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Abstract

The nonnegative rank of a matrix A is the smallest integer r such that A can be written as the sum
of r rank-one nonnegative matrices. The nonnegative rank has received a lot of attention recently due
to its application in optimization, probability and communication complexity. In this paper we study a
class of atomic rank functions defined on a convex cone which generalize several notions of “positive”
ranks such as nonnegative rank or cp-rank (for completely positive matrices). The main contribution of
the paper is a new method to obtain lower bounds for such ranks which improve on previously known
bounds. Additionally the bounds we propose can be computed by semidefinite programming using sum-
of-squares relaxations. The idea of the lower bound relies on an atomic norm approach where the atoms
are self-scaled according to the vector (or matrix, in the case of nonnegative rank) of interest. This
results in a lower bound that is invariant under scaling and that is at least as good as other existing
norm-based bounds.

We mainly focus our attention on the two important cases of nonnegative rank and cp-rank where
our bounds have an appealing connection with existing combinatorial bounds and satisfy some additional
interesting properties. For the nonnegative rank we show that our lower bound can be interpreted as a
non-combinatorial version of the fractional rectangle cover number, while the sum-of-squares relaxation
is closely related to the Lovász ϑ̄ number of the rectangle graph of the matrix. The self-scaled property
also implies that the lower bound is at least as good as other norm-based bounds on the nonnegative
rank. Finally we prove that the lower bound inherits many of the structural properties satisfied by
the nonnegative rank such as invariance under diagonal scaling, subadditivity, etc. We also apply our
method to obtain lower bounds on the cp-rank for completely positive matrices. In this case we prove
that our lower bound is always greater than or equal the plain rank lower bound, and we show that it
has interesting connections with combinatorial lower bounds based on edge-clique cover number.

1 Introduction

Preliminaries Given an elementwise nonnegative matrix A ∈ Rm×n+ , a nonnegative factorization of A of
size r is a decomposition of A of the form:

A =

r∑

i=1

uiv
T
i ,

where ui ∈ Rm, vi ∈ Rn are elementwise nonnegative vectors. The nonnegative rank of A, denoted rank+(A)
is the smallest size of a nonnegative factorization of A. Observe that the following inequalities always hold:

rank(A) ≤ rank+(A) ≤ min(n,m).

The nonnegative rank plays an important role in statistical modeling [DSS09, KRS13], communication
complexity [Lov90, LS09] and optimization [Yan91, GPT13]. In probability and statistics, a nonnegative
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matrix A ∈ RX×Y+ has a natural interpretation as the joint distribution of a pair of random variables (X,Y ),
i.e.,

A(x, y) = Pr[X = x, Y = y],

for all x ∈ X , y ∈ Y (the matrix A is assumed to be normalized so that its elements all sum to one). Under
this interpretation, the constraint rank+(A) ≤ r encodes the fact that the pair (X,Y ) is a mixture of r
independent random variables on X × Y. Indeed, since the elements of A sum up to one, any nonnegative
factorization of A can be normalized appropriately so that it takes the form:

A =

r∑

i=1

λiuiv
T
i , (1)

where the coefficients λi ≥ 0 sum up to one, and where ui ∈ RX+ and vi ∈ RY+ are nonnegative vectors with

1T ui = 1T vi = 1. Each rank-one term uiv
T
i corresponds to a distribution on X × Y which is independent,

and thus Equation (1) expresses the fact that A is the mixture of r independent distributions on X × Y.
The nonnegative rank has a natural generalization to tensors. Given a nonnegative tensor A = [ai1...in ]

of size d1 × · · · × dn, the nonnegative rank of A is the smallest r for which there exists a decomposition of
A of the form:

A =

r∑

i=1

u1,i ⊗ u2,i ⊗ · · · ⊗ un,i,

where for each i = 1, . . . , r the vectors u1,i ∈ Rd1 , . . . , un,i ∈ Rdn are elementwise nonnegative. When all
the entries of A sum up to one, A can be seen as the joint probability distribution of n random variables
(X1, . . . , Xn). The set of nonnegative tensors with nonnegative rank less than or equal r corresponds precisely
to the joint distributions that are mixtures of r independent distributions (cf. [DSS09]).

General framework In this paper we present a new method to obtain lower bounds on the nonnegative
rank. In fact, the method we introduce applies in general to any atomic rank function associated with a
convex cone. We make the atomic rank notion precise in the following definition:

Definition 1. Let K be a convex cone and V be a given algebraic variety in some Euclidean space. Given
A ∈ K we define rankK,V (A) to be the smallest integer r for which we can write

A =

r∑

i=1

Ri

where each Ri ∈ K ∩ V . The function rankK,V is called the atomic rank function associated to K and V .

Different well-known notions of rank fit into this general framework:

• Sparsity of a nonnegative vector: Let K be the nonnegative orthant in Rn, i.e., K = Rn+, and let
V be the variety of vectors having at most one nonzero component, i.e.,

V = (Re1) ∪ · · · ∪ (Ren) = {x ∈ Rn : xixj = 0 ∀1 ≤ i < j ≤ n},

where e1, . . . , en are the vectors of the canonical basis. Then for this choice of K and V the rank of
an element x ∈ K is the sparsity of the vector x, i.e., the number of nonzero components of x.

• Nonnegative rank: Let K be the cone of nonnegative matrices in Rm×n, i.e., K = Rm×n+ and let V
be the variety of rank-one matrices:

V = {R ∈ Rm×n : rankR = 1}.

Then one can verify that rankK,V (A) for A ∈ K is precisely the nonnegative rank of A.
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• The plain rank of a symmetric positive semidefinite matrix: When A is a real symmetric
positive-semidefinite n× n matrix, an important fact in linear algebra states that the (standard) rank
of A can be defined as the smallest r such that we have:

A =

r∑

i=1

Ri,

where the Ri’s are rank-one and symmetric positive-semidefinite (what is remarkable here is that the
rank-one terms Ri can be taken to be symmetric and positive semidefinite). Thus if we choose K = Sn+
(the cone of real symmetric positive-semidefinite matrices) and V to be the variety of rank-one matrices,
then rankK,V (A) is nothing but the (standard) rank of the matrix A ∈ Sn+.

• CP-rank for completely-positive matrices: A symmetric matrix A ∈ Sn is called completely-
positive [BSM03] if it admits a decomposition of the form:

A =

r∑

i=1

uiu
T
i ,

where the vectors ui are nonnegative. The cp-rank of A is defined as the smallest r for which such
a decomposition of A exists. It corresponds to the atomic rank where K is the cone of completely
positive matrices, and V is the variety of rank-one matrices.

• Sums of even powers of linear forms: Let R[x]2d be the space of homogeneous polynomials of
degree 2d in n variables x = (x1, . . . , xn) . Let Ln,2d be the cone of homogeneous polynomials that
can be written as the sum of 2d’th powers of linear forms, i.e., P ∈ Ln,2d if:

P (x) =

r∑

i=1

`i(x)2d, (2)

where `i(x) are linear forms. In [Rez92], Reznick studied a quantity which he denoted by w(P ) and
is defined as the smallest number of terms in any decomposition of P of the form (2). It is easy to
see that w(P ) is exactly rankK,V (P ) where K = Ln,2d and V is the variety of 2d’th powers of linear
forms1 (also known as the Veronese variety).

Remark. The quantity w(P ) is related to the real Waring rank of homogeneous polynomials, see
e.g., [Lan12, BT14]: the real Waring rank of a homogeneous polynomial P of degree k is the size
of the smallest decomposition of P as a linear combination of k’th powers of linear forms. The case
considered above corresponds to the situation where k = 2d is even, and where the coefficients in the
linear combination are required to be nonnegative.

Remark. Let Pn,2d be the cone of nonnegative polynomials in R[x]2d. It is known, see e.g., [BPT13,
Section 4.4.2] that the cone Ln,2d can be identified, via the apolar inner product in R[x]2d, with P ∗n,2d
the dual of the cone of nonnegative polynomials. The extreme rays of P ∗n,2d correspond to point
evaluations. Thus, using this dual point of view, the atomic rank of an element ` ∈ P ∗n,2d is the
smallest r such that ` can be written as a conic combination of r point evaluations. For example if ` is
an integral operator ` : P 7→

∫
P (x)dµ(x) where µ is a positive measure on the unit sphere Sn−1, then

rankK,V (`) gives the size of the smallest cubature formula of order 2d [Kön99] for the measure µ.

Self-scaled bounds We now briefly explain the main idea of the lower bound in the general framework
considered above: Let A ∈ K and consider a decomposition of A of the form:

A =

r∑

i=1

Ri, Ri ∈ V ∩K ∀i = 1, . . . , r, (3)

1It is known that the space R[x]2d can be identified with the space of symmetric tensors of size n×n×· · ·×n (2d dimensions),
see e.g., [CGLM08, Section 3.1]. Then one can verify that a polynomial P is the 2d’th power of a linear form if and only if the
tensor associated to P is of the form `⊗ `⊗ · · · ⊗ `.
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An important observation is that each term Ri in the decomposition above necessarily satisfies

0 �K Ri �K A

where �K denotes the inequality induced by the cone K (recall that x �K y ⇔ y − x ∈ K). Thus, if we
define:

AK,V (A) :=
{
R ∈ V such that 0 �K R �K A

}
, (4)

then in any decomposition of A of the form (3), all the terms Ri must necessarily belong to AK,V (A). As a
consequence, if we can produce a linear functional L such that L(R) ≤ 1 for all R ∈ AK,V (A), then clearly
L(A) is a lower bound on the minimal number of terms in any decomposition of A of the form (3). Indeed
this is because we have:

L(A) =

r∑

i=1

L(Ri) ≤
r∑

i=1

1 = r.

In other words, the quantity L(A) gives a lower bound on rankK,V (A). Now to obtain the best lower bound,
one can look for the linear functional L which maximizes the value of L(A) while satisfying L ≤ 1 on
AK,V (A). We call this quantity τK,V (A) and this is the main object we study in this paper:

τK,V (A) := max
L linear

L(A) subject to L(R) ≤ 1 ∀R ∈ AK,V (A). (5)

The discussion above shows that τK,V (A) gives a lower bound on rankK,V (A).

Theorem 1. Let K be a convex cone and V a given algebraic variety. Then for any A ∈ K we have

rankK,V (A) ≥ τK,V (A).

The idea of the lower bound described above may look similar to existing lower-bounding techniques
based on dual norms like e.g., in [LS09] or [DV13]. The main difference however is the self-scaled2 property
of our lower bound: in other words, the specific normalization of the set of atoms AK,V (A) depends on the
element A, whereas in the other techniques the atoms are normalized with respect to some fixed norm (e.g.,
the `2 norm, the `∞ norm, etc.), and independently of A. In fact for this reason one can show that our lower
bound is at least as good as any other lower bound obtained using norm-based methods (cf. Section 2.6 for
more details).

Semicontinuity of atomic cone ranks We saw that in any decomposition of the form (3), each term
Ri must satisfy 0 �K Ri �K A and is thus bounded (assuming K is a pointed cone). Using this observation,
one can show that atomic rank functions are lower semi-continuous, or equivalently, that the sets {A ∈
K : rankK,V (A) ≤ r} are closed for any r ≥ 1. This property was noted before in [BCR11, LC09] in the
particular case of the nonnegative rank. Note that the positivity condition on the Ri’s here is crucial. It is
well-known for example that the standard tensor rank is not lower semi-continuous for tensors of order ≥ 3,
which leads in this situation to the distinction between the rank and the border rank [Lan12].

Nonnegative rank We now briefly discuss the specialization of our lower bound to the case of nonnegative
rank. As we mentioned, the case of nonnegative rank of matrices corresponds to the choices K = Rm×n+

(nonnegative matrices) and V is the variety of rank-one matrices. In this case we denote the set of atoms
AK,V (A) simply by A+(A) and the quantity τK,V simply by τ+:

A+(A) :=
{
R ∈ Rm×n : rankR ≤ 1 and 0 ≤ R ≤ A

}
, (6)

and
τ+(A) := max

L linear
L(A) subject to L(R) ≤ 1 ∀R ∈ A+(A). (7)

2We use the word self-scaled as a descriptive term to convey the main idea of the lower bound presented in this paper. It is
not related to the term as used in the context of interior-point methods (e.g., “self-scaled barrier” [NT97]).
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As defined above, the quantity τ+(A) cannot be efficiently computed since we do not have an efficient
description of the feasible set {L linear : L(R) ≤ 1 ∀R ∈ A+(A)}, even though (7) is a convex optimization
problem. We thus propose a semidefinite programming relaxation, denoted τ sos+ (A) which is obtained by
relaxing the constraint L ≤ 1 on A+(A) using sum-of-squares methods (the exact definition of this relaxation
is presented in more details in Section 2.2). We study various properties of the quantities τ+(A) and τ sos+ (A)
and we show for example that they are invariant under diagonal scaling and that they satisfy many of the
structural properties satisfied by the nonnegative rank (subadditivity, etc.), cf. Theorem 3.

We then compare τ+ and τ sos+ with existing bounds on the nonnegative rank and we show that they
have very interesting connections to well-known combinatorial bounds. Indeed we show that τ+(A) can be
understood as a non-combinatorial version of the fractional chromatic number of the rectangle graph of A
(also called the fractional rectangle cover number of A), while τ sos+ (A) is the non-combinatorial equivalent of
the (complement) Lovász theta number of the rectangle graph of A [FKPT13]. In fact we show that:

τ+(A) ≥ χfrac(RG(A)) and τ sos+ (A) ≥ ϑ̄(RG(A)),

where RG(A) denotes the rectangle graph associated to A and χfrac and ϑ̄ denote, respectively, the fractional
chromatic number and the (complement) Lovász theta number (more details concerning the definition of
rectangle graph and the various graph parameters are in Section 2.5).

Finally we compare our new lower bounds with other norm-based (non-combinatorial) bounds on rank+(A)
such as the ones proposed in [FP12] or [BFPS12] (see also Lemma 4 in [Rot13]). Using the “self-scaled”
property of our bound, we prove a general result showing that τ+ always yields better bounds that any such
norm-based method.

Organization The paper is organized as follows: In Section 2 we consider the nonnegative rank of matrices
where we study the quantity τ+ as well as its semidefinite programming relaxation τ sos+ . We prove various
properties on these two quantities and we compare them with existing combinatorial and norm-based bounds
on the nonnegative rank. We conclude the section with some numerical examples illustrating the performance
of the lower bound. In Section 3 we discuss the generalization of the nonnegative rank lower bound to tensors
and we evaluate it numerically on an example. Finally, in Section 4 we deal with the problem of cp-rank
for completely positive matrices: we present the definition of the lower bound as well as its semidefinite
programming relaxation and we explore some of its interesting properties. We show the surprising fact that
the lower bound is always at least as good as the plain rank lower bound and we also discuss connections
with combinatorial lower bounds. We conclude the section with some numerical experiments.

We provide Matlab scripts for the numerical examples shown in this paper at the URL http://www.mit.

edu/~hfawzi. The scripts make use of the Yalmip package [Löf04] for solving the semidefinite programs.

Notations We denote by Sn the space of real symmetric n × n matrices, and by Sn+ the cone of real
symmetric positive semidefinite matrices. If A ∈ Rm×n is a m × n matrix we define a = vec(A) ∈ Rmn to
be the vector of length mn obtained by stacking all the columns of A on top of each other. Recall that if A
and B are matrices of size m× n and m′ × n′ respectively, then the Kronecker product A⊗B is a matrix of
size mm′ × nn′ matrix defined as follows:

A⊗B =




A1,1B A1,2B . . . A1,nB
A2,1B A2,2B . . . A2,nB

...
...

...
Am,1B An,2B . . . Am,nB


 ∈ Rmm

′×nn′ .

When A,X,B are matrices of appropriate sizes, we have the following identity:

vec(AXB) = (BT ⊗A) vec(X).

We define the following partial order on the indices of a matrix A ∈ Rm×n:

(i, j) ≤ (k, l) ⇔ i ≤ k and j ≤ l,

and we write (i, j) < (k, l) if i < k and j < l. If n is an integer, we let [n] := {1, . . . , n}.
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We use the notation (Rd)∗ to denote the dual space of Rd which consists of linear functionals on Rd. We
recall some terminology from convex analysis [Roc97]: If C is a convex set in Rd, we denote by C◦ ⊂ (Rd)∗
the polar of C defined by: C◦ = {` ∈ (Rd)∗ : `(x) ≤ 1 ∀x ∈ C}. The support function SC : (Rd)∗ → R
of a convex set C is defined as SC(`) = maxx∈C `(x). The Minkowski gauge function of C is defined as
pC(x) = min{t > 0 : x ∈ tC}.

2 Nonnegative rank of matrices

2.1 Primal and dual formulations for τ+

For a nonnegative matrix A ∈ Rm×n+ , recall the following definitions from the introduction:

Definition 2. Given a nonnegative matrix A ∈ Rm×n+ , we defineA+(A) to be the set of rank-one nonnegative
matrices R that satisfy 0 ≤ R ≤ A:

A+(A) :=
{
R ∈ Rm×n : rankR ≤ 1 and 0 ≤ R ≤ A

}
.

We also let
τ+(A) := max

L linear
L(A) subject to L(R) ≤ 1 ∀R ∈ A+(A). (8)

Theorem 2. For A ∈ Rm×n+ we have rank+(A) ≥ τ+(A).

Proof. Let A =
∑r
i=1Ri be a nonnegative factorization of A with r = rank+(A) and Ri ≥ 0 are rank-one.

Then necessarily each Ri satisfies Ri ≤ A and thus Ri ∈ A+(A) for all i. Hence if L is the optimal solution
in the definition of τ+(A) we get:

τ+(A) = L(A) =

r∑

i=1

L(Ri) ≤ r = rank+(A).

Minimization formulation of τ+ Using convex duality, one can obtain a dual formulation of τ+(A) as
the solution of a certain minimization problem. In fact the next lemma shows that τ+(A) is nothing but the
atomic norm [CRPW12] associated to the set of atoms A+(A). This interpretation of τ+(A) will be very
useful later when studying its properties.

Lemma 1. If A ∈ Rm×n+ then we have:

τ+(A) = min{t > 0 : A ∈ t conv(A+(A))}. (9)

In other words, τ+(A) is the Minkowski gauge function of conv(A+(A)), evaluated at A.

Proof. Observe that Equation (8) expresses the fact that τ+(A) is the support function of conv(A+(A))◦,
evaluated at A. Theorem 14.5 in [Roc97] shows that the support function of the polar C◦ of a closed convex
set C is equal to the Minkowski gauge function of C. Thus it follows that τ+(A) is equal to the Minkowski
gauge function of conv(A+(A)), evaluated at A, which is precisely Equation (9).

The next example illustrates the geometric picture underlying the atomic norm formulation of τ+(A).

Example. Assume A is a 2 × 2 diagonal matrix A = diag(a1, a2) where ai ≥ 0. In this case one can easily
verify that A+(A) is given by:

A+(A) =

{
R ∈ R2×2 : rankR ≤ 1 and 0 ≤ R ≤

[
a1 0
0 a2

]}

=

{[
x 0
0 0

]
with 0 ≤ x ≤ a1

}
∪
{[

0 0
0 y

]
with 0 ≤ y ≤ a2

}
.

(10)
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a1

a2
A

conv A+(A)
2a1

2a2
2 conv A+(A)

0

Figure 1. Depiction of the set of atoms A+(A) and its convex hull for a 2 × 2
diagonal matrix A (cf. Equation (10)). The set A+(A) consists of the two dark
heavy lines joining the origin to a1 and a2. The convex hull of A+(A) is formed
by the triangle 0, a1, a2.

The convex hull of A+(A) (projected onto the diagonal elements) is depicted in Figure 1. Observe that,
when a1, a2 > 0, the smallest t such that A ∈ t conv(A+(A)) is t = 2 and thus τ+(A) = 2 = rank+(A). In
fact we will see in the next section that when A is a diagonal matrix, τ+(A) is precisely equal to the number
of nonzero elements on the diagonal, which is equal to rank+(A).

We can see in this example the self-scaled feature of the bound τ+(A). This is in contrast with the
existing norm-based methods to lower bound rank+(A) such as [FP12, BFPS12], where the scaling of the
atoms is independent of A: for example in [FP12] the scaling is done using the Frobenius norm (i.e., the set
of atoms consists of rank-one matrices with Frobenius norm) and in [BFPS12] the scaling is with respect to
the entry-wise infinity norm. This feature is explained in more detail in Section 2.6 where we show that τ+
always yields better bounds than any such norm-based method.

2.2 Semidefinite programming relaxation

The quantity τ+(A) defined in (8) cannot be efficiently computed in general, since we do not have an
efficient description of the feasible {L linear : L(R) ≤ 1 ∀R ∈ A+(A)} (note however that (8) is a
convex optimization problem). In this section we introduce a semidefinite programming relaxation of τ+(A).
To do so we construct an over-relaxation of the set convA+(A) which can be represented using linear
matrix inequalities. Recall that A+(A) is the intersection of the variety of rank-one matrices with the set
{R ∈ Rm×n : 0 ≤ R ≤ A}. The variety of rank-one matrices is described by the vanishing of 2× 2 minors,
i.e.,

Ri,jRk,l −Ri,lRk,j = 0 (11)

for all (1, 1) ≤ (i, j) < (k, l) ≤ (m,n) (recall the partial order (i, j) < (k, l) ⇔ i < k and j < l). Let r =
vec(R) be the vector obtained by stacking all columns of R and consider the following positive-semidefinite
matrix: [

1
r

] [
1
r

]T
=

[
1 rT

r rrT

]
. (12)

Note that rrT is a symmetric mn ×mn matrix whose rows and columns are indexed by entries of R. The
quadratic equations (11) corresponding to the vanishing of 2×2 minors of R can be written as linear equations
in the entries of rrT , namely:

(rrT )ij,kl − (rrT )il,kj = 0

for (1, 1) ≤ (i, j) < (k, l) ≤ (m,n) (in the equation above, the subscripts “ij” and “kl” in (rrT )ij,kl are the
indices in {1, . . . ,mn} for the entries (i, j) and (k, l) respectively—we will use this slight abuse of notation
in the paper to avoid having heavy notations).
Also note that the inequality R ≤ A implies that:

(rrT )ij,ij ≤ rijAij (13)
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which is a linear inequality in the entries of the matrix (12). Using these two observations we have the
following over-relaxation of conv(A+(A)):

conv(A+(A)) ⊆ Asos
+ (A) (14)

where

Asos
+ (A) =

{
R ∈ Rm×n : ∃X ∈ Smn such that

[
1 vec(R)T

vec(R) X

]
� 0

and Xij,ij ≤ RijAij ∀i ∈ [m], j ∈ [n]

and Xij,kl −Xil,kj = 0 ∀(1, 1) ≤ (i, j) < (k, l) ≤ (m,n)

}
.

(15)

If we define τ sos+ (A) as:
τ sos+ (A) = min{t > 0 : A ∈ tAsos

+ (A)}

then we clearly have (by the inclusion (14)):

τ sos+ (A) ≤ τ+(A) ≤ rank+(A).

Furthermore, the quantity τ sos+ (A) can be computed using semidefinite programming. Indeed, it is not
difficult to show using the description (15) of Asos

+ (A) that we have:

τ sos+ (A) = min
t,X

t

s.t.

[
t vec(A)T

vec(A) X

]
� 0

Xij,ij ≤ A2
ij ∀i ∈ [m], j ∈ [n]

Xij,kl = Xil,kj ∀(1, 1) ≤ (i, j) < (k, l) ≤ (m,n)

(16)

Duality and sum-of-squares interpretation The dual of the semidefinite program (16) takes the form
of a sum-of-squares program, namely we have3:

τ sos+ (A) = max L(A)
s.t. L is a linear form

1− L(X) = SOS(X) +
∑
ij DijXij(Aij −Xij) mod I

Dij ≥ 0
SOS(X) is a sum-of-squares polynomial

(17)

Here I is the ideal in R[X11, . . . , Xmn] corresponding to the variety of m × n rank-one matrices, i.e., it is
ideal generated by the 2 × 2 minors XijXkl − XilXkj . The sum-of-squares constraint in (17) means that
the polynomials on each side of the equality are equal when X is rank-one. Note that this sum-of-squares
constraint can be rewritten more explicitly as requiring that:

1− L(X)−
∑

ij

DijXij(Aij −Xij)−
∑

(i,j)<(k,l)

νijkl(XijXkl −XilXkj) is a sum-of-squares

where the parameters νijkl are real numbers4. It is clear that any such L satisfies L(X) ≤ 1 for allX ∈ A+(A).
As such, (17) is a natural sum-of-squares relaxation of (8).

3The sum-of-squares program (17) is actually the dual of a slightly different, but equivalent, formulation of (16) where the
inequality Xij,ij ≤ A2

ij is replaced by Xij,ij ≤ AijYij where Yij are additional variables that are constrained by Yij = Aij .

Using this reformulation, the dual has a nice interpretation as a sum-of-squares relaxation of (8). Also one can easily show that
strong duality holds using Slater’s condition.

4One can show that the sum-of-squares polynomial cannot have degree more than 2 and the multipliers νijkl are necessarily
real numbers.
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Zero entries in A When the matrix A has some entries equal to 0, the semidefinite program (16) that
defines τ sos+ (A) can be reduced by eliminating unnecessary variables. Let S = supp(A) = {(i, j) : Ai,j > 0}
be the set of nonzero entries of A, and define π : Rm×n → RS to be the linear map that projects onto the
entries in S. Observe that, in the SDP (16), if Ai,j = 0 for some (i, j) then necessarily Xij,ij = 0. Thus
by the positivity constraint this implies that the ij’th row and ij’th column of X are identically zero, and
one can thus eliminate this row and column from the program. Using this fact, one can show that τ sos+ (A)
can be computed using the following reduced semidefinite program where the size of the matrix X is now
| supp(A)| × | supp(A)|, instead of mn ×mn (recall that π(A) is the vectorization of A where we only keep
the nonzero entries of A):

τ sos+ (A) = min
t,X

t

s.t.

[
t π(A)T

π(A) X

]
� 0

∀(i, j) s.t. Ai,j > 0 : Xij,ij ≤ A2
ij

∀(1, 1) ≤ (i, j) < (k, l) ≤ (m,n) s.t. Ai,jAk,l > 0 or Ai,lAk,j > 0 :



if Ai,lAk,j = 0 : Xij,kl = 0

if Ai,jAk,l = 0 : Xil,kj = 0

else Xij,kl −Xil,kj = 0

(18)

2.3 Properties

In this section we explore some of the properties of τ+(A) and τ sos+ (A). We show that τ+(A) and τ sos+ (A) have
many appealing properties (invariance under diagonal scaling, invariance under permutation, etc.) which are
not present in most of currently existing bounds on the nonnegative rank. The theorem below summarizes
the desirable properties satisfied by τ+(A) and τ sos+ (A).

Theorem 3. Let A ∈ Rm×n+ be a nonnegative matrix.

1. Invariance under diagonal scaling: If D1 and D2 are diagonal matrices with strictly positive entries on
the diagonal, then τ+(D1AD2) = τ+(A) and τ sos+ (D1AD2) = τ sos+ (A).

2. Invariance under permutation of rows or columns: If P1 and P2 are permutation matrices of size m×m
and n× n respectively, then τ+(P1AP2) = τ+(A) and τ sos+ (P1AP2) = τ sos+ (A).

3. Subadditivity: If B ∈ Rm×n+ is a nonnegative matrix then:

τ+(A+B) ≤ τ+(A) + τ+(B) and τ sos+ (A+B) ≤ τ sos+ (A) + τ sos+ (B).

4. Product: If B ∈ Rn×p+ , then

τ+(AB) ≤ min(τ+(A), τ+(B)) and τ sos+ (AB) ≤ min(τ sos+ (A), τ sos+ (B)).

5. Monotonicity: If B is a submatrix of A (i.e., B = A[I, J ] for some I ⊆ [m] and J ⊆ [n]), then
τ+(B) ≤ τ+(A) and τ sos+ (B) ≤ τ sos+ (A).

6. Block-diagonal composition: Let B ∈ Rm
′×n′

+ be another nonnegative matrix and define

A⊕B =

[
A 0
0 B

]
.

Then
τ+(A⊕B) = τ+(A) + τ+(B) and τ sos+ (A⊕B) = τ sos+ (A) + τ sos+ (B)

Before proving the theorem, we look at some of the existing bounds on the nonnegative rank in light of
the properties listed in the theorem above.
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• Norm-based lower bounds: In a previous paper [FP12] we introduced a lower bound on rank+(A)
based on the idea of a nonnegative nuclear norm. We showed that:

rank+(A) ≥
(
ν+(A)

‖A‖F

)2

(19)

where ν+(A) is the nonnegative nuclear norm of A defined by:

ν+(A) = max
W∈Rm×n

{
〈A,W 〉 :

[
I −W
−WT I

]
copositive

}

and where ‖A‖F =
√∑

i,j A
2
i,j is the Frobenius norm. We showed with an example (cf. Example 5

in [FP12]) that the lower bound can change when applying diagonal scaling to the matrix A; in other
words the bound (19) is not invariant under diagonal scaling.
Also it is known that nuclear-norm based lower bounds are not monotone in general, i.e., the value of
the bound can be greater when applied to a submatrix of A (cf. [LS09, Section 2.3.2]).

• Lower bounds from information theory: Information theoretic quantities can be used to get
lower bounds on the nonnegative rank; in fact such bounds were used recently in [BM13, BP13] in the
context of extended formulations of polytopes. For example the Shannon mutual information as well
as Wyner’s common information [Wyn75] provide lower bounds on the nonnegative rank. However as
we show below these bounds are not invariant under diagonal scaling. We first recall the definition of
these lower bounds. Let P ∈ RX×Y+ be a nonnegative matrix such that

∑
x,y P (x, y) = 1 and let (X,Y )

be a pair of random variables distributed according to P :

Pr[X = x, Y = y] = P (x, y) ∀x ∈ X , y ∈ Y.

Recall from the introduction that a nonnegative factorization of P of size k expresses the fact that
(X,Y ) is a mixture of k independent random variables on X × Y, i.e., we can write:

Pr[X = x, Y = y] =

k∑

w=1

Pr[W = w] · Pr[X = x|W = w] · Pr[Y = y|W = w],

where W is the mixing distribution, taking values in {1, . . . , k} and X and Y are conditionally in-
dependent given W . Using this interpretation, the nonnegative rank of P can thus be formulated
as:

rank+(P ) = min
X−W−Y
(X,Y )∼P

| supp(W )|, (20)

where | supp(W )| is the number of values that W takes, and where the Markov chain constraint
X −W − Y means that X and Y are conditionally independent given W .
Using the formulation (20) one can easily obtain information-theoretic lower bounds on rank+(P ). In
fact one can show using simple information-theoretic inequalities that

I(X;Y ) ≤ C(X;Y ) ≤ log rank+(P )

where I(X;Y ) is the Shannon mutual information and C(X;Y ) is Wyner’s common information
[Wyn75] defined by:

C(X;Y ) = min
X−W−Y

I(XY ;W ).

The lower bounds I(X;Y ) and C(X;Y ) however are not invariant under diagonal scaling (here the
scaling is followed by a global normalization of the matrix to make the sum of its entries equal to one):
indeed if P is a diagonal matrix, P = diag(p) where p > 0 and 1T p = 1 then one can show that

I(X;Y ) = C(X;Y ) = H(p) (21)

10



where H denotes Shannon entropy, H(p) = −
∑
i pi log pi. Now note that any quantity defined on

nonnegative matrices and which is invariant under diagonal scaling should take the same value on
diagonal matrices that have strictly positive entries on the diagonal (this is because if P and Q are
diagonal matrices then we can transform P into Q by a diagonal scaling). Equation (21) however shows
that the quantities I(X;Y ) and C(X;Y ) depend on the specific values on the diagonal and thus are
not invariant under diagonal scaling.

We now turn to the proof of Theorem 3. We prove below the first property (invariance under diagonal
scaling) and we prove the remaining properties in Appendix A.

Proof of invariance under diagonal scaling. 1. We first prove the property for τ+. Let A′ = D1AD2 where
D1 and D2 are the two diagonal matrices with strictly positive entries on the diagonal. Observe that
the set of atoms A+(A′) of A′ can be obtained from the atoms A+(A) of A as follows:

A+(A′) = {D1RD2 : R ∈ A+(A)} =: D1A+(A)D2. (22)

Indeed, if R is rank-one and 0 ≤ R ≤ A then clearly D1RD2 is rank-one and satisfies 0 ≤ D1RD2 ≤
D1AD2 = A′ thus D1RD2 ∈ A+(A′). Conversely if R′ ∈ A+(A′), then by letting R = D−11 RD−12 we
see that R′ = D1RD2 with R rank-one and 0 ≤ R ≤ A. Thus this shows equality (22). Thus we have:

τ+(A′) = min {t : A′ ∈ t · conv(A+(A′))}
= min {t : D1AD2 ∈ t · conv(D1A+(A)D2)}
= min {t : D1AD2 ∈ t ·D1 conv(A+(A))D2}
= min {t : A ∈ t · conv(A+(A))}
= τ+(A).

(23)

2. We now prove the property for the SDP relaxation τ sos+ . For this we use the maximization formulation
of τ sos+ given in Equation (17). Let L be the optimal linear form in (17) for the matrix A, i.e.,
L(A) = τ sos+ (A) and L satisfies:

1− L(X) = SOS(X) +
∑

ij

DijXij(Aij −Xij) mod I. (24)

Define the linear polynomial L′(X) = L(D−11 XD−12 ). It is straightforward to see from (24) that L′

satisfies:

1− L′(X) = SOS(D−11 XD−12 ) +
∑

ij

Dij

(D1)2ii(D2)2jj
Xij(A

′
ij −Xij) mod I.

Thus this shows that L′ is feasible for the sum-of-squares program (17) for the matrix A′. Thus since
L′(A′) = L(A) = τ sos+ (A), we get that τ sos+ (A′) ≥ τ sos+ (A). With the same reasoning we can show that:

τ sos+ (A) = τ sos+ (D−11 (D1AD2)D−12 ) ≥ τ sos+ (D1AD2) = τ sos+ (A′).

Thus we have τ sos+ (A′) = τ sos+ (A).

2.4 Discussion on the SDP relaxation

Additional constraints The semidefinite program (16) that defines τ sos+ (A) can potentially be strength-
ened by including additional constraints on the matrix X. In this paragraph we discuss how these might
affect the value of the lower bound.

• First observe that the constraint (13) is a special case k = i, l = j of the constraints

(rrT )ij,kl ≤ rijAkl,
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for any i, j, k, l. This would correspond in the semidefinite program (16) to adding the inequalities

Xij,kl ≤ AijAkl.

In Lemma 5 of Appendix A.3 we show that these inequalities are automatically verified by any X
feasible for the semidefinite program (16). Thus adding these inequalities does not affect the value of
the bound.

• Another constraint that one can impose on X is elementwise nonnegativity, since rrT in (12) is non-
negative. We investigated the effect of this constraint numerically but on all the examples we tried
the value of the bound did not change (up to numerical precision). We think however there might be
specific examples where the value of the bound does change. Indeed as we show later in Section 2.5
the quantity τ sos+ is closely related to the Lovász ϑ number. It is known in the case of ϑ that adding
a nonnegativity constraint can affect the value of the SDP, even though the change is often not very
significant. The version of the ϑ number with an additional nonnegativity constraint is sometimes
denoted by ϑ+ and was first introduced by Szegedy in [Sze94] and extensive numerical experiments
were done in [DR07] (see also [Meu05]).

• Another family of constraints that one could impose in the SDP comes from the following observation:
If 0 ≤ r ≤ a (with r = vec(R) and a = vec(A)) then we have for any i, j, k, l:

(a− r)ij(a− r)kl ≥ 0,

i.e.,
aijakl − rijakl − rklaij + (rrT )ij,kl ≥ 0.

In the semidefinite program (16) these inequalities translate to:

Xij,kl ≥ (2− t)AijAkl. (25)

We observed that on most matrices the constraint does not affect the value of the bound. However for
some specific matrices of small size the value can change: For example for the matrix

A =

[
1 1
1 1/2

]

we get the value 4/3 without the constraint (25) whereas with the constraint we obtain 3/2.

Despite the possible improvements, the constraints mentioned here would make the size of the semidefinite
programs much larger and we have observed that on most examples the value of the lower bound does not
change much. We have also noted that by including some of the additional constraints we lose some of the
nice properties that the quantity τ sos+ (A) satisfies. For example if we include the last set of inequalities (25)
described above, the lower bound is no longer additive for block-diagonal matrices.

Parametrization of the rank-one variety We saw that the semidefinite programming relaxation of τ+
corresponds to relaxing the constraint L(X) ≤ 1 ∀X ∈ A+(A) by the following sum-of-squares constraint:

1− L(X) = SOS(X) +
∑

ij

DijXij(Aij −Xij) ∀X ∈ Rm×n rank-one (26)

where SOS(X) is a sum-of-squares polynomial and Dij are nonnegative real numbers. One way to specify
that the equality above has to hold for all X rank-one is to require that the two polynomials on each side
of the equality are equal modulo the ideal I of rank-one matrices. This is the approach we adopted when
presenting the sum-of-squares program for τ sos+ (A) in (17).

Another approach to encode the constraint (26) is to parametrize the variety of rank-one matrices: indeed
we know that rank-one matrices X have the form Xij = uivj for all i = 1, . . . ,m and j = 1, . . . , n where
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ui, vj ∈ R. Thus one way to guarantee that (26) holds is to ask that the following polynomial identity (in
the ring R[u1, . . . , um, v1, . . . , vn]) holds:

1−
∑

ij

Lijuivj = SOS(u, v) +
∑

ij

Dijuivj(Aij − uivj). (27)

It can be shown that these two approaches (working modulo the ideal vs. using the parametrization of
rank-one matrices) are actually identical and lead to the same semidefinite programs.

2.5 Comparison with combinatorial lower bounds on nonnegative rank

Many of the known bounds on the nonnegative rank are combinatorial and depend only on the sparsity
pattern of the matrix A. These bounds are usually expressed as parameters of some graph constructed
from A. In this section we explore the connection between the quantities τ+(A) and τ sos+ (A) and these
combinatorial quantities.

Let A ∈ Rm×n+ be a nonnegative matrix. A monochromatic rectangle for A is a rectangle R = I × J
such that Ai,j > 0 for any (i, j) ∈ R, i.e., the rectangle does not touch any zero entry of A. Note that
in any nonnegative factorization A =

∑r
i=1 uiv

T
i , the rectangles Ri = supp(ui) × supp(vi) are necessarily

monochromatic for A. The boolean rank of A (also called the rectangle covering number), denoted rankB(A)
is the minimum number of monochromatic rectangles needed to cover the nonzero entries of A. From the
previous observation it is easy to see that rankB(A) ≤ rank+(A).

As noted in [FKPT13] the boolean rank of A can be expressed as the chromatic number of a certain
graph constructed from A. Define the rectangle graph of A, denoted RG(A) as follows: The vertex set of
RG(A) is the set of indices (i, j) such that Ai,j > 0; furthermore there is an edge (undirected) between
vertices (i, j) and (k, l) if, and only if, Ai,lAk,j = 0. Figure 2 below shows an example of a rectangle graph
for a 3× 3 nonnegative matrix.

(1, 1) (1, 2)

(3, 2)(3, 1)

(2, 2) (2, 3)A =



2 1 0
0 3 4
5 6 0




Figure 2. Rectangle graph RG(A) of a matrix A. Note that the graph does not
depend on the specific values of Ai,j , only on the zero/nonzero pattern.

Note that if two entries (i, j) and (k, l) of A are connected by an edge in RG(A), then the two entries
cannot be covered by the same monochromatic rectangle. Using this observation, it is not hard to show that
the minimum number of monochromatic rectangles needed to cover the nonzero entries A is precisely the
chromatic number of RG(A) [FKPT13, Lemma 5.3]:

rankB(A) = χ(RG(A)).

An obvious lower bound on the chromatic number of RG(A) is the clique number of RG(A), i.e., the size of
the largest clique, which is denoted by ω(RG(A)). The clique number ω(RG(A)) is also sometimes known as
the fooling set number of A. Other famous lower bounds on χ(RG(A)) are the fractional chromatic number
χfrac(RG(A)) and the (complement) Lovász theta number ϑ̄(RG(A)). These quantities satisfy the following
inequalities:

fool(A) = ω(RG(A)) ≤ ϑ̄(RG(A)) ≤ χfrac(RG(A)) ≤ χ(RG(A)) = rankB(A).

We will now see that the quantities τ+(A) and τ sos+ (A) can be interpreted as non-combinatorial equivalents
of χfrac(RG(A)) and ϑ̄(RG(A)) respectively. We start by recalling the definitions of the fractional chromatic
number and the Lovász theta number.
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• The fractional chromatic number of a graph G is a linear programming relaxation of the chromatic
number (note however that the size of this LP relaxation may have exponential size and the fractional
chromatic number is actually NP-hard [LY94]). When applied to the rectangle graph of A, the quantity
is called the fractional rectangle cover of A (see e.g., [KKN92]). Let AB(A) be the set of monochromatic
rectangles valid for A (the subscript “B” here stands for “Boolean”):

AB(A) =
{
R ∈ {0, 1}m×n : R is a monochromatic rectangle for A

}
.

Using this notation, the fractional rectangle cover number of A is the solution of the following linear
program:

χfrac(RG(A)) = min
∑

R∈AB(A)

xR

s.t. ∀R ∈ AB(A) : xR ≥ 0

∀(i, j), Ai,j > 0 ⇒
∑

R∈AB(A)

xRRi,j ≥ 1.

(28)

Note that if we replace the constraint xR ≥ 0 with the binary constraint xR ∈ {0, 1}, we get the exact
rectangle cover number of A. We can rewrite the linear program above in the following form, which
emphasizes the connection with the quantity τ+(A) (cf. Equation (9)):

χfrac(RG(A)) = min t
s.t. ∃Y ∈ t conv(AB(A)) s.t. ∀(i, j), Ai,j > 0 ⇒ Yi,j ≥ 1.

(29)

The variable Y above plays the role of
∑
R∈AB(A) xRR in (28).

Note that a result of Lovász [Lov75] shows that for any graph G = (V,E) the fractional chromatic
number of G is always within a ln |V | factor from χ(G), namely:

1

1 + ln |V |
χ(G) ≤ χfrac(G) ≤ χ(G).

• Given a graph G = (V,E), the complement Lovász theta number ϑ̄(G)
def
= ϑ(Ḡ) is defined by the

following semidefinite program:

ϑ̄(G) = min t

subject to

[
t 1T

1 X

]
� 0

Xu,u = 1 ∀u ∈ V
Xu,v = 0 ∀{u, v} ∈ E

When applied to the rectangle graph RG(A) of a nonnegative matrix A, we get:

ϑ̄(RG(A)) = min t

subject to

[
t 1T

1 X

]
� 0

∀(i, j) s.t. Ai,j > 0 : Xij,ij = 1
∀(1, 1) ≤ (i, j) < (k, l) ≤ (m,n) :{

if Ai,lAk,j = 0 : Xij,kl = 0 (30a)

if Ai,jAk,l = 0 : Xil,kj = 0 (30b)

(30)

Note how the semidefinite program above resembles the semidefinite program (18) which defines
τ sos+ (A). In Theorem 4 below, we show in fact that τ sos+ (A) ≥ ϑ̄(RG(A)).

Theorem 4. If A ∈ Rm×n+ is a nonnegative matrix, then

τ+(A) ≥ χfrac(RG(A)) and τ sos+ (A) ≥ ϑ̄(RG(A)).
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Proof. 1. We prove first that τ+(A) ≥ χfrac(RG(A)). For convenience, we recall below the definitions of
τ+(A) and χfrac(RG(A)):

τ+(A) χfrac(RG(A))

min t

s.t. A ∈ t conv(A+(A))

min t

s.t. ∃Y ∈ t conv(AB(A))

s.t. ∀(i, j), Ai,j > 0 ⇒ Yi,j ≥ 1

Let t = τ+(A) and X ∈ conv(A+(A)) such that A = tX. Consider the decomposition of X:

X =

r∑

k=1

λkXk,

where Xk ∈ A+(A), λk ≥ 0 and
∑r
k=1 λk = 1. Let Rk = supp(Xk) (i.e., Rk is obtained by replacing

the nonzero entries of Xk with ones) and observe that Rk ∈ AB(A). Define

Y = t

r∑

k=1

λkRk ∈ t conv(AB(A))

Observe that for any (i, j) such that Ai,j > 0 we have:

Yi,j = t
∑

k:Xk[i,j]>0

λk Rk[i, j]︸ ︷︷ ︸
=1

(a)

≥ t
∑

k:Xk[i,j]

λk
Xk[i, j]

Ai,j

(b)
=
Ai,j
Ai,j

= 1

where in (a) we used the fact that Xk ≤ A (by definition of Xk ∈ A+(A)) and in (b) we used the
fact that A = t

∑
k λkXk. Thus this shows that (t, Y ) is feasible for the optimization program defining

χfrac(RG(A)) and thus we have χfrac(RG(A)) ≤ t = τ+(A).

2. We now show that τ sos+ (A) ≥ ϑ̄(RG(A)). For convenience, we recall the two SDPs (18) and (30) that
define τ sos+ (A) and ϑ̄(RG(A)) below (note the constraint Xij,ij = A2

ij in the SDP on the left appears
as an inequality constraint in (18)—in fact it is not hard to see that with an equality constraint we get
the same optimal value):

τ sos+ (A) ϑ̄(RG(A))

min. t

s.t.


 t π(A)T

π(A) X


 � 0

∀(i, j) s.t. Ai,j > 0 : Xij,ij = A2
ij

∀(1, 1) ≤ (i, j) < (k, l) ≤ (m,n) :



if Ai,lAk,j = 0 : Xij,kl = 0 (a)

if Ai,jAk,l = 0 : Xil,kj = 0 (b)

else Xij,kl −Xil,kj = 0 (c)

min. t

s.t.


t 1T

1 X


 � 0

∀(i, j) s.t. Ai,j > 0 : Xij,ij = 1

∀(1, 1) ≤ (i, j) < (k, l) ≤ (m,n) :{
if Ai,lAk,j = 0 : Xij,kl = 0 (a’)

if Ai,jAk,l = 0 : Xil,kj = 0 (b’)

Observe that the two semidefinite programs are very similar except that τ sos+ (A) has more constraints
than ϑ̄(RG(A)); cf. constraints (c) for τ sos+ (A). To show that τ sos+ (A) ≥ ϑ̄(RG(A)), let (t,X) be the
solution of the SDP on the left for τ sos+ (A). We will construct X ′ such that (t,X ′) is feasible for the
SDP on the right and thus this will show that τ sos+ (A) ≥ ϑ̄(RG(A)). Define X ′ by:

X ′ = diag(π(A))−1X diag(π(A))−1.
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We show that (t,X ′) is feasible for the SDP on the right: Note that:
[
t 1T

1 X ′

]
=

[
1 0
0 diag(π(A))−1

] [
t π(A)T

π(A) X

] [
1 0
0 diag(π(A))−1

]
� 0

Second we clearly have X ′ij,ij = A−2ij Xij,ij = 1. Finally constraints (a’) and (b’) are also clearly true.

Thus this shows that (t,X ′) is feasible for the SDP of ϑ̄(RG(A)) and thus ϑ̄(RG(A)) ≤ t = τ sos+ (A).

Figure 3 summarizes the different quantities discussed in this section and how they relate to the quantities
τ+(A) and τ sos+ (A):

τ sos+ (A) ≤ τ+(A) ≤ rank+(A)≥ ≥ ≥

fool(A) = ω(RG(A)) ≤ ϑ̄(RG(A)) ≤ χfrac(RG(A)) ≤ χ(RG(A)) = rankB(A)

Figure 3. Summary of the relations between τ+(A), τ sos+ (A) and some combina-
torial lower bounds on rank+(A).

2.6 Comparison with norm-based lower bounds on nonnegative rank

In this section we consider a class of lower bounds on the nonnegative rank that are based on homogeneous
functions and which are similar to the ones proposed in [FP12] or implicitly in [BFPS12] (see also Lemma 4
in [Rot13]). We then explore their connection with the quantity τ+(A) and we show that such lower bounds
are always dominated by τ+(A).

Definition 3. A function N : Rm×n+ → R+ is called positively homogeneous if it satisfies N(λA) = λN(A)
for any A ∈ Rm×n+ and λ ≥ 0. Furthermore, it is called monotone if it satisfies, for any A,B ∈ Rm×n+ :

A ≤ B ⇒ N(A) ≤ N(B),

where A ≤ B is the componentwise inequality.

Norms on Rm×n form a natural class of positively homogeneous functions. Many norms also satisfy the
monotonicity property, like for example, the Frobenius norm (i.e., the `2 entrywise norm):

‖A‖F =

√√√√
m∑

i=1

n∑

j=1

A2
i,j ,

or the `∞ entrywise norm:
‖A‖∞ = max

1≤i≤m
1≤j≤n

|Ai,j |.

Define AN to be the set of rank-one matrices in the “unit ball” of N, i.e.,

AN := {X ∈ Rm×n+ : rankX ≤ 1 and N(X) ≤ 1}. (31)

We can also define:
N∗(A) = min{t > 0 : A ∈ t conv(AN)}

= max{L(A) : L linear and L(X) ≤ 1 ∀X ∈ AN}.
(32)

The fact that the two formulations of N∗(A) above are equal follows from convex duality and the same
arguments used in Lemma 1. The following proposition shows that one can obtain a lower bound on
rank+(A) using N∗(A) and N(A):
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Proposition 1. Let N : Rm×n+ → R+ be a monotone positively homogeneous function, and let N∗ be defined
as in Equation (32). Then for any A ∈ Rm×n+ , we have:

rank+(A) ≥ N∗(A)

N(A)
.

Proof. Let A =
∑r
i=1Ai be a decomposition of A with r = rank+(A) terms and where each Ai is rank-one

and nonnegative. Let L be the optimal solution in the maximization problem of Equation (32). Then we
have:

N∗(A) = L(A) =

r∑

i=1

L(Ai) =

r∑

i=1

N(Ai)L

(
1

N(Ai)
Ai

)
(a)

≤
r∑

i=1

N(Ai)
(b)

≤
r∑

i=1

N(A) = rN(A)

where in (a) we used the homogeneity of N and the fact that L(X) ≤ 1 when N(X) ≤ 1, and in (b) we used
the fact that for each i we have Ai ≤ A, and thus by monotonicity of N we have N(Ai) ≤ N(A). Thus we
finally get that

r ≥ N∗(A)

N(A)

which is what we wanted.

In [FP12] the authors studied the case where N is the Frobenius norm, and where the associated quantity
N∗ was called the nonnegative nuclear norm and was denoted by ν+. For this particular choice of N the
following stronger lower bound was shown to hold:

rank+(A) ≥
(
N∗(A)

N(A)

)2

.

Also in [Rot13] the lower bound corresponding to N = ‖ · ‖∞ (entry-wise infinity norm) was used to obtain
exponential lower bounds on the nonnegative rank of a certain matrix of interest in extended formulations
of polytopes (the slack matrix associated with the matching polytope).

In the next theorem we show that any lower bound on rank+ obtained from monotone positively homo-
geneous functions like in Proposition 1 is always dominated by τ+(A).

Theorem 5. Let N : Rm×n+ → R+ be a monotone positively homogeneous function, and let N∗ be as defined
in Equation (32). Then for any A ∈ Rm×n+ we have:

rank+(A) ≥ τ+(A) ≥ N∗(A)

N(A)
.

Proof. First note that we have the inclusion

1

N(A)
A+(A) ⊆ AN. (33)

Indeed if R is rank-one and satisfies 0 ≤ R ≤ A then we have, by homogeneity and monotonicity of N,

N

(
1

N(A)
R

)
=

1

N(A)
N(R) ≤ 1

N(A)
N(A) ≤ 1.

Let L be the optimal linear form in the definition of N∗(A) in (32). Since L ≤ 1 on AN, by the inclusion
(33) we have that L ≤ 1 on 1

N(A)A+(A) or equivalently that 1
N(A)L ≤ 1 on A+(A). Thus by definition of

τ+(A) we have

τ+(A) ≥ 1

N(A)
L(A) =

N∗(A)

N(A)
.
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We now show that the quantity τ+(A) actually fits in the class of lower bounds of Proposition 1, where
the homogeneous function N depends on A. Specifically if A is a nonnegative matrix, we can define NA as
follows:

NA(X) = min{t > 0 : X ≤ tA}.

Clearly NA is a monotone positively homogeneous function, and it satisfies NA(A) = 1. Note that the set of
atoms ANA

associated to NA (cf. Equation (31)) is nothing but A+(A). Thus it follows directly from the
definition (32) of N∗(A) that N∗A(A) = τ+(A). To summarize we can write that:

τ+(A) = sup
N monotone and

positively homogeneous

N∗(A)

N(A)
.

2.7 Examples

In this section we apply the lower bounds τ+ and τ sos+ to some examples of matrices. We first derive an
explicit formula for the lower bounds for 2 × 2 matrices and then we consider a toy example drawing from
the geometric interpretation of the nonnegative rank.

2.7.1 2× 2 matrices

When A is a 2×2 nonnegative matrix, we can get a closed-form formula for the values of τ+(A) and τ sos+ (A):

Proposition 2. For a 2× 2 nonnegative matrix

A =

[
x y
z w

]

we have (when xw + yz 6= 0):

τ+(A) =





2− xw

yz
if xw ≤ yz

2− yz

xw
if xw ≥ yz

and τ sos+ (A) =





2

1 + xw
yz

if xw ≤ yz

2

1 + yz
xw

if xw ≥ yz
(34)

If xw = yz = 0 and A has at least one positive entry then τ sos+ (A) = 1.

Proof. Assume first x, y, z, w > 0. By the diagonal invariance property we have:

τ+(A) = τ+

([
1 0
0 z−1x

] [
x y
z w

] [
x−1 0

0 y−1

])
= τ+

([
1 1
1 xw

yz

])
,

and the same is true for τ sos+ . To prove the formula we thus only need to study matrices of the form [ 1 1
1 e ].

The following lemma gives the value of τ+ and τ sos+ of such matrices as a function of e:

Lemma 2. Let

A(e) =

[
1 1
1 e

]
.

Then

τ+(A(e)) =

{
2− e if 0 ≤ e ≤ 1

2− 1/e if e ≥ 1
and τ sos+ (A(e)) =

{
2

1+e if 0 ≤ e ≤ 1
2

1+1/e if e ≥ 1
. (35)

Figure 4 below illustrates the result of Lemma 2 and shows the graphs of τ+(A(e)) and τ sos+ (A(e)) as a
function of e. Note that the functions τ+ and τ sos+ are in general not convex.
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Figure 4. Graph of the functions τ+(A(e)) and τ sos+ (A(e)) as a function of e (cf.
Equation (35) for the expressions).

Proof of Lemma 2. First observe that it suffices to look at matrices A(e) for 0 ≤ e ≤ 1. Indeed for e ≥ 1,
the matrix A(e) can be obtained from the matrix A(1/e) by permuting the two columns then scaling the
second row by e, namely we have:

[
1 1
1 e

]
=

[
1 0
0 e

] [
1 1
1 1/e

] [
0 1
1 0

]
.

Thus by Theorem 3 on the properties of τ+ and τ sos+ we have:

τ+(A(e)) = τ+(A(1/e)) and τ sos+ (A(e)) = τ sos+ (A(1/e)).

In the following we thus fix e ∈ [0, 1] and A = A(e) and we show that τ+(A) = 2− e and τ sos+ (A) = 2/(1− e).
• We first show that τ+(A) = 2− e. To prove that τ+(A) ≥ 2− e we exhibit a linear function L such that
L(R) ≤ 1 for all R ∈ A+(A). Define L by:

L

([
a b
c d

])
= b+ c− e · a.

The next lemma shows that L(R) ≤ 1 for all R ∈ A+(A):

Lemma 3. For any 0 ≤ (a, b, c, d) ≤ (1, 1, 1, e) such that ad = bc we have

b+ c− e · a ≤ 1.

Proof. If d = 0 then either b = 0 or c = 0 and the inequality is true because b, c ≤ 1. Now if d > 0 we have:

b+ c− e · a = b+ c− ebc
d

(∗)
≤ b+ c− bc = b · 1 + (1− b) · c ≤ max(1, c) ≤ 1

where in (*) we used the fact that e/d ≥ 1.

For this choice of L we have L(A) = 1 + 1− e = 2− e. Thus this shows that τ+(A) ≥ 2− e.
We now show that τ+(A) ≤ 2−e. For this we prove that A ∈ (2−e) conv(A+(A)). We have the following

decomposition of 1
2−eA:

1

2− e

[
1 1
1 e

]
= λ

[
1 1
e e

]
+ λ

[
1 e
1 e

]
+ µ

[
0 1
0 0

]
+ µ

[
0 0
1 0

]

where

λ =
1

2(2− e)
and µ =

1− e
2(2− e)

.
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Note that λ, µ ≥ 0, 2λ + 2µ = 1 and that the four 2 × 2 matrices in the decomposition belong to A+(A).
Thus this shows that A ∈ (2− e) conv(A+(A)) and thus τ+(A) ≤ 2− e.

• We now look at the SDP relaxation τ sos+ and we show that τ sos+ (A(e)) = 2/(1 + e). To do so, we exhibit
primal and dual feasible points for the semidefinite programs (16) and (17) which attain the value 2/(1 + e).
These are shown in the table below:

Primal (SDP (16)) Dual (SOS program (17))

t =
2

1 + e

X = 1
t aa

T + 1−e
2




1 0 0 e
0 1 −1 0
0 −1 1 0
e 0 0 e2




︸ ︷︷ ︸
X̃

where a = vec(A)

L(X) = 1+2e
(1+e)2 (X12 +X21)− e

(1+e)2X11 − 1
(1+e)2X22

SOS(X) =
(

1− 1
1+eX12 − 1

1+eX21

)2
+
( √

e
1+eX11 − 1√

e(1+e)
X22

)2

D11 = e
(1+e)2 D12 = 1

(1+e)2

D21 = 1
(1+e)2 D22 = 1

e(1+e)2

ν = 2
(1+e)2

It is not hard to show that these are feasible points: For the primal SDP we have to verify that the matrix

[
t aT

a X

]

is positive semidefinite. By Schur complement theorem this is equivalent to having X � aaT /t. This is true
for the matrix X defined above since by definition X = aaT /t + (1 − e)/2 · X̃ where X̃ � 0. Also one can
easily verify that for any i, j we have Xij,ij = A2

ij . Finally the 2× 2 minor constraint is satisfied because we
have:

X(1,1),(2,2) = X1,4 =
1 + e

2
e+

1− e
2

e = e

and

X(1,2),(2,1) = X2,3 =
1 + e

2
− 1− e

2
= e

and thus X(1,1),(2,2) = X(1,2),(2,1).
To verify that the SOS certificate is valid we need to verify that the following identity holds:

1− L(X) = SOS(X) +
∑

i,j

DijXij(Aij −Xij) + ν(X11X22 −X12X21),

which can be easily verified. Also the objective value is:

L(A) =
1 + 2e

(1 + e)2
· 2− e

(1 + e)2
· 1− 1

(1 + e)2
· e =

2

1 + e
.

The lemma above together with the diagonal invariance property proves the formula (34) when all entries
x, y, z, w are strictly positive. It remains to consider the case where some entries are equal to zero:

• If xw = 0 and yz > 0 we have to show that τ sos+ (A) = 2. To show this, observe that in this case A
has a fooling set of size 2 (i.e., the clique number of RG(A) is 2), and thus by Theorem 4 we have
τ+(A) ≥ τ sos+ (A) ≥ 2.
The case xw > 0 and yz = 0 is identical.

• Otherwise, we have xw = yz = 0. In this case the fooling set number is 1 and the nonnegative rank is
1 and thus τ sos+ (A) = 1.
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2.7.2 Nested rectangles problem

We consider in this section an example dealing with the geometric interpretation of the nonnegative rank.
The problem of finding a nonnegative factorization of a matrix A is related to the problem of nested polytopes
in geometry, where one looks for a polytope T with minimal number of vertices that is sandwiched between
two given polytopes S and P , i.e., S ⊆ T ⊆ P . In this section we briefly review this geometric interpretation
of the nonnegative rank and we then explore a simple example drawing from this interpretation.

Geometric interpretation of the nonnegative rank Consider a nonnegative matrix A ∈ Rm×n+ with
columns a1, . . . , an ∈ Rm+ and assume for simplicity that for all i, ai ∈ ∆m−1 where ∆m−1 is the unit simplex:

∆m−1 = {x ∈ Rm : 1Tx = 1, x ≥ 0}.

Let S be the polytope formed as the convex hull of the ai’s:

S = conv(a1, . . . , an).

Assume that we have a nonnegative factorization A = UV of A. Using an appropriate diagonal scaling
U ← UD and V ← D−1V , we can assume that the columns of U and V are in the unit simplex, i.e.,
1TU = 1T and 1TV = 1T . Geometrically, the factorization A = UV simply says that each column of A
is equal to a convex combination of the columns of U , where the coefficients are given by the entries of V .
Furthermore the columns of U are all in the unit simplex. Thus if we let T = conv(u1, . . . , uk) we have the
following inclusion:

S ⊆ T ⊆ ∆m−1. (36)

It is not too difficult to see that the nonnegative rank of A is actually the smallest k such that we can find
a polytope T with k vertices that satisfies (36).

When the matrix A is 4 × 4 and has rank 3, this sandwiched polytope problem can be reduced to a
problem in the plane since one can show that it is sufficient to work in the two-dimensional affine subspace
spanned by a1, . . . , a4. Note however that this is not true in general, i.e., we cannot in general reduce the
problem to aff(A), and this in fact is the main difference between the nonnegative rank and the restricted
nonnegative rank defined in [GG12]. The following proposition summarizes the geometric interpretation of
the nonnegative rank for 4× 4 matrices of rank 3.

Proposition 3. Let A be a 4 × 4 nonnegative matrix of rank 3 and assume that the columns a1, . . . , a4 of
A satisfy 1Tai = 1 for all i = 1, . . . , 4. Let aff(A) be the affine hull of a1, . . . , a4 and note that aff(A) is a
two-dimensional affine subspace of R4. The nonnegative rank of A is the smallest integer k such that there
exists a polytope T ⊆ aff(A) with k vertices such that

S ⊆ T ⊆ P

where S and P are two polytopes that live in aff(A) and that are defined by:

S = conv(a1, . . . , a4) and P = ∆3 ∩ aff(A).

For more details on the geometric interpretation of the nonnegative rank we refer the reader to [GG12]
and [MSVS03].

Example Let P = [−1, 1]2 be the square in the plane, and let

S(a, b) = [−a, a]× [−b, b]

be the rectangle of dimensions 2a × 2b centered at (0, 0). We consider the following question: Does there
exist a triangle T contained in P and that contains S(a, b)?

Using the geometric interpretation of the nonnegative rank, one can show that such a triangle exists if,
and only if, the nonnegative rank of the following 4× 4 matrix is equal to 3:

M(a, b) =




1− a 1 + a 1 + a 1− a
1− b 1− b 1 + b 1 + b
1 + a 1− a 1− a 1 + a
1 + b 1 + b 1− b 1− b


 .
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Figure 5. Left: The square P = [−1, 1]2 and the rectangle S(a, b) = [−a, a] ×
[−b, b]. Right: An instance where there exists a triangle T such that S(a, b) ⊂
T ⊂ P .

In fact the matrix M(a, b) is constructed in such a way that the polytopes S and P in Proposition 3 are
respectively S = S(a, b) and P = [−1, 1]2.

By computing the quantity τ sos+ (M(a, b)) we can certify the non-existence of such a triangle if we get
τ sos+ (M(a, b)) > 3. We have computed the value of τ sos+ (M(a, b)) numerically for a grid of values in (a, b) ∈
[0, 1]2 and Figure 6 shows the region where we got τ sos+ (M(a, b)) ≥ 3.
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b

Figure 6. The colored region is the region where τ sos+ (M(a, b)) ≥ 3, and in dashed
is the correct region {(a, b) : rank+(M(a, b)) = 4} (cf. proposition 4).

Using geometric considerations, one can actually solve the problem analytically and show that a triangle
T exists with S(a, b) ⊂ T ⊂ P if, and only if, (1 + a)(1 + b) ≤ 2:

Proposition 4. There exists a triangle T such that S(a, b) ⊂ T ⊂ P if, and only if, (1 + a)(1 + b) ≤ 2.

Sketch of proof. • We first prove the direction⇒: Let T be a triangle such that S(a, b) ⊂ T ⊂ P . We can
clearly assume that the vertices of T are all on the boundary of P . Then since T has only 3 vertices,
there is one edge of P that T does not touch 5. Assume without loss of generality that the edge that
T misses is the edge joining (1,−1) to (1, 1). In this case T has the form shown in Figure 7(a) below.

It is easy to see that one can move the vertices of T so that it has the “canonical” form shown in Figure
7(b) while still satisfying S(a, b) ⊂ T ⊂ P . The coordinates of the vertices of the canonical triangle
are respectively (a,−1), (a, 1) and (−1, 0). Using a simple calculation one can show that this triangle
contains S(a, b) if and only if (1 + a)(1 + b) ≤ 2.

5We assume here that the vertices of T do not coincide with any vertex of P—i.e., they all lie proper on the edges of P .
Note that if one vertex of T coincides with a vertex of P , then the other two vertices of T can be easily determined from the
inner rectangle and one can show that the triangle will indeed contain the inner rectangle if and only if (1 + a)(1 + b) ≤ 2.
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(a) (b)

Figure 7. (a) A triangle T such that S(a, b) ⊂ T ⊂ P . (b) Canonical form of
triangle, where one side is parallel to the axis and touches the corresponding of
S(a, b).

• To show that the condition (1 + a)(1 + b) ≤ 2 is sufficient, it suffices to consider the triangle of the
form depicted in Figure 7(b) which can be shown to contain S(a, b) if (1 + a)(1 + b) ≤ 2.

3 Nonnegative rank of tensors

3.1 Definitions

In this section we show how the same lower bound technique can be used to obtain lower bounds on non-
negative tensor rank.

Let A = [ai1...in ] be a nonnegative tensor of size d1 × · · · × dn. A tensor of rank one is a tensor of the
form:

u1 ⊗ · · · ⊗ un ∈ Rd1×···×dn

where u1 ∈ Rd1 , . . . , un ∈ Rdn and

(u1 ⊗ · · · ⊗ un)i1,...,in
def
= (u1)i1 . . . (un)in .

The nonnegative rank of A, denoted rank+(A) is the smallest integer r for which A can be written as the
sum of r nonnegative rank-one tensors. Observe that in any rank-one nonnegative decomposition of A:

A =

r∑

i=1

Ai

where Ai are rank-one nonnegative tensors, each Ai must satisfy 0 ≤ Ai ≤ A (componentwise inequality).
Like in the matrix case, this motivates the definition of:

A+(A) =
{
R ∈ Rd1×···×dn : rankR ≤ 1 and 0 ≤ R ≤ A

}
.

We can then define τ+(A) also in the same way as for matrices:

τ+(A) = min t subject to A ∈ t conv(A+(A))

= max
L linear

L(A) subject to L(R) ≤ 1 ∀R ∈ A+(A).

The quantity τ+(A) then verifies:
τ+(A) ≤ rank+(A).

3.2 Semidefinite programming relaxation

To obtain a semidefinite programming relaxation of τ+(A) for tensors, we use the same procedure as in
the case of matrices, described in section 2.2. We construct an over-relaxation of conv(A+(A)) which can
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be represented using linear matrix inequalities. The variety of rank-one tensors R ∈ Rd1×···×dn is known
as the n-factor Segre variety and can be described using quadratic equations in the entries of R; those
equations are described in [Gro77] and can be summarized as follows: If i = (i1, . . . , in) ∈ [d1] × · · · × [dn]
and j = (j1, . . . , jn) ∈ [d1]× · · · × [dn], and k ∈ {1, . . . , n}, define i[k : j] the multi-index obtained from i by
replacing the k’th position by jk, i.e.,

i[k : j] = (i1, . . . , jk, . . . , in).

The following gives the characterization of rank-one tensors using quadratic equations [Gro77]:

rankR ≤ 1

⇐⇒
∀i, j ∈ [d1]× · · · × [dn], ∀k = 1 . . . , n : R[i] ·R[j] = R[i[k : j]] ·R[j[k : i]].

(37)

If we introduce r = vec(R), then the equations above are linear in the entries of the matrix X = rrT :

∀i, j ∈ [d1]× · · · × [dn], ∀k = 1 . . . , n : X[i, j] = X[i[k : j], j[k : i]] (38)

Furthermore, the constraint R ≤ A implies that:

(rrT )i,i ≤ riAi,

for any i = (i1, . . . , in) ∈ [d1]× · · · × [dn], and these are linear inequalities in the entries of the matrix

[
1
r

] [
1
r

]T
=

[
1 rT

r rrT

]
.

Using these observations, we obtain the following over-relaxation of conv(A+(A)):

conv(A+(A)) ⊆ Asos
+ (A) (39)

where

Asos
+ (A) =

{
R ∈ Rd1×···×dn : ∃X ∈ Sd1...dn such that

[
1 vec(R)T

vec(R) X

]
� 0

and Xi,i ≤ RiAi ∀i = (i1, . . . , in) ∈ [d1]× · · · × [dn]

and X satisfies rank-one equations (38)

}
.

(40)

The semidefinite programming relaxation of τ+(A) can thus be defined as follows:

τ sos+ (A) = min{t > 0 : A ∈ tAsos
+ (A)},

and it satisfies:
τ sos+ (A) ≤ τ+(A) ≤ rank+(A).

More explicitly, τ sos+ (A) is the solution of the following semidefinite program:

τ sos+ (A) = min
t,X

t

s.t.

[
t vec(A)T

vec(A) X

]
� 0

Xi,i ≤ A2
i ∀i ∈ [d1]× · · · × [dn]

X satisfies rank-one equations (38)

(41)
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Like for the nonnegative rank of matrices (cf. Section 4.2), the dual of the semidefinite program (41) can be
written as the following sum-of-squares program:

τ sos+ (A) = max L(A)
s.t. L is a linear form

1− L(X) = SOS(X) +
∑

i1,...,in

Di1...inXi1...in(Ai1...in −Xi1...in) mod I

Di1...in ≥ 0 ∀(i1, . . . , in) ∈ [d1]× · · · × [dn]
SOS(X) is a sum-of-squares polynomial

(42)

Here I is the ideal of rank-one tensors described by the quadratic equations in (37).

3.3 Properties

The quantities τ+ and τ sos+ for tensors satisfy the same properties as for matrices. We mention here the
invariance under scaling property (we omit the proof since it is very similar as for the matrix case):

Theorem 6. Let A be a nonnegative tensor of size d1× · · · × dn. Let D1 ∈ Rd1+ , D2 ∈ Rd2+ , . . . , Dn ∈ Rdn+ be
nonnegative vectors with strictly positive entries and let A′ be the tensor defined by:

A′i1,...,in = D1
i1 . . . D

n
inAi1,...,in ,

for all (i1, . . . , in) ∈ [d1]× · · · × [dn]. Then

τ+(A′) = τ+(A) and τ sos+ (A′) = τ sos+ (A).

3.4 Example

Let A be the 2× 2× 2 tensor defined by:

A =

[
x 1 w 1
1 w 1 x

]
, (43)

where x,w ≥ 0 (in the notation above, the first 2× 2 block is the slice A(·, ·, 1) and the second 2× 2 block is
the slice A(·, ·, 2)). Such 2× 2× 2 tensors were studied in [ARSZ13, Example 2.3]. In the paper [ARSZ13],
necessary and sufficient conditions are given for a nonnegative tensor to have nonnegative rank ≤ 2. For the
2× 2× 2 tensor of Equation (43), we get that:

rank+A ≤ 2 ⇐⇒ xw ≥ 1 or x = w.

Figure 8 below shows the region where rank+(A) ≤ 2 in green. We have computed the value of τ sos+ (A)
numerically for a grid of values (x,w) ∈ [0, 3]× [0, 3] and we show on Figure 8 the region where τ sos+ (A) > 2.
The region in white in the figure correspond to tensors A where τ sos+ (A) ≤ 2 < rank+(A).

4 The cp-rank of completely positive matrices

In this section we apply the lower bounding technique to the cp-rank for completely positive matrices. For
a reference on completely positive matrices we refer the reader to [BSM03, Dic13].

4.1 Definitions

A symmetric matrix A ∈ Sn is called completely positive if it admits a decomposition of the form:

A =

r∑

i=1

aia
T
i (44)
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Figure 8. Regions (x,w) where τ sos+ (A) > 2 and where rank+(A) ≤ 2.

where each ai ∈ Rn is nonnegative. The cp-rank of A, denoted cprank(A) is the smallest r for which A
admits a decomposition (44) where the number of rank-one terms is r. The cp-rank clearly satisfies

rank+(A) ≤ cprank(A).

One can also show using Carathéodory theorem that cprank(A) is always bounded above by n(n + 1)/2.
More refined upper bounds on cprank exist, for example in terms of rank(A). We refer the reader to [BSM03,
Section 3.2] for more information.

Observe that in any cp-factorization A =
∑k
i=1Ai where Ai = aia

T
i with ai ≥ 0, we have

0 ≤ Ai ≤ A and 0 � Ai � A (45)

where≤ indicates componentwise inequality, and� indices inequality with respect to the positive semidefinite
cone6. Following the ideas described in the previous sections, this leads to define the following set (where
subscript ‘cp’ indicates ‘completely positive’):

Acp(A) = {R ∈ Sn : rankR ≤ 1, 0 ≤ R ≤ A, 0 � R � A} .

If we introduce the quantity:

τcp(A) = min t subject to A ∈ t conv(Acp(A))

= max
L linear

L(A) subject to L(R) ≤ 1 ∀R ∈ Acp(A)

we can easily verify that:
τcp(A) ≤ cprank(A).

6Actually note that we can even write 0 �C Ai �C A where C is the cone of completely positive matrices. Since checking
membership in the completely positive cone is hard [DG11], we consider here only the tractable conditions (45).
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4.2 Semidefinite programming relaxation

In this section we see how to obtain a semidefinite programming relaxation of τcp(A). We proceed the same
way as in section 2.2 by constructing an over-relaxation of conv(Acp(A)) which can be described using linear
matrix inequalities.

Let R ∈ Acp(A) and consider vec(R) ∈ Rn2

the vectorization of R obtained by stacking the columns of
R on top of each other. We saw that the rank-one constraints on R correspond to linear inequalities on the
entries of vec(R) vec(R)T , namely:

(vec(R) vec(R)T )ij,kl = (vec(R) vec(R)T )il,kj (46)

for all (1, 1) ≤ (i, j) < (k, l) ≤ (n, n). Furthermore, we saw that the componentwise inequality 0 ≤ R ≤ A
implies that:

(vec(R) vec(R)T )ij,ij ≤ RijAij (47)

for any i, j ∈ [n]. Now, since we are dealing with cp-factorizations, we have the additional inequalities
0 � R � A which we can also exploit. An important observation here is that since R is rank-one and
positive semidefinite, we have:

vec(R) vec(R)T = R⊗R, (48)

where ⊗ denotes the Kronecker product of matrices. To see why (48) is true, let x ∈ Rn such that R = xxT .
Let α ∈ [n2] and β ∈ [n2] and let (α1, α2) ∈ [n]2 and (β1, β2) ∈ [n]2 be the unique pairs such that

α = (α2 − 1)n+ α1 and β = (β2 − 1)n+ β1.

By definition of the operation vec, we have vec(R)α = Rα1,α2 . Thus:

(vec(R) vec(R)T )α,β = Rα1,α2
Rβ1,β2

= xα1
xα2

xβ1
xβ2

.

By definition of R⊗R, we have:

(R⊗R)α,β = Rα1,β1Rα2,β2 = xα1xα2xβ1xβ2 .

This is true for any α, β ∈ [n2] and thus we have vec(R) vec(R)T = R⊗R. Now note that the matrix R⊗R
satisfies R⊗R � R⊗A: this is because R⊗A−R⊗R = R⊗ (A−R) � 0 since R � 0 and A−R � 0 and the
Kronecker product of positive semidefinite matrices is positive semidefinite. Thus we have the inequality:

vec(R) vec(R)T � R⊗A. (49)

If we now combine the observations above, we get the following over-relaxation of conv(Acp(A)):

conv(Acp(A)) ⊆ Asos
cp (A)

where

Asos
cp (A) =

{
R ∈ Sn : ∃X ∈ Sn

2

such that

[
1 vec(R)T

vec(R) X

]
� 0

and Xij,ij ≤ RijAij ∀i ∈ [m], j ∈ [n]

and X � R⊗A

and Xij,kl −Xil,kj = 0 ∀(1, 1) ≤ (i, j) < (k, l) ≤ (m,n)

}
.

(50)

This leads to the following relaxation τ soscp (A) of τcp(A):

τ soscp (A) = min{t : A ∈ tAsos
cp (A)},

which satisfies:
τ soscp (A) ≤ τcp(A) ≤ cprank(A).
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The function τ soscp (A) can be computed by the following semidefinite program:

τ soscp (A) = min. t

s.t.

[
t vec(A)T

vec(A) X

]
� 0

Xij,ij ≤ A2
ij ∀i, j ∈ [n]

X � A⊗A
Xij,kl = Xil,kj ∀(1, 1) ≤ (i, j) < (k, l) ≤ (n, n)

(51)

Note that this is very similar to the semidefinite program (16) for τ sos+ (A) except for the additional constraint
X � A⊗A.

4.3 Properties

The quantities τcp and τ soscp satisfy the same properties as those satisfied by τ+ and τ sos+ shown in section
2.3. We summarize these properties below (the proofs are omitted since they are very similar to those from
section 2.3):

Theorem 7. Let A be a completely positive matrix of size n.

1. Invariance under diagonal scaling: If D is a diagonal matrix, with strictly positive entries on the
diagonal, then τcp(DAD) = τcp(A) and τ soscp (DAD) = τ soscp (A).

2. Invariance under permutation: If P is a permutation matrix, then τcp(PAPT ) = τcp(A) and τ soscp (PAPT ) =
τ soscp (A).

3. Subadditivity: If B is another completely positive matrix, then:

τcp(A+B) ≤ τcp(A) + τcp(B) and τ soscp (A+B) ≤ τ soscp (A) + τ soscp (B).

4. Monotonicity: If B is a submatrix of A (i.e., B = A[I, I] for some I ⊆ [n]), then τcp(B) ≤ τcp(A) and
τ soscp (B) ≤ τ soscp (A).

5. Block-diagonal composition: Let B ∈ Sn
′

be another completely positive matrix and define

A⊕B =

[
A 0
0 B

]
∈ Sn+n

′
.

Then
τcp(A⊕B) = τcp(A) + τcp(B) and τ soscp (A⊕B) = τ soscp (A) + τ soscp (B).

4.4 Comparison with existing lower bounds on cp-rank

In this section we compare the lower bounds τcp(A) and τ soscp (A) to other existing lower bounds on cp-rank.

4.4.1 The plain rank lower bound

If A is a completely positive matrix, an obvious lower bound to cprank(A) is rank(A). It turns out that
τ soscp (A) satisfies the remarkable property τ soscp (A) ≥ rank(A):

Theorem 8. Let A be a completely positive matrix of size n. Then

τ soscp (A) ≥ rank(A).
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Proof. Let (t,X) be the optimal solution of the semidefinite program (51) where t = τ soscp (A). Using Schur

complement theorem we have that vec(A) vec(A)T � tX. Furthermore we also have X � A⊗A, and thus if
we combine these two inequalities we get:

vec(A) vec(A)T � t(A⊗A).

Hence by Lemma 4 below we necessarily have t ≥ rank(A).

Lemma 4. Let A ∈ Sn+ be a n× n positive semidefinite matrix. Then

rank(A) = min
{
t : vec(A) vec(A)T � tA⊗A

}
.

Proof. Let A = PDPT be an eigenvalue decomposition of A where P is an orthogonal matrix and D is a
diagonal matrix where the diagonal elements are sorted in decreasing order. Let r = rank(A) = |{i : Di,i >
0}| and denote by Ir the identity matrix where only the first r entries are set to 1 (the other entries are
zero). For t ≥ 0, the following equivalences hold:

vec(A) vec(A)T � tA⊗A ⇐⇒ vec(PDPT ) vec(PDPT )T � t(P ⊗ P )(D ⊗D)(PT ⊗ PT )

(a)⇐⇒ (P ⊗ P ) vec(D) vec(D)T (PT ⊗ PT ) � t(P ⊗ P )(D ⊗D)(PT ⊗ PT )

(b)⇐⇒ vec(D) vec(D)T � t(D ⊗D)

(c)⇐⇒ vec(Ir) vec(Ir)
T � t(Ir ⊗ Ir)

(52)

where in (a) we used the well-known identity vec(PDPT ) = (P ⊗P ) vec(D), in (b) we conjugated by P ⊗P
and in (c) we conjugated with D−1/2⊗D−1/2 (where (D−1/2)i,i = (Dii)

−1/2 if Di,i > 0, else (D−1/2)i,i = 1).
The lemma thus reduces to show that

min
{
t : vec(Ir) vec(Ir)

T � t(Ir ⊗ Ir)
}

= r.

This is easy to see because vec(Ir) is an eigenvector of vec(Ir) vec(Ir)
T with eigenvalue r, and it is the only

eigenvector of vec(Ir) vec(Ir)
T with a nonzero eigenvalue. Furthermore, vec(Ir) is also an eigenvector of

t(Ir ⊗ Ir) with eigenvalue t. Thus the smallest t such that vec(Ir) vec(Ir)
T � t(Ir ⊗ Ir) is r.

4.4.2 Combinatorial lower-bounds on cp-rank

Given a n×n completely positive matrix A, let G(A) be the graph whose adjacency matrix is A, i.e., G has
n vertices and i ∈ [n] and j ∈ [n] are connected by an edge if Ai,j > 0. Observe that any cp-factorization of
A:

A =

r∑

i=1

aia
T
i ,

where ai ≥ 0 yields a covering of the edges of G(A) using r cliques of G(A). Indeed, the support of each
rank-one term aia

T
i corresponds to a clique of G(A), and each nonzero entry of A (i.e., each edge of G(A)) is

covered by at least one such clique. This simple observation yields the following lower-bound on the cp-rank
of A:

cprank(A) ≥ c(G(A)),

where c(G(A)) is the edge clique-cover number of G(A), i.e., the smallest number of cliques of G(A) needed
to cover the edges of G(A). Note that c(G) is NP-hard to compute in general. Also note that for a graph
G = (V,E), c(G) is the solution of the following integer program where the variables xC are indexed by the
cliques C of G:

c(G) = min
∑
C xC

s.t. xC ∈ {0, 1} ∀C clique of G∑
C : e∈C xC ≥ 1 ∀e ∈ E.
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Define the fractional edge-clique cover number of G, denoted cfrac(G) to be the linear programming relaxation
of the integer program above, where the integer constraints xC ∈ {0, 1} are replaced by xC ≥ 0 [ST99]:

cfrac(G) = min
∑
C xC

s.t. x ≥ 0∑
C : e∈C xC ≥ 1 ∀e ∈ E

(53)

Note that the linear program (53) is hard to compute in general since it has an exponential number of
variables. Clearly we have cfrac(G(A)) ≤ c(G(A)). Actually, Lovász showed in [Lov75] that cfrac(G) is
always within a ln |E| factor from c(G) for any graph G = (V,E):

1

1 + ln |E|
c(G) ≤ cfrac(G) ≤ c(G).

We will now rewrite the linear program (53) for cfrac(G) in a slightly different way in order to show its
connection with the quantity τcp(A) (we will in fact show in a theorem below that τcp(A) ≥ cfrac(A)). Define
Acl(A) to be the set of adjacency matrices representing cliques in G(A):

Acl(A) =
{
R = bbT where b ∈ {0, 1}n and R is monochromatic for A

}
.

We can rewrite the fractional edge-clique cover number of G(A) as follows:

cfrac(G(A)) = min t
s.t. ∃Y ∈ t conv(Acl(A)) s.t. ∀(i, j), Ai,j > 0 ⇒ Yi,j ≥ 1

(54)

We prove the following:

Theorem 9. If A is a completely positive matrix, then:

τcp(A) ≥ cfrac(GA).

Proof. Let t = τcp(A) and X ∈ conv(Acp(A)) such that A = tX. Consider the decomposition of X:

X =

r∑

k=1

λkXk,

where Xk ∈ Acp(A), λk ≥ 0 and
∑r
k=1 λk = 1. Let Rk = supp(Xk) (i.e., Rk is obtained by replacing the

nonzero entries of Xk with ones) and observe that Rk ∈ Acl(A). Define

Y = t

r∑

k=1

λkRk ∈ t conv(Acl(A))

Observe that for any (i, j) such that Ai,j > 0 we have:

Yi,j = t
∑

k:Xk[i,j]>0

λk Rk[i, j]︸ ︷︷ ︸
=1

(a)

≥ t
∑

k:Xk[i,j]

λk
Xk[i, j]

Ai,j

(b)
=
Ai,j
Ai,j

= 1

where in (a) we used the fact that Xk ≤ A (by definition of Xk ∈ Acp(A)) and in (b) we used the fact that
A = t

∑
k λkXk. Thus this shows that (t, Y ) is feasible for the optimization program defining cfrac(G(A))

and thus we have cfrac(G(A)) ≤ t = τcp(A).

4.5 Example

Consider the following matrix parameterized by a, b ≥ 0:

A =




3 + a 0 1 1 1
0 3 + a 1 1 1
1 1 2 + b 0 0
1 1 0 2 + b 0
1 1 0 0 2 + b



. (55)
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When a, b ≥ 0, the matrix A is nonnegative and diagonally dominant and hence is completely positive
[BSM03, Theorem 2.5]. One can show that the cp-rank of A is equal to 6 for any a, b ≥ 0. Indeed observe
that A is the adjacency matrix of the graph K2,3 (complete bipartite graph) which has edge-clique cover
number of 6, and thus necessarily cprank(A) ≥ 6. Also it is known7 that any 5 × 5 completely positive
matrix has cp-rank ≤ 6 [BSM03, Theorem 3.12].

We have computed the value of τ soscp (A) for different values of a, b and we show the result of these
computations in Figure 9: the left figure shows the plot of τ soscp (A) as a function of a, b; the right figure shows
the region of values a, b where τ soscp (A) > 5.
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Figure 9. Left: Plot of τ soscp (A) as a function of a, b (the matrix A is defined
in (55)). Right: Region where τ soscp (A) > 5. Note that for a = b = 0 we have
τ soscp (A) = 6, and for (a, b) outside the colored region, we have τ soscp (A) = 5

5 Summary and conclusion

In this paper we proposed a general method based on convex optimization to obtain lower bounds on so-
called atomic cone ranks. We focused on two important special cases which are the nonnegative rank and
cp-rank. In these cases we saw that our lower bound improves on the existing bounds and enjoy in addition
appealing structural properties. There are also other examples of atomic cone ranks that one could study
using the framework developed in this paper. For example, one interesting application mentioned earlier is
to obtain lower bounds on the sizes of cubature formulas [Kön99].

Note that there are other notions of cone ranks which do not fit in the atomic framework described here.
One example which has received a lot of attention recently is the psd rank defined in [GPT13] and which
has applications in semidefinite lifts of polytopes. Given a nonnegative matrix A ∈ Rm×n+ , the psd rank of A
is the smallest r for which we can find r× r positive semidefinite matrices Ui, Vj such that Aij = 〈Ui, Vj〉 for
all i, j. Unlike the nonnegative rank, the psd rank is not an atomic rank since the matrices with psd rank
one are precisely the matrices that have nonnegative rank one. This non-atomic feature makes the psd rank
more difficult to study, and there are currently no good methods known to obtain strong lower bounds on
the psd rank.

7It is conjectured that any completely positive matrix of size n× n has cprank ≤ n2/4. The conjecture is known to be true
for n = 5, and this means that any 5 × 5 completely positive matrix has cprank ≤ 6. The conjecture is known as the DJL
conjecture [BSM03, p.157]
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A Proof of properties of τ+ and τ sos
+

A.1 Invariance under permutation

The proof of invariance under permutation is very similar to the one for invariance under diagonal scaling.
To prove the claim for τ+ one proceeds by showing that the set of atoms A+(A′) of A′ = P1AP2 can be
obtained from the atoms of A by applying the permutations P1 and P2, namely:

A+(A′) = {P1RP2 : R ∈ A+(A)} =: P1A+(A)P2.

For the SDP relaxation we also use the same idea as the previous proof by constructing a certificate L′ for
A′ using the certificate L for A. We omit the details here since they are very similar to the previous proof.

A.2 Subadditivity

1. We first prove the subadditivity property for τ+, i.e., τ+(A + B) ≤ τ+(A) + τ+(B). Observe that we
have

A+(A) ∪ A+(B) ⊆ A+(A+B). (56)

Indeed if R ∈ A+(A), i.e., R is rank-one and 0 ≤ R ≤ A, then we also have 0 ≤ R ≤ A+B (since B is
nonnegative) and thus R ∈ A+(A + B). Thus this shows A+(A) ⊆ A+(A + B), and the same reason
gives A+(B) ⊆ A+(A + B), and thus we get (56). By definition of τ+(A) and τ+(B), we know there
exist decompositions of A and B:

A =
∑

i

αiRi

and
B =

∑

j

βjSj

where Ri ∈ A+(A) for all i and
∑
i αi = τ+(A), and Sj ∈ A+(B) for all j and

∑
j βj = τ+(B). Thus

this leads to:
A+B =

∑

i

αiRi +
∑

j

βjSj

where Ri ∈ A+(A+B) and Sj ∈ A+(A+B) for all i and j. This decomposition shows that

τ+(A+B) ≤ τ+(A) + τ+(B).

2. We now prove the property for τ sos+ . Let (t,X) and (t′, X ′) be the optimal points of the semidefinite
program (16) for A and B respectively (i.e., t = τ sos+ (A) and t′ = τ sos+ (B)). It is not hard to see that
(t+ t′, X +X ′) is feasible for the semidefinite program that defines τ sos+ (A+B) (in particular we use
the fact that since A and B are nonnegative we have A2

ij +B2
ij ≤ (Aij +Bij)

2). Thus this shows that
τ sos+ (A+B) ≤ τ sos+ (A) + τ sos+ (B).

A.3 Product

1. We first show the property for τ+. We need to show that τ+(AB) ≤ min(τ+(A), τ+(B)). To see
why note that if R ∈ A+(A), then RB ∈ A+(AB). thus if we have A =

∑
i αiRi with Ri ∈ A+(A)

and
∑
i αi = τ+(A), then we get AB =

∑
i αiRiB where each RiB ∈ A+(AB) and thus τ+(AB) ≤∑

i αi = τ+(A). The same reasoning shows that τ+(AB) ≤ τ+(B), and thus we get τ+(AB) ≤
min(τ+(A), τ+(B)).

2. We now prove the property for τ sos+ , i.e., we show τ sos+ (AB) ≤ min(τ sos+ (A), τ sos+ (B)). We will show here
that τ sos+ (AB) ≤ τ sos+ (A), and a similar reasoning can then be used to show τ sos+ (AB) ≤ τ sos+ (B).

Let (t,X) be the optimal point of the semidefinite program (16) that defines τ sos+ (A), i.e., t = τ sos+ (A).

We will show that the pair (t, X̃) with

X̃ = (BT ⊗ Im)X(B ⊗ Im),
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is feasible for the semidefinite program that defines τ sos+ (AB) and thus this will show that τ sos+ (AB) ≤
t = τ sos+ (A).

Observe that we have vec(AB) = (BT ⊗ Im) vec(A) thus:
[

t vec(AB)T

vec(AB) X̃

]
=

[
1 0
0 BT ⊗ I

] [
t vec(A)T

vec(A) X

] [
1 0
0 B ⊗ I

]

and thus this shows that the matrix [
t vec(AB)T

vec(AB) X̃

]

is positive semidefinite.

Using the definition of Kronecker product one can verify that the entries of X̃ are given by:

X̃ij,kl =

m′∑

α,β=1

BαjBβlXiα,kβ .

Using this formula we easily verify that X̃ satisfies the rank-one equality constraints:

X̃ij,kl = X̃il,kj

since X itself satisfies the constraints.

Finally it remains to show that X̃ij,ij ≤ (AB)2ij . For this we need the following simple lemma:

Lemma 5. Let (t,X) be a feasible point for the semidefinite program (16). Then Xij,kl ≤ AijAkl for
any i, j, k, l.

Proof. Consider the 2× 2 principal submatrix of X:
[
Xij,ij Xij,kl

Xkl,ij Xkl,kl

]
.

We know that Xij,ij ≤ A2
ij and Xkl,kl ≤ A2

kl. Furthermore since X is positive semidefinite we have

Xij,ijXkl,kl −X2
ij,kl ≥ 0. Thus we get that:

X2
ij,kl ≤ Xij,ijXkl,kl ≤ (AijAkl)

2.

Thus since AijAkl ≥ 0 we have Xij,kl ≤ AijAkl.

Using this lemma we get:

X̃ij,ij =

m′∑

α,β=1

BαjBβjXiα,iβ ≤
m′∑

α,β=1

BαjBβjAiαAiβ = ((AB)ij)
2

which is what we want.

A.4 Monotonicity

Here we prove the monotonicity property of τ+ and τ sos+ . More precisely we show that if A ∈ Rm×n+ is a
nonnegative matrix, and B is a submatrix of A, then τ+(B) ≤ τ+(A) and τ sos+ (B) ≤ τ sos+ (A).

1. We prove the claim first for τ+. Let I ⊆ [m] and J ⊆ [n] such that B = A[I, J ] (i.e., B is obtained
from A by keeping only the rows in I and the columns in J). Let X ∈ convA+(A) such that A =
τ+(A)X. Define Y = X[I, J ] and note that Y ∈ conv(A+(B)). Furthermore observe that we have
B = A[I, J ] = τ+(A)X[I, J ] = τ+(A)Y . Hence, since Y ∈ convA+(B), this shows, by definition of
τ+(B) that τ+(B) ≤ τ+(A).

2. We prove the claim now for the semidefinite programming relaxation τ sos+ . As above, let I ⊆ [m] and
J ⊆ [n] such that B = A[I, J ]. Let (t,X) be the optimal point in (16) for the matrix A. It is easy to
see that (t,X[I, J ]) is feasible for the semidefinite program (16) for the matrix B = A[I, J ]. Thus this
shows that τ sos+ (B) ≤ τ sos+ (A).
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A.5 Block-diagonal matrices

In this section we prove that if A ∈ Rm×n+ and B ∈ Rm
′×n′

+ are two nonnegative matrices and A⊕ B is the
block-diagonal matrix:

A⊕B =

[
A 0
0 B

]
,

then
τ+(A⊕B) = τ+(A) + τ+(B) and τ sos+ (A⊕B) = τ sos+ (A) + τ sos+ (B)

1. We first prove the claim for the quantity τ+. Observe that the set A+(A⊕B) is equal to:

A+(A⊕B) =

{[
R 0
0 0

]
: R ∈ A+(A)

}
∪
{[

0 0
0 R′

]
: R′ ∈ A+(B)

}
. (57)

Indeed any element in A+(A⊕B) must have the off-diagonal blocks equal to zero (since the off-diagonal
blocks of A ⊕ B are zero), and thus by the rank-one constraint at least one of the diagonal blocks is
also equal to zero. Thus this shows that A+(A⊕B) decomposes as in (57).

We start by showing τ+(A⊕B) ≥ τ+(A) + τ+(B). Let Y ∈ convA+(A⊕B) such that

A⊕B = τ+(A⊕B)Y.

Since A+(A⊕B) has the form (57), we know that Y can be decomposed as:

Y =

r∑

i=1

λi

[
Ri 0
0 0

]
+

r′∑

j=1

µj

[
0 0
0 R′i′

]
,

where Ri ∈ A+(A), R′j ∈ A+(B) and
∑
i λi +

∑
j µj = 1 with λ, µ ≥ 0. Note that since A ⊕ B =

τ+(A⊕B)Y we have:

A = τ+(A⊕B)

r∑

i=1

λiRi,

and

B = τ+(A⊕B)

r′∑

j=1

µjR
′
j .

Hence τ+(A) ≤ τ+(A⊕B)
∑r
i=1 λi and τ+(B) ≤ τ+(A⊕B)

∑r′

j=1 µj and we thus get:

τ+(A) + τ+(B) ≤ τ+(A⊕B)




r∑

i=1

λi +

r′∑

j=1

µj


 = τ+(A⊕B).

We now prove the converse inequality, i.e., τ+(A ⊕ B) ≤ τ+(A) + τ+(B): Let t = τ+(A), t′ = τ+(B)
and X ∈ convA+(A), X ′ ∈ convA+(B) such that A = tX and B = t′X ′. Define the matrix

Y =

[
t

t+t′X 0

0 t′

t+t′X
′

]
,

and note that A ⊕ B = (t + t′)Y . If we show that Y ∈ convA+(A ⊕ B) then this will show that
τ+(A⊕B) ≤ t+ t′. We can rewrite Y as:

Y =
t

t+ t′

[
X 0
0 0

]
+

t′

t+ t′

[
0 0
0 X ′

]
,

and it is easy to see from this expression that Y ∈ convA+(A⊕B).

We have thus proved that τ+(A⊕B) = τ+(A) + τ+(B).
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2. We now prove the claim for the SDP relaxation τ sos+ . Let a = vec(A) and b = vec(B). Since the
matrix A⊕B has zeros on the off-diagonal, the SDP defining τ sos+ (A⊕B) can be simplified and we can
eliminate the zero entries from the program. One can show that after the simplification we get that
τ sos+ (A⊕B) is equal to the value of the SDP below:

minimize t

subject to



t aT bT

a X 0

b 0 X ′


 � 0

Xij,ij ≤ A2
ij ∀(i, j) ∈ [m]× [n]

Xij,kl = Xil,kj 1 ≤ i < k ≤ m and 1 ≤ j < l ≤ n
X ′i′j′,i′j′ ≤ B2

i′j′ ∀(i′, j′) ∈ [m′]× [n′]

X ′i′j′,k′l′ = Xi′l′,k′j′ 1 ≤ i′ < k′ ≤ m′ and 1 ≤ j′ < l′ ≤ n′

(58)

It is well-known (see e.g., [GJSW84]) that the following equivalence always holds:



t aT bT

a X 0
b 0 X ′


 � 0 ⇐⇒ ∃t1, t2 : t1 + t2 = t,

[
t1 aT

a X

]
� 0,

[
t2 bT

b X ′

]
� 0

Using this equivalence, the semidefinite program (58) becomes:

minimize t1 + t2

subject to

[
t1 aT

a X

]
� 0

Xij,ij ≤ A2
ij ∀(i, j) ∈ [m]× [n]

Xij,kl = Xil,kj 1 ≤ i < k ≤ m and 1 ≤ j < l ≤ n[
t2 bT

b X ′

]
� 0

X ′i′j′,i′j′ ≤ B2
i′j′ ∀(i′, j′) ∈ [m′]× [n′]

X ′i′j′,k′l′ = Xi′l′,k′j′ 1 ≤ i′ < k′ ≤ m′ and 1 ≤ j′ < l′ ≤ n′

(59)

The semidefinite program is decoupled and it is easy to see that its value is equal to τ sos+ (A) + τ sos+ (B).
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[Löf04] J. Löfberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of
the CACSD Conference, Taipei, Taiwan, 2004. 5
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