≥ k̂.

Using the bounds (2.13) on the Hessian of fi, we have cmI � ∇2f(x) � CmI for
all x ∈ R

n. This implies the following strong convexity-based inequalities, for all
k ≥ k̂,

cm

2
‖xk1 − x∗‖2 ≤ f(xk1)− f(x∗) ≤ Cm

2
‖xk̂1 − x∗‖2ρk−k̂ ≤ Cm

2
R2ρ−k̂ρk,

where R is the diameter of X defined by (2.12). Hence, (4.11) holds with ρ̂ =

ρ1/2 > 0 and Â = (QR2ρ−k̂)1/2 > 0. This completes the proof. ⊓⊔
Theorem 4.1 (Linear convergence with constant stepsize) Consider the it-
erates {xk1}∞k=1 generated by (3.19) with a constant stepsize γk = γ. Suppose that
Assumptions 2.1, 2.2 and 3.2 hold. Then, there exists a constant γ̃ (depending on
M, c,C and m) such that if 0 < γ < γ̃, the iterates are globally linearly convergent,
i.e.,

‖xk1 − x∗‖ ≤ Aρk, for all k = 1, 2, . . . , (4.13)

for some constants A > 0 and ρ < 1.

Proof Under Assumption 3.2 on the gradient growth, the bound (4.7) implies that
the gradient error admits the bound

‖ek‖ ≤ M

(
rk +

2Q

km

) m∑

j=2

j−1∑

i=1

(1 + rk)j−1−i‖∇f(xk1)‖

≤ M

(
rk +

2Q

km

)
m(1 + rk)m−2‖∇f(xk1)‖.

Let k̂ be the smallest positive integer greater than 12MQ2. Assume γk = γ <
1

12MQ2 so that rk < 1
6MmQ where rk is defined by (4.3). Then, for k ≥ k̂, we have

‖ek‖ < 1

3

1

Q
(1 + rk)m−2‖∇f(xk1)‖ ≤ 2

3

1

Q
‖∇f(xk1)‖, (4.14)

if rk ≤ m

√
2 − 1 or equivalently if γ < m

2Q ( m

√
2 − 1) by the definition of rk (see

(4.3)). Combining this with Lemma 4.3, we conclude that there exists γ̃ > 0 such
that when 0 < γ < γ̃, the error bound (4.14) is satisfied for k ≥ k̂ and there exists
Â > 0 and ρ̂ < 1 such that

‖xk1 − x∗‖ ≤ Âρ̂k for all k ≥ k̂.

Then, a choice of A = max(Â, R)/ρ̂k̂ where R is as in (2.12) and ρ = ρ̂ satisfies
(4.13) which completes the proof. ⊓⊔
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5 An example with sublinear convergence

In the following simple example, we show that the normalized stepsize γk has to
go to zero if Assumption 3.2 on the gradient growth does not hold, illustrating the
sublinear convergence behavior that might arise without Assumption 3.2.

Example 5.1 Let f1 = 1000x+ εx2 and f2 = −1000x+ εx2 for a fixed ε > 0 with
m = 2 and n = 1. This leads to a quadratic function f = 2εx2 with a unique
optimal solution, x∗ = 0 and condition number Q = 1. We have

∇f1(x) = 1000 + 2εx , ∇f2(x) = −1000 + 2εx, (5.1)

∇2f1(x) = 2ε, ∇2f2(x) = 2ε , Hk
1 = 2ε(2k− 1), Hk

2 = 4εk. (5.2)

Assumption 3.2 is clearly not satisfied, as the gradients of f1 and f2 do not vanish
at the optimal solution 0. Rewriting the IN iterations as an inexact perturbed
Newton method as in (3.19), we find that

xk+1
1 = xk1 − αk 1

4εk
(∇f(xk1) + ek) (5.3)

with the gradient error ek given by the formula (3.22) reducing to

ek = ∇f2(xk2)−∇f2(xk1) +
1

αk
∇2f2(x

k
2)(x

k
1 − xk2)

= −α
k − 1

2k − 1
∇f1(xk1) = −

(
γk

2
− 1

2k

)
2k

2k − 1
∇f1(xk1) (5.4)

where we used formulas (5.1)–(5.2), the inner update equation (2.2) and the defi-
nition of the normalized stepsize γk in (3.2).

For global convergence, a necessary condition is to have gradient error ek → 0.
From (5.4) and the fact that ∇f1(xk1) is bounded away from zero around the
optimal solution 0, we see that this requires γk → 0. Hence, we assume γk → 0.
In the special case, if αk = 1 for some k, then ek = 0 and the IN iterations
(5.3) converges in one cycle, as the quadratic approximations f̃j to fj defined
by (2.7) become exact. Assume otherwise that αk > 1 for any k, we will show
sublinear convergence by a simple classical analysis (the case αk < 1 for all k can
be handled similarly). Combining (5.3) and (5.4) and plugging in the formula (5.1)
for the gradient of f1, we can express the IN iteration as

xk+1
1 =

(
1− αk

2k

)(
1− αk

2k − 1

)
xk1 +

1000

2ε

αk

2k

αk − 1

2k − 1
. (5.5)

As γk = αk/k → 0, there exists a positive integer k̂ such that

1 ≥ mk :=

(
1− αk

2k

)(
1− αk

2k − 1

)
> 0, for all k ≥ k̂. (5.6)

Then, from (5.5) and (5.6), for xk̂1 > 0 and k ≥ k̂, we have the lower bounds

xk+1
1 >

( k∏

j=k̄

mj

)
xk̂1 > 0, xk+1

1 >
1000

2ε

αk

2k

αk − 1

2k − 1
> 0. (5.7)
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For global convergence, by (5.7), we need
∏∞

k=1mk = 0 because otherwise we

would have lim supk→∞

(∏k
j=1mj

)
> δ for some δ > 0 and any xk̄1 satisfying

xk̂1 ≥ 1/δ would lead to lim supk→∞ xk1 ≥ 1 which would be a contradiction with
global convergence. Note that

∏

k

mk = 0 ⇐⇒
∑

k

− log(mk) = ∞ ⇐⇒
∑

k

γk = ∞.

where we used 2z ≥ − log(1−z) ≥ z for z ≥ 0 around zero and the definition (3.2)
of γk. Thus, the sequence {γk}, having an infinite sum, cannot decay faster than
1/k1+µ for any µ > 0 and by the lower bound (5.7), convergence to the optimal
solution 0 cannot be faster than O

(
1/k2(1+µ)

)
for any µ > 0 and is thus sublinear.

6 Conclusion

We developed and analyzed an incremental version of the Newton method, proving
its global convergence with alternative variable stepsize rules under some assump-
tions.

Furthermore, under a gradient growth assumption, we show that it can achieve
linear convergence both under a constant stepsize and a variable stepsize. A by-
product of our analysis is the linear convergence of the EKF-S method of [20] under
similar assumptions. Our results admit straightforward extensions to incremental
quasi-Newton methods and shed light into their convergence properties as well.
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