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Abstract

We consider the fundamental problem of maximizing a general quadratic function
over an ellipsoidal domain, also known as the trust region problem. We give the first
provable linear-time (in the number of non-zero entries of the input) algorithm for ap-
proximately solving this problem. Specifically, our algorithm returns an ǫ-approximate
solution in time Õ(N/

√
ǫ), where N is the number of non-zero entries in the input.

This matches the runtime of Nesterov’s accelerated gradient descent, suitable for the
special case in which the quadratic function is concave, and the runtime of the Lanczos
method which is applicable when the problem is purely quadratic.

1 Introduction

Perhaps the most elementary quadratic optimization problem is that of maximizing a quadratic
function over the unit ball. This is precisely the trust region problem, or formally:

maximize x⊤Ax+ 2b⊤x

subject to ‖x‖2 ≤ 1 ,
(1)

where A ∈ R
n×n is an arbitrary n× n symmetric (possibly indefinite) matrix and b ∈ R

n.
The trust region problem has numerous applications in optimization, where trust re-

gion methods (Conn et al., 2000) are among the most empirically successful techniques for
solving nonlinear optimization problems. In these methods, that enjoy strong convergence
properties, at each iteration of the algorithm a quadratic approximation of the objective
function is minimized over a ball, called the trust region. Trust region problems are also
useful in combinatorial optimization (Busygin, 2006), least-squares problems (Zhang et al.,
2010), constrained eigenvalue problems (Gander et al., 1989), and more.

Despite being non-convex, the trust region problem has been shown to exhibit strong
duality properties and is known to be solvable in polynomial time (e.g., Ben-Tal and Teboulle
1996; Ye and Zhang 2003). More specifically, it can be shown to be equivalent to more
complex, albeit convex, semidefinite programming (SDP) optimization problems that can
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be solved using interior-point methods in polynomial time (Nesterov et al., 1994; Alizadeh,
1995). However, the worst-case complexity of current interior-point based solvers for SDP
problems is a large polynomial, and they are inefficient in exploiting sparsity of the data. As
a consequence, this approach not practical for large-scale problems.

On the other hand, the close connections between the trust region problem and eigen-
value problems suggest that more efficient trust region algorithms should exist. Indeed, if
the problem is purely quadratic, i.e., when b = 0, then the trust region problem reduces to
the fundamental maximal eigenvector problem, that can be approximated in linear time via
the well-known Power and Lanczos methods. This observation has led authors in the opti-
mization and the numerical analysis communities to develop efficient, matrix-free algorithms
that are based solely on matrix-vector products. Notable examples are the dual-based algo-
rithms of Moré and Sorensen (1983), Rendl and Wolkowicz (1997) and Sorensen (1997), the
generalized Lanczos trust-region method of Gould et al. (1999), and the more modern ad-
vancements of Rojas et al. (2001); Erway and Gill (2009); Erway et al. (2009); Gould et al.
(2010). However, while being provably convergent in most cases, the runtime evaluation of
these algorithms is essentially empirical and lacks formal guarantees. To the best of our
knowledge, to date there is no formal evidence that the trust region problem can be solved
in linear time (in the worst case), as the closely-related maximal eigenvalue problem.

The main hurdle faced by most previous methods is a certain case in which numerical
difficulties arise, so-called the “hard case” (Moré and Sorensen, 1983), and most research in
the last two decades on the trust region problem focuses on addressing this issue. This phe-
nomenon occurs when the linear component vector b is nearly orthogonal to the eigenspace
of the smallest eigenvalue of A, and seems to be the reason for the lack of provable worst-case
convergence bounds for the trust region problem.

Our contribution. In this paper we show that the additional linear term and the non-
convexity of the problem do not add to its complexity: we devise a novel linear-time algorithm
for approximating the trust region problem that has, up to logarithmic terms, the same worst-
case time complexity of a single maximal eigenvalue computation. Our approach reduces the
trust region problem into a series of eigenvalue computations, thus it is able to exploit data
sparsity and runs in time linear in the number of non-zero entries of the input. In the specific
case where the problem is convex (i.e., when A is negative semidefinite), the same complexity
guarantees can be obtained by applying Nesterov’s accelerated gradient descent (Nesterov,
1983) to the problem; thus, our approach can be seen as an analog of the latter algorithm
to the general non-convex case.

Our approach is based on an SDP relaxation of a feasibility version of the trust region
problem. While SDP relaxations are already standard for this problem (e.g., Rendl and Wolkowicz
1997; Ye and Zhang 2003), our approach uses a specific form of SDP that can be approx-
imated quickly via eigenvalue computations and does not require us to use interior-point
solvers. Another important feature of our relaxation is that it admits an efficient and accu-
rate rounding procedure; that is, given a matrix solution to the SDP we are able to extract
an approximate vector solution to the original trust region problem of almost the same qual-
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ity. This rounding procedure allows us to avoid numerical problems and complications that
exist in previous approaches, which occur for certain configurations of the eigenvalues of A,
namely the “hard case” mentioned above.

At the heart of our approach is an efficient, linear-time solver for the SDP relaxation.
This solver exploits the special structure of the dual problem, which is essentially a one-
dimensional problem for which bisection techniques can be applied. Each dual step of this
algorithm, that converges in a logarithmic number of iterations, amounts to a single approxi-
mate eigenvalue computation. The major technical difficulty that results from working in the
dual, is in obtaining a primal solution from the dual iterations. To this end, we employ a tech-
nique reminiscent of the “ellipsoid against hope” algorithm (Papadimitriou and Roughgarden,
2008), used by Arora et al. (2005) in the context of approximate semi-definite programming,
for recovering a primal solution by solving a small linear program formed by the dual iterates.

2 Setup and Statement of Results

In this section we formalize the setting and state our main results. We shall describe our
algorithm and results in a slightly more general setting, that include optimization problems
of the form:

maximize x⊤Ax+ 2b⊤x

subject to ‖x‖2M ≤ 1 ,
(2)

in which the optimization domain is an ellipsoidal set, described by a general norm constraint
‖x‖M ≤ 1. Here, ‖x‖M =

√
x⊤Mx is a norm induced by a positive definite matrixM ∈ R

n×n.
We note that the optimal solution v⋆ to this problem is necessarily non-negative, as the
objective function equals zero for x = 0 and the value at the optimum can only be larger.

For our bounds, we use the following notation. We let

λ = max {2(‖A‖2 + ‖b‖), ‖M‖2 , 1} ,

µ = min {λmin(M), 1} ,

where ‖·‖ is the Euclidean vector norm, the matrix norm ‖·‖2 is the spectral norm, and
λmin(·) and λmax(·) refer to the minimal and maximal eigenvalues of a matrix. We refer to
the ratio κ = λ/µ as the “condition number” of the problem1. The objective is λ-Lipschitz,
so the optimal value v⋆ lies in the interval [0, λ]. For our runtime results, we also let N be
an upper bound over the number of non-zero entries in the matrices A and M , and assume
without loss of generality that N ≥ n.

As mentioned earlier, our goal is to reduce the approximation of problem (2) in the general
case to a series of approximate eigenvalue computations, and thereby obtain an algorithm
that runs in time linear in the number of non-zero entries N in the matrices A and M . To
this end, we formally define the notion of an approximate eigenvalue oracle.

1Notice that this condition number can be approximated in linear time (see Section 4.1).
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Definition 1. An approximate eigenvalue oracle is a randomized procedure that given a
matrix A ∈ R

n×n and parameters ǫ, δ > 0, with probability at least 1 − δ returns a vector
x ∈ R

n such that x⊤Ax ≥ λmax(A)− ǫ.

An approximate eigenvalue oracle can be implemented to run in linear time via the
Lanczos method. For completeness, this is formally shown in Section 4.1.

Our algorithm solves the equivalent feasibility problem

x⊤Ax+ 2b⊤x ≥ c + ǫ/κ

‖x‖2M ≤ 1− ǫ/κ ,
(3)

with c ∈ [0, λ]. Indeed, we can reduce the task of ǫ-approximating the trust region problem
to (3) via a binary search over the optimum v⋆ (incurring an additional log-factor to the
running time), with c being our current guess of v⋆. Since ǫ/κ ≤ ǫ, tightening the first
constraint by ǫ/κ only harms the approximation by a constant factor. Note that we have also
relaxed the second constraint by ǫ/κ, but this only shifts the optimal solution by an Euclidean
distance of at most (1/µ)ǫ/κ, which in turn translates to an additional (λ/µ)ǫ/κ = ǫ bias in
the objective value (since the objective function is λ-Lipschitz).

More specifically, the algorithm we describe approximately solves (3), in the sense that
it either correctly declares that the problem is infeasible or finds a vector x ∈ R

n such that

x⊤Ax+ 2b⊤x ≥ c

‖x‖2M ≤ 1 .
(4)

The main result of this manuscript is the following.

Theorem 2. Given an approximate eigenvalue oracle and parameters ǫ, δ > 0, with proba-
bility at least 1− δ (over the randomization of the oracle) Algorithm 1 below returns a vector
x ∈ R

n for which (4) holds or correctly declares that (3) is infeasible. The algorithm invokes
the oracle O(log(κ/ǫ)) times and can be implemented to run in total Õ(N

√

κ/ǫ) time2.

A proof of the theorem is provided in Section 3.1.

3 The Algorithm

In this section we describe our linear-time algorithm for the feasibility problem (1), which is
summarized in Algorithm 1.

SDP relaxation. The first step in our approach is to relax the feasibility problem (3) to
the following SDP program:

Ai •X ≥ ǫ′/2 (i = 1, 2),
X ∈ Kn+1 ,

(6)

2Throughout, we use the Õ notation to hide constant and poly-logarithmic factors.
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Algorithm 1 TrustRegion (A, b,M, ǫ)

input A,M ∈ R
n×n, b ∈ R

n and ǫ > 0
output a vector x ∈ R

n satisfying (4), or infeasibility of (3)

1: let ǫ′ = ǫ/2κ
2: define the (n+ 1)× (n + 1) matrices

A1 =
1

2κ
·
(

−c b⊤

b A

)

, A2 =
1

2κ
·
(

1 0
0 −M

)

(5)

3: invoke SolveSDP(A1, A2, ǫ
′/2) that returns X =

∑r

i=1 xix
⊤
i as output

4: if SolveSDP returned “infeasible” then

5: conclude that (3) is infeasible
6: else

7: invoke SZRotation(A1, X) that returns X =
∑r

i=1 yiy
⊤
i as output

8: find a vector y ∈ {y1, y2, . . . , yr} for which y⊤A2y ≥ ǫ′/4r
9: let α = y(1) be the first entry of y and let ỹ = (y(2), y(3), . . . , y(n+ 1))
10: return x = ỹ/α
11: end if

with A1, A2 given in Eq. (5), ǫ′ = ǫ/κ and

Kn =
{

X ∈ R
n×n : X � 0, tr(X) ≤ 1

}

being the set of all n × n positive semidefinite matrices with trace at most one. Here and
henceforth, we use the notation A • X = trace(A⊤X) to denote dot-products of matrices.
To see that this is indeed a relaxation, note that given any feasible solution x to (3), the
rank-one matrix X = 1

2
( 1, x ) · ( 1, x )⊤, with trace tr(X) = 1

2
(1 + ‖x‖22) ≤ 1, is feasible for

the SDP.
This specific form of SDP has two important advantages. First, the structure of Kn+1

allows us to use the eigenvalue oracle for solving the SDP, as a linear optimization over this
set is equivalent to a maximal eigenvalue computation. Second, as we show in our analysis,
the artificial extra slack of ǫ′/2 we imposed in the constraints ensures that a solution to this
relaxation has sufficient mass on its first entry, which makes it possible to avoid the “hard
case” entirely.

Linear-time SDP solver. The main ingredient in our approach, which is described in
Section 4, is a linear-time procedure SolveSDP for solving SDP programs of the form (6).
As discussed above, generic SDP solvers are not suitable for this task as they are not able to
exploit the sparsity of the input and run in super-linear time. In order to approximate this
problem quickly, we avoid solving the primal problem directly and instead attack the dual

5



problem to (6):

p ·A1 •X + (1− p) ·A2 •X < ǫ′/2 ∀ X ∈ Kn+1 ,

0 ≤ p ≤ 1 .

We show that this one-dimensional problem can be solved quickly via a binary search that in
each iteration invokes an approximate eigenvalue oracle on a matrix of the form pA1 + (1−
p)A2. Moreover, whenever the primal SDP (6) is feasible, we show how to efficiently recover
an approximate solution, namely a matrix X ∈ Kn+1 such that Ai • X ≥ ǫ′/4, from the
outputs of the oracle calls along the execution of the binary search. Formally, in Section 4
we prove:

Lemma 3. Given access to an approximate eigenvalue oracle, with probability at least 1− δ
(over the randomization of the oracle) SolveSDP outputs a decomposition X =

∑r

i=1 xix
⊤
i

of a matrix X ∈ Kn+1 of rank r = 2 for which Ai •X ≥ ǫ′/4 (i = 1, 2), or correctly declares
that (6) is infeasible. The algorithm calls the oracle at most O(log(κ/ǫ)) times and can be
implemented to run in total time Õ(N

√

κ/ǫ).

An important feature of our SDP solver is that it produces a solution of a very low rank,
namely with r = 2 (it can be shown that a rank-2 solution for formulation (6) does exist, via
duality conditions). As we explain below, this would allow us to recover a rank-1 solution
quickly, and in turn obtain a feasible solution to (3) in linear time. Nevertheless, we preserve
full generality and present our algorithm with arbitrary rank r, as our approach may work
with any other SDP solver that might produce solutions of rank higher than two.

Rounding of SDP. Finally, we show how to obtain an approximate solution to (3) from
our solution X to the relaxation, with linear-time computations. The method we describe is
based on a matrix rotation procedure, given in Algorithm 2, which is a variant of a procedure
due to Sturm and Zhang (2003).

The procedure provides the following guarantee, which is proved in Section 3.1 below.

Lemma 4. Given a decomposition X =
∑r

i=1 xix
⊤
i of a positive semidefinite matrix X of

rank r and an arbitrary matrix A with A • X ≥ a, SZRotation outputs a decomposition
X =

∑r

i=1 yiy
⊤
i such that y⊤i Ayi ≥ a/r for all i ∈ [r]. The procedure runs in time O(Nr),

where N ≥ n is the number of non-zero entries in A.

In particular, for being able to recover a solution in linear time, it is essential to begin with
a solution to the SDP of a constant rank—which is provided by our SDP solver. Employing
this decomposition, one can compute an approximate solution to the feasibility problem (3),
namely a vector y satisfying (4).

3.1 Analysis

In the rest of this section we prove our main theorem (Theorem 2). First, we prove Lemma 3
using the results of Section 4.
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Algorithm 2 SZRotation (A,X)

input matrices A and X =
∑r

i=1 xix
⊤
i such that A •X ≥ a

output matrix X =
∑r

i=1 xix
⊤
i such that A • xix

⊤
i ≥ a/r for all i

1: let a′ = A •X
2: while there exist xi, xj such that x⊤

i Axi > a′/r, x⊤
j Axj < a′/r do

3: compute a root t of the quadratic equation

(

x⊤
i Axi −

a′

r

)

· t2 + (2x⊤
i Axj) · t +

(

x⊤
j Axj −

a′

r

)

= 0 (7)

4: replace the vectors xi, xj with the vectors x̃i =
1√
t2+1

(txi + xj), x̃j =
1√
t2+1

(xi − txj)
5: end while

6: return X =
∑r

i=1 xix
⊤
i

Proof of Lemma 3. In order to show that the lemma follows from Theorem 5 below, we have
to show that for any c ∈ [0, λ], the spectral norm of the matrices A1 and A2 defined in Eq. (5)
is at most 1.

We first consider the matrix A1. Let x ∈ R
n+1 be some unit vector and write x = (α, y)

with α ∈ R and y ∈ R
n. Since x has unit norm, |α| ≤ 1 and ‖y‖2 ≤ 1, thus

2κ · |x⊤A1x| = | − cα2 + 2αb⊤y + y⊤Ay |
≤ cα2 + 2|α| ‖b‖ ‖y‖+ ‖A‖2 ‖y‖

2

≤ c+ 2(‖b‖+ ‖A‖2)
≤ 2λ ,

where the last inequality follows from the fact that 2(‖A‖2 + ‖b‖) ≤ λ. Since λ ≤ κ and the
above applies for any unit vector x, we have shown that ‖A1‖2 ≤ 1.

Similarly, for the matrix A2 we have

2κ · |x⊤A2x| = | − α2 + y⊤My| ≤ 1 + ‖M‖2 ≤ 2λ

for any unit vector x, which implies that ‖A2‖2 ≤ 1.

Next, we prove Lemma 4.

Proof of Lemma 4. First, note that equation (7) has real roots since x⊤
i Axi − a′/r > 0 and

x⊤
j Axj − a′/r < 0. One can verify that x̃ix̃

⊤
i + x̃j x̃

⊤
j = xix

⊤
i + xjx

⊤
j , so that the equality

X =
∑r

i=1 xix
⊤
i remains true along the execution of the algorithm. On the other hand, note
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that

x̃⊤
i Ax̃i =

(tx1 + x2)
⊤A(tx1 + x2)

t2 + 1

=
x⊤
1 Ax1 · t2 + 2x⊤

1 Ax2 · t+ x⊤
2 Ax2

t2 + 1

=
a′

r
,

where the final equality follows from t being a root of (7). Hence, each iteration produces
an additional index i for which x⊤

i Axi = a′/r, and after at most r iterations it must be the
case that x⊤

i Axi = a′/r ≥ a/r for all i. Consequently, the total runtime is O(Nr) as each
iteration needs O(N) time.

We can now prove our main theorem.

Proof of Theorem 2. We first prove the runtime guarantee, and then show the correctness
of the algorithm.

Running time. Note that the number of non-zero entries in each of the matrices A1, A2

is O(N). Hence, according to Lemma 3, the call to SolveSDP in line 2 of the algorithm
invokes the approximate eigenvalue oracle at most O(log(κ/ǫ)) times and returns in time
Õ(N

√

κ/ǫ). Whenever the SDP relaxation is feasible SolveSDP produces a solution of rank
r = 2, in which case Lemma 4 states that the invocation of SZRotation in line 6 runs in
time O(N). Therefore, the total runtime of the entire algorithm is Õ(N

√

κ/ǫ).

Correctness. First, assume that the algorithm returns “infeasible”. By the guarantees
of SolveSDP (Lemma 3), this means that the SDP relaxation (6) is infeasible. Hence, the
problem (3) is also infeasible (otherwise, as explained above, we could convert a feasible
solution x of (3) to a feasible solution X to the SDP relaxation), as required in this case.

Next, assume that the algorithm returns a solution vector x ∈ R
n. In this case, SolveSDP

returns a matrix X such that Ai • X ≥ ǫ′/4 (i = 1, 2). Hence, by Lemma 4, the output
X =

∑r

i=1 yiy
⊤
i of SZRotation has y⊤i A1yi ≥ ǫ′/4r for all i = 1, 2, . . . , r. On the other hand,

since A2 •X ≥ ǫ′/4, at least one of the vectors yi must satisfy y⊤i A2yi ≥ ǫ′/4r. Hence, the
algorithm can indeed find a vector y ∈ {x1, . . . , xr} such that y⊤A2y ≥ ǫ′/4r, for which we
also have y⊤A1y ≥ ǫ′/4r. Rewriting the last two inequalities in terms of α and ỹ, we get

ỹ⊤Aỹ + 2αb⊤ỹ − cα2 ≥ ǫ′/4r and α2 − ‖ỹ‖2M ≥ ǫ′/4r.

The second inequality implies that α 6= 0, and so we can divide through by α2. Note that
since X ∈ Kn+1 we also have α2 ≤ α2 + ‖ỹ‖2 = ‖y‖2 ≤ tr(X) ≤ 1, which implies that the
vector x = ỹ/α has

x⊤Ax+ 2b⊤x− c ≥ ǫ′/4r and 1− ‖x‖2M ≥ ǫ′/4r .

8



This in particular means that

x⊤Ax+ 2b⊤x ≥ c and ‖x‖2M ≤ 1 ,

as required.

4 Solving the Relaxation in Linear Time

In this section we describe a linear-time algorithm for approximately solving an SDP problem
of the form

Ai •X ≥ ǫ (i = 1, 2)
X ∈ Kn ,

(8)

where Ai ∈ R
n×n, ‖Ai‖2 ≤ 1 (i = 1, 2) and the number of non-zero entries in each of the

matrices A1, A2 is at most N ≥ n. Namely, the algorithm we present either finds a matrix
X ∈ Kn for which Ai •X ≥ ǫ/2 (i = 1, 2), or correctly declares that (8) is infeasible.

Our algorithm, given in Algorithm 3, applies as a first step a binary search for approxi-
mately solving the dual feasibility problem:

A(p) •X < ǫ/2 ∀X ∈ Kn,

0 ≤ p ≤ 1 ,

where we denote A(p) = pA1+(1−p)A2 for all p ∈ [0, 1]. The binary search either correctly
declares that the dual problem is infeasible or finds p ∈ [0, 1] such that A(p) •X < ǫ for all
X ∈ Kn. Infeasibility of the dual implies feasibility of the primal problem (8), in which case
our algorithm is able to efficiently recover a primal solution from the binary search iterates
by solving a simple linear program.

The algorithm assumes the availability of an approximate eigenvector computation oracle,
denoted ApproxEV, as described in Definition 1. In Section 4.1 we explain how such an oracle
can be implemented in time Õ(N/

√
ǫ), where N is the number of non-zero entries in the

input matrix and ǫ is the error parameter.
We now state the main result of this section.

Theorem 5. Given matrices A1, A2 ∈ R
n×n with ‖Ai‖2 ≤ 1 and parameters ǫ, δ > 0,

with probability at least 1 − δ SolveSDP outputs a matrix X ∈ Kn of rank 2 that satisfies
Ai • X ≥ ǫ/2 (i = 1, 2), or correctly declares that (8) is infeasible. The algorithm calls
the orcale ApproxEV at most O(log(1/ǫ)) times and can be implemented to run in total
time Õ(N/

√
ǫ).

For proving Theorem 5 we need two simple duality results.

Lemma 6. Let S be an arbitrary compact set of matrices. Exactly one of the following
statements holds:

9



Algorithm 3 SolveSDP (A1, A2, ǫ)

input matrices A1, A2 ∈ R
n with ‖Ai‖2 ≤ 1 and ǫ > 0

output matrix X ∈ Kn such that Ai •X ≥ ǫ/2 (i = 1, 2), or infeasibility of (8)

1: initialize T ← log2(8/ǫ), p1 ← 1, p2 ← 1
2: for t = 1 to T do

3: let p← (p1 + p2)/2
4: invoke (λ, x)← ApproxEV(pA1 + (1− p)A2, ǫ/4, δ/T )
5: if λ < 3ǫ/4 then

6: return “infeasible”
7: else if x⊤A1x < x⊤A2x then

8: update p1 ← p, x1 ← x
9: else {if x⊤A1x > x⊤A2x}
10: update p2 ← p, x2 ← x
11: end if

12: end for

13: compute 0 ≤ q ≤ 1 such that

q · x⊤
1 Aix1 + (1− q) · x⊤

2 Aix2 ≥ ǫ/2 (i = 1, 2) (9)

14: return X = q · x1x
⊤
1 + (1− q) · x2x

⊤
2

1. There exists X ∈ conv S such that Ai •X ≥ ǫ (i = 1, 2).

2. There exist p ∈ [0, 1] such that A(p) •X = (pA1 + (1− p)A2) •X < ǫ for all X ∈ S.
Proof. First assume that the first statement holds true, i.e. there exists X⋆ ∈ conv S for
which Ai •X ≥ ǫ (i = 1, 2). Then, for all p ∈ [0, 1] we have

A(p) •X⋆ = p(A1 •X⋆) + (1− p)(A2 •X⋆) ≥ ǫ

which proves that the second statement cannot hold. Conversely, if there does not exist
such X⋆, then minp∈[0,1]A(p) • X = miniAi • X < ǫ for all X ∈ conv S. Applying Sion’s
minimax theorem (Sion, 1958), we obtain

min
p∈[0,1]

max
X∈conv S

A(p) •X = max
X∈conv S

min
p∈[0,1]

A(p) •X < ǫ .

This means that there exists p⋆ ∈ [0, 1] such that A(p⋆) •X < ǫ for all X ∈ S, that is, the
second statement is true.

When S = {X1, X2, . . . , Xm} is a finite set, we obtain the following corollary that enables
us to compute an approximate primal solution from the binary search iterates.

Corollary 7. Let X1, X2, . . . , Xm be arbitrary matrices and assume that there does not exist
p ∈ [0, 1] such that A(p) •Xi < ǫ/2 for all i = 1, 2, . . . , m. Then there exists q ∈ ∆m such
that for X =

∑m

i=1 qiXi it holds that Ai •X ≥ ǫ/2 (i = 1, 2).
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We can now provide a proof of Theorem 5.

Proof of Theorem 5.

Running time. The algorithm invokes ApproxEV at most T = O(log(1/ǫ)) times on matri-
ces of the form A(p). Since by the triangle inequality ‖A(p)‖2 ≤ p ‖A1‖2+(1− p) ‖A2‖2 ≤ 1
(as we assume that ‖A1‖2 , ‖A2‖2 ≤ 1), Lemma 8 shows that this procedure can be imple-
mented using the Lanczos method to run in Õ(N/

√
ǫ). Hence, the entire algorithm runs in

Õ(N/
√
ǫ) time as all other operations are linear in the problem dimensions.

Correctness. First note that since each call to the oracle ApproxEV errs with probability
at most δ/T , with probability at least 1 − δ all oracle invocations return a correct output.
Observe that if the algorithm declares that the problem is infeasible, then there exists a
value of p for which ApproxEV outputs λ < 3ǫ/4. This means that

max
X∈Kn

A(p) •X = λmax(A(p)) ≤ λ+ ǫ/4 < ǫ ,

that is, A(p) • X < ǫ for all X ∈ Kn. Lemma 6 then implies that (8) is indeed infeasible.
Thus, we henceforth assume that all invocations of ApproxEV returned λ ≥ 3ǫ/4.

Consider the values of p1, p2 and x1, x2 at the end of the main loop of the algorithm, and
denote Xi = xix

⊤
i (i = 1, 2). Then according to our assumption, we have A(p1) •X1 ≥ 3ǫ/4

and A(p2)•X2 ≥ 3ǫ/4. Also, we have have p2−p1 ≤ ǫ/8 since the binary search continues for
log2(8/ǫ) iterations. Our central observation is that the system of two inequalities A(p)•Xi <
ǫ/2 (i = 1, 2) must be infeasible (in p). Indeed, assume that there exists some p⋆ ∈ [0, 1] for
which A(p⋆) •X1 < ǫ/2 and A(p⋆) •X2 < ǫ/2. Notice that A(p) •X1 ≥ 3ǫ/4 for p < p1, as
A(p1) •X1 ≥ 3ǫ/4 and the function p 7→ A(p) •X1 is monotonically deceasing (recall that
x⊤
1 A1x1 < x⊤

1 A2x1). Similarly we have A(p) •X2 ≥ 3ǫ/4 for p > p2, so it must be the case
that p⋆ ∈ [p1, p2]. But this implies that

A(p1) •X1 −A(p⋆) •X1 = (p⋆ − p1) · (A2 •X1 − A1 •X1) ≤ (p2 − p1) · 2 ≤ ǫ/4

from which we get that A(p⋆) •X1 ≥ A(p1) •X1− ǫ/4 ≥ ǫ/2 which is a contradiction to the
choice of p⋆.

This infeasibility, together with Corollary 7, leads to the conclusion that there exists
q ∈ [0, 1] such that X = qX1 + (1 − q)X2 ∈ Kn satisfies Ai •X ≥ ǫ/2 (i = 1, 2). Since the
existence of such q is guaranteed, it can be found by solving the simple linear program (9),
thereby retrieving a rank-two matrix which is an approximate solution to (8).

4.1 Approximate Eigenvalue Computation

In our analysis we require a linear-time procedure for approximating eigenvalues of sparse
matrices. The following lemma states that the Lanczos method provides that.
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Lemma 8. There exists an algorithm that given a matrix M ∈ R
n×n with ‖M‖2 ≤ λ and

parameters ǫ, δ > 0, runs in time

O

(

N
√
λ√
ǫ

ln
n

δ

)

where N is the number of non-zero entries in the matrix M , and returns a unit vector x ∈ R
n

for which x⊤Mx ≥ λmax(M)− ǫ with probability at least 1− δ.

The proof relies on the analysis of the Lanczos method provided by Kuczynski and Wozniakowski
(1992).

Proof. The statement of the lemma is proved in Theorem 4.2 of Kuczynski and Wozniakowski
(1992) when M is a positive semidefinite matrix with ‖M‖2 ≤ 1. To prove the lemma for an
arbitrary matrix M with ‖M‖2 ≤ λ, consider the matrix M ′ = 1

2λ
M + 1

2
I which is positive

semidefinite with ‖M ′‖2 ≤ 1. If we apply the Lanczos method with error parameter ǫ′ = 1
2λ
ǫ,

we obtain with high probability a unit vector x such that x⊤M ′x ≥ λmax(M
′)− ǫ′. Hence,

1

2λ
x⊤Mx+

1

2
= x⊤M ′x ≥ λmax(M

′)− ǫ′ =
1

2λ
λmax(M) +

1

2
− 1

2λ
ǫ ,

so that x⊤Mx ≥ λmax(M)− ǫ, as required.
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J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM Journal on Scientific
and Statistical Computing, 4(3):553–572, 1983.

Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

Y. Nesterov, A. S. Nemirovskii, and Y. Ye. Interior-point polynomial algorithms in convex
programming, volume 13. SIAM, 1994.

C. H. Papadimitriou and T. Roughgarden. Computing correlated equilibria in multi-player
games. Journal of the ACM (JACM), 55(3):14, 2008.

F. Rendl and H. Wolkowicz. A semidefinite framework for trust region subproblems with
applications to large scale minimization. Mathematical Programming, 77(1):273–299, 1997.

M. Rojas, S. A. Santos, and D. C. Sorensen. A new matrix-free algorithm for the large-scale
trust-region subproblem. SIAM Journal on optimization, 11(3):611–646, 2001.

M. Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171–176, 1958.

D. Sorensen. Minimization of a large-scale quadratic function subject to a spherical con-
straint. SIAM Journal on Optimization, 7(1):141–161, 1997.

J. F. Sturm and S. Zhang. On cones of nonnegative quadratic functions. Mathematics of
Operations Research, 28(2):246–267, 2003.

Y. Ye and S. Zhang. New results on quadratic minimization. SIAM Journal on Optimization,
14(1):245–267, 2003.

H. Zhang, A. R. Conn, and K. Scheinberg. A derivative-free algorithm for least-squares
minimization. SIAM Journal on Optimization, 20(6):3555–3576, 2010.

13


	1 Introduction
	2 Setup and Statement of Results
	3 The Algorithm
	3.1 Analysis

	4 Solving the Relaxation in Linear Time
	4.1 Approximate Eigenvalue Computation


