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1 Introduction

In 1964, Stampacchia [32] extended the well known Lax-Milgram lemma (or varia-
tional equation) on coercive bilinear forms to convex and closed sets (representing in
general some constraints). This important result applied by Fichera [18] to the Sig-
norini problem on the elastic equilibrium of a body under unilateral constraints and by
Stampacchia to the definition of the capacitary potential associated to a non symmetric
bilinear form, is considered as the starting point of the theory of variational inequalities,
see e.g., the excellent survey by Mazzone and Lions [21,23]. This theory was consid-
erably extended with the work by Hartman and Stampacchia [19], in reflexive Banach
spaces, for nonlinear partial differential operators arising in elasticity. Then, Lions
and Stampacchia [22] extended Fichera’s analysis to abstract variational inequalities
associated to bilinear forms which are coercive or simply non negative in real Hilbert
spaces as a tool for the study of partial differential elliptic and parabolic equations (see,
also [17] and [16] for applications to the unilateral mechanics). In an abstract frame-
work, if K is a closed and convex subset of an ambient space X and f a given element
in the dual space, a variational inequality is the problem of finding u ∈ K such that

〈Au − f, v − u〉 ≥ 0 for each v ∈ K . (1)

The evolution analogue of (1), i.e., the problem of finding a function t → u(t), where
t is the time, modelizes evolution problems such as parabolic or hyperbolic equations
(see [16]). In this context, evolution variational inequalities ormore generally differen-
tial inclusions have been considered as a natural generalization of ordinary differential
equations (ODE’s)when dealingwith unilateral constraints inmechanics, for example.

On the other hand, studies were conducted in parallel in linear and nonlinear com-
plementarity problems (a part of mathematical programming and optimization) in
finite dimensional spaces with a large number of applications in economics, finance,
transportation planning, Nash equilibrium and game theory. The two subjects of vari-
ational inequalities and complementarity are closely related.

In many applications, the models lead to an ordinary differential equation parame-
trized by a variational inequality or complementarity condition in the constraint. Such
a combination appears naturally for instance in optimal control theory where the state
x(t) and the control u(t) are related by a constraint. For illustration purpose, let us
consider the following nonlinear input/output system

⎧
⎪⎨

⎪⎩

ẋ(t) = f (t, x(t)) + BT u(t), a.e. t ∈ [0, T ] (2)

y(t) = Bx(t), (3)

0 ≤ x(t) ⊥ y(t) ≥ 0. (4)

Here x(t) ∈ R
n is the state variable, u(t) ∈ R

m is the input variable, y(t) ∈ R
m

is the output variable, B ∈ R
m×n is a given matrix and f :[0, T ] × R

n → R
n is a
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given vector field. This problem belongs to the class of piecewise smooth systems
which consist of an ODE parametrized by an algebraic variable y that is required to
satisfy a complementarity condition or more generally a variational inequality. This
can be extended to the more general abstract framework of Differential Variational
Inequalities (DVI’s) studied thoroughly by Pang and Stewart [25].

Problem (2)–(4) plays an important role in nonsmooth mechanics (multibody
dynamics with unilateral contact), in nonregular electrical circuits (switching systems,
relay, diodes and transistors) as well as in dynamic games. Using tools from convex
analysis, we show that problem (1) can be reduced to the study of a general differential
inclusion governed by a maximally monotone operator which is our object problem
to study in this paper. In fact, the complementarity condition (4) can be rewritten in
terms of the normal cone. More precisely,

0 ≤ y(t) ⊥ u(t) ≥ 0 ⇐⇒ y(t) ∈ −NR
n+(u(t)),

where NR
n+ stands for the normal cone to the positive orthant Rn+. Hence, relation (2)

is equivalent to

ẋ(t) ∈ f (t, x(t)) − BT NR
n+(Bx(t)).

Using the chain rule formula and using the indicator function (defined in Sect. 2) IRn+ ,
we obtain

ẋ(t) ∈ f (t, x(t)) − ∂ϕ(x(t)), (5)

where ϕ(x) = (IRn+ ◦ B)(x), which is a convex, lower semicontinuous (lsc for short)
and proper function. Let us notice that problem (5) is of the form (6) since A = ∂ϕ is
a maximally monotone operator.

Equally important is the study of the stability in the sense of Lyapunov of dynamical
systems due to its usefulness in system theory and engineering. This concept has been
studied extensively in the literature in the smooth case. In various applicationsmodeled
by ordinary differential equations, one may be forced to work with systems that have
nondifferentiable solutions. For example, Lyapunov functions (positive-definite func-
tions, which are nonincreasing along the trajectories) used to establish a stability of a
given system may be nondifferentiable. The need to extend the classical differentiable
Lyapunov stability to the nonsmooth case is unavoidable when studying discontinu-
ous systems. In practice, many systems arising in physics, engineering, biology, etc,
exhibit generally nonsmooth energy functions, which are usually typical candidates
for Lyapunov functions. Thus, the use of elements of nonsmooth analysis is essential
[3,9,15,29].

Instead of considering inclusion (5), throughout this article we are interested in the
general framework of infinite-dimensional dynamical systems, that is, systems of the
form:

ẋ(t; x0) ∈ f (x(·; x0)) − Ax(·; x0), x0 ∈ cl(Dom A) a.e. t ≥ 0. (6)
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In the sequel, cl(Dom A) is the closure of the domain of a maximally monotone
operator A : H ⇒ H defined on a real Hilbert space H , possibly nonlinear and
multivalued with domain Dom A, and f is a Lipschitz continuous mapping defined on
cl(Dom A).A pair of proper lower semicontinuous functions V,W : H → R∪{+∞}
is said to form an a−Lyapunov pair for (6), with some a ≥ 0, if for all x0 ∈ cl(Dom A)

the solution x(·; x0) of (6), in the sense that will be made precise in Sect. 3, satisfies

eat V (x(t; x0)) +
∫ t

s
W (x(τ ; x0))dτ ≤ easV (x(s; x0)) for all t ≥ s ≥ 0. (7)

Observe that when W ≡ 0 and a = 0 one recovers the classical notion of Lyapunov
functions; see, e.g., [31]. The main motivation for this definition is that many stability
concepts for the equilibrium sets of (6) (namely stability, asymptotic or finite-time
stability, etc.) can be obtained just by choosing appropriate values for a and function
W in (7). Themethod of Lyapunov functions has a long history that has been described
in several places. We refer the reader to Clarke [13,14] for an overview of the recent
developments of the theory, where he pointed out that for nonlinear systems, the
Lyapunovmethod turns out to be essential to consider nonsmooth Lyapunov functions,
even if the underlying control dynamics are themselves smooth.

Among the various contributions, Kocan and Soravia [20] characterized Lyapunov
pairs in terms of viscosity solutions to a related partial differential inequality. Another
well-established approach consists of characterizing Lyapunov pairs by means of the
contingent derivative of the maximally monotone operator A—see e.g. Cârjă and
Motreanu [10] for the case of a linear maximally monotone operator and also when
A is a multivalued m-accretive operator on an arbitrary Banach space [11]. In these
approaches the authors used tangency and flow-invariance arguments combined with
a priori estimates and approximation.We also refer to the paper by Adly and Goeleven
[1] in which smooth Lyapunov functions were used in the framework of the second
order differential equations, that can be rewritten in the form of (6).

In [2], we followed a different approach that did not make use of viscosity solutions
or contingent derivatives associated to the operator A. We provided general criteria
for nonsmooth Lyapunov pairs associated to (6) in terms of proximal and horizon
subgradients of the involved function V . Such conditions were written by considering
limiting processes required by the fact that the initial condition in (6) was allowed to
be any point in the closure of the domain A.

Our objective in this work is to refine the approach of [2] to the setting where the
interior of the domain of the involvedmaximallymonotone operator is nonempty. This
setting subsumes the finite-dimensional case where the relative interior of the convex
envelope of the domain of the operator is always nonempty. Moreover, as in [1] which
deals with the smooth case, the criteria for Lyapunov pairs are checked only in the
interior of the domain (or the relative interior) instead of the closure of the whole
domain. In contrast to [1], this setting also ensures obtaining global Lyapunov pairs
and allows us to control the whole trajectory of the solution to the given differential
inclusion. This additional interiority assumption provides more explicit criteria for
nonsmooth Lyapunov pairs than the ones given in [2]. Indeed, on the one hand, the
conditions we present here are given at the nominal point and do not involve limiting
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processes. On the other hand, the current analysis is flexible regarding the choice of
the subdifferentials, which can be either the proximal, the Fréchet (regular), or the
limiting subdifferentials. Moreover, a notable difference with the previous results of
[2] is that it is not necessary to consider the horizon subgradient, a fact that leads us
to sharper conditions for Lyapunov pairs.

The structure of the paper is as follows. In Sect. 2 we introduce the main tools and
basic results used in the paper. In Sect. 3 we give new criteria for lower semicontinuous
Lyapunov pairs, achieved in Theorems 3.1, 3.2, and 3.3. Section 4 is devoted to the
finite-dimensional setting.

2 Notation and main tools

Throughout the paper, H is a (real) Hilbert space endowed with the inner product
〈·, ·〉 and the associated norm ‖·‖. Given a nonempty set S ⊂ H (or S ⊂ H × R),
by co S, cone S, and aff S, we denote the convex hull, the conic hull, and the affine
hull of the set S, respectively. Moreover, IntS is the interior of S, and clS and S are
indistinctly used for the closure of S (with respect to the norm topology on H ).

We note ri S the (topological) relative interior of S, i.e., the interior of S in the
topology relative to cl(aff S). For x ∈ H (or x ∈ H × R) and ρ ≥ 0, Bρ(x) is
the open ball with center x and radius ρ, and Bρ(x) is the closure of Bρ(x) (with
B := B1(0)).

Our notation is the standard one used in convex and variational analysis and in
monotone operator theory; see, e.g., [8,28]. The indicator function of S ⊂ H is the
function defined as

IS(x) :=
{
0 if x ∈ S
+∞ otherwise.

The distance function to S is denoted by

d(x, S) := inf{‖x − y‖ | y ∈ S},

and the orthogonal projection on S, πS , is defined as

πS(x) := {y ∈ S | ‖x − y‖ = d(x, S)}.

Given a function ϕ : H → R, its (effective) domain and epigraph are defined by

Dom ϕ := {x ∈ H | ϕ(x) < +∞},
epi ϕ := {(x, α) ∈ H × R | ϕ(x) ≤ α}.

For λ ∈ R, the open upper level set of ϕ at λ is

[ϕ > λ] := {x ∈ H | ϕ(x) > λ};
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The sets [ϕ ≤ λ] and [ϕ < λ] are defined similarly. We say that ϕ is proper if
Dom ϕ �= ∅ and ϕ(x) > −∞ for all x ∈ H. We say that ϕ is convex if epi ϕ
is convex, and (weakly) lower semicontinuous if epi ϕ is closed with respect to the
(weak topology) norm-topology on H . We denote

F (H) := {ϕ : H → R | ϕ is proper and lsc},
Fw(H) := {ϕ : H → R | ϕ is proper and weakly lsc};

F (H ;R+) andFw(H ;R+) stand for the subsets of nonnegative functions ofF (H)

and Fw(H), respectively.
As maximally monotone set-valued operators play an important role in this work,

it is useful to recall some of basic definitions and some of their properties. More
generally, they have frequently shown themselves to be a key class of objects in both
modern Optimization and Analysis; see, e.g., [4–6,8,28,30].

For an operator A : H ⇒ H, the domain and the graph of A are given respectively
by

Dom A := {z ∈ H | Az �= ∅} and gph A := {(x, y) ∈ H × H | y ∈ Ax};

for notational simplicitywe identify the operator A to its graph. The inverse operator
of A, denoted by A−1, is defined as

(y, x) ∈ A−1 ⇐⇒ (x, y) ∈ A.

We say that an operator A is monotone if

〈y1 − y2, x1 − x2〉 ≥ 0 for all (x1, y1), (x2, y2) ∈ A,

and maximally monotone if A is monotone and has no proper monotone extension
(in the sense of graph inclusion). If A is maximally monotone, it is well-known (e.g.,
[30]) that Dom A is convex, and Ax is convex and closed for every x ∈ Dom A. Note
that the domain or the range of a maximally monotone operator may fail to be convex,
see, e.g., [28, page 555]. In particular, if A is the subdifferential ∂ϕ of some lower
semicontinuous convex and proper function ϕ : H → R, then A is a classical example
of a maximally monotone operator, as is a linear operator with a positive symmetric
part. We know that

Dom A ⊂ Dom ϕ ⊂ Dom ϕ = Dom A.

For x ∈ Dom A, we shall use the notation (Ax)◦ to denote the principal section of A,

i.e., the set of points of minimal norm in Ax . For λ > 0, the resolvent and the Yoshida
approximation of A are given, respectively, by

Jλ := (I + λA)−1, Aλ := I − Jλ
λ

,

where I stands for the identity mapping on H .
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We introduce next somebasic concepts of nonsmooth and variational analysis (more
details can be found for instance in [7,12,15,24,28]). We assume that ϕ ∈ F (H),

and take x ∈ Dom ϕ. We say that a vector ξ ∈ H is a proximal subgradient of ϕ at
x , and we write ξ ∈ ∂Pϕ(x), if there are ρ > 0 and σ ≥ 0 such that

ϕ(y) ≥ ϕ(x) + 〈ξ, y − x〉 − σ ‖y − x‖2 for all y ∈ Bρ(x).

The set ∂Pϕ(x) is convex, possibly empty and not necessarily closed. The set ∂Fϕ(x)
ofFréchet (regular) subgradient ofϕ at x is defined as the set of those ξ ∈ H satisfying

ϕ(y) ≥ ϕ(x) + 〈ξ, y − x〉 + o(‖y − x‖).

Associated to proximal and Fréchet subdifferentials, limiting objects have been intro-
duced:

– the limitingMordukhovich subdifferential ∂Lϕ(x) ofϕ at x , which is the set of those
ξ ∈ H such that there exist sequences (xk)k∈N and (ξk)k∈N satisfying xk →

ϕ
x

(that is, xk → x and ϕ(xk) → ϕ(x)), ξk ∈ ∂Pϕ(xk) and ξk → ξ ;
– the horizon (singular) subdifferential ∂∞ϕ(x) of ϕ at x , which is the set of those

ξ ∈ H such that there exist sequences (αk)k∈N ⊂ R+, (xk)k∈N and (ξk)k∈N
satisfying αk → 0+, xk →

ϕ
x, ξk ∈ ∂Pϕ(xk) and αkξk → ξ .

Note that the use of strong convergence in the definition of the limiting and horizontal
subdifferentials above is due to the current Hilbert setting (e.g. [24, Theorem 2.34]).

TheClarke subdifferential of ϕ at x denoted by ∂Cϕ(x) coincides with cow{∂Lϕ(x)
+ ∂∞ϕ(x)} (see, e.g., [24] and [28]), where the superscript w refers to the weak
topology in H . Then it follows from the definition that

∂Pϕ(x) ⊂ ∂Fϕ(x) ⊂ ∂Lϕ(x) ⊂ ∂Cϕ(x). (8)

In particular, if ϕ is convex, then

∂Pϕ(x) = ∂Cϕ(x) = ∂ϕ(x),

where ∂ϕ(x) is the usual subdifferential of convex analysis:

∂ϕ(x) := {ξ ∈ H | ϕ(y) − ϕ(x) ≥ 〈ξ, y − x〉 for all y ∈ H}.

If ϕ is Gâteaux-differentiable at x ∈ Dom ϕ, then we have

∂Pϕ(x) ⊂ {ϕ′
G(x)} ⊂ ∂Cϕ(x).

If ϕ is C1, then

∂Pϕ(x) ⊂ {ϕ′(x)} = ∂Cϕ(x) and ∂∞ϕ(x) = {θ}.
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If ϕ is C2, then

∂Pϕ(x) = ∂Cϕ(x) = {ϕ′(x)}.

From a geometrical point of view, if S ⊂ H is closed and x ∈ S, the proximal normal
cone to S at x is

NP
S (x) := ∂P IS(x).

or, equivalently (e.g. [12]),

NP
S (x) =

{
cone(π−1

S (x) − x) if π−1
S (x) �= ∅,

{θ} if π−1
S (x) = ∅,

whereπ−1
S (x) := {y ∈ H\S | x ∈ πS(y)}.Similarly,NL

S (x) := ∂L IS(x) (= ∂∞IS(x))
is the limiting normal cone to S at x, and NC

S (x) := cow{NL
S (x)} is the Clarke normal

cone to S at x . In that way, the above subdifferentials of ϕ ∈ F (H) satisfy

∂Pϕ(x) = {ξ ∈ H | (ξ,−1) ∈ NP
epi ϕ(x, ϕ(x))},

∂∞ϕ(x) ⊂ {ξ ∈ H | (ξ, 0) ∈ NP
epi ϕ(x, ϕ(x))}.

Conversely, if ξ ∈ H is such that (ξ, 0) ∈ NP
epi ϕ(x, ϕ(x)), then (e.g. [24, Lemma2.37])

there exist sequences (αk)k∈N ⊂ R+, (xk)k∈N and (ξk)k∈N such that αk → 0+, xk →
ϕ

x, ξk ∈ αk∂Fϕ(xk) and ξk → ξ . Note that when ϕ is a proper extended-real valued-
convex function, we have [28, Proposition 8.12]

∂∞ϕ(x) ⊂ NDom ϕ(x). (9)

We use the notation TS(x) to denote the contingent cone to S at x ∈ S (also called
Bouligand tangent cone) defined by

TS(x) := {ξ ∈ H | x + τkξk ∈ S for some ξk → ξ and τk → 0+}.

The Dini directional derivative of the function ϕ (∈ F (H)) at x ∈ Dom ϕ in the
direction v ∈ H is given by

ϕ′(x, v) = lim inf
t→0+,w→v

ϕ(x + tw) − ϕ(x)

t
.

The relation epi ϕ′(x, ·) = Tepi ϕ(x, ϕ(x)) is verified. When ϕ := d(·, S) is the
distance function to a closed subset S of H , then we have

∂Cϕ(x) = NC
S (x) ∩ B, for all x ∈ S,
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while for x /∈ S with ∂Pϕ(x) �= ∅, we have that πS(x) is a singleton and (see, e.g.,
[15])

∂Pϕ(x) = x − πS(x)

d(x, S)
.

Hence,

∂Lϕ(x) =
{

w- lim
k

xk − πS(xk)

ϕ(x)
; xk → x

}

,

where w- lim stands for the weak limit. More generally, we have

NP
S (x) = R+∂PdS(x) and NC

S (x) = R+∂CdS(x)
w

(with the convention that 0.∅ = {θ}).
Finally, we recall that ϕ ∈ F (R) is nonincreasing if and only if ξ ≤ 0 for every

ξ ∈ ∂Pϕ(x) and x ∈ R, (e.g., [15]). We shall use the following Lemma:

Lemma 2.1 Given t2 > t1 ≥ 0, a �= 0, and b ≥ 0, we assume that an absolutely
continuous function ψ : [t1, t2] → R+ satisfies

ψ ′(t) ≤ aψ(t) + b a.e. t ∈ [t1, t2].

Then, for all t ∈ [t1, t2],

ψ(t) ≤
(

ψ(t1) + b

a

)

ea(t−t1) − b

a
.

Proof Just apply Gronwall’s Lemma to the function θ := ψ + b
a . ��

3 Characterization of Lyapunov pairs

In this section we provide the desired explicit criterion for lower semicontinuous
(weighted-) Lyapunov pairs associated to the differential inclusion (6):

ẋ(t; x0) ∈ f (x(·; x0)) − Ax(·; x0), x0 ∈ cl (Dom A) ,

where A : H ⇒ H is a maximallymonotone operator and f : cl (Dom A) ⊂ H → H
is a Lipschitz continuous mapping. Recall that for a fixed real T > 0 and for a given
x0 ∈ cl (Dom A) ,we call strong solution of (6), the unique absolute continuous func-
tion x(·; x0) : [0, T ] → H, which satisfies x(0; x0) = x0 together with (see, e.g., [8])

ẋ(t; x0) ∈ L∞
loc((0, T ], H), (10)

x(t; x0) ∈ Dom A, for all t > 0, (11)
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ẋ(t; x0) ∈ f (x(t; x0)) − Ax(t; x0), a.e. t ≥ 0. (12)

Existence of strong solutions is known to occur if, for instance, x0 ∈ Dom A, Int
(co (Dom A)) �= ∅, dim H < ∞, or if A ≡ ∂ϕ where ϕ : H → R ∪ {+∞} is
a lsc extended-real-valued convex proper function. Moreover, we have ẋ(·; x0) ∈
L∞([0, T ], H) if and only if x0 ∈ Dom A. In this later case, x(·; x0) is right-
differentiable at each s ∈ [0, T ) and

d+x(·; x0)
t

(s) = f (x(s; x0)) − πAx(s;x0)( f (x(s; x0))).

The strong solution also satisfies the so-called semi-group property,

x(s; x(t; x0)) = x(s + t; x0) for all s, t ≥ 0, (13)

together with the relationship

‖x(t; x0) − x(t; y0)‖ ≤ eL f t ‖x0 − y0‖ (14)

whenever t ≥ 0 and x0, y0 ∈ cl(Dom A); hereafter, L f denotes the Lipschitz constant
of the mapping f on cl(Dom A).

In the general case, it is well established that (6) admits a unique weak solution
x(·; x0) ∈ C(0, T ; H) which satisfies x(t; x0) ∈ cl(Dom A) for all t ≥ 0. More
precisely, there exists a sequence (zk)k∈N ⊂ Dom A converging to x0 such that the
strong solution xk(·; zk) of the equation

ẋk(t; zk) ∈ f (x(t; zk)) − Axk(t; zk), xk(0, zk) = zk, (15)

converges uniformly to x(·; x0) on [0, T ]. Moreover, we know that (13) and (14) also
hold in this case on cl(Dom A) .

The following condition on the interior of the operator A will play a crucial role in
our analysis,

Int (co (Dom A)) �= ∅. (16)

Applying well known results from the theory of maximally monotone opera-
tors, the last assumption implies that Int (Dom A) is convex, Int (Dom A) =
Int (co (Dom A)) = Int (cl (Dom A)), and A is locally bounded on Int (Dom A).
Therefore, a (unique) strong solution of (6) always exists (see e.g. [8]).

The following technical lemma, adds more information on the qualitative behavior
of this solution.

Lemma 3.1 Let ȳ ∈ Dom A and ρ̄ > 0 be such that Bρ̄ (ȳ) ⊂ Int (co (Dom A)) .

Then, there exists ρ ∈ (0, ρ̄) such that

M := sup
z∈Bρ(ȳ)

∥
∥( f (z) − Az)◦

∥
∥ < ∞
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and, for all y ∈ Bρ(ȳ) and t ≥ 0,

∥
∥
∥
∥
d+x(·; y)

dt
(t)

∥
∥
∥
∥ ≤ eL f t M.

Proof By virtue of the semi-group property (13), the following inequality holds for
all y ∈ cl(Dom A) and 0 ≤ t < s (e.g., [8, Lemma 1.1]):

‖x(t + s; y) − x(t; y)‖ = ‖x(t; x(s; y)) − x(t; y)‖ ≤ eL f t ‖x(s; y) − y‖ . (17)

Hence, taking limits as s goes to 0,

∥
∥
∥
∥
d+x(·; y)

dt
(t)

∥
∥
∥
∥ = lim

s↓0 s
−1 ‖x(t + s; y) − x(t; y)‖ ≤ eL f t lim

s↓0 s
−1 ‖x(s; y) − y‖

= eL f t
∥
∥
∥
∥
d+x(·; y)

dt
(0)

∥
∥
∥
∥

= eL f t
∥
∥( f (y) − Ay)◦

∥
∥ .

Finally, by the monotonicity of A and the Lipschitz continuity of f , we can choose
ρ ∈ (0, ρ̄) such that

∥
∥( f (y) − Ay)◦

∥
∥ ≤ M

for some constant M ≥ 0. This concludes the proof of the lemma. ��
Definition 3.1 Given functions V ∈ F (H), W ∈ F (H ;R+), and a number a ∈
R+, we say that (V,W ) forms an a-Lyapunov pair for (6) if for all y ∈ cl(Dom A)

we have

eat V (x(t; y)) +
∫ t

0
W (x(τ ; y))dτ ≤ V (y) for all t ≥ 0. (18)

We note that if a = 0 andW = 0, thenwe recover the classical concept of Lyapunov
functions.

The lack of regularity properties of a-Lyapunov pairs (V,W ) in Definition 3.1 is
mainly due to the non-smoothness of the function V .Let us remind that inequality (18)
also holds if instead of W one considers its Moreau-Yosida regularization, which is
Lipschitz continuous on every bounded subset of H . This follows from the following
lemma (e.g [2]).

Lemma 3.2 For every W ∈ F (H ;R+), there exists a sequence of functions
(Wk)k∈N ⊂ F (H,R+) converging to W (for instance, Wk ↑ W) such that each
Wk is Lipschitz continuous on every bounded subset of H, and satisfies W (y) > 0 if
and only if Wk(y) > 0.

The following proposition shows that, generally, Lyapunov pairs have to be checked
only on the domain of the involved maximally monotone operator.
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Proposition 3.1 Let V ∈ F (H) and W ∈ F (H ;R+) be given. Suppose that V
satisfies

lim inf
Dom A�z→y

V (z) = V (y) for all y ∈ cl(Dom A) ∩ Dom V . (19)

Then, given a ∈ R+, the following statements are equivalent:

(i) (V,W ) forms an a-Lyapunov pair with respect to Dom A; that is, (7) holds on
Dom A;

(ii) (V,W ) forms an a-Lyapunov pair with respect to cl(Dom A); that is, (7) holds
on cl(Dom A);

Property (19) has been already used in [20], and implicitly in [26,27], among other
works. It holds, if for instance, V (∈ F (H) ) is convex and its effective domain has a
nonempty interior such that Int(Dom V ) ⊂ Dom A.

Our starting point is the next result which characterizes a- Lyapunov pairs locally
in Int(Dom A). This is a specification of the analysis of [2, Theorems 3.3 and 3.4] to
the current setting where Int (co(Dom A)) �= ∅. Here we give complete and general
criteria by means of either the proximal, the Fréchet, or the limiting subdifferentials;
this last one coincides with the viscosity subdifferential (see Borwein [7]). Moreover,
there is no need for the horizontal subgradient.

Theorem 3.1 Assume that Int (co(Dom A)) �= ∅. Let V ∈ Fw(H),W ∈
F (H ;R+), and a ∈ R+ be given. Let ȳ ∈ H, λ̄ ∈ [−∞, V (ȳ)), and ρ̄ ∈ (0,+∞]
be such that

Dom V ∩ Bρ̄ (ȳ) ∩ [V > λ̄] ⊂ Int(Dom A).

Then, the following statements are equivalent provided that ∂ is either the proximal,
the Fréchet, or the limiting subdifferentials:

(i) ∀y ∈ Dom V ∩ Bρ̄ (ȳ) ∩ [V > λ̄]

sup
ξ∈∂V (y)

min
υ∈Ay

〈ξ, f (y) − υ〉 + aV (y) + W (y) ≤ 0;

(ii) ∀y ∈ Dom V ∩ Bρ̄ (ȳ) ∩ [V > λ̄]

sup
ξ∈∂V (y)

〈
ξ, f (y) − πAy( f (y))

〉 + aV (y) + W (y) ≤ 0;

(iii) ∀y ∈ Bρ̄ (ȳ) ∩ [V > λ̄] we have

eat V (x(t; y)) +
∫ t

0
W (x(τ ; y))dτ ≤ V (y) ∀t ∈ [0, ρ(y)] ,

12



where

ρ(y):= sup

⎧
⎪⎨

⎪⎩
ν >0

∣
∣
∣
∣
∣
∣
∣

∃ρ >0 s.t. Bρ(y)⊂ Bρ̄ (ȳ)∩[V >λ̄], and for all t ∈[0, ν]
2 ‖x(t; y) − y‖ <

ρ
2 and∣

∣
∣(e−at − 1)V (y) − ∫ t

0 W (x(τ ; y))dτ

∣
∣
∣ <

ρ
2

⎫
⎪⎬

⎪⎭
.

(20)

Remark 3.1 The constant ρ(y) defined in (20) is positive whenever y ∈ cl(Dom A)∩
Bρ̄ (ȳ) ∩ [V > λ̄].
Proof of Theorem 3.1 For simplicity, we suppose that W ≡ 0 and a = 0 (the general
case follows similarly bynoting that the functionW maybe takenLipschitz onbounded
sets, according to Lemma 3.2).

(iii) �⇒ (ii). According to the sequence of inclusions (8), it is enough to give the
proof for the limiting subdifferential. We will proceed into two steps.

First step Let us give the proof for the Fréchet subdifferential. Let us fix y ∈ Bρ̄ (ȳ)∩
[V > λ̄] and, first, take ξ in ∂FV (y) so that y ∈ Bρ̄ (ȳ)∩[V > λ̄]∩Dom V ⊂ Dom A
and there exists T ∈ (0, ρ(y)) such that

〈ξ, x(t; y) − y〉 ≤ V (x(t; y)) − V (y) + α ‖x(t; y) − y‖2
≤ o(‖x(t; y) − y‖) for all t ∈ [0, T ),

where o(.) is a function satisfying o(s) → 0 as s → 0. But y ∈ Dom A and so there
exists a constant l ≥ 0 such that (taking a smaller T if necessary)

〈ξ, t−1(x(t; y) − y)〉 ≤ l ‖x(t; y) − y‖ for all t ∈ [0, T );

hence, taking the limit as t → 0+ we obtain that

〈ξ, f (y) − πAy( f (y))〉 ≤ 0;

that is, (ii) follows in the case when ξ ∈ ∂FV (y).

Second step Let us give the proof for the limiting subdifferential. Now, we suppose
that ξ ∈ ∂LV (y) and let the sequences (yk)k∈N and (ξk)k∈N be such that yk →

V
y, ξk ∈

∂FV (yk) and ξk → ξ . Then, from the paragraph above, for each k we find vk ∈ Ayk
such that

〈ξk, f (yk) − vk〉 ≤ 0.

But since y ∈ Int (Dom A) and yk → y, the maximal monotonicity of A allows us to
suppose without loss of generality that the sequence (vk) is bounded and, so, weakly
convergent, up to a subsequence denoted in the same way, to some v ∈ Ay. Thus,
because ξk strongly converges to ξ , by taking the limits as n goes to ∞ in the last
inequality above we obtain that

inf
v∈Ay

〈ξ, f (y) − v〉 ≤ 0 ≤ 〈ξ, f (y) − v〉 ≤ 0.

13



(i) �⇒ (i i i).
Again by virtue of (8), it is sufficient to give the proof for the Fréchet subdifferential.

We fix y ∈ Dom V ∩ Bρ̄ (ȳ) ∩ [V > λ̄] and let ρ > 0 and ν > 0 be such that

Bρ(y) ⊂ Bρ̄ (ȳ) ∩ [V > λ̄] (21)

and
sup

t∈[0,ν]
2 ‖x(t; y) − y‖ < ρ; (22)

the existence of such scalars ρ and ν is a consequence of the lower semicontinuity of V
and the Lipschitz continuity of x(·; ·) (see Lemma 3.1). Moreover, due to the maximal
monotonicity of A, we may assume that A is bounded on Bρ(y). Let T < ν be fixed
and define the functions z(·) : [0, T ] ⊂ R+ → H ×R and η(·) : [0, T ] ⊂ R+ → R+
as

z(t) := (x(t; y), V (y)), η(t) := 1

2
d2(z(t), epi V ); (23)

observe that z(·) and η(·) are Lipschitz continuous on [0, T ). Now, using a standard
chain rule (e.g. [12]), for a fixed t ∈ (0, T ) it holds that

∂Cη(t) = d(z(t), epi V )∂Cd(z(·), epi V )(t).

Hence, whenever z(t) ∈ epi V we get ∂Cη(t) = {θ}. Otherwise, if z(t) /∈ epi V , then

∂Cd(z(·), epi V )(t) ⊂ co

⎡

⎣
⋃

(u,μ)∈�epi V (z(t)), u∈Bρ(y)

〈x(t; y) − u,−Ax(t; y)〉
d(z(t), epi V )

⎤

⎦

and, consequently,

∂Cη(t) ⊂ co

⎡

⎣
⋃

(u,μ)∈�epi V (z(t)), u∈Bρ(y)

〈x(t; y) − u,−Ax(t; y)〉
⎤

⎦ . (24)

Note that the condition u ∈ Bρ(y) for (u, μ) ∈ �epi V (z(t)) in this last formula is a
consequence of the following inequalities:

‖u − y‖ ≤ ‖x(t; y) − u‖ + ‖x(t; y) − y‖
≤ ‖(x(t; y), V (y)) − (u, μ)‖ + ‖x(t; y) − y‖
≤ ‖(x(t; y), V (y)) − (y, V (y))‖ + ‖x(t; y) − y‖
≤ 2 ‖x(t; y) − y‖ < ρ

(recall (22)). Take now ξ ∈ Ax(t; y) and (u, μ) ∈ �epi V (z(t))with u ∈ Bρ(y). Thus,

(x(t; y) − u, V (y) − μ) ∈ N P
epi V (u, μ),
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and therefore V (y)−μ ≤ 0 and V (u)−μ ≤ 0. Hence, u ∈ Dom V ∩Bρ̄ (ȳ)∩[V > λ̄]
(recall (21)).

If V (y) − μ < 0, we write (μ − V (y))−1 (x(t; y) − u) ∈ ∂VP (u) and so, by the
current assumption (i), we select υ ∈ Au such that

〈
(μ − V (y))−1(x(t; y) − u),−υ

〉
≤ 0.

Therefore, invoking the monotonicty of A we get

〈x(t; y)− u,−ξ〉=〈x(t; y)− u,−υ〉+〈x(t; y)− u, υ− ξ 〉≤〈x(t; y) − u,−υ〉≤0.

Consequently, since ξ ∈ Ax(t; y) is arbitrary, (24) leads us to ∂Cη(t) ⊂ R−.

It remains to investigate the other case corresponding to V (y) − μ = 0; that
is, (x(t; y) − u, 0) ∈ N P

epi V (u, V (u)). Let us first observe that x(t; y) − u �= θ.

Next, we choose an ε > 0 such that Bε(u) ⊂ Bρ(y) ∩ Int(Dom A) (recall that
u ∈ Bρ(y) ∩ Dom V ∩ Bρ̄ (ȳ) ∩ [V > λ̄] ⊂ Int(Dom A)) and, according to
[24, Lemma 2.37 and formulas in Page 240], take uε ∈ Bε(u) ∩ Dom V with
|V (u) − V (uε)| ≤ ε, α ∈ (0, ε) and ξε ∈ Bε(x(t; y)−u) such thatα−1ξε ∈ ∂VP (uε).
Therefore, using the current assumption, select vε ∈ Auε such that 〈ξε,−vε〉 ≤ 0.
Hence,

〈x(t; y) − u,−vε〉 ≤ ε ‖vε‖ + 〈ξε,−vε〉 ≤ ε ‖vε‖

and, consequently by the monotonicity of A,

〈x(t; y) − u,−ξ〉 ≤ 〈x(t; y) − uε,−ξ〉 + ε ‖ξ‖
≤ 〈x(t; y) − uε,−vε〉 + ε ‖ξ‖
≤ 〈x(t; y) − u,−vε〉 + ‖uε − u‖ ‖vε‖ + ε ‖ξ‖
≤ 2ε ‖vε‖ + ε ‖ξ‖ .

Moreover, as (vε)ε≤1 ⊂ Bρ(y) and A is bounded on Bρ(y), by passing to the limit as
ε goes to 0 we get

〈x(t; y) − u,−ξ〉 ≤ 0.

This gives the desired inclusion ∂Cη(t) ⊂ R− (recall (24)) and so establishes the proof
of (iii). ��
The next theorem adds more information on the uniform-like behavior of Lyapunov
pairs for (6).

Theorem 3.2 Under the condition Int (co{Dom A}) �= ∅, let us consider functions
V ∈ Fw(H) and W ∈ F (H ;R+), and a nonnegative number a. Fix ȳ ∈ Dom V,

λ̄ ∈ (−∞, V (ȳ)) and let ρ̄ > 0 be such that

Dom V ∩ [V > λ̄] ∩ Bρ̄ (ȳ) ⊂ Int(Dom A).
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Assume that for all y ∈ Dom V ∩ Bρ̄ (ȳ) ∩ [V > λ̄] we have

sup
ξ∈∂PV (y)

min
υ∈Ay

〈ξ, f (y) − υ〉 + aV (y) + W (y) ≤ 0. (25)

Then, for every y ∈ Dom V ∩ Bρ̄ (ȳ) ∩ [V > λ̄] there exist ρ > 0 and T > 0 such
that

eat V (x(t; z)) +
∫ t

0
W (x(τ ; z))dτ ≤ V (z), for all z ∈ Bρ(y) and t ≤ T .

Consequently, under condition (19), the pair (V,W ) is an a-Lyapunov pair for (6)
provided that Dom A is open and (25) holds on Dom A.

Proof We shall suppose that W = 0 and a = 0 (the general case is similar). For this
aim we pick ŷ in Dom V ∩ Bρ̄ (ȳ) ∩ [V > λ̄] (⊂ Int(Dom A)) and we choose ρ > 0
such that A is bounded on B2ρ(ŷ). Taking into account the lower semicontinuity of
V , we have

B2ρ(ŷ)⊂ Bρ̄ (ȳ) ∩ [V >λ̄] ∩ Int(Dom A), V (z) ≥ V (ŷ) − 1 ∀z ∈ B2ρ(ŷ); (26)

moreover, by virtue of Lemma 3.1, wemay assume that there exists a positive constant
M satisfying, for all t ≥ 0 and all z ∈ B2ρ(ŷ),

∥
∥
∥
∥
d+x(·; z)

dt
(t)

∥
∥
∥
∥ ≤ eL f t M. (27)

Hence, ‖x(t; z) − z‖ ≤ MteL f t and therefore by (26),

V (x(t; z)) ≥ V (ŷ) − 1 ≥ λ̄ − 1 (28)

for all z ∈ Bρ(ŷ) and all t ≥ 0 such that teL f t ≤ ρ
M . Now writing, for all z ∈

B2ρ(ŷ) ∩ Dom V and 0 ≤ t ≤ 1,

2 ‖x(t; z) − z‖ ≤ 2MeL f t,

there exists T > 0 such that for all z ∈ B2ρ(ŷ) we have

sup
t∈[0,T ]

2 ‖x(t; z) − z‖ <
ρ

2
.

Thus, since for any given z ∈ Bρ(ŷ) we have Bρ(z) ⊂ B2ρ(ŷ) ∩ [V > λ̄] ⊂ Bρ̄ (ȳ) ∩
[V > λ̄] the main conclusion of the theorem follows from Theorem 3.1.

Finally, we assume that Dom A is open and (25) holds on Dom A. For fixed y ∈
Int Dom A we introduce the nonempty set E ⊂ R+ given as

E := {λ ∈ R+ | V (x(t; y)) ≤ V (y) ∀t ≤ λ }.
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Then, from the first part of the proof, by taking into account the continuity of x(·; y)
and the openness of Dom A it follows that E is open and closed so that E = R+. Then,
the fact that the pair (V,W ) is an a-Lyapunov pair for (6) follows from Proposition
3.1. ��
Corollary 3.1 Under the assumption of Theorem 3.2 we also suppose that Dom V ∩
Bρ̄ (ȳ) ∩ [V > λ̄] is compact. Then, there exists T > 0 such that

eat V (x(t; y)) +
∫ t

0
W (x(τ ; y))dτ ≤ V (y),

for every y ∈ Dom V ∩ Bρ̄ (ȳ) ∩ [V > λ̄] and t ∈ [0, T ].
Proof According to Theorem 3.2, for every y ∈ Dom V ∩ Bρ̄ (ȳ) ∩ [V > λ̄] there
exist Ty > 0 and ρy > 0 such that

eat V (x(t; z)) +
∫ t

0
W (x(τ ; z))dτ ≤ V (z), for all z ∈ Bρy (y) and t ≤ Ty .

Then, since Dom V ∩Bρ̄ (ȳ)∩[V > λ̄] is compact, we can find y1, . . . , yk ∈ Dom V ∩
Bρ̄ (ȳ) ∩ [V > λ̄], T1, . . . , Tk > 0 and ρ1, . . . , ρk > 0 such that

Dom V ∩ Bρ̄ (ȳ) ∩ [V > λ̄] ⊂
⋃

i=1,...,k

Bρi (yi )

and, for each i = 1, . . . , k,

eat V (x(t; z)) +
∫ t

0
W (x(τ ; z))dτ ≤ V (z), for all z ∈ Bρi (yi ) and t ≤ Tyi .

Consequently, the conclusion follows by taking T = mini=1,...,k Tyi . ��
In the following theorem we do not assume that Int (co{Dom A}) �= ∅.
Theorem 3.3 We consider functions V ∈ Fw(H) and W ∈ F (H ;R+), and a non-
negative number a. Assume the existence of λ0 > 0 such that for all y ∈ Dom V it
holds

sup
ξ∈∂PV (y)

〈ξ, f (y) − Aλy〉 + aV (y) + W (y) ≤ 0 for all λ ≤ λ0.

Then, for every z ∈ cl(Dom A) we have that

eat V (x(t; z)) +
∫ t

0
W (x(τ ; z))dτ ≤ V (z), for all t ≥ 0;

that is, (V,W ) is an a-Lyapunov pair for (6).
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Proof Since Dom Aλ = H , by Theorem 3.2 for every λ ≤ λ0 we have that

eat V (xλ(t; z)) +
∫ t

0
W (xλ(τ ; z))dτ ≤ V (z), for all t ≥ 0 and all z ∈ H,

where xλ(.; z) is the (strong) solution of the differential equation

ẋλ(t; z) = −Aλxλ(t; z) + f (xλ(t; z)); xλ(0; z) = z.

Hence, by taking the limits as λ goes to 0 in the last inequality above, the conclusion
follows due to the uniform convergence of xλ(.; z) to x(.; z). ��

4 Characterizations of finite-dimensional nonsmooth Lyapunov pairs

This section is devoted to the finite-dimensional setting. Assuming that dim H < ∞,

we give multiple primal and dual characterizations for nonsmooth a-Lyapunov pairs
for the differential inclusion (6).

Theorem 4.1 Assume that dim H < ∞. Let V ∈ F (H),W ∈ F (H ;R+),

and a ∈ R+ be given, and let ∂ be either the proximal, the Fréchet, or the
limiting subdifferentials. Fix ȳ ∈ rint(cl(Dom A)) and let ρ > 0 be such that
B2ρ(ȳ)∩ aff(cl(Dom A)) ⊂ Dom A. Then, the following assertions (i)–(v) are equiv-
alent:

(i) there exists T > 0 such that for every y ∈ Dom A ∩ Dom V ∩ Bρ(ȳ)

eat V (x(t; y)) +
∫ t

0
W (x(τ ; y))dτ ≤ V (y) for all t ≤ T ;

(ii) for every y ∈ Dom A ∩ Dom V ∩ Bρ(ȳ)

sup
ξ∈∂PV (y)

〈
ξ, f (y) − πAy( f (y))

〉 + aV (y) + W (y) ≤ 0;

(iii) for every y ∈ Dom A ∩ Dom V ∩ Bρ(ȳ)

sup
ξ∈∂V (y)

inf
υ∈Ay

〈
ξ, f (y) − y∗〉 + aV (y) + W (y) ≤ 0;

(iv) for every y ∈ Dom A ∩ Dom V ∩ Bρ(ȳ)

V ′(y; f (y) − πAy( f (y))) + aV (y) + W (y) ≤ 0;

(v) for every y ∈ Dom A ∩ Dom V ∩ Bρ(ȳ)

inf
υ∈Ay

V ′(y; f (y) − υ) + aV (y) + W (y) ≤ 0.

If V is nonnegative, each one of the statements above is equivalent to
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(vi) for every y ∈ Dom A ∩ Dom V ∩ Bρ(ȳ)

V (x(t; y)) + a
∫ t

0
V (x(τ ; y))dτ +

∫ t

0
W (x(τ ; y))dτ ≤ V (y) for all t ≥ 0.

Proof (iii with∂ ≡ ∂P ) �⇒ (i): We may assume that 0 ∈ Dom A and denote H0 :=
lin(cl(Dom A)). Let A0 : H0 ⇒ H0 be the operator given by

A0y = Ay ∩ H0, (29)

and define the Lipschitz continuous mapping f0 : H0 → H0 as

f0(y) = πH0( f (y)), (30)

where πH0 denotes the orthogonal projection onto H0. According to the Minty The-
orem, it follows that A0 is also a maximally monotone operator. Further, for every
y ∈ Dom A we have Ay + Ncl(Dom A)(y) = Ay, and therefore Ay + H⊥

0 = Ay.
Hence,

Ay = (Ay ∩ H0) + H⊥
0 = A0y + H⊥

0 . (31)

From this inequality we deduce that Dom A0 = Dom A and, so,

rint(cl(Dom A)) = Int(cl(Dom A0)) = Int(Dom A0);

(for the last equality see, e.g., [8, Remark 2.1- Page 33]). Further, since for y ∈
cl(Dom A) we have

f0(y) − A0y ⊂ f (y) − A0y + H⊥
0 = f (y) − Ay,

it follows that x(·; y) is the unique solution of the differential inclusion

ẋ(t; y) ∈ f0(x(t; y)) − A0x(t; y), x(0, y) = y.

Next,we are going to show that condition (i) of Theorem3.2 holds for the pair (A0, f0).
Fix y ∈ Dom A ∩ Dom V ∩ Bρ(ȳ) and ξ ∈ ∂V (y) (if any). For a fixed ε > 0, by
assumption take υ ∈ Ay in such a way that

〈ξ, f (y) − υ〉 + aV (y) + W (y) ≤ ε.

Since f (y) ∈ f0(y) + H⊥
0 and υ + H⊥

0 ∈ Ay + H⊥
0 = A0y, we have

inf
υ∈A0 y

〈ξ, f0(y) − υ〉 ≤ inf
υ∈Ay

〈ξ, f (y) − υ〉 ≤ ε − aV (y) − W (y), (32)

and condition (i) of Theorem 3.2 follows as ε → 0. Consequently, by this Theorem
3.2, for every y ∈ Dom A ∩ Dom V ∩ Bρ(ȳ), there exist ρ̂ > 0, small enough, and
T (y) > 0 such that
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eat V (x(t; z)) +
∫ t

0
W (x(τ ; z))dτ ≤ V (z) for all t ≤ T (y) and z ∈ Bρ̂ (y).

Thus, as Dom A ∩ Dom V ∩ Bρ(ȳ) is a precompact set, and cl(Dom A ∩ Dom V ∩
Bρ(ȳ)) ⊂ B2ρ(ȳ) ∩ aff(cl(Dom A)) ⊂ rint(cl(Dom A)), instead of T (y) we can
choose a uniform T which gives us statement (i).

(i) �⇒ (iv): Fix y ∈ Dom A ∩Dom V ∩ Bρ(ȳ). Then, as shown in the paragraph
above, the solution x(t; y) of (6) is also the unique strong solution of the equation

ẋ(t; y) ∈ f0(x(t; y)) − A0x(t; y), x(0; y) = y ∈ cl (Dom A) ,

where A0 and f0 are defined in (29) and (30), respectively. Let (tn)n∈N ⊂ (0, T ) be a
sequence such that tn → 0+ and set

wn := x(tn; y) − y

tn
.

Because x(·; y) is derivable from the right at 0 (recall that y ∈ Dom A) and

d+x(·; y)
dt

(0) = ( f (y) − Ay)◦ = f (y) − πAy( f (y)),

we get

wn → f (y) − πAy( f (y)).

Therefore, using the current assumption (i),

V (y + tnwn) − V (y)

tn
= V (x(tn, y)) − V (y)

tn

≤ e−atn (1 − eatn )

tn
V (y) − e−atn

tn

∫ tn

0
W (x(s; y))ds,

and taking limits yields

V ′(y; f (y)− πAy( f (y))) ≤ lim inf
n

e−atn (1 − eatn )

tn
V (y) − e−atn

tn

∫ tn

0
W (x(s; y))ds

= −aV (y) − W (y);

this proves (iv).
(iv) �⇒ (v) is trivial.
(v) �⇒ [(iii) with ∂ ≡ ∂L ]. Take y ∈ Dom A∩Dom V ∩ Bρ(ȳ). For fixed ε > 0,

by (v) we let υ ∈ Ay be such that

V ′(y; f (y) − υ) ≤ ε − aV (y) − W (y);

20



that is,

( f (y) − υ, ε − aV (y) − W (y)) ∈ epi V ′(y, ·)
= Tepi V (y, V (y)) ⊂

[
Np
epi V (y, V (y))

]◦
.

If ξ ∈ ∂PV (y), since (ξ,−1) ∈ Np
epi V (y, V (y)), the above inequality leads to

〈ξ, f (y) − υ〉 ≤ 〈(ξ,−1), ( f (y) − υ, ε − aV (y) − W (y))〉 + ε − aV (y) − W (y)

≤ ε − aV (y) − W (y),

so that (ii) follows when ε → 0.
If ξ ∈ ∂LV (y), then there are sequences (yn) and (ξn) such that yn → y, ξn →

ξ, V (ξn) → V (ξ) and ξn ∈ V (yn) (for n sufficiently large). As just shown above,
given ε > 0, for each n there exists y∗

n ∈ Ayn such that

〈
ξn, f (yn) − y∗

n

〉 ≤ ε − aV (yn) − W (yn).

Since (yn)n converges to y, then we may suppose that y∗
n → υ ∈ Ay. Thus, passing

to the limit in the above inequality, and taking into account the lower semicontinuity
of V and the continuity of W, we obtain

〈ξ, f (y) − υ〉 ≤ ε − aV (y) − W (y).

This shows that (iii) holds with ∂ ≡ ∂L .

At this point we have proved that (i)⇐⇒ (iii with ∂ ≡ ∂L )⇐⇒ (iv)⇐⇒ (v). To see
that (ii) is also equivalent to the other statements we observe that (ii) �⇒ (iii) holds
obviously.On the other hand, the implication (iv) �⇒ (ii) follows in a similarway as in
the proof of the statement (v) �⇒ (iii). This proves the equivalences of (i) through (v).

Finally, if V is nonnegative, (vi) is nothing else but (i) with a and W replaced by θ

and aV + W, respectively. Thus, (vi) is equivalent to (iii). ��
The following result is an immediate consequence of the previous theorem and Propo-
sition 3.1.

Corollary 4.1 Assume that dim H < ∞. Let V ∈ F (H),W ∈ F (H ;R+), and
a ∈ R+ be given, and let ∂ be either the proximal, the Fréchet, or the limiting sub-
differentials. Assume that rint(cl(Dom A)) = Dom A. Then, under condition (19),
(V,W ) forms an a-Lyapunov pair for (6) provided that one of the following asser-
tions holds:

(i) for all y ∈ Dom A ∩ Dom V

sup
ξ∈∂PV (y)

〈
ξ, f (y) − πAy( f (y))

〉 + aV (y) + W (y) ≤ 0;
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(ii) for all y ∈ Dom A ∩ Dom V

sup
ξ∈∂V (y)

inf
υ∈Ay

〈
ξ, f (y) − y∗〉 + aV (y) + W (y) ≤ 0;

(iii) for all y ∈ Dom A ∩ Dom V

V ′(y; f (y) − πAy( f (y))) + aV (y) + W (y) ≤ 0;

(iv) for all y ∈ Dom A ∩ Dom V

inf
υ∈Ay

V ′(y; f (y) − υ) + aV (y) + W (y) ≤ 0.

In contrast to the (analytic) Definition 3.1, Lyapunov stability can also be approached
from a geometrical point of view using the concept of invariance:

Definition 4.1 A non-empty closed set S ⊂ H is said to be invariant for (6) if for all
y ∈ S ∩ cl(Dom A) one has that

x(t; y) ∈ S for all t ≥ 0.

Corollary 4.2 Assume that dim H < ∞ and rint(cl(Dom A)) = Dom A. Then, a
nonempty closed set S ⊂ H is invariant for (6) if and only if one of the following
assertions is satisfied:

(i) for all y ∈ Dom A ∩ S

sup
ξ∈NP

S∩cl(Dom A)
(y)

〈
ξ, f (y) − πAy( f (y))

〉 ≤ 0;

(ii) for all y ∈ Dom A ∩ S

sup
ξ∈NP

S∩cl(Dom A)
(y)

inf
υ∈Ay

〈ξ, f (y) − υ〉 ≤ 0;

(iii) for all y ∈ Dom A ∩ S

f (y) − πAy( f (y)) ∈ TS∩cl(Dom A)(y);

(iv) for all y ∈ Dom A ∩ S

[ f (y) − Ay] ∩ TS∩cl(Dom A)(y) �= ∅;

(v) for all y ∈ Dom A ∩ S

[ f (y) − Ay] ∩ co
[
TS∩cl(Dom A)(y)

] �= ∅.
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Proof It is an immediate fact that S is invariant if and only if IS∩cl(Dom A) is a Lyapunov
function. Then, the current assertions (i) and (ii) come from statements (i) and (ii) of
Theorem 4.1, respectively. Similarly, S is invariant if and only d(·, S ∩ cl(Dom A)) is
a Lyapunov function. Thus, by virtue of the relationship

TS∩cl(Dom A)(y) = {w ∈ H | d ′(·, S ∩ cl(Dom A)(w) = 0},

the current assertions (iii) and (iv) follow from statements (iii) and (iv) of Theorem
4.1, respectively. This shows that (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv).

It remains to show that (v) is equivalent to the other statements. We obviously have
that (iv) �⇒ (v) and so (i) �⇒ (v). To prove the reverse implication it suffices to
show that (v) �⇒ (ii). Indeed, fix y ∈ S ∩ Dom A and ξ ∈ NP

S∩cl(Dom A). Then, by
(v) there exists υ ∈ Ay such that

f (y) − υ ∈ co
[
TS∩cl(Dom A)(y)

] ⊂
[
NP

S∩cl(Dom A)

]◦
.

Therefore, 〈ξ, f (y) − υ〉 ≤ 0; that is (ii) follows. ��
The characterization of Gâteaux differentiable Lyapunov functions is given in the
following corollary.

Corollary 4.3 Assume that dim H < ∞ and rint(cl(Dom A)) = Dom A. Let V ∈
F (H),W ∈ F (H,R+), and a ∈ R+ be given. If V is Gâteaux differentiable, then
the following statements are equivalent:

(i) (V,W ) is an a-Lyapunov pair for (6);
(iii) for every y ∈ Dom A ∩ Dom V

V ′
G(y)( f (y) − πAy( f (y))) + aV (y) + W (y) ≤ 0;

(iv) for all y ∈ Dom A ∩ Dom V

inf
υ∈Ay

V ′
G(y)( f (y) − υ) + aV (y) + W (y) ≤ 0.

Finally, we treat the simple case when A ≡ 0 so that our inclusion (6) becomes an
ordinary differential equation which reads: for every y ∈ H there exists a unique
trajectory x(·; y) ∈ C1(0,∞; H) such that x(0, y) = y and

ẋ(t; y) = f (x(t; y)) for all t ≥ 0. (33)

In this case, Theorem 3.1 gives in a simplified form the characterization of the asso-
ciated a-Lyapunov pairs.

Corollary 4.4 Assume that dim H < ∞. Let be given V ∈ F (H), W ∈ F (H ;R+),

and a ∈ R+. The following statements are equivalent:

(i) (V,W ) is an a-Lyapunov pair for (33);
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(ii) for every y ∈ Dom V

V ′(y; f (y)) + aV (y) + W (y) ≤ 0;

(iii) for all y ∈ Dom V

sup
ξ∈∂V (y)

〈ξ, f (y)〉 + aV (y) + W (y) ≤ 0,

where ∂V stands for either the proximal, the Fréchet, the limiting, or the Clarke
subdifferentials.

Proof According to Theorem 4.1 we only need to show that (iii) is also a characteri-
zation when ∂ ≡ ∂C . For this aim, in view of the relationship ∂L ⊂ ∂C , it suffices to
show that [(iii) with ∂ ≡ ∂L ] implies [(iii) with ∂ ≡ ∂C ]. Indeed, fix y ∈ Dom V so
that

sup
ξ∈∂∞V (y)

〈ξ, f (y)〉 ≤ 0.

So, according to [28], (iii with ∂ ≡ ∂C ) follows since that

sup
ξ∈∂CV (y)

〈ξ, f (y)〉 + aV (y) + W (y)

= sup
ξ∈co{∂LV (y)+∂∞V (y)}

〈ξ, f (y)〉 + aV (y) + W (y) ≤ 0.

��

5 Concluding remarks

Themain goal of this paper was to explore the existence of local nonsmooth Lyapunov
pairs for a first-order evolution differential inclusion governed by amaximalmonotone
operator. From the mathematical point of view, our major contribution is establishing
the fact that the variational criteria for the existence of Lyapunov pairs need to be
verified on the interior of the domain of the operator A, while Lyapunov pairs are
defined on the whole cl(Dom A). The first version of these ideas appeared in [2]. The
flow-invariance of a closed set has been also investigated as a particular case of the
theory of Lyapunov functions. The characterization of invariance involves a “proximal
aiming” condition, as well as the convex hull of the contingent cone. An important
issue, left for the future work, is to go beyond maximally monotone operators, since
in some applications the monotonicity assumption is not satisfied. This is the case
e.g. when A coincides with the normal cone operator of a prox-regular set. It would
be interesting to perform a stability analysis of differential variational inequalities
involving locally-prox-regular sets. This is beyond the scope of this paper and will
be a subject of a forthcoming research project. For its huge potential of applications,
Lyapunov stability is used by other communities, particularly in nonlinear systems
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and control. As noticed by one of the referees, it should be interesting to find practical
applications of the theory developed in this paper. Bridging the communities of applied
mathematicians, controllers and engineers, is one of our future objectives.
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