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Abstract

We consider unconstrained randomized optimization of smooth convex
objective functions in the gradient-free setting. We analyze Random Pur-
suit (RP) algorithms with fixed (F-RP) and variable metric (V-RP). The
algorithms only use zeroth-order information about the objective func-
tion and compute an approximate solution by repeated optimization over
randomly chosen one-dimensional subspaces. The distribution of search
directions is dictated by the chosen metric. Variable Metric RP uses novel
variants of a randomized zeroth-order Hessian approximation scheme re-
cently introduced by Leventhal and Lewis (D. Leventhal and A. S. Lewis.,
Optimization 60(3), 329–245, 2011). We here present (i) a refined analysis
of the expected single step progress of RP algorithms and their global con-
vergence on (strictly) convex functions and (ii) novel convergence bounds
for V-RP on strongly convex functions. We also quantify how well the
employed metric needs to match the local geometry of the function in
order for the RP algorithms to converge with the best possible rate. Our
theoretical results are accompanied by numerical experiments, compar-
ing V-RP with the derivative-free schemes CMA-ES, Implicit Filtering,
Nelder-Mead, NEWUOA, Pattern-Search and Nesterov’s gradient-free al-
gorithms.

1 Introduction

Since its inception by Davidon in the late 1950’s [6] variable metric methods
have become a cornerstone in first-order (non-)convex continuous optimization.
Among the many instances of variable metric schemes Quasi-Newton methods
such as the BFGS scheme [5, 7, 8, 29] are ubiquitous in all areas of science and
engineering. In zeroth-order (or gradient-free) optimization, the idea of using
a variable metric guiding the search for local or global optima has surprisingly
been used to a far less extent. Although “directional adaptation” has been con-
jectured to be useful for randomized gradient-free schemes in the late 1960’s [28]
the literature on this topic is scarce and scattered across different communities
ranging from electrical engineering, optimal control, bio-inspired optimization to
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mathematical programming. Important examples include the Gaussian Adap-
tation algorithm developed by Kjellström and Taxen [16, 20] in the context of
analog circuit design, Marti’s controlled random search schemes using concepts
from optimal control [18], and the arguably most popular scheme, Hansen’s
Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) [10] that
emerged in the bio-inspired optimization community.

Despite their great appeal in practice many randomized gradient-free vari-
able metric schemes lack a thorough theoretical convergence analysis. A marked
exception is Leventhal and Lewis’ recent work on Randomized Hessian approxi-
mation (RHE) [17]. We here adopt some of their ideas and extend our framework
of Random Pursuit (RP) [32], eventually leading to Variable Metric Random
Pursuit (V-RP) schemes. We solely consider optimization problems of the kind:

min f(x) subject to x ∈ Rn , (1)

where f is a smooth convex function. We assume that there is a global minimum
and that the curvature of the function f is bounded from above. Moreover, we
assume that we have only access to function values of f . No analytic gradient
or higher order information about f is available.

To motivate Variable Metric Random Pursuit, let us first sketch the work-
ing mechanism of standard Random Pursuit on an illustrative example. Each
iteration of standard Random Pursuit consists of two steps: (i) a random direc-
tion is sampled from an isotropic probability distribution; (ii) the next iterate
is chosen such as to (approximately) minimize the objective function along this
direction. In [32] we have shown that the expected error in function value de-
creases by a factor of

(
1− m

n`

)
in every step, if m > 0 and ` > 0 are parameters

of quadratic functions that bound the difference between f and any of its linear
approximations from below and above1; more precisely,

m

2
‖y − x‖2 ≤ `x(y) := f(y)− f(x)− 〈∇f(x),y − x〉 ≤ `

2
‖y − x‖2 (2)

is assumed to hold for all x,y. For twice differentiable functions this condition
is equivalent to an uniform lower and upper bound on the Hessian H(x): m �
H(x) � `. As an example, let us consider the function

f0(x1, x2) = 100x2
1 + x2

2,

for which `x(y) = 100(x1 − y1)2 + (x2 − y2)2. This means that m = 2 and
` = 200 are the best possible parameters in (2), and the progress rate in every
step is no better than (1− 1/200). This also matches our intuition: every level
set of f0 is a long and skinny ellipse, stretching out along the x2-axis; if we start
from a point close to the x2 axis, the progress in a step will be small, unless we
almost sample in x2-direction.

For this particular function f0, it would be better to sample from an anisotropic
distribution that favors the x2-direction. Once we fix such an anisotropic sam-
pling distribution, however, other functions become “bad”; in fact, without prior
knowledge about f , anisotropic sampling makes no sense at all. Here is where
the “variable metric” approach comes in. The idea is to gradually adapt the

1The left inequality is usually referred to as strong-convexity; the right one follows from
Lipschitz continuity of the gradient. See Section 3.
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sampling distribution to the function f while we run the algorithm. Suppose
that we can somehow estimate the Hessians at the various iterates. Under the
assumption that f is wedged between two quadratic functions—whose Hessians
are not necessarily multiples of the identity, as in (2)—these estimates will allow
us to learn a suitable metric that guides the sampling distribution. In case of
f0, we would start with the isotropic one and then converge to a distribution
that indeed favors the x2-direction with the right proportion.

In this contribution we present a framework for analyzing the convergence
behavior of Random Pursuit algorithms on convex functions. In a first step we
analyze the Fixed Metric Random Pursuit (F-RP) algorithm for fixed (anisotropic)
sampling distributions. In a second step we equip Random Pursuit with a ran-
domized scheme to update the metric that defines the sampling distribution in
every step: the Variable Metric Random Pursuit. We present precise theoretical
analysis of an update scheme recently proposed by Leventhal and Lewis [17] as
well as three novel implementations.. These learning schemes are generic in the
sense that they work for all convex functions and do not require any prior knowl-
edge of the function’s shape. We prove that the sampling distribution converges
to a distribution that yields asymptotically optimal (and function-independent)
progress rates. The proposed schemes are easily parallelizable, thus allowing a
computational speed-up of the update schemes on multi-core machines.

The remainder of the paper is structured as follows. In Section 2 we give a
generic description of the different Random Pursuit algorithms and their essen-
tial building blocks. We introduce all relevant mathematical definitions such as
matrix upper and lower bounds of convex functions and expressions for certain
scalar and matrix expectations in Section 3. We derive the expected single-step
progress and global convergence of F-RP in Section 4. Section 5 is dedicated to
Variable Metric Random Pursuit. We discuss the key results of the paper and
outline future research goals in Section 6.

2 Fixed and Variable Metric Random Pursuit

All Random Pursuit algorithms are designed for problems as in (1). Before
stating the formal definition of the considered RP algorithms we need to define
one indispensable primitive.

Definition 1 (Line search oracle). For x ∈ Rn, a direction u ∈ Rn \ {0} and
a convex function f , a function LSf : Rn ×Rn → R with

LSf (x,u) = arg min
h∈R

f(x + hu) (3)

is called an exact line search oracle.

The two RP schemes considered here are summarized in Fig. 1. In Fixed
Metric Random Pursuit (F-RP) a direction u ∈ Rn \ {0} is sampled from a
multivariate normal distribution with fixed covariance Σ at iteration k of the
algorithm. The next iterate xk is calculated from the current iterate xk−1 as

xk := xk−1 + LSf (xk−1,u) · u . (4)

This algorithm only requires function evaluations in addition to the line search
oracle. No first or second-order information about the objective is needed. We
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emphasize that besides the starting point no further input parameters describ-
ing function properties (such as curvature constant etc.) are necessary. The
actual run time will, however, depend on the specific properties of the objective
function and on the choice of the covariance matrix Σ, as detailed in Section 4.
Variable Metric Random Pursuit (V-RP) comprises an independent process that
gives an approximation of the Hessian at each iteration. The inverse of the Hes-
sian is then used as covariance matrix in the multivariate normal distribution
to generate the current search direction. In principle, any deterministic or ran-
domized gradient-free estimator can be used for this purpose. In Section 5 we
will use a Randomized Hessian approximation scheme recently proposed in [17]
for this task.

For simplicity we assumed here access to an exact line search oracle. How-
ever, approximate line search schemes are sufficient to establish convergence of
the Random Pursuit algorithms. We introduce such oracles in Section 3.4.

3 Definitions and Notations

We now introduce the notation and some inequalities that will be useful for the
subsequent analysis. Most importantly, we define two classes of convex functions
with respect to so-called quadratic norms. This extends the standard model and
allows us to derive convergence rates that take the eigenvalue spectrum of the
Hessian into account.

3.1 Quadratic norms

Let PDn denote the set of symmetric positive definite n × n matrices. With
respect to A ∈ PDn, we can define an ’anisotropic’ norm by ‖x‖2A := 〈x,x〉A for
x,y ∈ Rn. In statistics this metric is also known as the Mahalanobis metric.
We observe that

λmin(A) ‖x‖2 ≤ ‖x‖2A ≤ λmax(A) ‖x‖2 , (5)

due to λmin(A) = min{xTAx : ‖x‖ = 1} and λmax(A) = max{xTAx : ‖x‖ = 1}.
This statement can be generalized, as shown in the following lemma.

F-RP(f,x0,Σ, N)

Output: Approximate solution xN
to (1)

1 for k = 1 to N do
2 uk ∼ N (0,Σ)
3 xk ← LSf (xk−1,uk)

4 return xN

V-RP(f,x0, B0, N)

Output: Approximate solution xN
to (1)

1 for k = 1 to N do
2 Bk ← updateHess(f,x, Bk−1)

3 uk ∼ N (0, B−1
k )

4 xk ← LSf (xk−1,uk)

5 return xN

Figure 1: Fixed Metric Random Pursuit (left panel) and the Variable Metric version
(right panel). The generic sub-routine updateHess on line 2 exemplifies any function
that generates the metric Bk in step k. Three specific instantiations are discussed in
Sec. 5 (cf. Fig. 3).
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Lemma 1. Let A,B ∈ PDn and x ∈ Rn. Then

λmin(B−1A) ‖x‖2B ≤ ‖x‖
2
A ≤ λmax(B−1A) ‖x‖2B . (6)

A proof can be found in [25, Prop. 18.3]. The substitution x = (B1/2)−1y,
where B1/2 ∈ PDn denotes the positive semidefinite root of B and y ∈ Rn,
allows to reduce (6) to (5). It remains to note that (B1/2)−1A(B1/2)−1 and
AB−1 have the same eigenvalues, for this see e.g. again [25, Prop. 13.2].

3.2 Quadratic bounds

We now define two function classes. We assume that the objective function f
in (1) is differentiable and convex. The latter property is equivalent to

f(y) ≥ f(x) + 〈∇f(x),y − x〉 , x,y ∈ Rn . (7)

We also require that the curvature of f is bounded. However, we allow for
different curvatures depending on the direction. By this we mean that for some
fixed symmetric and positive definite matrix L ∈ PDn,

f(y)− f(x)− 〈∇f(x),y − x〉 ≤ 1

2
‖x− y‖2L , x,y ∈ Rn . (8)

We will also refer to this inequality as the (matrix) quadratic upper bound. We
denote by C1

L the class of (once) differentiable convex functions for which (8)
holds with parameter L. A differentiable function is strongly convex with pa-
rameter M ∈ PDn if the (matrix) quadratic lower bound

f(y)− f(x)− 〈∇f(x),y − x〉 ≥ 1

2
‖y − x‖2M , x,y ∈ Rn , (9)

holds. Let x∗ be the unique minimizer of a strongly convex function f with
parameter M . Then equation (9) implies this useful relation:

1

2
‖x− x∗‖2M ≤ f(x)− f(x∗) ≤ 1

2
‖∇f(x)‖2M−1 , ∀x ∈ Rn . (10)

The former inequality uses ∇f(x∗) = 0, and the latter one follows from (9) via

f(x∗) ≥ f(x) + 〈∇f(x),x∗− x〉+
1

2
‖x∗− x‖2M

≥ f(x) + min
y∈Rn

(
〈∇f(x),y − x〉+

1

2
‖y − x‖2M

)
= f(x)− 1

2
‖∇f(x)‖2M−1

by standard calculus.

3.3 Sampling distribution

Both RP algorithms from Figure 1 rely on multivariate normal distributed
search directions u ∈ Rn. We write u ∼ N (µ,Σ) to denote that u ∈ Rn is
multivariate normally distributed with mean µ ∈ Rn and covariance Σ ∈ PDn.
As the step sizes in (4) are determined by a line search, the actual scaling of u,
i.e. ‖u‖, is not relevant for the behavior of the algorithm. We therefore restrict
ourselves to normalized search directions.
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Definition 2 (Normalized distribution). Let Σ ∈ PDn. We denote by N̄ (0,Σ)
the distribution arising from the image of the normal distribution N (0,Σ) under
the mapping T (x) = x/‖x‖Σ−1 .

For example, u ∼ N̄ (0, In) denotes the uniform distribution over all unit
length vectors subject to the standard Euclidean norm (the uniform distribution
on the unit (n − 1)-sphere). The following lemma summarizes some facts for
the normalized distribution.

Lemma 2. Let v ∼ N̄ (0,Σ) normalized with Σ ∈ PDn and let A ∈ SYMn.
Then

E
[
vvT

]
=

Σ

n
, E

[
vTAv

]
=

Tr[AΣ]

n
, E

[
(vTAv)2

]
=

Tr[AΣ]2 + 2Tr[(AΣ)2]

n(n+ 2)

and for x ∈ Rn,

E [〈x,v〉v] =
Σx

n
, and E

[
‖〈x,v〉v‖2A

]
=

Tr[AΣ] ‖x‖2Σ + 2 ‖x‖2ΣAΣ

n(n+ 2)
.

The proof can be found on page 28 in the appendix.

3.4 Approximate line search oracles

Access to an exact line search oracle (3) is typically not required to establish
convergence of the RP algorithms. This is of importance in practical applica-
tions. Commonly used line search oracles often aim at satisfying the well-known
Armijo-Goldstein [9, 3], and Wolfe [35, 36] conditions. These condition measure
the quality of a single search step in terms of the squared norm of the gradi-
ent. Thus, we also provide an analogous quality criterion in the full quadratic
model—in addition to a slightly stronger relative accuracy measure.

Definition 3 (Approximate line search oracles). For 0 ≤ µ ≤ 1, x ∈ Rn,
u ∈ Rn \ {0} and a convex function f , a function ALSf : Rn ×Rn → R with

f(x + ALSf (x,u) · u) ≤ f(x)− µ(f(x)− f(x + LSf (x,u) · u)) (L1)

is called an approximate line search oracle with relative accuracy µ.
For a differentiable convex function f ∈ C1

L, a function ALSf : Rn×Rn → R

with

f(x + ALSf (x,u) · u) ≤ f(x)− µ 〈∇f(x,u〉2

2 ‖u‖2L
(L2)

is called an approximate line search oracle with sufficient decrease µ.

As we measure deviations only on a relative and not on an absolute scale,
such an inexact line search oracle can efficiently be implemented with binary
search (dichotomy), using function evaluations only. It can easily be seen that
the first condition (L1) is stronger than (L2).

Lemma 3 (L1) ⇒ (L2). Let x ∈ Rn, function f ∈ C1
L, search direction u ∈

Rn \{0} and ALSf a line search oracle with relative accuracy µ > 0. Then ALSf
satisfies the sufficient decrease condition (L2).
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Proof. As a simple consequence of (3) we have f(x + LSf (x,u) ·u) ≤ f(x + tu)
for every t ∈ R. We use the quadratic upper bound (8) to derive an upper
bound on f(x + tu). Assume µ = 1. Therefore

f(x + LSf (x,u)u) ≤ f(x) + min
t∈R

(
t 〈∇f(x),u〉+ t2

1

2
‖u‖2L

)
(11)

And the lemma follows by the (now optimal) choice t = − 〈∇f(x),u〉
2‖u‖2L

. The general

case µ < 1 follows straightforwardly from definition (L2).

Most of our convergence results hold for both approximate line search or-
acles, but Theorem 3 will rely on the stronger oracle (L1). We would like to
remark that our convergence results to more general settings. For instance, we
can vary the accuracy parameter µ in every iteration as long as µ stays posi-
tive, or the distribution of µ is independent of x and u (see also the concrete
implementations in Section 5.4).

So far, we did not discuss line search oracles with absolute errors. We will
comment on such oracles in Section 4.3 below.

3.5 Convergence factors

The following notation will be useful to formulate the convergence results form
Section 4 below. The condition number κ(A) of a positive definite matrix A ∈
PDn is defined as the ratio κ(A) := λmax(A)

λmin(A) of the two most extreme eigenvalues.

The quantities that we introduce now, can be viewed as a generalization of this
concept. For A,B,C,D ∈ PDn, and y ∈ Rn let

κE(A,B,C,y) :=
Tr[AB]σA,B(y) + 2

λmin(C)(n+ 2)
, σA,B(y) :=

‖y‖2(ABA)−1

‖y‖2A−1

, (12)

and

κT(D,C) :=
Tr[D]λ−1

min(D) + 2

λmin(C)(n+ 2)
. (13)

For brevity, we abbreviate κT(D) := κT(D, In).

Lemma 4. Let A,B,C ∈ PDn, and y ∈ Rn. Then

0 < κE(A,B,C,y) ≤ κT(AB,C) ≤
1
nTr[AB]λ−1

min(AB)

λmin(C)
≤ κ(AB)

λmin(C)
.

Proof. We show the inequalities one by one. For the first one it is enough to
show that Tr[AB] is positive. Let A1/2 ∈ PDn denote the positive definite root
of A. Then AB and A1/2BA1/2 ∈ PDn have the same eigenvalues, as already
mentioned in Section 3.1 above, see e.g. [25, Prop. 13.2]. For the second one we
use Lemma 1 to find a uniform upper bound on σA,B(y):

σA,B(y) =
‖y‖2(ABA)−1

‖y‖2A−1

≤ λmax(A−1B−1) = λ−1
min(AB) . (14)

For a ≥ b > 0 it holds a+c
b+c ≤

a
b for any c ≥ 0. Therefore, the choice a =

Tr[AB]λ−1
min(AB), b = n and c = 2 implies the third inequality. The last one is

trivial.
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4 Convergence of Fixed Metric Random Pursuit

We will now derive the global convergence rates for Algorithm F-RP on convex
and strongly convex functions. To prepare the proof, we first study the expected
progress in a single step, which is the quantity

f(xk)− E [f(xk+1) | xk] .

For the first two theorems, it suffices to assume access to an approximate line
search oracle with (L2). However, for Theorem 3, the stronger (L1) is required.

4.1 Single step progress

Once a search direction is determined, the subsequent iterate is chosen according
to (4). As the step size is determined by the line search oracle, we can derive
the following lower bound on the single step progress.

Lemma 5 (Single step progress of (L2)). Let f ∈ C1
L, x ∈ Rn such that

∇f(x) 6= 0, covariance Σ ∈ PDn direction u ∼ N̄ (0,Σ), and ALS an ap-
proximate line search oracle (L2) with sufficient decrease 0 ≤ µ ≤ 1 and let
x+ = x+ALSf (x,u) ·u the next iterate after one step of Algorithm F-RP. Then

Eu [f(x+) | x] = f(x)− µ

2nκE(L,Σ, In,∇f(x))
‖∇f(x)‖2L−1

≤ f(x)− µ

2nκT(LΣ, In)
‖∇f(x)‖2L−1 .

where κE and κT as in Section 3.5.

Proof. All we need to find is a lower bound on the conditional expectation

EL := E

[
〈∇f(x),u〉2

2 ‖u‖2L
| x

]
, (15)

of the expression on the right hand side of (L2). Expressions for such expected
values have been derived in the literature (see e.g. [19]), but no simple closed
form solutions exist. As we here only need a lower bound, we can apply the
following trick. For fixed y ∈ Rn and u ∈ Rn \ {0} we observe

〈y,u〉2

‖u‖2L
= max

t

(
2t 〈y,u〉 − t2 ‖u‖2L

)
≥ max

h

(
2h
〈
(LΣ)−1y,u

〉
〈y,u〉 − h2

∥∥〈(LΣ)−1y,u
〉

u
∥∥2

L

)
,

where the equality follows by standard calculus, and the inequality by sub-
optimally setting t = h

〈
(LΣ)−1y,u

〉
. With Lemma 2 we can compute the

expectation of the terms inside the maximum. We have

Eu

[〈
(LΣ)−1y,u

〉
〈y,u〉 | x

]
= Eu

[
uT (LΣ)−1yyTu | x

]
=

1

n
‖y‖2L−1 ,

and

Eu

[∥∥〈(LΣ)−1y,u
〉

u
∥∥2

L
| x
]

=
Tr[LΣ] ‖y‖2(LΣL)−1 + 2 ‖y‖2L−1

n(n+ 2)
.

8



By Jensen’s inequality it is indeed valid to interchange the expectation with the
maximum. We have

EL ≥ max
h

(
2h
‖y‖2L−1

n
− h2

Tr[LΣ] ‖y‖2(LΣL)−1 + 2 ‖y‖2L−1

n(n+ 2)

)

≥
(n+ 2) ‖y‖4L−1

n
(
Tr[LΣ] ‖y‖2(LΣL)−1 + 2 ‖y‖2L−1

) , ,
where h was chosen to maximize the expression in the bracket, i.e.

−(n+ 2) ‖y)‖2L−1 + h
(

Tr[LΣ] ‖y‖2(LΣL)−1 + 2 ‖y‖2L−1

)
= 0 .

This choice of h implies the first inequality for y = ∇f(x). The second one
follows directly from Lemma 4.

The line search oracle with absolute accuracy (L1) achieves a single step
progress that is as least as good as the bound derived in Lemma 5 above.
However, we are more flexible and an can also derive a bound that does not
scale directly with ‖∇f(x)‖2L−1 .

Lemma 6 (Single step progress of ((L1)). Let f ∈ C1
L, x ∈ Rn, covariance

Σ ∈ PDn direction u ∼ N̄ (0,Σ), and ALS an approximate line search oracle (L1)
with relative accuracy 0 ≤ µ ≤ 1 and let x+ = x + ALSf (x,u) · u the next
iterate after one step of Algorithm F-RP. In addition, let x∗ ∈ Rn be one of the
minimizers of f . Then for every positive h ≥ 0 it holds

Eu [f(x+)− f(x∗) | x] ≤
(

1− hµ

n

)
(f(x)− f(x∗)) +

h2µκT(LΣ)

2n
‖x− x∗‖2L , ,

where κT as in Section 3.5.

Proof. As in the proof of Lemma 3 we use a supobtimal choice of the unknown
optimal value LSf (x,u) together with the quadratic upper bound. Here we use
in (11) the value t = h

〈
Σ−1(x− x∗),u

〉
. This leads to

f(x+) ≤ f(x)− hµ
〈
Σ−1(x− x∗),u

〉
〈∇f(x),u〉+

h2µ

2

∥∥〈Σ−1(x− x∗),u
〉
· u
∥∥2

L
.

With Lemma 2 we can again compute the conditional expectation of the terms
on the right hand side:

Eu[
〈
Σ−1(x− x∗),u

〉
u | x] =

1

n
(x− x∗) ,

Eu

[∥∥〈Σ−1(x− x∗),u
〉
· u
∥∥2

L
| x
]

=
Tr[LΣ] ‖x− x∗‖2Σ−1 + 2 ‖x− x∗‖2L

n(n+ 2)
,

and obtain

Eu[f(x+) | x] ≤ f(x)− hµ

n
〈∇f(x),x− x∗〉

+
h2µ

2n(n+ 2)

(
Tr[LΣ] ‖x− x∗‖2Σ−1 + 2 ‖x− x∗‖2L

)
. (16)
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Using the definition of convexity (see the beginning of Section 3.2) we can bound
the term 〈∇f(x),x− x∗〉 from below by f(x) − f(x∗). Finally, we bound the
Σ−1-norm from above with Lemma 1. As in the proof of Lemma 4 we get

‖x− x∗‖2Σ−1 ≤ λmax(L−1Σ−1) ‖x− x∗‖L ,

and the lemma follows from λmax(L−1Σ−1) = 1/λmin(ΣL).

The previous two lemmas shows that, on average, there is progress in every
single step if either ‖∇f(x)‖L−1 or ‖x− x∗‖2L is bounded away from zero.2 This
leads us to the next section where we will use the just derived lemmas to prove
global convergence.

4.2 Global convergence

We now use the previously derived bounds on the expected single step progress
(Lemma 5 and 6) to show convergence of F-RP in expectation. We first show
convergence on smooth but not necessarily strongly convex functions.

Theorem 1. Let f ∈ C1
L, let x∗ ∈ Rn be a minimizer of f and let the sequence

{xk}k≥0 be generated by Algorithm F-RP with covariance Σ ∈ PDn and line
search (L2) with sufficient decrease 0 < µ ≤ 1. Assume there exists R ∈ R, s.t.
‖y − x0‖L ≤ R for all y ∈ Rn with f(y) ≤ f(x0). Then, for any N ≥ 0, we
have

E [f(xN )− f(x∗)] ≤ Q

N + 1
,

where

Q := max

{
2nR2κT(LΣ)

µ
, f(x0)− f(x∗)

}
.

Proof. We will apply the bound on the single step progress from Lemma 5, but
first, let us derive a lower bound on the norm ‖∇f(x)‖2L−1 for x ∈ Rn with
‖x− x∗‖L ≤ R. By convexity (7) and the assumptions on x we have

f(x)− f(x∗) ≤ 〈∇f(x),x∗ − x〉 ≤ R ‖∇f(x)‖L−1 .

Hence, by Lemma 5 we can estimate the single step progress

E [f(x+) | x] ≤ f(x)− τ
(
f(x)− f(x∗)

)2
,

where τ := µ
2nR2κT(LΣ) and x+ = x + ALSf (x,u) · u with the notation from

Lemma 5. Conditioned on x, the quantity f(x)−f(x∗) =: fx is just a constant.
Hence, subtracting f(x∗) on both sides, we can rewrite this bound as

E [f(x+)− f(x∗) | x] ≤ fx − τf2
x = fx + 2 min

h

(
−hfx +

h2

2τ

)
≤ (1− 2h)fx + h2τ−1 , (17)

where the last inequality holds for arbitrary parameter h ∈ R.

2Here we use that Tr [LΣ] > 0; see the proof of Lemma 4 in Section 3.5.
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Now we can proceed to analyze the multi step behavior. For this, we just
repeatedly apply the bound (17) on the single step progress. Conditioning on
{xk}N−1

k=0 , we estimate

E
[
f(xN )− f(x∗) | {xk}N−1

k=0

]
≤ (1− 2hN )fx +

h2
N

τ
,

for any parameter hN ∈ R. Now, formally, we recursively apply the conditional
expectations, onditioning on {xk}N−2

k=0 , {xk}N−3
k=0 , . . . , {x0}, and use (17) with

different parameters hN−1, . . . , h1 in every step. By the tower property of condi-
tional expectations, we end up with a bound on E[f(xN )− f(x∗)] that depends
on the free parameters h1, . . . hN . As in [32, Theorem 5.3], the choice hk := 1

k
for k = 1, . . . , N yields the lemma (see also [32, Lemma A.1]).

On strongly convex functions the convergence of F-RP is linear.

Theorem 2. Let f ∈ C1
L and let f in addition be strongly convex with parameter

M ∈ PDn. Let x∗ ∈ Rn denote the unique minimizer of f , and let the sequence
{xk}k≥0 be generated by Algorithm F-RP with covariance Σ ∈ PDn and line
search with accuracy 0 ≤ µ ≤ 1. Then

E [f(xN )− f(x∗)] ≤
(

1− µ

nκT(LΣ,M)

)N
· (f(x0)− f(x∗)) .

Proof. We use Lemma 1 to establish

‖∇f(xk)‖2L−1 ≥ λmin(ML−1) ‖∇f(xk)‖2M−1 .

Applying the quadratic lower bound (10) to further bound the latter term from
below yields

‖∇f(xk)‖2L−1 ≥ 2λmin(ML−1) (f(xk)− f(x∗)) .

Now we can combine this bound with Lemma 5 and get

Eu [f(xk)− f(x∗) | xk] ≤ %(xk) · (f(xk)− f(x∗)) , (18)

where

%(xk) := 1− µ

nκE(L,Σ,M,∇f(xk))
≤ 1− µ

nκT(LΣ,M)
, (19)

is the exact convergence factor. The uniform upper bound was established in
Lemma 4. The Theorem follows now by taking expectation over xk.

We remark that the progress is strict: by Lemma 4 the convergence factor

%̂ := 1− µ

nκT(LΣ,M)
, (20)

is strictly smaller than one.
It is not necessary that the function f is strongly convex everywhere for

linear convergence to hold. Theorem 3 below shows that convergence (at about
a quarter of the rate of the one in Theorem 2) can be proven assuming only a
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weaker condition. Let us recall that strong convexity with parameter M implies
that

f(x)− f(x∗) ≥ 1

2
‖x− x∗‖2M ,∀x ∈ Rn . (21)

It turns out that, instead of strong convexity (9), the weaker condition (21)
is enough for linear convergence. Strong convex functions need to have posi-
tive curvature everywhere, whereas functions with (21) could also be linear on
bounded subsets.

Theorem 3. Let f ∈ C1
L and let f in addition have a unique minimizer x∗ ∈

Rn satisfying (21) with M ∈ PDn. Let the sequence {xk}k≥0 be generated by
Algorithm F-RP with covariance Σ ∈ PDn and line search oracle (L1) with
relative accuracy 0 ≤ µ ≤ 1. Then

E [f(xN )− f(x∗)] ≤
(

1− µ

4nκT(LΣ,ML−1)

)N
· (f(x0)− f(x∗)) (22)

Proof. First, we use Lemma 1 followed by (21) to estimate

κT(LΣ) ‖x− x∗‖2L ≤ κT(LΣ,ML−1) ‖x− x∗‖2M
≤ 2κT(LΣ,ML−1)(f(x)− f(x∗)) .

Now we can just apply Lemma 6 to estimate the single step progress as

E [f(x+)− f(x∗) | x] , ≤
(

1− hµ

n
+
h2µκT(LΣ,ML−1)

n

)
(f(x)− f(x∗)) .

By setting h−1 = 2κT(LΣ,ML−1), the term in the left bracket becomes
(

1− µ
4nκT(LΣ,ML−1)

)
and the proof continues as the proof of Theorem 2.

4.3 Discussion of the Results

The presented theoretical results extend our previous work in [32] in two ways:
(i) the analysis in [32] considered only F-RP with covariance Σ = In the n-
dimensional identity matrix with less expressive quadratic lower and upper
bound assumptions; (ii) the lower- and upper bounds introduced in Section 3.2
allow for a more detailed description of the convergence rates because the
quadratic model captures the eigenspectra of the functions.

We see in Theorem 2 that the number of iterations of F-RP algorithm to
reach a target accuracy is proportional to µ−1. This means that for instance for
µ = 1

2 , only twice as many iterations are necessary to reach the same accuracy
as with the choice µ = 1, respectively.

The results from the Theorems 1–3 can also be extended to accommodate
for more general line search oracles, for instance also with additive error of a
constant ε > 0 in every step. Such errors are not crucial, the additional error
terms just have to be carried along. We refer the interested reader to [32],
where such analysis has been carried out for a similar problem. For functions
that admit linear convergence (i.e. Theorem 2 and 3), these errors add up to
an absolute constant C(ε) = Θ(ε) that does not depend on the number N of
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iterations. On convex functions as treated in Theorem 1, the error grows as
εN with the number of iterations, leading to divergence if the number N of
iterations is too large. Therefore we see, that it is much better to express the
errors in terms of the relative parameter µ instead of absolute values.

All results can also be generalized to the case when the accuracy (the relative
µ and possible additive ε) of the line search oracles changes in every iteration.
This amounts to different bounds on the single step progress in every itera-
tion, and the summation in the proofs of Theorems 1–3 becomes slightly more
involved (see e.g. [30]).

As a last extension, we would like to point out that the results can also be
generalized to different sampling distributions and are not only valid for N̄ (0,Σ)
vectors. However, the actual bounds on the convergence rate may change, de-
pending on the new distribution. To determine the new convergence factors,
one only has to calculate the expectation EL in (15) for the new distribution,
the rest of the proof remains the same.

4.4 Illustration of the results

Let us illustrate the derived bounds with an example. For simplicity, we consider
a quadratic function f(x) = 1

2 ‖x‖
2
A. Clearly, f ∈ C1

A and f is strongly convex
with parameter A. The algorithm F-RP with covariance Σ = In converges on
this function according to Theorem 2, and the convergence rate is described by
the convergence factor %̂ from (20). For exact line search (µ = 1) we have %̂ =(
1− 1

nκT(A,A)

)
≤
(
1− λmin(A)

Tr[A]

)
, where the last estimate follows from Lemma 4.

We see that this is an improvement over the factor
(
1 − 1

nκ(A)

)
derived in [32]

if the average of the eigenvalues of A is much smaller than the maximal one.
To demonstrate this, let us consider a class of quadratic functions, gi : R

n →
R for 1 ≤ i < n, with parameter ` ≥ 1:

gi(x) =
`

2

i∑
j=1

x2
i +

1

2

n∑
j=i+1

x2
i

The Hessians of all functions gi have the same maximal (`) and minimal (1)
eigenvalues. The functions have two different scales that are distributed among
the dimensions according to the parameter i. A previous numerical study [31]
suggests that function gi is challenging for RP algorithms if i is large (here we
use gdn2 e as in [31]), and easy for i small (here we use g5). Figure 2 shows the
numerically observed convergence rates (black lines) of F-RP with exact line
search for functions g25 and g5 with ` = 1000 in dimension n = 50.

The algorithm F-RP with Σ = In converges on both functions where the
convergence rate can be estimated by the convergence factor (cf. Theorem 2).
For both functions, g25 and g5, the result established in [32] provides the same
upper bound

(
1− 1

`n

)
on the convergence factor. Our new result provided in

Theorem 2 yields two different estimates for these two functions, namely
(
1− 2

`n

)
for g25 and roughly

(
1 − 1

5`

)
for g5 (see Table 1). This is in agreement to the

empirical observations, as F-RP converges faster on g5 than on g25. However,
the presented bounds (red lines) slightly underestimate the rate.

It is clear that our worst-case analysis cannot give accurate convergence
rates on all convex functions. We can, nonetheless, give a pointer to the part
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Function Previous result [32] New result

gi
1− 1

nκ(A) 1− λmin(A)
Tr[A]

1− 1
`n 1− 1

i`+(n−i)

Table 1: Theoretical convergence rates of F-RP on functions gi from previous analysis
in [32], and Theorem 2.
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Figure 2: Comparison of the derived convergence rates (see Table 1) with empirical
measurements on g25 (left) and g5 (right) with ` = 1000 in dimension n = 50. Log-
arithm of function value vs. number of iterations (ITS). Observed F-RP convergence
(solid/black), convergence rate derived in [32] (dashed), convergence rate derived in
this paper (solid/red).

of the proof of Theorem 2 where we clearly use too conservative estimates. In
Equation (19) we used a crude estimation of the factor %(xk). This estimate
is not tight in every step k (but in the worst case), as can easily seen from
Equation (14) in the proof of Lemma 4. In order to find a convergence factor
that best matches the observed rates we may rather analyze an average case
scenario, and consider the expected value of σ(xk) over the trajectory {xk}k≥0

(see Lemma 7 below). However, it seems that such an analysis is the scope
of this manuscript as we would not only need the expected function values
E[f(xk)]), but also precise information on xk itself. Intuitively, we would expect
the iterates to be almost always at the “far ends” of the ellipsoidal level sets
{x : xTAx = c} of f , and therefore (14) might be only be improved by a small
factor.

Lemma 7. Let σ : Rn → R≥0 nonnegative, let a, b > 0, let {xk}Nk≥0 and arbi-

trary sequence of N points in Rn and σ̄ = 1
N

∑N
i=1 σ(xk). Then

ΠN :=

N∏
k=1

(
1− a

σ(xk) + b

)
≤ exp

[
− aN

σ̄ + b

]
.

Proof. The function 1
x for x > 0 is convex, therefore by Jensen’s inequality and

1− x ≤ e−x we find

− ln ΠN ≥
N∑
k=1

a

σ(xk) + b
≥ aN

1
N

∑N−1
i=0 σ(xk) + b

=
aN

σ̄ + b
.
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5 Metric Learning in Random Pursuit

In Section 4 we have derived exact bounds on the progress rate of F-RP that
depend on the sampling distribution. For a quadratic function f(x) = 1

2 ‖x‖
2
H

with H ∈ PDn, the expected running time of F-RP with search directions
u ∼ N̄ (0, In) is O(κT(H)n ln 1

ε ), where ε > 0 is the desired accuracy. In con-
trast, for u ∼ N̄ (0, H−1) the running time drops to O(n 1

ε ). This rate is (i)
independent of the function f (i.e., the spectrum of H) and (ii) optimal from
a theoretical point of view. This follows from the fact that

(
1− 1

n

)
is a lower

bound on the convergence rate of the “hit-and-run” search algorithm as shown
by Jägersküpper in [14]. The idealized “hit-and-run” scheme analyzed there is
identical to the Random Pursuit.

Computing an approximation Ĥ to H with κT(Ĥ−1H) ≈ 1 and then sam-
pling from N̄ (0, Ĥ−1) instead for the optimization phase, can reduce the running
time to O(T +n ln 1

ε ), where T denotes the running time of the Hessian Estima-
tion scheme. This Variable Metric Random Pursuit algorithm (V-RP) improves
over F-RP if T ≤ κT(H) ln 1

ε . This approach also works for general strongly
convex functions f : Rn → R where the Hessian ∇2f(x) is not necessarily con-
stant for all x ∈ Rn. If we assume that the Hessian is only mildly changing (see
for instance Lemma 5 below) then it might suffice to find an approximation of
the Hessian ∇2f(x0) of the initial search point x0 ∈ Rn. Otherwise, we should
use a scheme that can iteratively update its estimation of the Hessian, allowing
for unforeseen changes.

We are now left with the challenge of how to efficiently estimate a Hessian
matrix H in the present gradient-free setting. Iterative stochastic covariance
matrix adaptation schemes are well-established in gradient-free continuous op-
timization [10, 16, 20] and try to estimate directly Σ = H−1, but are notori-
ously difficult to study theoretically. A welcome alternative has recently been
introduced by Leventhal and Lewis [17] in form of RHE. We here review and
extend their scheme. For a quadratic function f(x) = 1

2xTHx and initial iterate
B0 ∈ PDn, Leventhal and Lewis already showed that RHE generates a random
sequence {Bk}k≥0 of Hessian approximations with

E[‖Bk −H‖2F ] ≤
(

1− 2

n(n+ 2)

)k
‖B0 −H‖2F . (23)

Therefore, if we use RHE to generate an approximation Ĥ of the Hessian and
then use F-RP with sampling distribution N̄ (0, Ĥ−1), the running time of this
two-stage V-RP algorithm is O(n2 ln ‖B0 −H‖F + n ln 1

ε ) on a quadratic func-
tion.

Our contributions are twofold: on the theoretical side, we provide new in-
sights into RHE. We show that (i) RHE itself can be viewed as an instance

of F-RP and (ii) give exact expressions for the expectation E[‖Bk −H‖2F ].
Furthermore, (iii) we estimate the impact on the running time of the afore-
mentioned two-stage V-RP algorithm if RHE converges to ∇2f(x0), but this
matrix is not a very good approximation of the Hessian at the optimum x∗,
∇2f(x0) 6= ∇2f(x∗). On the practical side, we (iv) present three novel and
theoretically sound implementations of RHE. For many practical situations,
function evaluations are the most costly operations, and the goal is to keep the
number of evaluations as low as possible. The third proposed scheme allows—
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at the expense of O(n2) storage—to significantly boost the performance of the
RHE update in this scenario.

5.1 Variable Metric update scheme

RHE from Leventhal and Lewis [17] comprises direct updates of a Hessian es-
timate. Given a symmetric matrix B ∈ PDn as current Hessian estimate, the
next iterate B+ is determined according to:

B+ = B + uT (H −B) u · uuT , (24)

where u ∼ N̄ (0, In). Let us now present a novel interpretation of this update
which reveals that RHE is just a special instance of a F-RP algorithm. Here, the
search space of the underlying optimization problem is not Rn as in Section 4,
but SYMn, the space of symmetric matrices. As objective, we aim at minimizing
the distance to the Hessian H, measured in the Frobenius norm:

g(X) := ‖X −H‖2F . (25)

This defines a quadratic function g : SYMn → R, and for a B ∈ SYMn and
a fixed ‘search direction’ uuT , we can easily derive an analytic expression of
LSg(B,uuT ), the exact line search in direction uuT . By definition, we have

LSg(X,uuT ) = arg min
t

g(B + tuuT ) = arg min
t

∥∥B + tuuT −H
∥∥2

F
.

We now determine the parameter t as to minimize the right hand side, that is
uTBu− uTHu + tuuTuuT = 0 and conclude

LSg(B,uuT ) = uT (H −B)u . (26)

We have now established, that the RHE is (i) just an instance of a specific F-RP
algorithm. Moreover, (ii) the update step in (24) corresponds to a step of F-RP
with an exact line search oracle LSg(B,uuT ).

The formula (24), or equivalently (26), requires the evaluation of uTHu with
unknown H. For twice differentiable functions f the second derivative of f at
x in direction u can be well approximated by finite differences3:

uTHu ≈ f(x + εu)− 2f(x) + f(x− εu)

ε2
(27)

for some small ε > 0 as proposed in [17]. In the convex quadratic case, the above
formula is exact for arbitrary ε > 0. For general functions the approximation
of uTHu with formula (27) may not be accurate, thus leading to a failure
of the update. Note that this approach only requires two additional function
evaluations at x ± εu. In addition, the formula implies that the estimate B+

behaves at x like the unknown Hessian along direction u, that is, uTB+u =
uTHu. This can be seen directly from (24) by noting that uTuuTu = 1.

The interpretation of RHE as a F-RP algorithm allows to study inexact line
search oracles, which correspond to errors in the estimation (27). Qualitative

3The two points x±εu are not required to be at the same distance to x. For points x−ε1u,
x + ε2u the curvature can be estimated by quadratic interpolation with slight adaptation of
formula (27).
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bounds could be derived by making strong assumptions on f , for instance as-
suming f(x) := f(x0)+∇f(x0)(x−x0)+ 1

2 (x−x0)TH(x−x0)+O(‖(x− x0)‖3)
for every x0 ∈ Rn, i.e. with a Hessian H independed of x0. However, this kind
of very restricted objective functions are not very interesting in general. We
discuss more general functions in Section 5.3 below.

5.2 Convergence of Random Hessian Estimation

We now derive an exact expression for the expected single step progress of RHE.

Lemma 8. Let B,H ∈ SYMn fixed, let g : SYMn → R as in (25), let B+ as
in (24) with u ∼ N̄ (0, In). Then

E [g(B+) | B] = g(B)− 2g(B) + Tr[B −H]2

n(n+ 2)
≤
(

1− 2

n(n+ 2)

)
g(B) .

Proof. By standard calculus and the definition of g we have

g(B+) = g(B)− (uT (B −H)u)2 .

The expectation of the second term on the right hand side was calculated in
Lemma 2, and the lemma follows from the trivial estimate Tr[B−H]2 ≥ 0.

The (uniform) upper bound in Lemma 8 can be quite far away from the

exact value. We estimate with Cauchy-Schwarz Tr[B −H]2 ≤ n ‖B −H‖2F and

g(B)− 2g(B) + Tr[B −H]2

n(n+ 2)
≥
(

1− 2

n

)
g(B) .

Both, the upper and lower bound on the exact factor are tight in general, but
they are different by a factor of approximately n. Thus one might wonder if the
result (23) from [17] is too conservative in general. But this is not the case, as
we answer in the next theorem.

Theorem 4. [Exact RHE] Let H ∈ SYMn fixed, let {Bk}k≥0 a sequence of
iterates with Bk+1 = Bk + (uTk (H −Bk)uk) ·ukuTk with uk ∼ N̄ (0, In). Denote
Xk := Bk −H and let parameters ξ1(k) :=

(
λk1 + λk2

)
, ξ2(k) :=

(
λk1 − λk2

)
with

λ1 =
2n2 + 2n− 5− ω

2n(n+ 2)
, λ2 =

2n2 + 2n− 5 + ω

2n(n+ 2)
,

and ω =
√

4n2 + 4n− 7. Then for N > 0

E
[
‖XN‖2F

]
= ξ1(N)

‖X0‖2F
2

− ξ2(N)

(
(2n+ 1) ‖X0‖2F

2ω
− Tr[X0]2

ω

)
,

E
[
Tr[XN ]2

]
= ξ1(N)

Tr[X0]2

2
− ξ2(N)

(
2 ‖X0‖2F

ω
− (2n+ 1)Tr[X0]2

2ω

)
.

Before going into the proof of this theorem, let us discuss its statement.
It is not hard to see, that λ2 ≤ 1 − 2

n(n+2) and λ1 = 1 − Θ
(

1
n

)
. Therefore

we can approximate the factors ξ1(k) ≈ −ξ2(k) ≈ λk2 for k large enough. The

17



upper bound (23) from Leventhal and Lewis [17] is therefore reached if Tr[X0] =

Tr[B0 − H] = 0. However, if |Tr[X0]| is large, Tr[X0]2 = n ‖X0‖2F , say, then

term in the right bracket almost vanishes and E[‖Xk‖2F ] ≈ 1
2λ

k
2 ‖X0‖2F . Thus

the estimation (23) cannot significantly be improved, regardless of Tr[X0] we

have 1
2 ‖X0‖2F

(
1 − 2

n(n+2)

)k
. E

[
‖Xk‖2F

]
≤ ‖X0‖2F

(
1 − 2

n(n+2)

)k
, where the

first inequality holds up to some lower order therms of n.

Remark 1. The above theorem derives an exact expression for E[‖BN −H‖2F ,
but no high-probability estimates. With Markov’s inequality one can easily get
an upper bound on E[‖BN −H‖2F that holds with high probability. Let j ≤ N and

b > 0 with (1− 2
n(n+2) )j = b. We have E[‖BN −H‖2F ≤ (1− 2

n(n+2) )N−j ‖B0 −H‖2F
with probability at least 1− b.

of Thm. 4. Let the iteration k be fixed. The exact expression for the single step
progress from Lemma 8 depends not only on ‖Xk‖2F , but also on Tr[Xk]2. Let us
also calculate E[Tr[Xk+1]2. By the definition of the update (24) we immediately
get Tr[Xk+1] = Tr[Xk]− uTkXkuk, and therefore

E
[
Tr[Xk+1]2 | {Xi}ki=0

]
= Tr[Xk]2 − E

[
2Tr[Xk]uTkXkuk − (uTkXkuk)2 | Xk

]
=

(
1− 2n+ 3

n(n+ 2)

)
Tr[Xk]2 +

2

n(n+ 2)
‖Xk‖2F ,

with Lemma 2. We obtain a linear recurrence for the conditional expectations
of ‖Xk‖2F and Tr[Xk]2. What we now have to do, formally, is to condition

on {Xi}k−1
i=0 and calculate the expectations again. By the tower property of

conditional expectations, E[E[‖Xk+1‖2F | {Xi}ki=0] | {Xi}k−1
i=0 ] = E[‖Xk+1‖2F |

{Xi}k−1
i=0 ]. Repeating this procedure for {Xi}k−2

i=0 up to X0, we finally ob-

tain E[‖Xk+1‖2F | X0] = E[‖Xk+1‖2F ]. We observe that all intermediate ex-

pressions only depend linearly on ‖X0‖2F and Tr[X0]2, that is we can write(
E[‖Xk‖2F ,E[Tr[Xk]2]

)T
= C(n)k

(
‖X0‖2F ,Tr[X0]2

)T
for a 2 × 2 matrix C(n).

By linear algebra, we can now decouple the linear recurrence. This is carried
out in detail in Lemma 11 in the appendix.

5.3 RHE on general strongly convex functions

Theorem 4 shows the convergence of RHE to one fixed target matrix H ∈ PDn,
where H = ∇2f(x0) is the Hessian of the objective function f at a point
x0 ∈ Rn. For quadratic functions the Hessian H is constant, hence RHE
converges to H regardless whether the estimates (27) are evaluated at a sin-
gle point x0, or at various different points {xk}k≥0. For an initial estimate
B0 ∈ PDn, at most O(n2 ln ‖B0 −H‖F ) iterations of RHE are necessary to

find an approximation Ĥ ≈ H, that can be used for the sampling of the search
directions in F-RP. Hence the running time of V-RP on quadratic functions is
O(n2 ln ‖B0 −H‖F + n ln 1

ε ), where ε > 0 is the target accuracy. In Section 5.4
we show how this bound can be improved if we only count function evaluations,
instead of iterations of RHE or F-RP.

On general strongly convex functions, the Hessian is different at every point
in the space. For a fixed point x0 ∈ Rn, Theorem 4 shows convergence of RHE
to ∇2f(x0) if the estimates (27) are evaluated at the single point x0. However,
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it might not be useful to compute an approximation of the Hessian at x0 if this
matrix is not close to the Hessian at the optimum x∗ ∈ Rn. Therefore it seems
reasonable to interlace the update steps of RHE with the search steps of F-RP,
i.e. invoke one update step (24) at each search point {xk}k≥0 that is generated by
F-RP. This approach is theoretically justified: As the iterates {xk}k≥0 of F-RP
converge (slowly) to x∗, also the corresponding Hessians Hk :=

∥∥∇2(xk)
∥∥ will

converge to H := ∇f(x∗), and in [17, Theorem 2.3] it is shown, that the Hessian
estimates {Bk}k≥0 generated by this interlaced scheme will converge to H as
well. However, this theorem does not imply a strong bound on the running time,
as their technique only provides a bound on the convergence factor for iterations
k ≥ K, where K is such that ‖HK −H‖F � 1. The following example shows
that K can be as large as O(nκT(H)). Consider a strongly convex function
f : R2 → R with minima x∗ = 0 and Hessians

H(x) :=

[
109 + |x1| 0

0 1

]
.

For x ∈ R2 it is required |x1| < 1 to guarantee ‖H(x)−H(x∗)‖F < 1. For ini-
tial iterate x0 := (1010, 0)T , F-RP with sampling distribution N̄ (0, I2) needs
O(nκT(H(x∗))) iterations to find such a close point. On the other hand,
κ(H(x0)−1H(x∗)) ≈ 10. That is, it would suffice if RHE is only invoked lo-
cally at the initial iterate x0, because an approximation Ĥ ≈ H(x0) suffices to
guarantee fast convergence of F-RP with sampling distribution N̄ (0, Ĥ−1). The
running time of this approach is only O(n2 ln ‖B0 −H(x0)‖F + n ln 1

ε ) instead
(see Theorem 5 below).

We conclude, that the condition ‖HK −H‖F � 1 in [17, Theorem 2.3] is
far too strong for what is needed here. The following theorem aims at relaxing
this condition, measuring the deviation by κ(H−1

K H) instead. That is, we here
consider only the situation where the Hessian ∇2f(x0) of the initial iterate x0

is already close enough to ∇2f(x∗) and RHE is only invoked at x0, finding an
approximation Ĥ of ∇2f(x0). We give a bound on the convergence factor of
F-RP with sampling distribution N̄ (0, Ĥ−1). Using the triangle inequality as in
the proof of Theorem 2.3 in [17], it would also be possible to derive an analogous
statement for the interlaced V-RP approach.

Theorem 5. Let 0 < a ≤ b, 0 ≤ c < 1, d ≥ 1 and let B,H,X ∈ PDn,
with ‖Y ‖2 ≤ b and

∥∥Y −1
∥∥

2
≤ a−1 for Y = {B,H,X}. Here ‖Y ‖2 denotes the

operator norm induced by the 2-norm. Let ‖B −X‖F ≤ a2b−1c and κ(H−1X) ≤
d. Then κ(H−1B) ≤ d+c

1−c .

For f ∈ C1
L and strongly convex with parameter M , we can estimate:∥∥∇2f(x)

∥∥
2
≤ λmax(L) and

∥∥(∇2f(x))−1
∥∥

2
≤ λ−1

min(M), at any x ∈ Rn. Sup-

pose x0 ∈ Rn is such that for X := ∇2f(x0) and H := ∇2f(x∗), κ(H−1B) ≤ d
for some d ≥ 1 and B ∈ PDn an initial iterate of RHE. According to Theo-

rem 5 it takes O(n2(ln ‖B −X‖F + ln λmax(L)
λmin(M)2 )) iterations of (RHE) to find a

sufficiently close estimate BK , s.t. κ(B−1
K H) ≤ 2d+ 1, say (c = 1

2 ).

of Theorem 5. We have λmax(X−1H) =
∥∥X−1H

∥∥
2
≤
∥∥X−1

∥∥
2
‖H‖2 ≤ a−1b by
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submultiplicativity and the assumptions, hence λmin(H−1X) ≥ ab−1. Therefore

λmin(H−1B) = λmin(H−1X +H−1(B −X))

≥ λmin(H−1X)−
∥∥H−1(B −X)

∥∥
2

≥ a

b
− ‖(B −X)‖F

∥∥H−1
∥∥

2
≥ a

b
− a2c

b

∥∥H−1
∥∥

2
,

with the assumed upper bound on ‖B −X‖F . As
∥∥H−1

∥∥
2
≤ a−1, we conclude

λmin(H−1B) ≥ (1− c)ab−1 > 0. With the analogous argument λmax(H−1B) ≤
λmax(H−1X) + ab−1c and we can estimate the condition number

κ(H−1B) ≤
λmax(H−1X) + ac

b

λmin(H−1X)− ac
b

≤
dλmin(H−1X) + ac

b

λmin(H−1X)− ac
b

.

The fraction dx+y
x−y for x−y > 0, d, y > 0 is maximized if x is as small as possible.

With the lower bound on λmin(H−1X) we finally conclude

κ(H−1B) ≤ ab−1(d+ c)

ab−1(1− c)
.

5.4 Implementations of RHE

Now we proceed to present three implementations of RHE. One difficulty is, that
the update (24) does not guarantee that the matrix B+ is positive definite. An
standard result in Wedderburn [34, pg. 69] states that for B ∈ PDn, u ∈ Rn
with ‖u‖ = 1, the matrix B + tuuT is positive definite if t−1 < uTB−1u.
Leventhal and Lewis suggest an ad hoc projection of B+ onto the cone of PDn

matrices. They numerically show that this yields a practicable algorithm [17].
The projection on PDn is only required if the current iterate B+ is needed

for the sampling of the search direction, i.e. u ∼ N̄ (0, B−1
+ ). The projection

step is not necessary if we let the scheme run until it converges to a matrix Ĥ
that is close to the Hessian H ∈ PDn (this variant is denoted as updateHess in
the supporting online material [33]).

As an alternative to the projection suggested in [17], we would like propose
a different one. In sub-routine updateHessCorr depicted in Figure 3 we ensure
that the generated iterates are always positive definite. If T on line 3 is not
positive definite (checked by Wedderburn’s formula), we apply a second RHE
update step in direction v, where v is an eigenvector of T corresponding to the
smallest (hence negative) eigenvalue of B+. By standard matrix perturbation
theory, as detailed in Lemma 9 below, the twice updated matrix will be positive
definite again (as H is). This scheme comes at the expense of two additional
function evaluations at x± εv. The updates in line 3 and 7 can directly be im-
plemented using the ShermanMorrison formula. This version of the VM update
has already been successfully used in a recent numerical study [31].

Lemma 9. Let A ∈ PDn, x ∈ Rn and z1 ∈ Rn an eigenvector corresponding
to the smallest eigenvalue of (A− xxT ). Then

B := A− xxT +
∣∣λmin(A− xxT )

∣∣ z1z
T
1 ∈ PDn .
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updateHessCorr(f,x, B, ε)

Output: Hessian estimate
B+ ∈ PDn

1 u ∼ N̄ (0, In)

2 ∆u ← f(x+εu)−2f(x)+f(x−εu)
ε2 −uTBu

3 if T ← B + ∆u · uuT ∈ PDn then
4 B+ ← T

else
5 v← smallestEVec(T )
6 ∆v ←

f(x+εv)−2f(x)+f(x−εv)
ε2 − vTTv

7 B+ ←
(
B + ∆v · vvT

)
+ ∆u · uuT

8 return B+

updateHessStore(f,x, B, ε, reuse,m)

Requires: Persistent storage S of size
O(n2)

Output : Hessian estimate
B+ ∈ PDn

1 B+ ← updateHess{Corr}(f,x, B, ε)
2 Add (u,uT∇2f(x)u), (v,vT∇2f(x)v)

to S
3 if reuse then
4 repeat m times
5 foreach (s, s) ∈ S do
6 if

T ← B++(s−sTB+s)·ssT ∈ PDn

then B+ ← T

7 return B+

Figure 3: Two implementations of RHE (24). Left panel: The Hessian estimation B is
updated in every step. Positive definiteness is established by an additional projection
step. Right panel: the finite difference approximations for uT∇2f(x)u are stored.
This information can be used for additional update steps that do not require additional
function evaluations. The storage S saves the O(n2) most recently added elements. If
the capacity of S is exceeded, the oldest element is deleted (see main text for further
information).

Proof. The matrix (A − xxT ) is symmetric. Let (A − xxT ) =
∑n
i=1 λiziz

T
i

denote its spectral decomposition with λ1 ≤ λ2 ≤ . . . λn in increasing order. If
λ1 ≥ 0, then there is nothing to show. Otherwise, we observe that by a variant
of Weyl’s theorem (cf. [12, Theorem 4.3.4]), 0 ≤ λi(A) ≤ λi+1(A−xxT ) = λi+1

for i = 1, . . . , n− 1. Thus at most λ1 can be negative. We conclude

yTBy = yT

(
n∑
i=1

λiziz
T
i + |λ1| z1z

T
1

)
y ≥ yT

(
λ1z1z

T
1 + |λ1| z1z

T
1

)
y ≥ 0 ,

for all y ∈ Rn.

The two implementations discussed so far need in every iteration at least two
function evaluations to perform the update. In settings where function evalu-
ations are costly or time consuming one could also store previously computed
function values and reuse them for the updates. If we assume that either the
RHE scheme is invoked locally at one fixed point x0 (as discussed in Section 5.3),
or the Hessian ∇2f(xk) is only mildly changing between successive iterates xk,
then the previously computed values uTk−t∇2f(xk−t)uk−t back to some horizon
h, t = 1, . . . , h, might still be accurate estimates of the curvature in direction
uk−t at the current position xk. Thus, one might apply the update (24) again for
directions uk−t using the approximation uTk−tH(xk)uk−t ≈ uTk−tH(xk−t)uk−t.
This requires additional computation time but no additional function evalua-
tions. This version of the update is presented in sub-routine updateHessCorr

depicted in Figure 3 with with horizon h = O(n2). This variant is motivated by
the following observation.
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Theorem 6. Let 0 < ε < 1 and constant C > 0 large enough, according to [1,
Theorem 4.2] (see the proof below). Let U be a set of h = Cn2 normalized
normal vectors {ui}hi=1, ui ∼ N̄ (0, In) for i = 1, . . . , h and let H,B ∈ PDn.
Then for u sampled uniformly at random from the (fixed) set U , denoted as
u ∼ U , it holds for B+ = B + uT (H −B)u · uuT :

Eu∼U

[
‖B+ −H‖2F

]
≤
(

1− (1− ε)2
n(n+ 2)

)
‖B −H‖2F ,

with probability at least 1− e−
√
n over the choice of U .

Proof. As in the proof of Lemma 8 we need to give a lower bound on the
expectation Eu∼U [(uTXu)2] for X = B−H. Without loss of generality we can
assume ‖X‖F = 1. Let V denote an orthogonal matrix such that V XV T is
diagonal, with the vector of eigenvalues λ ∈ Rn on its diagonal. By considering
the set U ′ := {V u : u ∈ U} instead of U , we can therefore also assume that X
is diagonal and write

Eu∼U ′
[
(uTXu)2

]
= Eu∼U ′

 n∑
i=1

λ2
iu

4
i +

∑
i6=j

λiλju
2
iu

2
j

 , (28)

where the subscripts ui, λi denote the i-th entry of the vectors u or λ. By
Lemma 2 (just set A = eie

T
i and x = ej , where ei denotes the standard unit

vector) we have

Eu∼N̄ (0,In)[u
4
i ] =

3

n(n+ 2)
, Eu∼N̄ (0,In)[u

2
iu

2
j ] =

1

n(n+ 2)
,

for i 6= j. We will now show that the sample approximation, i.e. the expecta-
tion over the set U ′, approximates these values very well with high probability.
Theorem 4.2 from [1] states that for ε > 0, there exist a C > 0 (depending only
on ε), such that with probability at least 1− e−

√
n

sup
y∈Sn−1

∣∣∣Eu∼U ′
[
〈u,y〉4

]
− Eu∼N̄ (0,In)

[
〈u,y〉4

]∣∣∣ ≤ ε

n(n+ 2)
, (29)

if the sample size h ≥ Cn2. Here we have chosen h large enough s.t. (29) holds
with probability at least 1− e−

√
n. Hence, the choice y = ei gives an estimate

of the fourth moment of ui, i.e.

3− ε
n(n+ 2)

≤ Eu∼U ′ [u
4
i ] ≤

3 + ε

n(n+ 2)
. (30)

The choice y = 1√
2
(ei ± ej) in (29) gives us the estimates

12− 4ε

n(n+ 2)
≤ Eu∼U ′ [u

4
i + u4

j + 6u2
iu

2
j ± 4(uiu

3
j + u3

iuj)] ≤
12 + 4ε

n(n+ 2)
.

Adding these two bounds eliminates the last two terms with odd exponents and
by subtracting the estimates of Eu∼U ′ [u

4
i ] and Eu∼U ′ [u

4
j ], we get

1− ε
n(n+ 2)

≤ Eu∼U ′ [u
2
iu

2
j ] ≤

1 + ε

n(n+ 2)
. (31)
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Using (30) and (31) in (28), we get the lower bound

Eu∼U ′
[
(uTXu)2

]
≥ (1− ε)Eu∼N̄ (0,In)

[
(uTXu)2

]
,

and the theorem follows from Lemma 8 which provides a lower bound on
Eu∼N̄ (0,In)

[
(uTXu)2

]
.

5.5 Computational Experiments

To complement our theoretical investigation, we conducted a few numerical
experiments. We compared the here presented V-RP variants with a number of
randomized and deterministic derivative-free algorithms. The set of benchmark
functions comprised three quadratic, and one non-convex function.

5.5.1 Benchmark setting

The tested variants of V-RP comprise both implementations of RHE that were
presented in Figure 3, in combination with three different implementation of
the line search oracle: (i) MATLAB’s built-in routine fminunc.m, (ii) an ex-
act line search that needs only two additional function evaluations (three in
total on the line) on quadratic functions, by interpolation, and (iii) adaptive
step size control from Evolutionary Computation. This last scheme only proves
one additional point along the chosen line. The new point is accepted if the
function value of the new point is lower than the function value of the previous
iterate. In order to ensure that a positive fraction p is accepted on average we
use the subroutine aSS detailed in Figure 1 from [31] with parameters p = 0.27
and σ = 1. We used the following schemes for our comparison: The Evolu-
tion Strategy with Covariance Matrix Adaptation and mirrored sampling and
sequential selection (CMA-ES) [10, 4]; Implicit Filtering (IMFILL) [15]; the
classical Down-Hill Simplex algorithm (Nelder-Mead) [21], the accelerated ver-
sion of Nesterov’s [22] gradient-free Random Gradient algorithm (Nesterov acc.);
Powell’s NEWUOA[24]; and Pattern-Search that is available in MATLAB. The
full description of the algorithms, as well as the details regarding the parameter
selection, we refer to the supporting online material [33] where the benchmark
setting is presented in full detail.

To evaluate the power of adaptation, we tested the algorithms on the fol-
lowing parametric set of functions with increasing curvature. We consider

f1(x) =
1

2

n∑
i=1

e1+(i−1) log `−1
n−1 x2

i ,

with parameters ` = 10i for i = 0, . . . , 7. To test the “valley-following” abili-
ties of the different algorithms we also include the non-convex Rosenbrock [27]
function f2 in the benchmark set:

f2(x) =

n−1∑
i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)
.

In order to prohibit the tested algorithms from making use of the diagonal
structure of the Hessian matrices of f1 we rotate the function domain by gen-
erating random rotation matrices R with RRT = In and a shift parameter
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` Nesterov
Acc.

NEW-
UOA

IMFIL Nelder-

Mead

Pattern CMA-
ES

V-RP
(corr)
exact

V-RP
(store)
exact

0 3.96 0.70 4.08 - 66.35 3.51 5.08 4.87
1 9.77 0.81 7.39 - 103.61 3.83 6.14 5.20
2 37.54 2.22 8.25 - - 6.06 10.12 7.70
3 138.25 6.74 10.60 - - 11.20 17.42 9.38
4 - 20.03 - - - 18.56 27.41 10.32
5 - 51.14 - - - 26.45 38.76 12.33
6 - 105.19 - - - 34.41 50.05 15.52
7 - - - - - 42.82 62.44 19.44

Table 2: Number of FES/n2 to reach accuracy 10−8 on f1 with parameter `, in n = 20
dimensions (mean over 31 independent runs). A dash ‘-’ indicates that accuracy could
not be reached within a budget of 200n2 FES. V-RP equipped with an exact line
search oracle.

acc. F-RP NEW-
UOA

IMFIL Nelder-

Mead

Pattern CMA-
ES

V-RP
(corr)

ES

V-RP
(store)

ES

101 57.21 4.73 - - 139.26 10.36 24.83 22.95
100 186.64 10.14 - - - 26.30 49.79 44.52
10−2 - 12.94 - - - 31.76 64.52 56.18
10−4 - 14.81 - - - 33.47 70.26 61.02
10−6 - 16.29 - - - 34.76 73.31 63.23
10−8 - 17.55 - - - 35.96 75.56 65.16

sec. 32.90 6.55 8588.06 14.38 1979.45 13.96 11.62 140.89

Table 3: Reached accuracy vs. number of FES/n2 on f2 in n = 20 dimensions (mean
over 31 independent runs). A dash ‘-’ indicates that accuracy could not be reached
within a budget of 200n2 FES. V-RP equipped with adaptive step size control, see [33].

xs ∼ N (0, In), thus leading to function instances of the form f(R(x−xs)). We
also apply the same transformation and shift to the initial iterate x0, which is
x0 = 1n for f1 and x0 = 0n for f2.

5.5.2 Computational results

We report the average number of function evaluations (FES) needed to reach
accuracy 10−8 on each function (for 31 independent trials). A summary of the
collected data on f1 for all parameters ` is presented in Table 2. Table 4 in
the appendix shows more details for ` = 105. We observe that V-RP-ES (with
updateHessStore outperforms all algorithms for ` > 3. IMFIL reaches the
target accuracy only for ` ≤ 3, but in this regime its efficiency is comparable
to V-RP. NEWUOA is superior to V-RP for ` ≤ 3. For ` ≥ 4 NEWUOA needs
a rapidly increasing number of FES and can not reach the target accuracy for
` = 7. CMA-ES is superior for ` ≤ 3 and is outperformed by V-RP for ` > 3.
Nelder-Mead fails for all settings to reach the target accuracy (its progress can
be observed in Table 4. Pattern search is only successful for ` ≤ 1 and needs at
least a factor of 10 times more FES than all other algorithms.

The data for Rosenbrock’s function is listed in Table 3. We observe that
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only V-RP algorithms, CMA-ES, and NEWUOA are able to solve Rosenbrock’s
function f4 in n = 20 dimensions. Surprisingly, the NEWUOA outperforms
both CMA-ES and all V-RP variants, not only in number of FES but also
in computation time. None of the non-adaptive algorithms shows competitive
performance.

In summary, our results show that only adaptive schemes like V-RP, CMA-
ES and NEWUOA, are competitive algorithms in the presence of ill-conditioning.

6 Discussion and Conclusion

In this contribution we have analyzed Random Pursuit algorithms that employ
(i) a fixed but arbitrary metric (Fixed Metric Random Pursuit) and (ii) a vari-
able metric learning procedure (Variable Metric Random Pursuit). We have
detailed convergence proofs and convergence rates for these Random Pursuit
algorithms on convex functions. We have used an improved (matrix) quadratic
upper bound technique to show expected single-step progress and global con-
vergence of Fixed Metric Random Pursuit on (strictly) convex functions. We
have provided exact expressions for the expected progress of the Randomized
Hessian estimation scheme (RHE). We have shown that Variable Metric Ran-
dom Pursuit can achieve almost optimal convergence rate on strongly convex
functions that—after a finite learning phase of length at most O(n2)—does not
depend on the underlying properties of the unknown Hessian of the function.
If the Hessian H0 at the initial search point is close to the Hessian H at the
optimum, i.e. κ(H−1

0 H) ≤ c for a constant c, it suffices to invoke RHE only
once at the beginning.

The numerical experiments show that adaptive schemes are in general (con-
dition number exceeding 103) superior to non-adaptive schemes. For high target
accuracy, both V-RP and CMA-ES outperformed the other tested algorithms
on the quadratic functions, both in terms of number of FES and time efficiency.
NEWUOA shows excellent performance on the non-convex Rosenbrock function.

A number of theoretical challenges remain. For instance, it is still an open
question how to analyze Random Pursuit schemes for constrained optimization
problems of the form

min f(x) subject to x ∈ C , (32)

where C ⊂ Rn is a convex set. And it is an open problem to derive conver-
gence guarantees for Random Pursuit schemes on non-convex functions, such
as, e.g., on the class of globally convex (or δ-convex) functions [13] or on noisy
functions with certain bounds on the variance of the noise. Finally, convergence
on the important class of non-smooth convex functions is another fundamental
challenge for gradient-free optimization that, most likely, needs novel tools and
techniques to be developed by the mathematical programming community.
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A Appendix

A.1 Proof of Lemma 2

Proof. Let u ∼ N (0, In) and let C ∈ PDn with C2 = Σ. The random vector Cu
is N (0,Σ) distributed and hence w := Cu/ ‖Cu‖Σ−1 = Cu/ ‖u‖2 has the same
distribution as v by definition of the normalized distribution. Substituting v by
w, we obtain expressions that depend only on u, more precisely, ratios Ri

(
u
‖u‖2

)
for i = 1, . . . , 5 with powers of ‖u‖2 in the denominator. For instance, the first
and the last one read as:

vvT =
CuuTC

‖u‖22
=: R1

(
u

‖u‖2

)
, ‖〈x,v〉v‖2A =

‖〈Cx,u〉u‖2CAC
‖u‖42

=: R5

(
u

‖u‖2

)
.

Let S, T : Rn → R denote two measurable functions in the random variable u.
We write S and R for short to denote S(u) and T (u) respectively. Lemma 1

from [11] shows that E
[
S
T

]
= E[S]

E[T ] if and only if the covariance cov
(
S
T , T

)
= 0.

This follows immediately from cov
(
S
T , T

)
= E[V ] − E

[
S
T

]
E[T ]. We will now

apply this result here. The functions Ri for i = 1, . . . , 5 do only depend on
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the direction of the vector u, but not on its norm. Hence, Ri and ‖u‖2 are
independent, and especially uncorrelated.

This means that we can calculate the expectations of the numerators and
denominators in Ri for i = 1, . . . , 5 separately. These values for the numerators
follow directly from Lemma 10, and for the denominators we use E

[
‖u‖22

]
= n

and E
[
‖u‖42

]
= n(n + 2), two well-known properties of χ2-distributed random

variables, see e.g. [19, Thm. 3.2b.2].

The following lemma summarizes some facts about moments of quadratic
forms in multivariate normal random variables.

Lemma 10. Let u ∈ N (0,Σ) be drawn from the multivariate normal distri-
bution over Rn with covariance Σ ∈ PDn, and let A ∈ SYMn be a symmetric
n× n matrix. Then

E[uuT ] = Σ , E[uTAu] = Tr[AΣ] , E[(uTAu)2] = Tr[AΣ]2 + 2Tr[(AΣ)2] ,

and for x ∈ Rn,

E [〈x,u〉u] = Σx , and E
[
‖〈x,u〉u‖2A

]
= Tr[AΣ] ‖x‖2Σ + 2 ‖x‖2ΣAΣ .

The first claim immediately follows from the definition and the second and
fourth are consequences of it. This can be seen by applying linearity of expec-
tation to the two identities uTAu = Tr[uuTA] and 〈x,u〉u = uuTx. To prove
the third and fifth equalities directly, one has again to use linearity of expec-
tation, but also the fourth-moments of normal random variables. We omit the
this presentation here, as the claims also follow from [19, Thm. 3.2d.3] (with
the choice A1 = A and A2 = xxT for the last claim).

A.2 Matrix diagonalization

Lemma 11. Let n ≥ 1 and consider the following 2× 2 matrix:

C(n) :=

[
1− 2η −η

2η 1− (2n+ 3)η

]
,

where η = 1
n(n+2) . Then

C(n) =

[
2n+1−ω

4ω
2n+1+ω

4ω
1
ω

1
ω

] [
λ1 0
0 λ2

] [
−2 ω+2n+1

2
2 ω−2n−1

2

]
,

with ω =
√

4n2 + 4n− 7,

λ1 =
2n2 + 2n− 5− ω

2n(n+ 2)
, λ2 =

2n2 + 2n− 5 + ω

2n(n+ 2)
.

Proof. The claim can be verified by calculating the product of the three matri-
ces.

A.3 Additional empirical data
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acc. Nesterov
Acc.

NEW-
UOA

IMFIL N-M Pattern CMA-
ES

V-RP
(corr)
exact

V-RP
(store)
exact

104 2.21 0.09 1.59 0.86 2.87 0.71 0.27 0.20
103 79.53 0.33 5.95 2.83 59.55 2.87 1.59 1.30
102 - 1.44 54.07 18.63 - 7.18 6.79 5.56
100 - 14.35 - - - 16.35 22.97 8.16
10−2 - 29.21 - - - 21.87 30.26 9.20
10−4 - 38.96 - - - 24.50 34.22 10.25
10−6 - 45.76 - - - 25.52 36.76 11.26
10−8 - 51.14 - - - 26.45 38.76 12.33

sec. 21.96 50.67 8273.24 16.28 1863.09 10.08 7.15 26.35

Table 4: Reached accuracy vs. number of FES/n2 on f1 with parameter ` = 105

in n = 20 dimensions (mean over 31 independent runs). A dash ‘-’ indicates that
accuracy could not be reached within a budget of 200n2 FES. Average computation
time of a single run on a single core CPU: either the time until the budget of 200n2

FES is exceed or the time needed to reach accuracy 10−8.
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B Computational Experiments

In [31] we have already presented extensive numerical results of V-RP in com-
parison with other randomized variable metric schemes. There, we analyzed
the influence of the Hessian eigenvalue )]spectrum on the convergence of these
schemes. The main result from these tests were that among a parametrized set
of Hessian matrices with equal trace and condition number, the matrices with a
sigmoidal spectrum are the most difficult to learn for the RHE update scheme
and matrices with an inverse sigmoidal (almost flat) distribution of eigenvalues
are easier to learn.

We here compare the performance of V-RP with a number of randomized
and deterministic derivative-free algorithms. The set of test functions comprises
three quadratic functions (including f1) with different spectra and one non-
convex function (f2). We first present the definition of the test functions and
describe the numerical performance evaluation protocol. We then detail the
algorithms and their parametrization.

B.1 Benchmark Functions

The first two functions are f1 and f2 (see definition in Section 5.5). We consider
two additional quadratic functions with parameter ` ≥ 1.

f3(x) =
1

2

dn2 e∑
i=1

x2
i + `

n∑
i=bn2 c

x2
i

 , f4(x) =
1

2

(
x2

1 +
`

2

n−1∑
i=2

x2
i + `x2

n

)
,

The Hessian matrices in both functions have the same maximal (`) and minimal
(1) eigenvalues. The function f3 has two different scales that are distributed
evenly among the dimensions. The second function f4 has – for large dimension
– one global scale with one small and one large eigenvalue. A previous numerical
study [31] suggests that function f3 is challenging for RP algorithms and f4 is
easy among all convex quadratic functions with the same condition number and
trace.

The functions f3 and f4 are limit cases of these function classes and can be
considered as worst and best cases.

The quadratic functions attain their minimum function value at x∗ = 0n,
the all zero vector (f1(0n) = f3(0n) = f4(0n) = 0). The Rosenbrock function
is minimized at x∗ = 1n, with f2(1n) = 0.

In order to prohibit the tested algorithms from making use of the diagonal
structure of the Hessian matrices of f1, f3 and f4, we rotate the function domain
by generating random rotation matrices R with RRT = In and a shift parameter
xs ∼ N (0, In), thus leading to function instances of the form

f(R(x− xs)) .

We also apply the same transformation and shift to the initial iterate x0. This
procedure and/or the special structure of x∗. We use as initial iterate x0 = 1n
for the quadratic functions and x0 = 0n for f2.
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B.2 Algorithms

B.2.1 V-RP schemes

We implemented F-RP with fixed covariance Σ = In. This scheme is simply
referred to as RP. We also implemented two RHE schemes presented in this
paper, updateHessCorr and updateHessStore. The parameter setting for the
latter one can be found in Fig. 3 with m = 10. The choice of the parameter ε
does not influence the performance of the schemes on the quadratic functions.
We thus set it to ε = 1. For f4 we used ε = 10−6. For updateHessStore

we apply the updates from the storage every n-th iteration in random order,
starting after the n2-th iteration (as soon as enough data is collected). All RP
schemes have to be combined with an implementation of the line search oracle.
We tested three different implementations and present them here in increasing
order of function evaluations they consume.

ES: This scheme is also know as (1+1)-Evolution Strategy (ES). To perform
the line search, only one additional point along the chosen line is probed. The
scheme accepts the new point if the function value of the new point is lower than
the function value of the previous iterate. In order to ensure that a positive
fraction p is accepted on average we use an adaptive step size scheme (aSS) as
detailed in the procedure aSS in Figure 1 from [31] with parameters p = 0.27
and σ = 1.

Exact: By probing two additional points on the given line (three in total), the
exact minimizer can be computed if the function is quadratic (f1,f3,f4). For f2

this scheme may fail to report a better value but we observed in our experiments
that the quality of the guessed minimizer is sufficient.

Matlab: We use the built-in MATLAB routine fminunc.m from the optimiza-
tion toolbox [26] with optimset(’TolX’=0.01) as approximate line search. In
the present gradient-free setting fminunc.m uses a mixed cubic/quadratic poly-
nomial line search where the first three points bracketing the minimum are found
by bisection [26].

B.2.2 CMA-ES

The Evolution Strategy with Covariance Matrix Adaptation [10] (CMA-ES) is
one of the most popular and efficient schemes for derivative free optimization
on non-convex and noisy problems. New search points are sampled from a
multivariate normal distribution whose parameter are updated in each iteration.
The fundamental design principle used here is slightly different than for the V-
RP schemes. Instead of performing the updates on an estimation of the Hessian
(and then computing its inverse), the updates are performed directly on the
inverse directly. The CMA-ES scheme is augmented by an auxiliary variable
called evolution path that takes into account the correlation of successive means
taken over a finite horizon. This is similar in spirit to Rao-Blackwellization
techniques in Marko Chain Monte Carlo methods [2] and Polyak’s heavy ball
method in first-order optimization [23].
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Among the many different instances of CMA-ES, we consider here the one
that is the fastest scheme for quadratic functions known today. This scheme is
called the (1,4)-CMA-ES with mirrored sampling and sequential selection. We
also refer to [4] for a full description of this scheme and all parameter settings
used. The scale parameter is set to σ = 1 for our experiments. The code for the
(1,4)-CMA-ES scheme has been retrieved from http://coco.gforge.inria.fr/doku.php?id=bbob-2010-results.

B.2.3 Nesterov’s Random Gradient schemes

Nesterov [22] introduced a derivative-free optimization scheme that is very sim-
ilar to RP. Optimization is performed iteratively among randomly chosen lines.
The optimal step size is estimated by finite-difference estimation. This scheme
is called Random Gradient (RG) method. Its advantage over RP is that the
finite-difference calculation needs only one additional function evaluation, and
it is guaranteed to make progress in every iteration (opposed to the ES line
search). One disadvantage is that the RG method needs an estimate of the
curvature of the function which is not available in practice. For test purposes,
we always use the correct curvature of the objective function (parameter `) as
input to the RG scheme.

Similar to the accelerated gradient methods for convex optimization, an ac-
celerated version of the RG scheme is available [22]. This scheme also needs only
two function evaluation per iteration and shows superior theoretical convergence
properties [22].

B.2.4 Pattern Search

Pattern Search is a deterministic scheme that evaluates the objective function
in every iteration on 2n predefined points on a stencil. We use the built-in
MATLAB routine patternsearch from the Global Optimization Toolbox [26]
with parameters Cache=on, InitialMeshSize=1, TolMesh=1e-20, TolX=1e-
20, TolFun=1e-20.

B.2.5 Nelder-Mead

We use the built-in MATLAB routine fminsearch from the Optimization Tool-
box [26] which implements the classical Nelder-Mead (N-M) Down-Hill Simplex
algorithm [21]. We use the algorithm with parameters TolX=1e-20, TolFun=1e-
20.

B.2.6 NEWUOA

NEWUOA [24] is an iterative algorithm that builds a quadratic model of the
objective function. Steps are proposed by minimizing this model within a trust
region. When the quadratic model is updated, the new model interpolates the
objective function in npt points, typically npt=2n+1. We use the C implemen-
tation made available by M. Guilbert on http://www.inrialpes.fr/bipop/

people/guilbert/newuoa/newuoa.html. This code is based on the original
FORTRAN implementation of NEWUOA by Powell. We use the standard set-
ting npt=2n+ 1 and ρbeg = 1, ρend = 10−14/`.
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B.2.7 Implicit Filtering

Implicit filtering (IMFIL) is a hybrid of a Quasi-Newton and a VM scheme. The
gradients and Hessians are approximated by finite differences. We use the MAT-
LAB code by Kelly [15], available on http://www4.ncsu.edu/~ctk/imfil.html

with the setting smooth problem=1 and bscales= (1, 2−1, . . . , 2−100) to avoid
premature convergence.

B.3 Convergence on the function pair f3/f4

We test the convergence of all algorithms on f3 and f4 for dimension n = 20. We
performed 31 independent trials of the same experiment. We let the algorithms
run until either the accuracy 10−8 was successfully reached, or a budget of total
200n2 function evaluations (FES) was consumed. In addition to the number
of FES we also recorded the run time (in seconds) needed to perform a single
trial. All algorithms where executed on a single core. We report the number of
function evaluations performed by the algorithm to reduce the function value
by one order of magnitude.

We first focus on the results for function f1 as it presents a kind of worst-
case scenario for adaptive schemes. The data for the benchmark set is listed in
Table 6. Table 5 shows a subset of these data, neglecting non-adaptive schemes
as well as some combinations of V-RP and line search implementation. The
data in Table 5 are graphically depicted in Fig. 4. We observe that among the
successful algorithms (CMA-ES, V-RP ES, and V-RP Exact) CMA-ES needed
about a factor of 3.4 more FES to reach accuracy 10−9 than both V-RP schemes
but only needs half the run time. The other four algorithms (NEWUOA, IMFIL,
Nelder-Mead, Pattern search) only managed to reach accuracy 100 - 102 with
the same budget of FES. With the exception of Nelder-Mead their execution
time is exceeding the time of CMA-ES by a factor of 14–190.

We also observe that all seven tested algorithms make rapid progress at
the beginning (up to accuracy roughly 102). They then get either stuck or—
after a learning phase—resume fast convergence toward higher accuracy levels
(roughly 10−2-10−8). These phases are typical for these kind of algorithms (see
the discussion in Section C below).
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Figure 4: Reached accuracy vs. number of FES/n2 on f3 with parameter ` = 107 in
n = 20 dimensions (mean over 31 independent runs). See Tables 5 and 6. V-RP is
implemented with update scheme updateHessStore for two different implementations
of the line search (ES and Exact).

The empirical results on function f4 reveal several interesting features. NEWUOA,
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acc. NEWUOA IMFIL N-M Pattern CMA-
ES

V-RP
ES

V-RP
Exact

107 0.06 1.58 0.74 2.18 0.23 0.68 0.11
106 0.13 2.32 1.72 6.52 0.57 1.21 0.30
105 0.17 3.07 2.52 10.63 0.93 1.77 0.53
104 0.23 3.91 3.19 15.32 1.28 2.29 0.80
103 0.28 4.68 3.71 19.79 1.62 2.83 1.09
102 0.34 5.59 4.11 25.18 2.27 3.37 1.40
101 0.40 - 6.58 - 15.29 6.15 2.97
100 175.60 - - - 30.44 11.45 13.89
10−1 - - - - 45.58 13.75 17.52
10−2 - - - - 55.81 14.74 19.25
10−3 - - - - 62.74 15.68 20.07
10−4 - - - - 66.43 16.61 20.61
10−5 - - - - 69.65 17.49 21.11
10−6 - - - - 70.65 18.49 21.65
10−7 - - - - 71.81 19.42 22.17
10−8 - - - - 72.23 20.37 22.75

sec. 438.34 5711.35 10.70 1904.77 29.63 45.37 35.92

Table 5: Accuracy vs. number of FES/n2 on f3 with parameter ` = 107 in n = 20
dimensions (mean over 31 independent runs). A dash ‘-’ indicates that accuracy could
not be reached within a budget of 200n2 FES. V-RP is implemented with update
scheme updateHessStore for two different implementations of the line search (ES and
Exact). Average computation time of a single run on a single core CPU; the time until
the budget of 200n2 FES is exceeded or the time needed to reach accuracy 10−8.

CMA-ES, and V-RP all show faster convergence on this function compared to
f3 (in accordance with previous experiments [31]). These schemes also solve
the problem to high accuracy. All other algorithms show, however, reduced
performance on f4 when compared to f3 (see data in Tables 6 and 7). Both
Pattern Search and Nesterov’s schemes do not reach an accuracy below 105. RP
ES, IMFIL, and N-M need a considerably higher number of FES to reach an
accuracy of 103.

In summary, these results show that only adaptive schemes and, to some ex-
tent, NEWUOA, are competitive algorithms in the presence of ill-conditioning.
The results also suggest that the performance of popular methods such as Im-
plicit Filtering and Nelder-Mead (the standard derivative-free method in MAT-
LAB) are not suitable even for problems where only a few dimensions are not
on the same scale (such as f4).

B.4 Evaluating the power of adaptation

Given practical limitations on the available budget of function evaluations it is
natural to ask whether function evaluations should be rather spent on estimating
the Hessian or for direct function optimization. In order to evaluate the power
of adaptation we test the described algorithms on Rosenbrock’s function and the
following parametric set of functions with increasing curvature. We consider f1

with parameters ` = 10i for i = 0, . . . , 7. For i = 0 this function equals the
so-called sphere function f(x) = 1

2xTx. We report the average number of FES
needed to reach accuracy 10−8 on each function (for 31 independent trials). The
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acc. RP
ES

NEWUOA IMFIL N-M Pattern Nesterov
RG

Nesterov
Acc.

CMA-
ES

V-RP
(corr)

ES

V-RP
(corr)
Exact

V-RP
(corr)
matlab

V-RP
(store)

ES

V-RP
(store)
Exact

V-RP
(store)
matlab

107 0.10 0.06 1.58 0.74 2.18 0.36 0.27 0.23 0.72 0.19 0.35 0.68 0.11 0.22
106 0.25 0.13 2.32 1.72 6.52 0.90 0.92 0.57 1.27 0.61 1.28 1.21 0.30 0.74
105 0.40 0.17 3.07 2.52 10.63 1.47 2.54 0.93 1.80 0.93 2.08 1.77 0.53 1.37
104 0.55 0.23 3.91 3.19 15.32 2.04 3.91 1.28 2.30 1.24 2.88 2.29 0.80 1.97
103 0.71 0.28 4.68 3.71 19.79 2.60 5.05 1.62 2.80 1.55 3.59 2.83 1.09 2.64
102 0.88 0.34 5.59 4.11 25.18 3.18 - 2.27 3.37 1.84 4.51 3.37 1.40 3.49
101 - 0.40 - 6.58 - 3.92 - 15.29 17.93 11.47 32.47 6.15 2.97 12.42
100 - 175.60 - - - - - 30.44 34.11 44.37 86.42 11.45 13.89 30.24
10−1 - - - - - - - 45.58 40.75 52.29 101.82 13.75 17.52 36.26
10−2 - - - - - - - 55.81 45.26 59.92 113.60 14.74 19.25 39.83
10−3 - - - - - - - 62.74 48.28 65.66 121.34 15.68 20.07 41.49
10−4 - - - - - - - 66.43 50.45 69.75 127.00 16.61 20.61 42.54
10−5 - - - - - - - 69.65 52.16 72.68 131.63 17.49 21.11 43.62
10−6 - - - - - - - 70.65 53.72 74.87 135.02 18.49 21.65 44.86
10−7 - - - - - - - 71.81 54.99 76.78 137.87 19.42 22.17 46.00
10−8 - - - - - - - 72.23 56.15 78.39 140.34 20.37 22.75 47.10

sec. 30.77 438.34 5711.35 10.70 1904.77 18.26 22.68 29.63 16.83 18.65 85.60 45.37 35.92 521.82

Table 6: Reached accuracy vs. number of FES/n2 on f3 with parameter ` = 107

in n = 20 dimensions (mean over 31 independent runs). A dash ‘-’ indicates that
accuracy could not be reached withing a budget of 200n2 FES. See main text for
further information.

data of the full benchmark set are listed in Tables 8-15. Table 2 shows a subset
of algorithms including Nesterov’s accelerated RG scheme.

We observe that V-RP-ES (with updateHessStore and line search ES) out-
performs all algorithms for ` > 3. Nesterov’s non-adaptive accelerated RG
scheme is superior to V-RP only for the isotropic case ` = 0. IMFIL reaches
the target accuracy only for ` ≤ 3, but in this regime it is more efficient than
V-RP. NEWUOA is superior to V-RP for ` ≤ 3. For ` ≥ 4 NEWUOA needs
a rapidly increasing number of FES and can not reach the target accuracy for
` = 7. CMA-ES is superior for ` ≤ 3 and is outperformed by V-RP for ` > 3.
Nelder-Mead fails for all settings to reach the target accuracy. Pattern search is
only successful for ` ≤ 1 and needs at least a factor of 10 times more FES than
all other algorithms.

Finally, only the V-RP algorithms, CMA-ES, and NEWUOA are able to
solve Rosenbrock’s function f2 in n = 20 dimensions (see Table 3 for all data).
Surprisingly, the NEWUOA outperforms both CMA-ES and all V-RP variants.
None of the non-adaptive algorithms shows competitive performance. Pattern
search and standard RP with ES line search reach an accuracy of 101 and 100,
respectively. Implicit filtering, Nelder-Mead, and Nesterov’s schemes even fail
to get an accuracy of 101.

In summary, the empirical results from the presented benchmark clearly
show the superiority of adaptive schemes such as V-RP and CMA-ES.

C RHE: llustrative numerical example

We now illustrate the typical convergence behavior of Variable Metric Ran-
dom Pursuit on the challenging convex quadratic function f3, introduced in
Section B.1. This function has two different scales that need to be learned.
We use parameter ` = 107. The ratio of largest to smallest eigenvalue of
the Hessian (i.e. the condition number) is 107, and the global minimum of
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acc. RP
ES

NEWUOA IMFIL N-M Pattern Nesterov
RG

Nesterov
Acc.

CMA-
ES

V-RP
(corr)

ES

V-RP
(corr)
Exact

V-RP
(corr)
matlab

V-RP
(store)

ES

V-RP
(store)
Exact

V-RP
(store)
matlab

106 0.01 0.05 1.26 0.29 0.01 0.35 0.25 0.01 0.02 0.01 0.02 0.02 0.01 0.02
105 0.05 0.08 4.45 0.35 0.71 0.94 0.42 1.06 0.10 0.10 0.08 0.11 0.03 0.20
104 8.54 1.69 37.59 4.33 - - - 4.97 3.79 2.48 5.08 3.99 2.41 4.88
103 19.20 4.03 144.48 72.65 - - - 6.92 7.40 5.82 11.90 7.49 5.65 12.21
102 29.92 6.63 - - - - - 8.50 10.20 9.08 18.22 10.59 9.16 20.04
101 41.29 8.95 - - - - - 10.11 12.93 12.54 24.20 12.52 12.43 26.54
100 - 11.78 - - - - - 14.99 21.38 31.35 45.85 13.64 16.29 33.48
10−1 - 51.82 - - - - - 18.59 32.83 43.32 72.59 14.59 18.43 37.34
10−2 - 82.25 - - - - - 19.48 36.66 51.46 89.86 15.52 19.19 38.63
10−3 - 104.93 - - - - - 20.03 38.28 54.49 97.54 16.53 19.72 39.72
10−4 - 113.03 - - - - - 20.56 39.45 55.86 100.07 17.49 20.25 40.86
10−5 - 117.40 - - - - - 21.10 40.56 56.95 102.38 18.43 20.80 41.98
10−6 - 120.75 - - - - - 21.61 41.53 57.76 104.36 19.35 21.30 43.15
10−7 - 123.84 - - - - - 22.13 42.52 58.49 105.94 20.34 21.82 44.24
10−8 - 126.26 - - - - - 22.60 43.55 59.24 107.37 21.25 22.36 45.36

sec. 30.76 274.79 7976.66 17.38 1926.26 17.36 22.94 8.90 13.13 13.86 85.21 46.66 37.94 528.10

Table 7: Reached accuracy vs. number of FES/n2 on f4 with parameter ` = 107

in n = 20 dimensions (mean over 31 independent runs). A dash ‘-’ indicates that
accuracy could not be reached within a budget of 200n2 FES. See main text for further
information.

acc. RP
ES

NEWUOA IMFIL N-M Pattern Nesterov
RG

Nesterov
Acc.

CMA-
ES

V-RP
(corr)

ES

V-RP
(corr)
Exact

V-RP
(corr)
matlab

V-RP
(store)

ES

V-RP
(store)
Exact

V-RP
(store)
matlab

101 0.07 0.06 0.23 0.42 3.16 0.08 0.07 0.24 0.19 0.11 0.16 0.21 0.10 0.18
100 0.35 0.15 0.66 5.10 10.06 0.45 0.44 0.59 1.13 0.64 1.14 1.14 0.57 1.02
10−1 0.67 0.22 1.09 46.34 16.86 0.87 0.86 0.95 2.04 1.19 2.28 2.06 1.10 2.09
10−2 0.99 0.30 1.51 - 23.58 1.35 1.29 1.30 2.98 1.73 3.38 3.02 1.64 3.14
10−3 1.32 0.37 1.96 - 30.87 1.85 1.72 1.66 3.90 2.31 4.44 3.93 2.19 4.16
10−4 1.64 0.44 2.35 - 37.27 2.35 2.17 2.03 4.88 2.90 5.61 4.81 2.71 5.26
10−5 1.97 0.51 2.80 - 44.71 2.86 2.62 2.39 5.80 3.46 6.80 5.78 3.24 6.42
10−6 2.32 0.58 3.23 - 52.74 3.37 3.05 2.76 6.75 3.99 7.94 6.69 3.79 7.64
10−7 2.66 0.64 3.66 - 59.56 3.88 3.53 3.13 7.67 4.54 9.08 7.65 4.30 8.73
10−8 3.02 0.70 4.08 - 66.35 4.40 3.96 3.51 8.63 5.08 10.28 8.57 4.87 9.89

sec. 1.15 0.26 28.37 16.94 1292.33 17.88 NaN 1.50 2.25 1.36 44.50 21.90 2.23 135.19

Table 8: Reached accuracy vs. number of FES/n2 on f1 with parameter ` = 100

in n = 20 dimensions (mean over 31 independent runs). A dash ‘-’ indicates that
accuracy could not be reached within a budget of 200n2 FES. See main text for further
information.

acc. RP
ES

NEWUOA IMFIL N-M Pattern Nesterov
RG

Nesterov
Acc.

CMA-
ES

V-RP
(corr)

ES

V-RP
(corr)
Exact

V-RP
(corr)
matlab

V-RP
(store)

ES

V-RP
(store)
Exact

V-RP
(store)
matlab

101 0.23 0.08 0.42 1.42 12.38 0.73 0.49 0.43 0.73 0.43 0.72 0.75 0.30 0.49
100 0.54 0.20 0.98 22.41 20.49 2.00 1.20 0.79 1.79 1.14 2.10 1.86 0.90 1.49
10−1 0.91 0.27 1.57 - 30.73 3.53 2.26 1.17 2.78 1.91 3.51 2.89 1.51 2.66
10−2 1.27 0.36 2.17 - 41.19 5.26 3.42 1.54 3.79 2.60 4.88 3.83 2.08 3.77
10−3 1.61 0.43 2.97 - 51.40 7.01 4.38 1.92 4.70 3.21 6.19 4.79 2.60 4.84
10−4 1.97 0.51 3.93 - 61.55 8.84 5.39 2.30 5.68 3.83 7.47 5.71 3.12 5.98
10−5 2.31 0.59 4.93 - 72.39 10.65 6.53 2.69 6.63 4.45 8.63 6.62 3.65 7.12
10−6 2.63 0.67 5.91 - 82.77 12.55 7.58 3.07 7.59 5.01 9.78 7.56 4.18 8.19
10−7 2.98 0.74 6.75 - 93.21 14.48 8.64 3.45 8.60 5.59 10.99 8.47 4.69 9.39
10−8 3.35 0.81 7.39 - 103.61 16.42 9.77 3.83 9.53 6.14 12.15 9.35 5.20 10.48

sec. 1.09 0.27 42.87 16.93 1652.45 18.72 22.82 1.64 2.26 1.47 32.35 23.23 2.60 131.40

Table 9: Reached accuracy vs. number of FES/n2 on f1 with parameter ` = 101

in n = 20 dimensions (mean over 31 independent runs). A dash ‘-’ indicates that
accuracy could not be reached within a budget of 200n2 FES. See main text for further
information.
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acc. RP
ES

NEWUOA IMFIL N-M Pattern Nesterov
RG

Nesterov
Acc.

CMA-
ES

V-RP
(corr)

ES

V-RP
(corr)
Exact

V-RP
(corr)
matlab

V-RP
(store)

ES

V-RP
(store)
Exact

V-RP
(store)
matlab

102 0.10 0.06 0.53 0.61 4.41 0.55 0.35 0.35 0.35 0.13 0.28 0.33 0.12 0.19
101 0.54 0.21 1.25 5.11 25.12 4.13 2.46 0.90 1.82 1.18 2.24 1.83 0.83 1.42
100 1.42 0.44 2.14 65.80 50.68 14.13 5.55 1.51 3.40 2.53 4.77 3.31 1.85 3.53
10−1 2.50 0.70 3.20 - 78.55 28.72 9.23 2.15 4.75 3.98 7.39 4.21 2.93 5.55
10−2 3.68 0.94 4.47 - 108.86 45.79 12.95 2.83 5.88 5.17 9.69 5.12 3.91 7.26
10−3 4.91 1.17 5.91 - - 64.04 16.96 3.41 6.98 6.26 11.70 5.95 4.68 8.67
10−4 6.17 1.40 7.03 - - 83.27 20.92 3.99 8.07 7.22 13.33 6.94 5.37 10.00
10−5 7.42 1.62 7.55 - - 102.76 24.94 4.55 8.99 8.05 14.77 7.89 5.99 11.19
10−6 8.72 1.83 7.83 - - 122.68 29.09 5.05 9.96 8.80 16.18 8.78 6.56 12.37
10−7 10.10 2.04 8.07 - - 142.71 33.35 5.56 10.88 9.48 17.55 9.68 7.14 13.54
10−8 11.50 2.22 8.25 - - 162.88 37.54 6.06 11.80 10.12 18.85 10.61 7.70 14.62

sec. 3.37 0.50 45.49 16.30 1863.95 17.80 23.71 2.30 2.67 2.02 43.35 28.89 10.28 383.55

Table 10: Reached accuracy vs. number of FES/n2 on f1 with parameter ` = 102

in n = 20 dimensions (mean over 31 independent runs). A dash ‘-’ indicates that
accuracy could not be reached within a budget of 200n2 FES. See main text for further
information.

acc. RP
ES

NEWUOA IMFIL N-M Pattern Nesterov
RG

Nesterov
Acc.

CMA-
ES

V-RP
(corr)

ES

V-RP
(corr)
Exact

V-RP
(corr)
matlab

V-RP
(store)

ES

V-RP
(store)
Exact

V-RP
(store)
matlab

103 0.03 0.06 0.56 0.33 0.56 0.27 0.22 0.14 0.12 0.05 0.08 0.10 0.05 0.07
102 0.38 0.17 2.30 1.95 27.54 3.63 3.17 0.97 1.27 0.81 1.52 1.17 0.58 0.97
101 2.12 0.61 4.64 28.07 - 27.79 13.60 2.27 3.81 3.15 4.99 3.20 2.26 4.06
100 6.65 1.38 6.51 - - 115.70 24.95 3.76 6.45 6.36 10.71 4.15 4.80 8.52
10−1 13.08 2.18 8.59 - - - 39.27 5.06 8.38 8.97 15.30 5.05 5.77 10.64
10−2 20.44 2.90 9.11 - - - 51.70 6.25 9.92 10.84 18.93 6.02 6.32 11.60
10−3 28.33 3.73 9.42 - - - 65.28 7.29 11.22 12.38 21.99 6.94 6.86 12.61
10−4 36.81 4.42 9.66 - - - 79.90 8.30 12.31 13.62 24.44 7.87 7.36 13.78
10−5 45.38 5.14 9.85 - - - 92.56 9.13 13.33 14.74 26.33 8.78 7.88 14.89
10−6 54.13 5.70 10.13 - - - 107.68 9.89 14.24 15.71 28.09 9.74 8.36 15.99
10−7 63.07 6.24 10.41 - - - 121.35 10.59 15.23 16.61 29.74 10.67 8.86 17.06
10−8 72.09 6.74 10.60 - - - 138.25 11.20 16.15 17.42 31.22 11.60 9.38 18.21

sec. 23.01 1.61 65.92 18.51 1843.56 19.05 21.96 4.28 4.02 3.09 48.35 31.62 19.01 596.88

Table 11: Reached accuracy vs. number of FES/n2 on f1 with parameter ` = 103

in n = 20 dimensions (mean over 31 independent runs). A dash ‘-’ indicates that
accuracy could not be reached within a budget of 200n2 FES. See main text for further
information.

acc. RP
ES

NEWUOA IMFIL N-M Pattern Nesterov
RG

Nesterov
Acc.

CMA-
ES

V-RP
(corr)

ES

V-RP
(corr)
Exact

V-RP
(corr)
matlab

V-RP
(store)

ES

V-RP
(store)
Exact

V-RP
(store)
matlab

104 0.01 0.03 0.64 0.23 0.01 0.14 0.11 0.02 0.04 0.02 0.03 0.04 0.02 0.04
103 0.23 0.12 1.81 1.13 7.74 2.64 2.84 0.93 0.84 0.49 0.67 0.81 0.30 0.61
102 2.00 0.50 7.75 5.61 - 26.29 31.08 2.97 2.95 2.32 3.83 3.06 1.66 3.36
101 11.98 1.80 58.45 71.09 - - 69.18 6.13 7.71 7.08 12.08 4.28 5.48 9.98
100 38.13 4.36 - - - - 111.78 8.69 11.54 12.30 23.04 5.15 6.22 11.36
10−1 79.47 7.32 - - - - 160.50 10.91 14.12 16.49 30.71 6.06 6.70 12.36
10−2 127.32 9.78 - - - - - 12.92 15.83 19.27 36.45 6.92 7.21 13.37
10−3 - 12.06 - - - - - 14.31 17.16 21.34 39.90 7.83 7.74 14.39
10−4 - 14.10 - - - - - 15.63 18.35 23.05 42.88 8.72 8.23 15.54
10−5 - 15.80 - - - - - 16.66 19.40 24.38 45.28 9.65 8.76 16.72
10−6 - 17.25 - - - - - 17.42 20.40 25.50 47.26 10.54 9.30 17.83
10−7 - 18.60 - - - - - 18.01 21.36 26.51 48.93 11.49 9.81 18.92
10−8 - 20.03 - - - - - 18.56 22.31 27.41 50.54 12.39 10.32 20.06

sec. 35.37 5.24 8588.05 17.96 1853.12 17.40 21.82 7.07 5.21 5.08 58.95 29.18 23.94 624.25

Table 12: Reached accuracy vs. number of FES/n2 on f1 with parameter ` = 104

in n = 20 dimensions (mean over 31 independent runs). A dash ‘-’ indicates that
accuracy could not be reached within a budget of 200n2 FES. See main text for further
information.
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acc. RP
ES

NEWUOA IMFIL N-M Pattern Nesterov
RG

Nesterov
Acc.

CMA-
ES

V-RP
(corr)

ES

V-RP
(corr)
Exact

V-RP
(corr)
matlab

V-RP
(store)

ES

V-RP
(store)
Exact

V-RP
(store)
matlab

105 0.01 0.01 0.76 0.14 0.01 0.06 0.06 0.01 0.02 0.02 0.02 0.02 0.01 0.02
104 0.16 0.09 1.59 0.86 2.87 2.01 2.21 0.71 0.62 0.27 0.44 0.60 0.20 0.33
103 1.19 0.33 5.95 2.83 59.55 20.91 79.53 2.87 2.38 1.59 2.79 2.19 1.30 2.58
102 11.48 1.44 54.07 18.63 - - - 7.18 7.16 6.79 11.99 4.77 5.56 11.23
101 88.03 5.25 - - - - - 12.53 14.00 15.21 29.17 5.74 7.58 14.94
100 - 14.35 - - - - - 16.35 18.34 22.97 44.82 6.66 8.16 16.07
10−1 - 22.55 - - - - - 19.91 21.17 27.41 53.49 7.57 8.68 17.21
10−2 - 29.21 - - - - - 21.87 22.87 30.26 58.76 8.52 9.20 18.31
10−3 - 34.72 - - - - - 23.54 24.24 32.46 62.10 9.45 9.75 19.39
10−4 - 38.96 - - - - - 24.50 25.42 34.22 64.89 10.34 10.25 20.53
10−5 - 42.51 - - - - - 25.06 26.47 35.58 67.16 11.22 10.75 21.68
10−6 - 45.76 - - - - - 25.52 27.47 36.76 69.11 12.11 11.26 22.88
10−7 - 48.49 - - - - - 26.03 28.42 37.84 70.90 13.05 11.76 24.03
10−8 - 51.14 - - - - - 26.45 29.37 38.76 72.66 14.01 12.33 25.13

sec. 34.46 50.67 8273.24 16.28 1863.09 19.17 21.96 10.08 6.69 7.15 66.13 36.11 26.35 569.45

Table 13: Reached accuracy vs. number of FES/n2 on f1 with parameter ` = 105

in n = 20 dimensions (mean over 31 independent runs). A dash ‘-’ indicates that
accuracy could not be reached within a budget of 200n2 FES. See main text for further
information.

acc. RP
ES

NEWUOA IMFIL N-M Pattern Nesterov
RG

Nesterov
Acc.

CMA-
ES

V-RP
(corr)

ES

V-RP
(corr)
Exact

V-RP
(corr)
matlab

V-RP
(store)

ES

V-RP
(store)
Exact

V-RP
(store)
matlab

106 0.01 0.01 0.87 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02
105 0.10 0.08 1.57 0.65 2.37 1.76 1.57 0.45 0.60 0.19 0.26 0.56 0.11 0.23
104 0.77 0.27 4.51 1.89 31.90 17.38 - 2.20 1.93 1.07 2.26 1.98 0.80 1.79
103 8.45 1.15 42.37 5.98 - 170.48 - 6.29 6.40 4.41 10.98 5.08 4.26 10.04
102 79.40 5.11 - 35.85 - - - 13.25 13.16 12.54 33.67 7.20 9.16 20.72
101 - 19.53 - - - - - 21.68 20.56 24.92 58.73 8.21 10.67 24.05
100 - 37.01 - - - - - 26.47 25.09 33.63 74.31 9.09 11.38 25.24
10−1 - 52.61 - - - - - 29.18 27.85 38.78 83.25 9.99 11.92 26.35
10−2 - 65.85 - - - - - 31.09 29.72 41.81 88.14 10.87 12.41 27.41
10−3 - 74.92 - - - - - 31.90 31.25 43.96 91.83 11.80 12.95 28.41
10−4 - 82.32 - - - - - 32.64 32.40 45.62 94.67 12.70 13.45 29.53
10−5 - 89.27 - - - - - 33.08 33.45 46.93 97.09 13.67 13.97 30.68
10−6 - 95.14 - - - - - 33.48 34.41 48.12 99.09 14.60 14.49 31.81
10−7 - 100.65 - - - - - 34.01 35.32 49.17 100.86 15.57 14.99 32.99
10−8 - 105.19 - - - - - 34.41 36.34 50.05 102.39 16.51 15.52 34.21

sec. 30.90 194.63 7987.02 16.29 1888.71 17.42 22.54 12.99 8.47 9.21 76.31 40.34 29.91 547.15

Table 14: Reached accuracy vs. number of FES/n2 on f1 with parameter ` = 106

in n = 20 dimensions (mean over 31 independent runs). A dash ‘-’ indicates that
accuracy could not be reached within a budget of 200n2 FES. See main text for further
information.
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acc. RP
ES

NEWUOA IMFIL N-M Pattern Nesterov
RG

Nesterov
Acc.

CMA-
ES

V-RP
(corr)

ES

V-RP
(corr)
Exact

V-RP
(corr)
matlab

V-RP
(store)

ES

V-RP
(store)
Exact

V-RP
(store)
matlab

106 0.08 0.07 1.58 0.56 0.95 1.44 0.96 0.30 0.48 0.11 0.13 0.52 0.12 0.15
105 0.54 0.23 3.85 1.52 17.25 14.66 - 1.84 1.48 0.81 1.53 1.53 0.59 1.36
104 6.50 0.94 21.60 4.43 - 142.72 - 5.64 4.94 3.52 6.83 4.53 3.14 7.41
103 66.49 4.03 - 17.45 - - - 11.49 12.13 12.30 28.55 8.04 9.57 22.97
102 - 17.57 - 67.45 - - - 20.94 19.79 24.87 59.06 9.84 12.91 32.27
101 - 42.19 - - - - - 30.81 26.41 37.43 91.47 10.91 14.50 36.40
100 - 82.48 - - - - - 36.20 31.75 46.10 110.00 11.89 15.19 37.98
10−1 - 113.01 - - - - - 38.59 35.23 50.36 120.59 12.81 15.72 39.09
10−2 - 133.34 - - - - - 40.11 37.23 53.69 126.24 13.78 16.25 40.10
10−3 - 149.80 - - - - - 40.80 38.63 56.18 129.87 14.74 16.73 41.09
10−4 - 165.02 - - - - - 41.22 39.90 57.91 132.38 15.65 17.27 42.16
10−5 - 177.24 - - - - - 41.62 40.92 59.22 134.52 16.56 17.81 43.24
10−6 - - - - - - - 42.01 41.92 60.42 136.33 17.49 18.31 44.39
10−7 - - - - - - - 42.41 42.92 61.56 137.85 18.43 18.88 45.66
10−8 - - - - - - - 42.82 43.94 62.44 139.45 19.40 19.44 46.85

sec. 30.98 447.57 7705.72 17.72 1861.84 18.08 22.77 16.30 10.45 11.96 74.15 45.21 34.37 519.52

Table 15: Reached accuracy vs. number of FES/n2 on f1 with parameter ` = 107

in n = 20 dimensions (mean over 31 independent runs). A dash ‘-’ indicates that
accuracy could not be reached within a budget of 200n2 FES. See main text for further
information.

f3 is at x∗ = 0n (where 0n is the all-zeros vector) with f3(x∗) = 0. We
conduct 51 runs of V-RP in n = 20 dimensions. The initial conditions are
x0 = (1, . . . , 1, 1/

√
`, . . . , 1/

√
`)T , B0 = 1

2` · In. The two VM update schemes
updateHessCorr and updateHessStore (see Fig. 3) are tested with the setting
ε = 1 for both schemes. The updateHessStore scheme reuses samples from the
storage S in every n-th iteration. We here report the evolution of the mean,
maximum, and minimum function value vs. number of iterations (#ITS). We
also calculate and report the evolution of the derived convergence factor %̂ from
Thm. 2.
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Figure 5: Convergence of V-RP on f3 for updateHessCorr (blue/solid) and
updateHessStore (red/dashed). Parameter ` = 107 in n = 20 dimensions. Upper
panel: Mean and max/min (grey) function values vs. #ITS over 51 runs. Lower
Panel: Mean and max/min (grey) convergence factor %̂ vs. #ITS over 51 runs. Re-
spective upper bounds (black/dash-dotted). See main text for further information.

On quadratic functions, a typical V-RP optimization trajectory (see [17, 31]
for several examples) shows three distinct phases of convergence in function val-
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ues: (i) a first short phase of rapid improvement, (ii) a metric learning phase
with only marginal progress in function decrease, and (iii) a final rapid decrease
in function value. In the present experiments we chose the initial iterate x0

such as to minimize the first phase. This allows a clearer quantification of the
length of the adaptation phase. We see that the adaptation phase lasts for
roughly 5n2 iterations in case of updateHessStore and 15-18n2 iterations for
updateHessCorr. We also visualize the derived upper bounds on the conver-
gence factor (see Remark 1) in the lower panel of Fig. 5. For updateHessCorr

the curve is plotted using b = 1, and for updateHessStore using c̃ = 1.5. We
see that the shape of both curves resembles the observed data. However, in
both cases the theoretical bounds overestimate the empirically observed curves
(“shifted” to the right). In the upper panel of Fig. 5 we depict the theoretical
derived upper bound on the function value (Thm. 2). For updateHessStore the
shape of this curve well matches the observed convergence. For updateHessCorr
we see that the empirically observed phase transition between phase (ii) and (iii)
occurs more smoothly than predicted by the theoretical bound.
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Figure 6: Evolution of the spectrum of Σ = B−1
k for VM scheme updateHessCorr on

f3. Eigenvalues vs. # ITS for 1 run. Parameter ` = 107 in n = 20 dimensions. Left
two panels with initial setting B0 = `

2
In, right panel with B0 = In. See main text for

further information.

We also illustrate the evolution of the spectrum of the estimated inverse
Hessian Σ = B−1

k in Fig. 6 for one run with update scheme updateHessCorr.
At the beginning all eigenvalues are close to 2

` , as B−1
0 = 2

` In (left panel).
Then, about half of the eigenvalues start to increase up to 1, the other half
decreases to 1

` . We see that the large eigenvalues of Σ (or correspondingly the
small eigenvalues of H) are more difficult to approximate. This takes up to 16-
18n2 iterations. In the right panel we depicted another run with initial matrix
Σ = B−1

0 = In. At the beginning all eigenvalues are equal to 1. Due to the
nature of the VM update scheme (rank one updates), at most one eigenvalue
can become different from 1 in every iteration. Thus it takes exactly n = 20
iterations until all eigenvalues are between 10−7 and 10−5. From this moment,
the situation is similar to the experiment in the left two panels with B0 = `

2In.
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