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Abstract: This paper considers a networked system with a finite number of users and
supposes that each user tries to minimize its own private objective function over its own
private constraint set. It is assumed that each user’s constraint set can be expressed as
a fixed point set of a certain quasi-nonexpansive mapping. This enables us to consider
the case in which the projection onto the constraint set cannot be computed efficiently.
This paper proposes two methods for solving the problem of minimizing the sum of their
nondifferentiable, convex objective functions over the intersection of their fixed point sets of
quasi-nonexpansive mappings in a real Hilbert space. One method is a parallel subgradient
method that can be implemented under the assumption that each user can communicate
with other users. The other is an incremental subgradient method that can be implemented
under the assumption that each user can communicate with its neighbors. Investigation
of the two methods’ convergence properties for a constant step size reveals that, with a
small constant step size, they approximate a solution to the problem. Consideration of
the case in which the step-size sequence is diminishing demonstrates that the sequence
generated by each of the two methods strongly converges to the solution to the problem
under certain assumptions. Convergence rate analysis of the two methods under certain
situations is provided to illustrate the two methods’ efficiency. This paper also discusses
nonsmooth convex optimization over sublevel sets of convex functions and provides numerical
comparisons that demonstrate the effectiveness of the proposed methods.

Keywords: fixed point, incremental subgradient method, nonsmooth convex optimization,
parallel subgradient method, quasi-nonexpansive mapping
Mathematics Subject Classification: 65K05, 90C25, 90C90

1 Introduction

This paper focuses on a networked system consisting of a finite number of participating
users and considers the problem of minimizing the sum of their nondifferentiable, convex
functions over the intersection of their fixed point constraint sets of quasi-nonexpansive
mappings in a real Hilbert space. Optimization problems with a fixed point constraint (see,
e.g., [6, 15, 17, 36]) enable consideration of constrained optimization problems in which the
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explicit form of the metric projection onto the constraint set is not always known; i.e., the
constraint set is not simple in the sense that the projection cannot be easily calculated.

The motivations for considering this problem are to devise optimization algorithms that
have a wider range of application than previous algorithms for convex optimization over
fixed point sets of nonexpansive mappings [6, 15, 17, 36] and to solve the problem by using
parallel and incremental optimization techniques [3, Chapter 27], [4, Section 8.2], [13, 33],
[39, PART II].

Many optimization algorithms have been presented for smooth or nonsmooth optimiza-
tion. The parallel proximal algorithms [3, Proposition 27.8], [10, Algorithm 10.27], [30] are
useful for minimizing the sum of nondifferentiable, convex functions over the whole space.
They use the ideas of the Douglas-Rachford algorithm [3, Chapters 25 and 27], [8, 10, 11, 21]
and the forward-backward algorithm [3, Chapters 25 and 27], [7, 9, 10], which use the prox-
imity operators [3, Definition 12.23] of nondifferentiable, convex functions. The incremental
subgradient method [4, Section 8.2], [5, 13, 18, 19, 25, 33] and projected multi-agent al-
gorithms [22, 26, 27, 28] can minimize the sum of nondifferentiable, convex functions over
certain constraint sets by using the subgradients [32, Section 23] of the nondifferentiable,
convex functions instead of the proximity operators. The random projection algorithms
[24, 35] and the distributed random projection algorithm [20] are useful for constrained con-
vex optimization when the constraint set is not known in advance or the projection onto the
whole constraint set cannot be computed efficiently. The incremental subgradient algorithm
[13, Sections 3.2 and 3.3] and the asynchronous distributed proximal algorithm [31, Section
6] can work on nonsmooth convex optimization over sublevel sets of convex functions onto
which the projections cannot be easily calculated. The incremental and parallel gradient
methods [14, 16] and an algorithm to accelerate the search for fixed points [15] can perform
smooth convex optimization over the fixed point sets of nonexpansive mappings. There have
been no reports, however, on optimization algorithms for nonsmooth convex optimization
with fixed point constraints of quasi-nonexpansive mappings.

This paper describes two methods for solving the main problem considered in the pa-
per. One is a parallel subgradient method that can be implemented under the assumption
that each user can communicate with other users. The other is an incremental subgradient
method that can be implemented under the assumption that each user can communicate
with its neighbors. The proposed methods do not use proximity operators, in contrast to
conventional asynchronous distributed or parallel proximal algorithms. Moreover, they can
optimize over fixed point sets of quasi-nonexpansive mappings, in contrast to conventional
incremental subgradient algorithms.

The intellectual contribution of this paper is to enable one to deal with nonsmooth
convex optimization over the fixed point sets of quasi-nonexpansive mappings, especially in
contrast to recent papers [14, 15] that discussed smooth convex optimization over the fixed
point sets of nonexpansive mappings.

To clarify this contribution, let us consider the case where each user in the networked
system tries to minimize its own private objective function over a sublevel set of a nonsmooth
convex function, where one assumes each user can use the subgradients of the nonsmooth
convex function. Although the projection onto the sublevel set cannot be easily computed
within a finite number of arithmetic operations, each user can compute the subgradient
projection [2, Proposition 2.3], [34, Subchapter 4.3] that satisfies the quasi nonexpansivity
condition, not the nonexpansivity condition (see Section 5 for the definition of the subgradi-
ent projection). Since the sublevel set coincides with the fixed point set of the subgradient
projection, the problem considered in the whole system can be expressed as the problem of
minimizing the sum of all users’ objective functions over the intersection of the fixed point
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sets of quasi-nonexpansive mappings (see [37] for applications of the problem and the relax-
ation method for the problem). The proposed methods can thus be applied to nonsmooth
convex optimization over sublevel constraint sets of nonsmooth convex functions.

The previously reported algorithms [14, 15] cannot work on nonsmooth convex opti-
mization over sublevel sets of nonsmooth convex functions. This is because they can be
applied only when the constraint sets can be represented by fixed point sets of nonexpan-
sive mappings and can work under the restricted situation such that all users’ objective
functions are smooth and the gradients of their objective functions are Lipschitz continuous
and strongly or strictly monotone. The numerical examples section (Section 5) considers
a concrete nonsmooth convex problem over the intersection of sublevel sets of nonsmooth
convex functions and describes how the proposed methods can solve it.

Another contribution of this paper is analysis of the proposed methods’ convergence for
different step-size rules. A small constant step size is shown to result in an approximate
solution to the main problem. It is also shown that the sequence generated by each proposed
method with a diminishing step size strongly converges to the solution to the problem under
certain assumptions. In contrast to the convergence analyses of the previously reported
algorithms [14, 15], we cannot directly apply smooth convex analysis and fixed point theory
for nonexpansive mappings to convergence analysis of the proposed methods. However, this
problem is solved by using the subgradients of nonsmooth convex objective functions and by
modifying the algorithms presented in [14] to make fixed point theory for quasi-nonexpansive
mappings applicable. The rates of convergence of the two methods under certain situations
are also provided to illustrate the two methods’ efficiency.

This paper is organized as follows. Section 2 gives the mathematical preliminaries and
states the main problem. Section 3 presents the proposed parallel subgradient method for
solving the main problem and describes its convergence properties for a constant step size
and for a diminishing step size and the rates of convergence under certain situations. Section
4 presents the proposed incremental subgradient method for solving the main problem and
describes its convergence properties for a constant step size and for a diminishing step size
and the rates of convergence under certain situations. Section 5 considers a nonsmooth
convex optimization problem over the intersection of sublevel sets of convex functions and
compares numerically the behaviors of the two methods with that of a previous method.
Section 6 concludes the paper with a brief summary and mentions future directions for
improving the proposed methods.

2 Mathematical Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and its induced norm ‖ · ‖. Let N

denote the set of all positive integers including zero. The identity mapping on H is denoted
by Id; i.e., Id(x) := x (x ∈ H).

2.1 Nonexpansivity, demiclosedness, convexity, and sub-

differentiability

The fixed point set of a mapping Q : H → H is denoted by Fix(Q) := {x ∈ H : Q(x) = x}.
Q : H → H is said to be quasi-nonexpansive [3, Definition 4.1(iii)] if ‖Q(x)− y‖ ≤ ‖x − y‖
for all x ∈ H and for all y ∈ Fix(Q). When a quasi-nonexpansive mapping has one fixed
point, its fixed point set is closed and convex [2, Proposition 2.6]. Q : H → H is said to be
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quasi-firmly nonexpansive [1, Section 3] if ‖Q(x) − y‖2 + ‖(Id −Q)(x)‖2 ≤ ‖x− y‖2 for all
x ∈ H and for all y ∈ Fix(Q). It is observed that any quasi-firmly nonexpansive mapping
satisfies the quasi-nonexpansivity condition. It is proven from [3, Proposition 4.2] that Q is
quasi-firmly nonexpansive if and only if R := 2Q − Id is quasi-nonexpansive. This means
that (1/2)(Id +R) is quasi-firmly nonexpansive when R is quasi-nonexpansive.

Q : H → H is said to be nonexpansive [3, Definition 4.1(ii)] if ‖Q(x)−Q(y)‖ ≤ ‖x−y‖ for
all x, y ∈ H . It is obvious that any nonexpansive mapping satisfies the quasi-nonexpansivity
condition. The metric projection [3, Subchapter 4.2, Chapter 28] onto a nonempty, closed
convex set C (⊂ H), denoted by PC , is defined for all x ∈ H by PC(x) ∈ C and ‖x−PC(x)‖ =
infy∈C ‖x− y‖. PC is nonexpansive with Fix(PC) = C [3, Proposition 4.8, (4.8)].

T : H → H is referred to as a demiclosedmapping [12, p.108], [3, Theorem 4.17] if, for any
(xn)n∈N (⊂ H), the following implication holds: the weak convergence of (xn)n∈N to x ∈ H
and limn→∞ ‖T (xn)− w‖ = 0 (w ∈ H) imply T (x) = w. Section 5 will provide an example
of mappings satisfying both quasi-firm nonexpansivity and demiclosedness conditions.

The following proposition indicates the properties of quasi-firmly nonexpansive map-
pings.

Proposition 2.1. Suppose that Q : H → H is quasi-firmly nonexpansive with Fix(Q) 6= ∅
and α ∈ [0, 1) and that Qα := αId + (1− α)Q. Then, the following hold:

(i) Fix(Q) = Fix(Qα).

(ii) Qα is quasi-nonexpansive.

(iii) 〈x−Qα(x), x − y〉 ≥ (1 − α)‖x−Q(x)‖2 (x ∈ H, y ∈ Fix(Q)).1

Proof. Remarks 2.1(i0) and (i1) in [23] imply Proposition 2.1(i) and (ii). From ‖x− y‖2 =
‖x‖2 − 2〈x, y〉 + ‖y‖2 (x, y ∈ H), it is found that, for all x ∈ H and for all y ∈ Fix(Q),
〈x−Q(x), x−y〉 = (1/2)(‖x−Q(x)‖2+‖x−y‖2−‖Q(x)−y‖2), which, together with the quasi-
firm nonexpansivity of Q, implies that 〈x−Q(x), x−y〉 ≥ ‖x−Q(x)‖2. Hence, for all x ∈ H
and for all y ∈ Fix(Q), 〈x−Qα(x), x−y〉 = (1−α)〈x−Q(x), x−y〉 ≥ (1−α)‖x−Q(x)‖2.

A function f : H → R is said to be strictly convex [3, Definition 8.6] if, for all x, y ∈ H
and for all α ∈ (0, 1), x 6= y implies f(αx + (1 − α)y) < αf(x) + (1 − α)f(y). f is strongly
convex with constant β [3, Definition 10.5] if there exists β > 0 such that, for all x, y ∈ H
and for all α ∈ (0, 1), f(αx+ (1− α)y) + (β/2)α(1 − α)‖x− y‖2 ≤ αf(x) + (1− α)f(y).

The subdifferential [3, Definition 16.1], [32, Section 23] of f : H → R is defined for all
x ∈ H by

∂f(x) := {u ∈ H : f(y) ≥ f(x) + 〈y − x, u〉 (y ∈ H)} .

We call u (∈ ∂f(x)) the subgradient of f at x ∈ H . If f is strictly convex, ∂f is strictly
monotone; i.e., 〈x − y, u − v〉 > 0 (x, y ∈ H with x 6= y, u ∈ ∂f(x), v ∈ ∂f(y)) [3,
Example 22.3(ii)]. If f is strongly convex with constant β, ∂f is strongly monotone; i.e.,
〈x− y, u− v〉 ≥ β‖x− y‖2 (x, y ∈ H,u ∈ ∂f(x), v ∈ ∂f(y)) [3, Example 22.3(iv)].

1If Q is quasi-nonexpansive, 〈x −Q(x), x − y〉 ≥ (1/2)‖x−Q(x)‖2 (x ∈ H, y ∈ Fix(Q)).
Hence, 〈x − Qα(x), x − y〉 ≥ ((1 − α)/2)‖x− Q(x)‖2 (x ∈ H, y ∈ Fix(Q)). We need to use
the property in Proposition 2.1(iii) to prove Lemmas 3.1 and 4.1. Accordingly, it is assumed
that each user has a quasi-firmly nonexpansive mapping (see (A1)).
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Proposition 2.2. [3, Propositions 16.14(ii), (iii)] Let f : H → R be continuous and convex
with dom(f) := {x ∈ H : f(x) < ∞} = H. Then, ∂f(x) 6= ∅ for all x ∈ H. Moreover, for
all x ∈ H, there exists δ > 0 such that ∂f(B(x; δ)) is bounded, where B(x; δ) stands for a
closed ball with center x and radius δ.

The following proposition is used to prove the main results in the paper.

Proposition 2.3. [23, Lemma 2.1] Let (Γn)n∈N ⊂ R and suppose that (Γnj
)j∈N (⊂ (Γn)n∈N)

exists such that Γnj
< Γnj+1 for all j ∈ N. Define (τ(n))n≥n0 ⊂ N by τ(n) := max{k ≤

n : Γk < Γk+1} for some n0 ∈ N. Then, (τ(n))n≥n0 is increasing and limn→∞ τ(n) = ∞.
Moreover, Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1 for all n ≥ n0.

2.2 Main problem

The focus here is a networked system with I users. Let

I := {1, 2, . . . , I}.

Suppose that user i (i ∈ I) has its own private objective function, denoted by f (i) : H → R,
and its own mapping, denoted by Q(i) : H → H . The following notation is used.

Q(i)
α := α(i)Id +

(

1− α(i)
)

Q(i)
(

α(i) ∈ (0, 1)
)

, X :=
⋂

i∈I

Fix
(

Q(i)
)

,

f :=
∑

i∈I

f (i), X⋆ :=

{

x ∈ X : f(x) = f⋆ := inf
y∈X

f (y)

}

.

The following problem is discussed in this paper.

Problem 2.1. Suppose that the following (A1)–(A4) hold.

(A1) Q(i) : H → H (i ∈ I) is quasi-firmly nonexpansive.

(A2) f (i) : H → R (i ∈ I) is continuous and convex with dom(f (i)) = H.2

(A3) User i (i ∈ I) can use its own private Q(i) and ∂f (i).

(A4) X⋆ 6= ∅.
Then, find x⋆ ∈ X⋆.

3 Parallel Subgradient Method

The section presents a method for solving Problem 2.1 under the assumption that

(A5) each user can communicate with other users.

2When H = R
N , a convex function f (i) satisfies the continuity condition [3, Corollary

8.31]. Therefore, (A2) can be replaced by the convexity condition of f (i) with dom(f (i)) =
R

N .
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Algorithm 3.1.

Step 0. User i (i ∈ I) sets α(i), (λn)n∈N ⊂ (0,∞), and x0 ∈ H.

Step 1. User i (i ∈ I) computes x
(i)
n ∈ H using

x(i)
n := Q(i)

α (xn)− λng
(i)
n , where g(i)n ∈ ∂f (i)

(

Q(i)
α (xn)

)

.

User i (i ∈ I) transmits x
(i)
n to all users.

Step 2. User i (i ∈ I) computes xn+1 ∈ H as

xn+1 :=
1

I

∑

i∈I

x(i)
n .

The algorithm sets n := n+ 1 and returns to Step 1.

Algorithm 3.1 requires that all users set the same step-size sequence (λn)n∈N before
algorithm execution and that they synchronize at each iteration. See [31, Section 6] for the
asynchronous distributed proximal algorithm that was used for solving nonsmooth convex

optimization. Assumption (A5) ensures that each user has access to all x
(i)
n and can compute

xn+1 = (1/I)
∑

i∈I x
(i)
n . This means that a common variable xn (n ∈ N) is shared by

all users. To illustrate this situation, let us assume that there exists an operator who
manages the system. Even in a situation where (A5) is not satisfied, the operator can
still communicate with all users. Accordingly, if the operator sets an initial point x0 and

transmits xn to all users at each iteration n, user i can compute x
(i)
n by using its own private

information. Since the operator has access to all x
(i)
n , the operator can compute xn+1 and

transmit it to all users. Therefore, assuming the existence of an operator guarantees that
all users can share xn (n ∈ N) in Algorithm 3.1.

The convergence of Algorithm 3.1 depends on two assumptions.

Assumption 3.1. For all i ∈ I, there exist M
(i)
1 ,M

(i)
2 ∈ R such that

sup
{

‖g‖ : g ∈ ∂f (i)
(

Q(i)
α (xn)

)

, n ∈ N

}

≤ M
(i)
1 ,

sup
{

‖g‖ : g ∈ ∂f (i) (xn) , n ∈ N

}

≤ M
(i)
2 .

Assumption 3.2. The sequence (x
(i)
n )n∈N (i ∈ I) is bounded.

Assumption 3.2 implies Assumption 3.1. Indeed, the definition of xn (n ∈ N) and

the boundedness of (x
(i)
n )n∈N (i ∈ I) ensure that (xn)n∈N is bounded. From the quasi-

nonexpansivity of Q
(i)
α (i ∈ I), we have ‖Q(i)

α (xn)− x‖ ≤ ‖xn− x‖ (x ∈ X), which, together

with the boundedness of (xn)n∈N, means that (Q
(i)
α (xn))n∈N (i ∈ I) is bounded. Hence,

Proposition 2.2 implies that Assumption 3.1 holds.
A convergence analysis of Algorithm 3.1 with a constant step size when Assumption 3.1

holds is given in Subsection 3.1. The discussion in Subsection 3.2 needs to satisfy Assumption
3.2, which is stronger than Assumption 3.1, to enable the convergence property of Algorithm
3.1 with a diminishing step-size sequence to be studied. This is because, in the case where
Assumption 3.2 does not hold and (‖xn − x‖)n∈N (x ∈ X) is not monotone decreasing (see
Case 2 in the proof of Theorem 3.2), a weak convergent subsequence of (xn)n∈N does not
exist; i.e., we cannot discuss weak convergence of Algorithm 3.1 to a point in X⋆.
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Here we provide an example satisfying Assumption 3.2 and (A4). Let us assume that
user i (i ∈ I) can choose in advance a simple, bounded, closed convex set X(i) (e.g., X(i)

is a closed ball with a large enough radius) satisfying X(i) ⊃ Fix(Q(i)). Then, user i can
compute P (i) := PX(i) and

x(i)
n := P (i)

(

Q(i)
α (xn)− λng

(i)
n

)

(3.1)

instead of x
(i)
n in Algorithm 3.1. Since (x

(i)
n )n∈N ⊂ X(i) and X(i) is bounded, (x

(i)
n )n∈N is

bounded. Since X(i) is bounded and X ⊂ X(i) (i ∈ I), X is also bounded. Hence, the
continuity and convexity of f ensure that X⋆ 6= ∅; i.e., (A4) holds [3, Proposition 11.14].
We can show that Algorithm 3.1 with (3.1) satisfies the convergence properties in the main
theorems in this paper by referring to the proofs of the theorems.

The following is an important lemma that will be used to prove the main theorems.

Lemma 3.1. Suppose that (xn)n∈N is the sequence generated by Algorithm 3.1 and that
Assumptions (A1)–(A5) and 3.1 hold. The following properties then hold:

(i) For all n ∈ N and for all x ∈ X,

‖xn+1 − x‖2 ≤ ‖xn − x‖2 − 2

I

∑

i∈I

α(i)
(

1− α(i)
)∥

∥

∥
xn −Q(i) (xn)

∥

∥

∥

2

+ 2M1λ
2
n − 2λn

I

∑

i∈I

〈

xn − x, g(i)n

〉

,

where M1 := maxi∈I M
(i)2

1 < ∞.

(ii) For all n ∈ N and for all x ∈ X,

‖xn+1 − x‖2 ≤ ‖xn − x‖2 + 2M1λ
2
n +

2λn

I
(f(x)− f(xn))

+
2λn

I

(

√

M1 +M2

)

∑

i∈I

∥

∥

∥
xn −Q(i)

α (xn)
∥

∥

∥
,

where M2 := maxi∈I M
(i)
2 < ∞.

Proof. (i) Choose x ∈ X ⊂ Fix(Q(i)) (i ∈ I) and n ∈ N arbitrarily. From −2〈x, y〉 =
‖x− y‖2 − ‖x‖2 − ‖y‖2 (x, y ∈ H), we find that, for all i ∈ I,

2
〈

x(i)
n − xn + λng

(i)
n , xn − x

〉

= −2
〈

xn − x(i)
n , xn − x

〉

+ 2λn

〈

xn − x, g(i)n

〉

=
∥

∥

∥
x(i)
n − x

∥

∥

∥

2

−
∥

∥

∥
xn − x(i)

n

∥

∥

∥

2

− ‖xn − x‖2 + 2λn

〈

xn − x, g(i)n

〉

.

Moreover, Proposition 2.1(iii) ensures that, for all i ∈ I,

2
〈

Q(i)
α (xn)− xn, xn − x

〉

≤ −2
(

1− α(i)
) ∥

∥

∥
xn −Q(i)(xn)

∥

∥

∥

2

.
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Accordingly, from x
(i)
n := Q

(i)
α (xn)− λng

(i)
n (i ∈ I),

2
〈

x(i)
n − xn + λng

(i)
n , xn − x

〉

= 2
〈

Q(i)
α (xn)− xn, xn − x

〉

≤ −2
(

1− α(i)
)
∥

∥

∥
xn −Q(i)(xn)

∥

∥

∥

2

.

Therefore, for all i ∈ I,
∥

∥

∥
x(i)
n − x

∥

∥

∥

2

≤ ‖xn − x‖2 +
∥

∥

∥
xn − x(i)

n

∥

∥

∥

2

− 2λn

〈

xn − x, g(i)n

〉

− 2
(

1− α(i)
)∥

∥

∥
xn −Q(i)(xn)

∥

∥

∥

2

.

Moreover, from ‖x− y‖2 ≤ 2‖x‖2 + 2‖y‖2 (x, y ∈ H),

∥

∥

∥
xn − x(i)

n

∥

∥

∥

2

=
∥

∥

∥

(

xn −Q(i)
α (xn)

)

+ λng
(i)
n

∥

∥

∥

2

≤ 2
∥

∥

∥
xn −Q(i)

α (xn)
∥

∥

∥

2

+ 2λ2
n

∥

∥

∥
g(i)n

∥

∥

∥

2

≤ 2
(

1− α(i)
)2 ∥
∥

∥
xn −Q(i) (xn)

∥

∥

∥

2

+ 2M1λ
2
n,

where M1 := maxi∈I M
(i)2

1 < ∞ holds from Assumption 3.1. Hence, for all i ∈ I,
∥

∥

∥
x(i)
n − x

∥

∥

∥

2

≤ ‖xn − x‖2 − 2α(i)
(

1− α(i)
)
∥

∥

∥
xn −Q(i)(xn)

∥

∥

∥

2

+ 2M1λ
2
n

− 2λn

〈

xn − x, g(i)n

〉

,

which, together with the convexity of ‖ · ‖2, implies that

‖xn+1 − x‖2 ≤ 1

I

∑

i∈I

∥

∥

∥
x(i)
n − x

∥

∥

∥

2

≤ ‖xn − x‖2 − 2

I

∑

i∈I

α(i)
(

1− α(i)
)∥

∥

∥
xn −Q(i) (xn)

∥

∥

∥

2

+ 2M1λ
2
n

− 2λn

I

∑

i∈I

〈

xn − x, g(i)n

〉

.

(ii) Choose x ∈ X ⊂ Fix(Q(i)) (i ∈ I) and n ∈ N arbitrarily. From g
(i)
n ∈ ∂f (i)(Q

(i)
α (xn))

(i ∈ I), 〈x−Q
(i)
α (xn), g

(i)
n 〉 ≤ f (i)(x)−f (i)(Q

(i)
α (xn)). Hence, the Cauchy-Schwarz inequality

ensures that, for all i ∈ I, 〈x − xn, g
(i)
n 〉 = 〈x − Q

(i)
α (xn), g

(i)
n 〉 + 〈Q(i)

α (xn) − xn, g
(i)
n 〉 ≤

f (i)(x)−f (i)(Q
(i)
α (xn))+

√
M1‖Q(i)

α (xn)−xn‖, which, together with f :=
∑

i∈I f (i), implies
that

∑

i∈I

〈

x− xn, g
(i)
n

〉

≤ f(x)− f(xn) +
∑

i∈I

(

f (i)(xn)− f (i)
(

Q(i)
α (xn)

))

+
√

M1

∑

i∈I

∥

∥

∥
Q(i)

α (xn)− xn

∥

∥

∥
.
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Set M2 := maxi∈I M
(i)
2 . Then, Assumption 3.1 ensures that M2 < ∞. Since g ∈ ∂f (i)(xn)

implies that, for all i ∈ I, f (i)(xn)−f (i)(Q
(i)
α (xn)) ≤ 〈xn−Q

(i)
α (xn), g〉 ≤ M2‖xn−Q

(i)
α (xn)‖,

it is found that
∑

i∈I

〈

x− xn, g
(i)
n

〉

≤ f(x)− f(xn) +
(

√

M1 +M2

)

∑

i∈I

∥

∥

∥
Q(i)

α (xn)− xn

∥

∥

∥
.

Accordingly, Lemma 3.1(i) leads to Lemma 3.1(ii). This completes the proof.

3.1 Constant step-size rule

The discussion in this subsection is based on the following assumption.

Assumption 3.3. User i (i ∈ I) has (λn)n∈N satisfying

(C1) λn := λ ∈ (0,∞) (n ∈ N).

Let us perform a convergence analysis of Algorithm 3.1 under Assumption 3.3.

Theorem 3.1. Suppose that Assumptions (A1)–(A5), 3.1, and 3.3 hold. Then, (xn)n∈N in
Algorithm 3.1 satisfies the relations

lim inf
n→∞

∥

∥

∥
xn −Q(i) (xn)

∥

∥

∥

2

≤ IMλλ

α(i)
(

1− α(i)
) (i ∈ I) ,

lim inf
n→∞

f (xn) ≤ f⋆ + IM1λ+
(

√

M1 +M2

)

∑

i∈I

√

(

1− α(i)
)

IMλλ

α(i)
,

where M1 and M2 are as in Lemma 3.1 and, for some x ∈ X, Mλ := supn∈N
(M1λ +

(1/I)|∑i∈I〈x− xn, g
(i)
n 〉|).

Theorem 3.1 implies that Algorithm 3.1 with a small enough λ may approximate a
solution to Problem 2.1.

Proof. Choose x ∈ X arbitrarily and set Mλ := supn∈N(M1λ+ (1/I)|∑i∈I〈x − xn, g
(i)
n 〉|).

It is obvious that Theorem 3.1 holds when Mλ = ∞. Consider the case where Mλ < ∞.
First, let us show that

lim inf
n→∞

∑

i∈I

α(i)
(

1− α(i)
) ∥

∥

∥
xn −Q(i) (xn)

∥

∥

∥

2

≤ IMλλ. (3.2)

Here we assume that (3.2) does not hold. Accordingly, δ (> 0) can be chosen such that

lim inf
n→∞

∑

i∈I

α(i)
(

1− α(i)
)∥

∥

∥
xn −Q(i) (xn)

∥

∥

∥

2

> IMλλ+ 2δ.

The property of the limit inferior of (
∑

i∈I α(i)(1 − α(i))‖xn − Q(i)(xn)‖2)n∈N guarantees

that there exists n0 ∈ N such that lim infn→∞

∑

i∈I α(i)(1 − α(i))‖xn − Q(i)(xn)‖2 − δ ≤
∑

i∈I α(i)(1− α(i))‖xn −Q(i)(xn)‖2 for all n ≥ n0. Accordingly, for all n ≥ n0,

∑

i∈I

α(i)
(

1− α(i)
)∥

∥

∥
xn −Q(i) (xn)

∥

∥

∥

2

> IMλλ+ δ.
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Hence, Lemma 3.1(i) leads to the finding that, for all n ≥ n0,

‖xn+1 − x‖2 ≤ ‖xn − x‖2 −
∑

i∈I

2α(i)
(

1− α(i)
)

I

∥

∥

∥
xn −Q(i) (xn)

∥

∥

∥

2

+ 2Mλλ

< ‖xn − x‖2 − 2

I
{IMλλ+ δ}+ 2Mλλ

= ‖xn − x‖2 − 2

I
δ.

Therefore, induction ensures that, for all n ≥ n0,

0 ≤ ‖xn+1 − x‖2 < ‖xn0 − x‖2 − 2

I
δ (n+ 1− n0) .

Since the right side of this inequality approaches minus infinity as n diverges, there is a
contradiction. Therefore, (3.2) holds. Since lim infn→∞ α(i)(1 − α(i))‖xn − Q(i)(xn)‖2 ≤
lim infn→∞

∑

i∈I α(i)(1 − α(i))‖xn −Q(i)(xn)‖2 (i ∈ I), there is also another finding:

lim inf
n→∞

∥

∥

∥
xn −Q(i) (xn)

∥

∥

∥

2

≤ IMλλ

α(i)
(

1− α(i)
) (i ∈ I) . (3.3)

Let i ∈ I be fixed arbitrarily. Inequality (3.3) and the property of the limit inferior of
(‖xn − Q(i)(xn)‖2)n∈N guarantee the existence of a subsequence (xnk

)k∈N of (xn)n∈N such
that

lim
k→∞

∥

∥

∥
xnk

−Q(i) (xnk
)
∥

∥

∥

2

= lim inf
n→∞

∥

∥

∥
xn −Q(i) (xn)

∥

∥

∥

2

≤ IMλλ

α(i)
(

1− α(i)
) .

Therefore, for all ǫ > 0, there exists k0 ∈ N such that, for all k ≥ k0,

∥

∥

∥
xnk

−Q(i) (xnk
)
∥

∥

∥
≤
√

IMλλ

α(i)
(

1− α(i)
) + ǫ. (3.4)

Here, it is proven that, for all k ≥ k0,

lim inf
n→∞

f(xn) ≤ f⋆ + IM1λ+
(

√

M1 +M2

)

∑

i∈I

∥

∥

∥
xnk

−Q(i)
α (xnk

)
∥

∥

∥
+ 2ǫ. (3.5)

Now, let us assume that (3.5) does not hold for all k ≥ k0, i.e., there exists n1 ∈ N such
that, for all n ≥ n1,

lim inf
n→∞

f(xn) > f⋆ + IM1λ+
(

√

M1 +M2

)

∑

i∈I

∥

∥

∥
xn −Q(i)

α (xn)
∥

∥

∥
+ 2ǫ.

Assumption (A4) means the existence of x⋆ ∈ X such that f(x⋆) = f⋆. Since the property of
the limit inferior of (f(xn))n∈N implies the existence of n2 ∈ N such that lim infn→∞ f(xn)−
ǫ ≤ f(xn) for all n ≥ n2, it is found that, for all n ≥ n3 := max{n1, n2},

f(xn)− f (x⋆) > IM1λ+
(

√

M1 +M2

)

∑

i∈I

∥

∥

∥
xn −Q(i)

α (xn)
∥

∥

∥
+ ǫ.
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Therefore, Lemma 3.1(ii) guarantees that, for all n ≥ n3,

‖xn+1 − x⋆‖2 ≤ ‖xn − x⋆‖2 + 2M1λ
2 +

2λ

I
(f (x⋆)− f(xn))

+
2λ

I

(

√

M1 +M2

)

∑

i∈I

∥

∥

∥
xn −Q(i)

α (xn)
∥

∥

∥

< ‖xn − x⋆‖2 + 2M1λ
2

− 2λ

I

{

IM1λ+
(

√

M1 +M2

)

∑

i∈I

∥

∥

∥
xn −Q(i)

α (xn)
∥

∥

∥
+ ǫ

}

+
2λ

I

(

√

M1 +M2

)

∑

i∈I

∥

∥

∥
xn −Q(i)

α (xn)
∥

∥

∥

= ‖xn − x⋆‖2 − 2λ

I
ǫ

< ‖xn3 − x⋆‖2 − 2λ

I
ǫ (n+ 1− n3) .

Since the right side of the above inequality approaches minus infinity as n diverges, there
is a contradiction. Thus, (3.5) holds for all k ≥ k0. Therefore, (3.4) and (3.5) lead to the
deduction that, for all ǫ > 0,

lim inf
n→∞

f(xn) ≤ f⋆ + IM1λ

+
(

√

M1 +M2

)

∑

i∈I

(

1− α(i)
)

√

IMλλ

α(i)
(

1− α(i)
) + ǫ+ 2ǫ.

Since ǫ (> 0) is arbitrary,

lim inf
n→∞

f(xn) ≤ f⋆ + IM1λ+
(

√

M1 +M2

)

∑

i∈I

√

(

1− α(i)
)

IMλλ

α(i)
.

This completes the proof.

3.2 Diminishing step-size rule

The discussion in this subsection is based on the following assumption.

Assumption 3.4. User i (i ∈ I) has (λn)n∈N satisfying

(C2) lim
n→∞

λn = 0 and (C3)

∞
∑

n=0

λn = ∞.

Moreover,

(A6) Id−Q(i) (i ∈ I) is demiclosed.

An example of (λn)n∈N satisfying (C2) and (C3) is λn := 1/(n + 1)a (n ∈ N), where
a ∈ (0, 1]. Section 5 will provide an example of Q(i) (i ∈ I) satisfying (A1) and (A6).

Let us perform a convergence analysis of Algorithm 3.1 under Assumption 3.4.
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Theorem 3.2. Suppose that Assumptions (A1)–(A5), 3.2, and 3.4 hold. Then there exists
a subsequence of (xn)n∈N generated by Algorithm 3.1 that weakly converges to a point in X⋆.
Moreover, the whole sequence (xn)n∈N strongly converges to a unique point in X⋆ if one of
the following holds:3

(i) One f (i) (i ∈ I) is strongly convex.

(ii) H is finite-dimensional, and one f (i) (i ∈ I) is strictly convex.

Proof. We consider two cases.
Case 1: Suppose that there exists m0 ∈ N such that ‖xn+1 − x⋆‖ ≤ ‖xn − x⋆‖ for all

n ≥ m0 and for all x⋆ ∈ X⋆. The existence of limn→∞ ‖xn − x⋆‖ is thus guaranteed for all

x⋆ ∈ X⋆. Hence, (xn)n∈N is bounded. The quasi-nonexpansivity of Q
(i)
α (i ∈ I) thus ensures

that (Q
(i)
α (xn))n∈N (i ∈ I) is bounded. Accordingly, Proposition 2.2 guarantees that M1

and M2 defined as in Lemma 3.1 are finite. From Lemma 3.1(i), for all n ≥ m0 and for all
x⋆ ∈ X⋆,

∑

i∈I

2α(i)
(

1− α(i)
)

I

∥

∥

∥
xn −Q(i) (xn)

∥

∥

∥

2

≤ ‖xn − x⋆‖2 − ‖xn+1 − x⋆‖2 + 2M1λ
2
n − 2λn

I

∑

i∈I

〈

xn − x⋆, g(i)n

〉

,

which, together with (C2) and the boundedness of (g
(i)
n )n∈N (i ∈ I), implies that limn→∞(1/I)

∑

i∈I 2α(i)(1−
α(i))‖xn −Q(i)(xn)‖2 = 0; i.e.,

lim
n→∞

∥

∥

∥
xn −Q(i)

α (xn)
∥

∥

∥
= lim

n→∞

∥

∥

∥
xn −Q(i) (xn)

∥

∥

∥
= 0 (i ∈ I) . (3.6)

Let us define, for all n ∈ N and for all x ∈ X ,

Mn(x) := f(xn)− f(x)−
(

√

M1 +M2

)

∑

i∈I

∥

∥

∥
xn −Q(i)

α (xn)
∥

∥

∥
− IM1λn. (3.7)

Then, Lemma 3.1(ii) leads to the finding that, for all n ∈ N and for all x ∈ X ,

2λn

I
Mn(x) ≤ ‖xn − x‖2 − ‖xn+1 − x‖2 . (3.8)

Summing up this inequality from n = 0 to n = m (m ∈ N) implies that (2/I)
∑m

n=0 λnMn(x) ≤
‖x0 − x‖2 − ‖xm+1 − x‖2 ≤ ‖x0 − x‖2 < ∞, so

∞
∑

n=0

λnMn(x) < ∞ (x ∈ X) .

3Under (A4), the strict convexity of f guarantees the uniqueness of the solution to Prob-
lem 2.1 [38, Corollary 25.15]. If there exists an operator who manages the system, it is
reasonable to assume that the operator has a strongly convex objective function so as to
guarantee the convergence of (xn)n∈N in Algorithm 3.1 to the desired solution, i.e., one that
makes the system stable and reliable.
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Let us fix x ∈ X arbitrarily. Now, under the assumption that lim infn→∞ Mn(x) > 0,
m1 ∈ N and γ > 0 can be chosen such that Mn(x) ≥ γ for all n ≥ m1. Accordingly, (C3)
means that

∞ = γ

∞
∑

n=m1

λn ≤
∞
∑

n=m1

λnMn(x) < ∞,

which is a contradiction. Therefore, for all x ∈ X , lim infn→∞ Mn(x) ≤ 0, i.e.,

lim inf
n→∞

{

f(xn)− f(x)−
(

√

M1 +M2

)

∑

i∈I

∥

∥

∥
xn −Q(i)

α (xn)
∥

∥

∥
− IM1λn

}

≤ 0,

which, together with (C2) and (3.6), implies that

lim inf
n→∞

f (xn) ≤ f(x) (x ∈ X) .

Accordingly, there exists a subsequence (xnl
)l∈N of (xn)n∈N such that

lim
l→∞

f (xnl
) = lim inf

n→∞
f (xn) ≤ f(x) (x ∈ X) . (3.9)

Since (xnl
)l∈N is bounded, there exists (xnlm

)m∈N (⊂ (xnl
)l∈N) such that (xnlm

)m∈N weakly

converges to x∗ ∈ H . Hence, (A6) and (3.6) ensure that x∗ ∈ Fix(Q(i)) (i ∈ I), i.e.,
x∗ ∈ X . Furthermore, the continuity and convexity of f (see (A2)) imply that f is weakly
lower semicontinuous [3, Theorem 9.1], which means that f(x∗) ≤ lim infm→∞ f(xnlm

).
Therefore, (3.9) leads to the finding that

f (x∗) ≤ lim inf
m→∞

f
(

xnlm

)

= lim
m→∞

f
(

xnlm

)

≤ f(x) (x ∈ X) , i.e., x∗ ∈ X⋆.

Let us take another subsequence (xnlk
)k∈N (⊂ (xnl

)l∈N) such that (xnlk
)k∈N weakly

converges to x∗∗ ∈ H . A discussion similar to the one for obtaining x∗ ∈ X⋆ guarantees
that x∗∗ ∈ X⋆. Here, it is proven that x∗ = x∗∗. Now, let us assume that x∗ 6= x∗∗. Then,
the existence of limn→∞ ‖xn − x⋆‖ (x⋆ ∈ X⋆) and Opial’s condition [29, Lemma 1] imply
that

lim
n→∞

‖xn − x∗‖ = lim
m→∞

∥

∥xnlm
− x∗

∥

∥ < lim
m→∞

∥

∥xnlm
− x∗∗

∥

∥

= lim
n→∞

‖xn − x∗∗‖ = lim
k→∞

∥

∥

∥
xnlk

− x∗∗

∥

∥

∥
< lim

k→∞

∥

∥

∥
xnlk

− x∗

∥

∥

∥

= lim
n→∞

‖xn − x∗‖ ,

which is a contradiction. Hence, x∗ = x∗∗. Accordingly, any subsequence of (xnl
)l∈N

converges weakly to x∗ ∈ X⋆; i.e., (xnl
)l∈N converges weakly to x∗ ∈ X⋆. This means that

x∗ is a weak cluster point of (xn)n∈N and belongs to X⋆. A discussion similar to the one for
obtaining x∗ = x∗∗ guarantees that there is only one weak cluster point of (xn)n∈N, so we
can conclude that, in Case 1, (xn)n∈N weakly converges to a point in X⋆.

Case 2: Suppose that x⋆
0 ∈ X⋆ and (xnj

)j∈N (⊂ (xn)n∈N) exist such that ‖xnj
− x⋆

0‖ <
‖xnj+1−x⋆

0‖ for all j ∈ N. Then, defining Γn := ‖xn−x⋆
0‖ (n ∈ N) implies that Γnj

< Γnj+1

for all j ∈ N. Assumption 3.2 and the definition of xn (n ∈ N) guarantee the boundedness

of (xn)n∈N. Moreover, from the quasi-nonexpansivity of Q
(i)
α (i ∈ I), (Q(i)

α (xn))n∈N (i ∈ I)
is also bounded. Accordingly, Proposition 2.2 ensures that M1,M2 < ∞. Proposition 2.3
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ensures the existence of m1 ∈ N such that Γτ(n) < Γτ(n)+1 for all n ≥ m1, where τ(n) is
defined as in Proposition 2.3. Lemma 3.1(i) means that, for all n ≥ m1,

∑

i∈I

2α(i)
(

1− α(i)
)

I

∥

∥

∥
xτ(n) −Q(i)

(

xτ(n)

)

∥

∥

∥

2

≤ Γ2
τ(n) − Γ2

τ(n)+1 + 2M1λ
2
τ(n) −

2λτ(n)

I

∑

i∈I

〈

xτ(n) − x⋆
0, g

(i)
τ(n)

〉

<

(

2M1λτ(n) −
2

I

∑

i∈I

〈

xτ(n) − x⋆
0, g

(i)
τ(n)

〉

)

λτ(n).

Hence, the condition limn→∞ τ(n) = ∞ and (C2) imply that

lim
n→∞

∥

∥

∥
xτ(n) −Q(i)

α

(

xτ(n)

)

∥

∥

∥
= lim

n→∞

∥

∥

∥
xτ(n) −Q(i)

(

xτ(n)

)

∥

∥

∥
= 0 (i ∈ I) . (3.10)

Since (3.8) implies (2λτ(n)/I)Mτ(n)(x
⋆
0) ≤ Γ2

τ(n) − Γ2
τ(n)+1 < 0 (n ≥ m1) and λτ(n) > 0

(n ≥ m1), Mτ(n)(x
⋆
0) < 0 (n ≥ m1) holds; i.e., for all n ≥ m1,

f
(

xτ(n)

)

− f⋆ <
(

√

M1 +M2

)

∑

i∈I

∥

∥

∥
xτ(n) −Q(i)

α

(

xτ(n)

)

∥

∥

∥
+ IM1λτ(n). (3.11)

Accordingly, (C2) and (3.10) imply that

lim sup
n→∞

f
(

xτ(n)

)

≤ f⋆. (3.12)

Choose a subsequence (xτ(nk))k∈N of (xτ(n))n≥m1 arbitrarily. The property of the limit
superior of (f(xτ(n)))n≥m1 and (3.12) guarantee that

lim sup
k→∞

f
(

xτ(nk)

)

≤ lim sup
n→∞

f
(

xτ(n)

)

≤ f⋆. (3.13)

The boundedness of (xτ(nk))k∈N ensures that there exists (xτ(nkl
))l∈N (⊂ (xτ(nk))k∈N) such

that (xτ(nkl
))l∈N weakly converges to x⋆ ∈ H . Then, (A6) and (3.10) ensure that x⋆ ∈ X .

Moreover, the weakly lower semicontinuity of f and (3.13) guarantee that

f (x⋆) ≤ lim inf
l→∞

f
(

x
τ(nkl)

)

≤ lim sup
l→∞

f
(

x
τ(nkl)

)

≤ f⋆; i.e., x⋆ ∈ X⋆.

Therefore, (xτ(nkl
))l∈N weakly converges to x⋆ ∈ X⋆. From Cases 1 and 2, there exists a

subsequence of (xn)n∈N that weakly converges to a point in X⋆.
Suppose that assumption (i) in Theorem 3.2 holds. Since f :=

∑

i∈I f
(i) is strongly

convex, X⋆ consists of one point, denoted by x⋆. In Case 1, the strong convexity of f
guarantees that there exists β > 0 such that, for all α ∈ (0, 1) and for all l ∈ N,

β

2
α (1− α) ‖xnl

− x⋆‖2 ≤ αf (xnl
) + (1− α) f⋆ − f (αxnl

+ (1− α) x⋆) .

Accordingly, from the existence of limn→∞ ‖xn − x⋆‖ and (3.9),

β

2
α (1− α) lim

l→∞
‖xnl

− x⋆‖2 ≤ lim
l→∞

(αf (xnl
) + (1− α) f⋆)

+ lim sup
l→∞

(−f (αxnl
+ (1− α)x⋆))

≤ f⋆ − lim inf
l→∞

f (αxnl
+ (1− α) x⋆) ,
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which, together with the weak convergence of (xnl
)l∈N to x⋆ and the weakly lower semicon-

tinuity of f , implies that

β

2
α (1− α) lim

l→∞
‖xnl

− x⋆‖2 ≤ f⋆ − f (αx⋆ + (1− α) x⋆) = 0.

That is, (xnl
)l∈N strongly converges to x⋆. Therefore, from [3, Theorem 5.11], the whole

sequence (xn)n∈N strongly converges to x⋆.
In Case 2, the strong convexity of f leads to the deduction that, for all α ∈ (0, 1) and

for all l ∈ N,

β

2
α (1− α) lim sup

l→∞

∥

∥

∥
xτ(nkl

) − x⋆
∥

∥

∥

2

≤ α lim sup
l→∞

f
(

xτ(nkl
)

)

+ (1− α) f⋆

− lim inf
l→∞

f
(

αxτ(nkl
) + (1− α)x⋆

)

.

The weak convergence of (xτ(nkl
))l∈N to x⋆, the weakly lower semicontinuity of f , and (3.13)

imply that

β

2
α (1− α) lim sup

l→∞

∥

∥

∥
xτ(nkl

) − x⋆
∥

∥

∥

2

≤ f⋆ − f (αx⋆ + (1− α) x⋆) = 0,

which implies that (xτ(nkl
))l∈N strongly converges to x⋆.

When another subsequence (xτ(nkm ))m∈N (⊂ (xτ(nk))k∈N) can be chosen, a discussion
similar to the one for showing the weak convergence of (xτ(nkl

))l∈N to a point in X⋆ guar-

antees that (xτ(nkm ))m∈N also weakly converges to a point in X⋆. Furthermore, a discussion
similar to the one for showing the strong convergence of (xτ(nkl

))l∈N to x⋆ ensures that

(xτ(nkm ))m∈N strongly converges to the same x⋆. Hence, it is guaranteed that (xτ(nk))k∈N

strongly converges to x⋆. Since (xτ(nk))k∈N is an arbitrary subsequence of (xτ(n))n≥m1 ,
(xτ(n))n≥m1 strongly converges to x⋆; i.e., limn→∞ Γτ(n) = limn→∞ ‖xτ(n) − x⋆‖ = 0. Ac-
cordingly, Proposition 2.3 ensures that

lim sup
n→∞

‖xn − x⋆‖ ≤ lim sup
n→∞

Γτ(n)+1 = 0,

which implies that, in Case 2, the whole sequence (xn)n∈N converges to x⋆.
Suppose that assumption (ii) in Theorem 3.2 holds. Let x⋆ ∈ X⋆ be the unique solution

to Problem 2.1. In Case 1, it is guaranteed that (xn)n∈N converges to x⋆ ∈ X⋆. In Case
2, the convergence of (xτ(nkl

))l∈N to x⋆ is guaranteed. A discussion similar to the one for

showing the strong convergence of (xτ(n))n≥m1 to x⋆ (see the above paragraph) ensures that
(xτ(n))n≥m1 converges to x⋆ ∈ X⋆. Proposition 2.3 thus leads to the convergence of the
whole sequence (xn)n∈N to x⋆. This completes the proof.

3.3 Convergence rate analysis of Algorithm 3.1 with di-

minishing step size

The following corollary establishes the rate of convergence of Algorithm 3.1 for unconstrained
nonsmooth convex optimization.

Corollary 3.1. Consider Problem 2.1 when Q(i) = Id (i ∈ I) and suppose that the assump-
tions in Theorem 3.2 hold. Then, for a large enough n ∈ N,

f(xn)− f⋆ ≤ IM1λn,
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where M1 := maxi∈I M
(i)2

1 < ∞ and M
(i)
1 (i ∈ I) is defined as in Assumption 3.1.

The larger the number of users I, the greater the M1 := maxi∈I M
(i)2

1 . Accordingly,
Corollary 3.1 implies that, when the same step size sequence is used, the efficiency of Algo-
rithm 3.1 with Q(i) = Id (i ∈ I) may decrease as the number of users I increases.

Proof. In Case 1 in the proof of Theorem 3.2, lim infn→∞ Mn(x
⋆) ≤ 0 holds, where Mn(x)

(n ∈ N, x ∈ H) is defined by (3.7) and {x⋆} = X⋆. Let us prove that there exists k1 ∈ N

such that, for all n ≥ k1, Mn(x
⋆) ≤ 0. If this assertion does not hold, there exist γ > 0 and

a subsequence (Mnj
(x⋆))j∈N (⊂ (Mn(x

⋆))n∈N) such that γ < Mnj
(x⋆) for all j ∈ N. Since

Theorem 3.2 implies that (xn)n∈N strongly converges to x⋆, 0 < γ ≤ limj→∞ Mnj
(x⋆) ≤ 0,

which is a contradiction. Hence, Mn(x
⋆) ≤ 0 (n ≥ k1). Since Q(i) = Id (i ∈ I) implies that

‖xn − Q
(i)
α (xn)‖ = 0 (i ∈ I, n ∈ N), we have that, for all n ≥ k1, Mn(x

⋆) = f(xn) − f⋆ −
IM1λn ≤ 0.

In Case 2 in the proof of Theorem 3.2, the condition Q(i) = Id (i ∈ I) and (3.11) lead to
the existence of k2 ∈ N such that, for all n ≥ k2, f(xτ(n))− f⋆ < IM1λτ(n). This completes
the proof.

The following provides the rate of convergence of Algorithm 3.1 for constrained nons-
mooth convex optimization under specific conditions.

Corollary 3.2. Suppose that the assumptions in Theorem 3.2 hold. If there exists β(i) > 0
(i ∈ I) such that α(i) > β(i)2/(β(i)2 + 2) and d(xn, X) := ‖xn − PX(xn)‖ ≤ β(i)‖xn −
Q

(i)
α (xn)‖ (i ∈ I, n ∈ N) and if (‖xn −Q(i)(xn)‖)n∈N (i ∈ I) is monotone decreasing, then,

for all i ∈ I and for all n ∈ N,

∥

∥

∥
xn −Q(i)(xn)

∥

∥

∥

2

≤
I
(

d (x0, X)
2
+ 3M1

∑n

k=0 λ
2
k

)

(

1− α(i)
) {(

β(i)2 + 2
)

α(i) − β(i)2
}

(n+ 1)
,

where (λn)n∈N satisfies
∑∞

n=0 λ
2
n < ∞, M1 := maxi∈I M

(i)2

1 < ∞, and M
(i)
1 (i ∈ I) is

defined as in Assumption 3.1. Moreover, for a large enough n ∈ N,

f(xn)− f⋆ ≤ I

{

(

√

M1 +M2

)

√

IM3

n+ 1
+M1λn

}

,

where M2 := maxi∈I M
(i)
2 < ∞, M

(i)
2 (i ∈ I) is defined as in Assumption 3.1, M3 :=

maxi∈I M
(i)
3 < ∞, and M

(i)
3 := (d(x0, X)2+3M1

∑∞

k=0 λ
2
k)/((1−α(i)){(β(i)2+2)α(i)−β(i)2})

(i ∈ I).

Consider the case where α(i) := 1/2 and Q(i) := (1/(1 − α(i)))(PX − α(i)Id) (i ∈
I); i.e., Q

(i)
α = PX (i ∈ I). Then, Q(i) (i ∈ I) is nonexpansive [3, Proposition 4.25].

Moreover, β(i) = 1 (i ∈ I) can be chosen such that α(i) = 1/2 > β(i)2/(β(i)2 + 2) = 1/3

and d(xn, X) = β(i)‖xn − Q
(i)
α (xn)‖ (i ∈ I, n ∈ N). Corollary 3.2 thus implies that, if

(‖xn − PX(xn)‖)n∈N is monotone decreasing, Algorithm 3.1 with λn := 1/(n+ 1) (n ∈ N)
satisfies f(xn)− f⋆ ≤ I{(√M1 +M2)

√

IM3/(n+ 1) +M1/(n+ 1)}.
The rate of convergence of Algorithm 3.1 depends on the number of users I and the step

size sequence (λn)n∈N. Since the larger the I, the greater the M1 := maxi∈I M
(i)2

1 and the

M2 := maxi∈I M
(i)
2 , Corollary 3.2 implies that, when the same step size sequence is used,
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the efficiency of Algorithm 3.1 may decrease as the number of users I increases, as seen in
Corollary 3.1. Section 5 presents examples such that (‖xn − Q(i)(xn)‖)n∈N generated by
Algorithm 3.1 is monotone decreasing.

Proof. Set zn := PX(xn) (n ∈ N). Then, d(xn+1, X) := infy∈X ‖xn+1 − y‖ ≤ ‖xn+1 − zn‖
(n ∈ N). Accordingly, Lemma 3.1(i) guarantees that, for all n ∈ N,

d (xn+1, X)
2 ≤ d (xn, X)

2 − 2

I

∑

i∈I

α(i)
(

1− α(i)
)∥

∥

∥
xn −Q(i)(xn)

∥

∥

∥

2

+ 2M1λ
2
n

+
2λn

I

∑

i∈I

〈

zn − xn, g
(i)
n

〉

,

which implies that, for all N ∈ N,

2

I

N
∑

n=0

∑

i∈I

α(i)
(

1− α(i)
)∥

∥

∥
xn −Q(i)(xn)

∥

∥

∥

2

≤ d (x0, X)
2 − d (xN+1, X)

2
+ 2M1

N
∑

n=0

λ2
n +

2

I

N
∑

n=0

λn

∑

i∈I

〈

zn − xn, g
(i)
n

〉

.

From 2‖x‖‖y‖ ≤ ‖x‖2+‖y‖2 (x, y ∈ H) and the Cauchy-Schwarz inequality, (2/I)
∑N

n=0

∑

i∈I〈zn−
xn, λng

(i)
n 〉 ≤ (1/I)

∑N

n=0

∑

i∈I(‖zn− xn‖2+λ2
n‖g(i)n ‖2), which, together with the definition

of M1 and ‖xn − zn‖ ≤ β(i)‖xn −Q
(i)
α (xn)‖ (i ∈ I, n ∈ N), implies that

2

I

N
∑

n=0

∑

i∈I

〈

zn − xn, λng
(i)
n

〉

≤ 1

I

N
∑

n=0

∑

i∈I

β(i)2
∥

∥

∥
xn −Q(i)

α (xn)
∥

∥

∥

2

+M1

N
∑

n=0

λ2
n.

Accordingly, for all N ∈ N,

1

I

N
∑

n=0

∑

i∈I

(

1− α(i)
){(

β(i)2 + 2
)

α(i) − β(i)2
}
∥

∥

∥
xn −Q(i)(xn)

∥

∥

∥

2

≤ d (x0, X)
2
+ 3M1

N
∑

n=0

λ2
n.

From the monotone decreasing property of (‖xn − Q(i)(xn)‖)n∈N (i ∈ I), for all j ∈ I and
for all N ∈ N,

(N + 1)

I

(

1− α(j)
){(

β(j)2 + 2
)

α(j) − β(j)2
}
∥

∥

∥
xN −Q(j) (xN )

∥

∥

∥

2

≤ (N + 1)

I

∑

i∈I

(

1− α(i)
){(

β(i)2 + 2
)

α(i) − β(i)2
}∥

∥

∥
xN −Q(i) (xN )

∥

∥

∥

2

≤ d (x0, X)
2
+ 3M1

N
∑

n=0

λ2
n,

which implies that, for all j ∈ I and for all N ∈ N,

∥

∥

∥
xN −Q(j) (xN )

∥

∥

∥

2

≤
I
(

d (x0, X)2 + 3M1

∑N

n=0 λ
2
n

)

(

1− α(j)
) {(

β(j)2 + 2
)

α(j) − β(j)2
}

(N + 1)
.
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In Case 1 in the proof of Theorem 3.2, lim infn→∞ Mn(x
⋆) ≤ 0, where {x⋆} = X⋆. A

discussion similar to the one for obtaining Mn(x
⋆) ≤ 0 (n ≥ k1) in the proof of Corollary

3.1 implies that there exists k3 ∈ N such that, for all n ≥ k3, Mn(x
⋆) = f(xn) − f⋆ −

(
√
M1 + M2)

∑

i∈I ‖xn − Q
(i)
α (xn)‖ − IM1λn ≤ 0. In Case 2 in the proof of Theorem

3.2, (3.11) leads to the existence of k4 ∈ N such that, for all n ≥ k4, f(xτ(n)) − f⋆ <

(
√
M1+M2)

∑

i∈I ‖xτ(n)−Q
(i)
α (xτ(n))‖+ IM1λτ(n). Accordingly, for a large enough n ∈ N,

f(xn)− f⋆ ≤
(

√

M1 +M2

)

∑

i∈I

(

1− α(i)
)∥

∥

∥
xn −Q(i)(xn)

∥

∥

∥
+ IM1λn

≤
(

√

M1 +M2

)

∑

i∈I

(

1− α(i)
)

√

IM3

n+ 1
+ IM1λn

≤ I
(

√

M1 +M2

)

√

IM3

n+ 1
+ IM1λn.

This completes the proof.

4 Incremental Subgradient Method

The section presents a method for solving Problem 2.1 under the assumption that

(A7) each user can communicate with his/her neighbors,

where user i’s neighbors are users (i− 1) and (i+ 1) (i ∈ I) and user 0 (resp. user (I + 1))
stands for user I (resp. user 1). This assumption implies that the network considered here
is a ring-shaped network in which the users form a circle and pass along messages in cyclic
order.

Algorithm 4.1.

Step 0. User i (i ∈ I) sets α(i) and (λn)n∈N ⊂ (0,∞). User 1 sets x0 := x
(0)
0 ∈ H.

Step 1. User i (i ∈ I) computes x
(i)
n ∈ H using

x(i)
n := Q(i)

α

(

x(i−1)
n

)

− λng
(i)
n , where g(i)n ∈ ∂f (i)

(

Q(i)
α

(

x(i−1)
n

))

.

Step 2. User I sets

xn+1 = x
(0)
n+1 := x(I)

n

and transmits it to user 1. The algorithm sets n := n+ 1 and returns to Step 1.

From (A3) and (A7), user i (i ∈ I) can compute x
(i)
n := Q

(i)
α (x

(i−1)
n ) − λng

(i)
n , where

g
(i)
n ∈ ∂f (i)(Q

(i)
α (x

(i−1)
n )), by using information x

(i−1)
n transmitted from user (i− 1) and its

own private information.
Now, let us consider the differences between Algorithms 3.1 and 4.1. In Algorithm

3.1, user i computes x
(i)
n by using xn ∈ H , λn ∈ (0,∞), and its own private information

∂f (i) and Q
(i)
α , and each point x

(i)
n is broadcast to all users. As a result, all users have

(xn+1 := (1/I)
∑

i∈I x
(i)
n )n∈N, which strongly converges to a point in X⋆ (Theorem 3.2).

In Algorithm 4.1, user i computes x
(i)
n by using λn ∈ (0,∞), ∂f (i), Q

(i)
α , and the point

x
(i−1)
n transmitted from user (i− 1), and point x

(i)
n is transmitted to user (i+ 1). User i in

Algorithm 4.1 has (x
(i)
n )n∈N, which strongly converges to a point in X⋆ (Theorem 4.2).

The following assumptions are made here.
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Assumption 4.1. For all i ∈ I, there exist N
(i)
1 , N

(i)
2 ∈ R such that

sup
{

‖g‖ : g ∈ ∂f (i)
(

Q(i)
α

(

x(i−1)
n

))

, n ∈ N

}

≤ N
(i)
1 ,

sup
{

‖g‖ : g ∈ ∂f (i) (xn) , n ∈ N

}

≤ N
(i)
2 .

Assumption 4.2. The sequence (x
(i)
n )n∈N (i ∈ I) is bounded.

From a discussion similar to the one for obtaining the relationship between Assumptions
3.1 and 3.2, Assumption 4.2 implies Assumption 4.1. Assumption 4.1 is used to perform a
convergence analysis of Algorithm 4.1 with a constant step-size rule (Subsection 4.1) while
Assumption 4.2 is used to analyze Algorithm 4.1 with a diminishing step-size rule for the
same reason described in Section 3. The same discussion as for (3.1) describing the existence
of a simple, bounded, closed convex set X(i) (i ∈ I) satisfying X(i) ⊃ Fix(Q(i)) leads to

x(i)
n := P (i)

(

Q(i)
α

(

x(i−1)
n

)

− λng
(i)
n

)

instead of x
(i)
n for Algorithm 4.1. The boundedness of X(i) guarantees that Assumption 4.2

holds (see also (3.1)).
The following lemma can be shown by referring to the proof of Lemma 3.1.

Lemma 4.1. Suppose that (x
(i)
n )n∈N (i ∈ I) is the sequence generated by Algorithm 4.1 and

that Assumptions (A1)–(A4), (A7), and 4.1 hold. The following properties then hold:

(i) For all n ∈ N and for all x ∈ X,

‖xn+1 − x‖2 ≤ ‖xn − x‖2 − 2
∑

i∈I

α(i)
(

1− α(i)
)
∥

∥

∥
x(i−1)
n −Q(i)

(

x(i−1)
n

)
∥

∥

∥

2

+ 2IN1λ
2
n − 2λn

∑

i∈I

〈

x(i−1)
n − x, g(i)n

〉

,

where N1 := maxi∈I N
(i)2

1 < ∞.

(ii) For all n ∈ N and for all x ∈ X,

‖xn+1 − x‖2 ≤ ‖xn − x‖2 + 2λn (f(x)− f(xn))

+ 2IN1λ
2
n + 2λn

{

√

N1

∑

i∈I

∥

∥

∥
Q(i)

α

(

x(i−1)
n

)

− x(i−1)
n

∥

∥

∥

+N2

∑

i∈I

∥

∥

∥
Q(i)

α

(

x(i−1)
n

)

− xn

∥

∥

∥

}

,

where N2 := maxi∈I N
(i)
2 < ∞.

Proof. (i) The sequence (x
(i)
n )n∈N (i ∈ I) in Algorithm 3.1 is defined by x

(i)
n := Q

(i)
α (xn)−

λng
(i)
n while (x

(i)
n )n∈N (i ∈ I) in Algorithm 4.1 is defined by x

(i)
n := Q

(i)
α (x

(i−1)
n ) − λng

(i)
n .

Hence, by replacing xn in the proof of Lemma 3.1(i) by x
(i−1)
n , we find that, for all n ∈ N,

for all i ∈ I, and for all x ∈ X ,
∥

∥

∥
x(i)
n − x

∥

∥

∥

2

≤
∥

∥

∥
x(i−1)
n − x

∥

∥

∥

2

− 2α(i)
(

1− α(i)
)
∥

∥

∥
x(i−1)
n −Q(i)

(

x(i−1)
n

)
∥

∥

∥

2

+ 2N1λ
2
n − 2λn

〈

x(i−1)
n − x, g(i)n

〉

, (4.1)
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where N1 := maxi∈I N
(i)2

1 and N1 < ∞ holds from Assumption 4.1. Therefore, for all n ∈ N

and for all x ∈ X ,

‖xn+1 − x‖2 =
∥

∥

∥
x(I)
n − x

∥

∥

∥

2

≤ ‖xn − x‖2 − 2
∑

i∈I

α(i)
(

1− α(i)
)
∥

∥

∥
x(i−1)
n −Q(i)

(

x(i−1)
n

)
∥

∥

∥

2

+ 2IN1λ
2
n − 2λn

∑

i∈I

〈

x(i−1)
n − x, g(i)n

〉

.

(ii) The same discussion as in the proof of Lemma 3.1(ii) implies that, for all n ∈ N and
for all x ∈ X ,

∑

i∈I

〈

x− x(i−1)
n , g(i)n

〉

≤ f(x)− f(xn) +
∑

i∈I

(

f (i)(xn)− f (i)
(

Q(i)
α

(

x(i−1)
n

)))

+
√

N1

∑

i∈I

∥

∥

∥
Q(i)

α

(

x(i−1)
n

)

− x(i−1)
n

∥

∥

∥
.

Set N2 := maxi∈I N
(i)
2 < ∞. Since g ∈ ∂f (i)(xn) (n ∈ N) implies that, for all i ∈ I and for

all n ∈ N, f (i)(xn) − f (i)(Q
(i)
α (x

(i−1)
n )) ≤ 〈xn − Q

(i)
α (x

(i−1)
n ), g〉 ≤ N2‖xn −Q

(i)
α (x

(i−1)
n )‖, it

is found that

∑

i∈I

〈

x− xn, g
(i)
n

〉

≤ f(x)− f(xn) +
√

N1

∑

i∈I

∥

∥

∥
Q(i)

α

(

x(i−1)
n

)

− x(i−1)
n

∥

∥

∥

+N2

∑

i∈I

∥

∥

∥
Q(i)

α

(

x(i−1)
n

)

− xn

∥

∥

∥
.

Accordingly, Lemma 4.1(i) leads to Lemma 4.1(ii). This completes the proof.

4.1 Constant step-size rule

Let us perform a convergence analysis of Algorithm 4.1 with a constant step size.

Theorem 4.1. Suppose that Assumptions (A1)–(A4), (A7), 3.3, and 4.1 hold. Then,
(xn)n∈N in Algorithm 4.1 satisfies the relations

lim inf
n→∞

∥

∥

∥
x(i−1)
n −Q(i)

(

x(i−1)
n

)∥

∥

∥

2

≤ Nλλ

α(i)
(

1− α(i)
) (i ∈ I) ,

lim inf
n→∞

f (xn) ≤ f⋆ + I

(

I
√
N1N2

2
+N1

)

λ+N2

∑

i∈I

i−1
∑

j=1

√

(

1− α(j)
)

Nλλ

α(j)

+
(

√

N1 +N2

)

∑

i∈I

√

(

1− α(j)
)

Nλλ

α(i)
,

where N1 and N2 are as in Lemma 4.1 and, for some x ∈ X, Nλ := supn∈N
(IN1λ +

|∑i∈I〈x− x
(i−1)
n , g

(i)
n 〉|).
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Proof. Choose x ∈ X arbitrarily and set Nλ := supn∈N(IN1λ + |∑i∈I〈x − x
(i−1)
n , g

(i)
n 〉|).

Since Theorem 4.1 holds when Nλ = ∞, it can be assumed that Nλ < ∞. First, let us show
that

lim inf
n→∞

∑

i∈I

α(i)
(

1− α(i)
)
∥

∥

∥
x(i−1)
n −Q(i)

(

x(i−1)
n

)
∥

∥

∥

2

≤ Nλλ. (4.2)

Let us assume that (4.2) does not hold. Accordingly, from the same discussion as in the
proof of Theorem 3.1, δ (> 0) and n0 (∈ N) can be chosen such that, for all n ≥ n0,
∑

i∈I α(i)(1 − α(i))‖x(i−1)
n − Q(i)(x

(i−1)
n )‖2 > Nλλ + δ. Hence, Lemma 4.1(i) leads to the

finding that, for all n ≥ n0,

‖xn+1 − x‖2 < ‖xn − x‖2 − 2 {Nλλ+ δ}+ 2Nλλ

= ‖xn − x‖2 − 2δ.

Therefore, induction shows that 0 ≤ ‖xn+1 − x‖2 < ‖xn0 − x‖2 − 2δ(n+ 1 − n0) (n ≥ n0),
which is a contradiction. Therefore, (4.2) holds. This means that

lim inf
n→∞

∥

∥

∥
x(i−1)
n −Q(i)

(

x(i−1)
n

)∥

∥

∥

2

≤ Nλλ

α(i)
(

1− α(i)
) (i ∈ I) . (4.3)

Let i ∈ I be fixed arbitrarily. Inequality (4.3) and the property of the limit inferior of

(‖x(i)
n −Q(i)(x

(i)
n )‖2)n∈N guarantee the existence of a subsequence (x

(i)
nk
)k∈N of (x

(i)
n )n∈N such

that limk→∞ ‖x(i−1)
nk

−Q(i)(x
(i−1)
nk

)‖2 = lim infn→∞ ‖x(i−1)
n −Q(i)(x

(i−1)
n )‖2 ≤ Nλλ/(α

(i)(1−
α(i))). Therefore, for all ǫ > 0, there exists k0 ∈ N such that, for all k ≥ k0,

∥

∥

∥
x(i−1)
nk

−Q(i)
(

x(i−1)
nk

)
∥

∥

∥
≤
√

Nλλ

α(i)
(

1− α(i)
) + ǫ. (4.4)

Now, let us prove that, for all k ≥ k0,

lim inf
n→∞

f(xn) ≤ f⋆ + IN1λ+
√

N1

∑

i∈I

∥

∥

∥
x(i−1)
nk

−Q(i)
α

(

x(i−1)
nk

)
∥

∥

∥

+N2

∑

i∈I

∥

∥

∥
xnk

−Q(i)
α

(

x(i−1)
nk

)∥

∥

∥
+ 2ǫ.

(4.5)

Let us assume that (4.5) does not hold for all k ≥ k0. Then, (A5) and the property of
the limit inferior of (f(xn))n∈N guarantee that x⋆ ∈ X⋆ and n1 ∈ N exist such that, for all
n ≥ n1,

f(xn)− f (x⋆) > IN1λ+
√

N1

∑

i∈I

∥

∥

∥
x(i−1)
n −Q(i)

α

(

x(i−1)
n

)∥

∥

∥

+N2

∑

i∈I

∥

∥

∥
xn −Q(i)

α

(

x(i−1)
n

)
∥

∥

∥
+ ǫ.
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Therefore, Lemma 4.1(ii) means that, for all n ≥ n1,

‖xn+1 − x⋆‖2

≤ ‖xn − x⋆‖2 + 2IN1λ
2 + 2λ (f (x⋆)− f(xn))

+ 2λ

{

√

N1

∑

i∈I

∥

∥

∥
x(i−1)
n −Q(i)

α

(

x(i−1)
n

)
∥

∥

∥
+N2

∑

i∈I

∥

∥

∥
xn −Q(i)

α

(

x(i−1)
n

)
∥

∥

∥

}

< ‖xn − x⋆‖2 + 2IN1λ
2

− 2λ

{

IN1λ+
√

N1

∑

i∈I

∥

∥

∥
x(i−1)
n −Q(i)

α

(

x(i−1)
n

)∥

∥

∥

+N2

∑

i∈I

∥

∥

∥
xn −Q(i)

α

(

x(i−1)
n

)∥

∥

∥
+ ǫ

}

+ 2λ

{

√

N1

∑

i∈I

∥

∥

∥
x(i−1)
n −Q(i)

α

(

x(i−1)
n

)∥

∥

∥

+N2

∑

i∈I

∥

∥

∥
xn −Q(i)

α

(

x(i−1)
n

)∥

∥

∥

}

= ‖xn − x⋆‖2 − 2λǫ,

which means that 0 ≤ ‖xn+1−x⋆‖2 < ‖xn1 −x⋆‖2− 2λǫ(n+1−n1) (n ≥ n1). Hence, there
is a contradiction. Accordingly, (4.5) holds for all k ≥ k0.

Furthermore, the triangle inequality implies that, for all k ≥ k0,

√

N1

∑

i∈I

∥

∥

∥
x(i−1)
nk

−Q(i)
α

(

x(i−1)
nk

)
∥

∥

∥
+N2

∑

i∈I

∥

∥

∥
xnk

−Q(i)
α

(

x(i−1)
nk

)
∥

∥

∥

≤
√

N1

∑

i∈I

∥

∥

∥
x(i−1)
nk

−Q(i)
α

(

x(i−1)
nk

)∥

∥

∥
+N2

∑

i∈I

∥

∥

∥
x(0)
nk

− x(i−1)
nk

∥

∥

∥

+N2

∑

i∈I

∥

∥

∥
x(i−1)
nk

−Q(i)
α

(

x(i−1)
nk

)∥

∥

∥

≤
(

√

N1 +N2

)

∑

i∈I

(

1− α(i)
) ∥

∥

∥
x(i−1)
nk

−Q(i)
(

x(i−1)
nk

)∥

∥

∥

+N2

∑

i∈I

i−1
∑

j=1

∥

∥

∥
x(j−1)
nk

− x(j)
nk

∥

∥

∥
.

Moreover, the definition of x
(i)
n (n ∈ N, i ∈ I) and the triangle inequality mean that, for all

k ≥ k0,

∑

i∈I

i−1
∑

j=1

∥

∥

∥
x(j−1)
nk

− x(j)
nk

∥

∥

∥
≤
∑

i∈I

i−1
∑

j=1

∥

∥

∥
x(j−1)
nk

−Q(j)
α

(

x(j−1)
nk

)∥

∥

∥
+
∑

i∈I

i−1
∑

j=1

√

N1λ

=
∑

i∈I

i−1
∑

j=1

∥

∥

∥
x(j−1)
nk

−Q(j)
α

(

x(j−1)
nk

)
∥

∥

∥
+

I2
√
N1λ

2
.
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Accordingly, (4.4) guarantees that
√

N1

∑

i∈I

∥

∥

∥
x(i−1)
nk

−Q(i)
α

(

x(i−1)
nk

)∥

∥

∥
+N2

∑

i∈I

∥

∥

∥
xnk

−Q(i)
α

(

x(i−1)
nk

)∥

∥

∥

≤
(

√

N1 +N2

)

∑

i∈I

(

1− α(i)
)

√

Nλλ

α(i)
(

1− α(i)
) + ǫ

+N2

∑

i∈I

i−1
∑

j=1

(

1− α(j)
)

√

Nλλ

α(j)
(

1− α(j)
) + ǫ+

I2
√
N1N2λ

2
.

Therefore, (4.5) leads to the finding that, for all ǫ > 0,

lim inf
n→∞

f(xn) ≤ f⋆ + I

(

I
√
N1N2

2
+N1

)

λ

+
(

√

N1 +N2

)

∑

i∈I

(

1− α(i)
)

√

Nλλ

α(i)
(

1− α(i)
) + ǫ

+N2

∑

i∈I

i−1
∑

j=1

(

1− α(j)
)

√

Nλλ

α(j)
(

1− α(j)
) + ǫ+ 2ǫ.

Hence, the arbitrary property of ǫ (> 0) leads to the deduction that

lim inf
n→∞

f(xn)

≤ f⋆ + I

(

I
√
N1N2

2
+N1

)

λ+N2

∑

i∈I

i−1
∑

j=1

(

1− α(j)
)

√

Nλλ

α(j)
(

1− α(j)
)

+
(

√

N1 +N2

)

∑

i∈I

(

1− α(i)
)

√

Nλλ

α(i)
(

1− α(i)
)

= f⋆ + I

(

I
√
N1N2

2
+N1

)

λ

+
(

√

N1 +N2

)

∑

i∈I

√

(

1− α(j)
)

Nλλ

α(i)
+N2

∑

i∈I

i−1
∑

j=1

√

(

1− α(j)
)

Nλλ

α(j)
.

This completes the proof.

4.2 Diminishing step-size rule

Let us perform a convergence analysis of Algorithm 4.1 with a diminishing step size.

Theorem 4.2. Suppose that Assumptions (A1)–(A4), (A7), 3.4, and 4.2 hold. Then there

exists a subsequence of (x
(i)
n )n∈N (i ∈ I) generated by Algorithm 4.1 that weakly converges to

a point in X⋆. If either (i) or (ii) in Theorem 3.2 holds, (x
(i)
n )n∈N (i ∈ I) strongly converges

to a unique point in X⋆.4

4Figure 10 shows the existence of a subsequence of (xn)n∈N generated by Algorithm 4.1
that converges to a solution to Problem 5.1 when all f (i) are convex while Figure 12 indicates
the convergence of (xn)n∈N generated by Algorithm 4.1 to the solution to Problem 5.1 when
only f (1) is strongly convex.
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Proof. Case 1: Suppose there exists m0 ∈ N such that ‖xn+1 − x⋆‖ ≤ ‖xn − x⋆‖ for all
n ≥ m0 and for all x⋆ ∈ X⋆. Then, there exists limn→∞ ‖xn − x⋆‖ for all x⋆ ∈ X⋆.

Hence, (xn)n∈N is bounded. From the quasi-nonexpansivity of Q
(1)
α , (Q

(1)
α (xn))n∈N is also

bounded. Hence, Proposition 2.2 guarantees the boundedness of (g
(1)
n )n∈N. Inequality (4.1)

when i = 1, x
(0)
n := xn (n ∈ N), and (C2) lead to the boundedness of (x

(1)
n )n∈N. Therefore,

induction shows that (x
(i)
n )n∈N and (g

(i)
n )n∈N (i ∈ I) are bounded; i.e., N1 and N2 defined

as in Lemma 4.1 are finite. Lemma 4.1(i) implies that, for all n ≥ m0 and for all x⋆ ∈ X⋆,

2
∑

i∈I

α(i)
(

1− α(i)
)∥

∥

∥
x(i−1)
n −Q(i)

(

x(i−1)
n

)∥

∥

∥

2

≤ ‖xn − x⋆‖2 − ‖xn+1 − x⋆‖2 + 2IN1λ
2
n − 2λn

∑

i∈I

〈

x(i−1)
n − x⋆, g(i)n

〉

.

Accordingly, the existence of limn→∞ ‖xn − x⋆‖ (x⋆ ∈ X⋆) and (C2) guarantee that

lim
n→∞

∥

∥

∥
x(i−1)
n −Q(i)

α

(

x(i−1)
n

)
∥

∥

∥
= lim

n→∞

∥

∥

∥
x(i−1)
n −Q(i)

(

x(i−1)
n

)
∥

∥

∥
= 0 (i ∈ I) . (4.6)

Moreover, since ‖x(i−1)
n −x

(i)
n ‖ = ‖x(i−1)

n −Q
(i)
α (x

(i−1)
n )+λng

(i)
n ‖ ≤ ‖x(i−1)

n −Q
(i)
α (x

(i−1)
n )‖+√

N1λn (n ∈ N, i ∈ I), (4.6) and (C2) ensure that limn→∞ ‖x(i−1)
n − x

(i)
n ‖ = 0 (i ∈ I). Since

the triangle inequality implies that ‖xn − x
(i−1)
n ‖ ≤∑i−1

j=1 ‖x
(j−1)
n − x

(j)
n ‖ (n ∈ N, i ∈ I),

lim
n→∞

∥

∥

∥
xn − x(i−1)

n

∥

∥

∥
= 0 (i ∈ I). (4.7)

From ‖xn −Q
(i)
α (x

(i−1)
n )‖ ≤ ‖xn − x

(i−1)
n ‖+ ‖x(i−1)

n −Q
(i)
α (x

(i−1)
n )‖ (n ∈ N, i ∈ I),

lim
n→∞

∥

∥

∥
xn −Q(i)

α

(

x(i−1)
n

)
∥

∥

∥
= 0 (i ∈ I). (4.8)

Here, let us define that, for all n ∈ N and for all x ∈ X ,

Nn(x) := f(xn)− f(x)−
√

N1

∑

i∈I

∥

∥

∥
Q(i)

α

(

x(i−1)
n

)

− x(i−1)
n

∥

∥

∥

−N2

∑

i∈I

∥

∥

∥
Q(i)

α

(

x(i−1)
n

)

− xn

∥

∥

∥
− IN1λn.

(4.9)

Then, Lemma 4.1(ii) leads to the finding that, for all n ∈ N and for all x ∈ X ,

2λnNn(x) ≤ ‖xn − x‖2 − ‖xn+1 − x‖2 . (4.10)

A discussion similar to the one for obtaining lim infn→∞ Mn(x) ≤ 0 (x ∈ X) guarantees
that lim infn→∞ Nn(x) ≤ 0 (x ∈ X), which, together with (C2), (4.6), and (4.8), implies
that lim infn→∞ f(xn) ≤ f(x) (x ∈ X). Accordingly, there exists a subsequence (xnl

)l∈N

of (xn)n∈N such that liml→∞ f(xnl
) = lim infn→∞ f(xn) ≤ f(x) (x ∈ X). Since (xnl

)l∈N

is bounded, there exists (xnlm
)m∈N (⊂ (xnl

)l∈N) such that (xnlm
)m∈N weakly converges to

x∗ ∈ H . Equation (4.7) guarantees that (x
(i−1)
nlm

)m∈N (i ∈ I) weakly converges to x∗. Thus,
(A6) and (4.6) ensure that x∗ ∈ X . From the same discussion as in the proof of Theorem 3.2,

(xn)n∈N weakly converges to a point in X⋆. Moreover, (4.7) implies that (x
(i)
n )n∈N (i ∈ I)

weakly converges to a point in X⋆.
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Case 2: Suppose that x∗
0 ∈ X⋆ and (xnj

)j∈N (⊂ (xn)n∈N) exist such that Γnj
:=

‖xnj
− x∗

0‖ < ‖xnj+1 − x∗
0‖ for all j ∈ N. Assumption 4.2 and the quasi-nonexpansivity of

Q
(i)
α (i ∈ I) guarantee the boundedness of (Q

(i)
α (x

(i−1)
n ))n∈N (i ∈ I). Hence, Proposition

2.2 ensures that N1, N2 < ∞. Proposition 2.3 means the existence of m1 ∈ N such that
Γτ(n) < Γτ(n)+1 for all n ≥ m1, where τ(n) is as in Proposition 2.3. Lemma 4.1(i) means
that, for all n ≥ m1,

2
∑

i∈I

α(i)
(

1− α(i)
)∥

∥

∥
x
(i−1)
τ(n) −Q(i)

(

x
(i−1)
τ(n)

)∥

∥

∥

2

≤ Γ2
τ(n) − Γ2

τ(n)+1 + 2IN1λ
2
τ(n) − 2λτ(n)

∑

i∈I

〈

x
(i−1)
τ(n) − x∗

0, g
(i)
τ(n)

〉

<

(

2IN1λτ(n) − 2
∑

i∈I

〈

x
(i−1)
τ(n) − x∗

0, g
(i)
τ(n)

〉

)

λτ(n),

which, together with limn→∞ τ(n) = ∞ and (C2), implies that

lim
n→∞

∥

∥

∥
x
(i−1)
τ(n) −Q(i)

(

x
(i−1)
τ(n)

)∥

∥

∥
= 0 (i ∈ I) . (4.11)

The same discussions for obtaining (4.6), (4.7), and (4.8) imply that

lim
n→∞

∥

∥

∥
x
(i−1)
τ(n) −Q(i)

α

(

x
(i−1)
τ(n)

)∥

∥

∥
= 0 (i ∈ I), (4.12)

lim
n→∞

∥

∥

∥
xτ(n) − x

(i−1)
τ(n)

∥

∥

∥
= 0 (i ∈ I), (4.13)

lim
n→∞

∥

∥

∥
xτ(n) −Q(i)

α

(

x
(i−1)
τ(n)

)
∥

∥

∥
= 0 (i ∈ I). (4.14)

Inequality (4.10) and λτ(n) > 0 (n ≥ m1) mean that Nτ(n)(x
∗
0) < 0 (n ≥ m1); i.e., for all

n ≥ m1,

f
(

xτ(n)

)

− f⋆ <
√

N1

∑

i∈I

∥

∥

∥
Q(i)

α

(

x
(i−1)
τ(n)

)

− x
(i−1)
τ(n)

∥

∥

∥
+ IN1λτ(n)

+N2

∑

i∈I

∥

∥

∥
Q(i)

α

(

x
(i−1)
τ(n)

)

− xτ(n)

∥

∥

∥
.

(4.15)

Accordingly, (C2), (4.12), and (4.14) imply that lim supn→∞ f(xτ(n)) ≤ f⋆, which implies
that, for any subsequence (xτ(nk))k∈N (⊂ (xτ(n))n≥m1), limk→∞ f(xτ(nk)) ≤ lim supn→∞ f(xτ(n)) ≤
f⋆. From the boundedness of (xτ(nk))k∈N, there is (xτ(nkl

))l∈N (⊂ (xτ(nk))k∈N), which weakly

converges to x⋆ ∈ H . Equation (4.13) implies that (x
(i−1)
τ(nkl

))l∈N (i ∈ I) weakly converges to

x⋆. Hence, (A6) and (4.11) lead to x⋆ ∈ X . The same discussion as in the proof of Theorem

3.2 guarantees that x⋆ ∈ X⋆. Therefore, there exists a subsequence of (x
(i)
n )n∈N (i ∈ I) that

weakly converges to a point in X⋆.
Let us assume that either (i) or (ii) is satisfied. A discussion similar to the one for proving

the strong convergence of (xn)n∈N in Algorithm 3.1 to a unique point in X⋆ guarantees that

(xn)n∈N in Algorithm 4.1 strongly converges to x⋆ ∈ X⋆. From limn→∞ ‖xn − x
(i−1)
n ‖ = 0

(i ∈ I) (see (4.7) and (4.13)), we can conclude that (x
(i)
n ) (i ∈ I) strongly converges to x⋆.

This completes the proof.
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Regarding the relationship between the proposed algorithms (Algorithms 3.1 and 4.1)
and the distributed random projection method [20], we have the following remark.

Remark 4.1. Suppose that user i’s objective function f (i) is convex and differentiable and
that user i’s constraint set C(i) is defined as the intersection of finitely many simple closed
convex constraints; i.e.,

C(i) :=
⋂

k∈J (i)

C
(i)
k ,

where J (i) is finite and C
(i)
k (k ∈ J (i)) is a nonempty, closed convex set of RN such that P

C
(i)
k

can be computed efficiently. At iteration n of the method [20], user i calculates the weighted

average of the x
(j)
n received from its local neighbors j and determines the iteration value by

using the gradient information of its own objective function and the metric projection onto

a constraint C
(i)

Ω
(i)
n

(Ω
(i)
n ∈ J (i)) selected randomly from its constraint set C(i); i.e.,

v(i)n :=
∑

j∈N
(i)
n

wij,nx
(j)
n ,

x
(i)
n+1 := P

C
(i)

Ω
(i)
n

(

v(i)n − αn∇f (i)
(

v(i)n

))

,

(4.16)

where N
(i)
n stands for the set of user i and the users that send information to user i, wij,n ≥ 0

(j ∈ N
(i)
n ) with

∑

j∈N
(i)
n

wij,n = 1 (i ∈ I), and αn > 0. Proposition 1 in [20] indicates that,

under certain assumptions, the sequence (x
(i)
n )n∈N (i ∈ I) generated by Algorithm (4.16)

converges almost surely to the minimizer of
∑

i∈I f
(i) over

⋂

i∈I C(i).
Algorithm 3.1 (resp. Algorithm 4.1) can be applied to the problem considered in [20]

under Assumption (A5) (resp. Assumption (A7)) and the assumption that user i can use all
P
C

(i)
k

(k ∈ J (i)) at each iteration. Since the product of metric projections or the weighted

average of metric projections is a special case of a quasi-nonexpansive mapping, Q(i) in
Algorithms 3.1 and 4.1 can be given, for example, by

Q(i) :=
∏

k∈J (i)

P
C

(i)
k

or Q(i) :=
∑

k∈J (i)

w
(i)
k P

C
(i)
k

,

where (w
(i)
k )k∈J (i) (i ∈ I) satisfies ∑k∈J (i) w

(i)
k = 1.

4.3 Convergence rate analysis of Algorithm 4.1 with di-

minishing step size

Here we first discuss the rate of convergence of Algorithm 4.1 for unconstrained nonsmooth
convex optimization.

Corollary 4.1. Consider Problem 2.1 when Q(i) = Id (i ∈ I) and suppose that the assump-
tions in Theorem 4.2 hold. Then, for a large enough n ∈ N,

f(xn)− f⋆ ≤ I

{

(I − 1)

2

√

N1N2 +N1

}

λn,

where N1 := maxi∈I N
(i)2

1 < ∞, N2 := maxi∈I N
(i)
2 < ∞, and N

(i)
1 and N

(i)
2 (i ∈ I) are

defined as in Assumption 4.1.
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Corollary 4.1 indicates that, when the same step size sequence is used, the efficiency of
Algorithm 4.1 with Q(i) = Id (i ∈ I) may decrease as the number of users I increases. This
can also be seen in Corollary 3.1, indicating the rate of convergence of Algorithm 3.1 with
Q(i) = Id (i ∈ I).

Proof. The triangle inequality ensures that ‖xn − x
(i−1)
n ‖ ≤ ∑i−1

j=1 ‖x
(j−1)
n − x

(j)
n ‖ (n ∈

N), which, together with the definition of x
(i)
n (i ∈ I, n ∈ N), implies ‖xn − x

(i−1)
n ‖ ≤

∑i−1
j=1

√
N1λn = (i− 1)

√
N1λn (i ∈ I, n ∈ N). Accordingly, for all n ∈ N,

∑

i∈I

∥

∥

∥
xn − x(i−1)

n

∥

∥

∥
≤
∑

i∈I

(i − 1)
√

N1λn =
I(I − 1)

2

√

N1λn. (4.17)

In Case 1 in the proof of Theorem 4.2, lim infn→∞ Nn(x
⋆) ≤ 0 holds, where Nn(x)

(n ∈ N, x ∈ H) is defined by (4.9) and {x⋆} = X⋆. The same discussion as in the proof of
Corollary 3.1 leads to the existence of k1 ∈ N such that, for all n ≥ k1, Nn(x

⋆) ≤ 0. From

Q(i) = Id (i ∈ I), for all n ≥ k1, Nn(x
⋆) = f(xn)−f⋆−N2

∑

i∈I ‖xn−x
(i−1)
n ‖−IN1λn ≤ 0.

Hence, (4.17) implies that, for all n ≥ k1,

f(xn)− f⋆ ≤ N2

∑

i∈I

∥

∥

∥
xn − x(i−1)

n

∥

∥

∥
+ IN1λn

≤ I(I − 1)

2

√

N1N2λn + IN1λn.

In Case 2 in the proof of Theorem 4.2, the condition Q(i) = Id (i ∈ I), (4.15), and (4.17)
lead to the existence of k2 ∈ N such that, for all n ≥ k2, f(xτ(n))− f⋆ < N2

∑

i∈I ‖xτ(n) −
x
(i−1)
τ(n) ‖+ IN1λτ(n) ≤ (I(I − 1)/2)

√
N1N2λτ(n) + IN1λτ(n). This completes the proof.

The following corollary establishes the rate of convergence of Algorithm 4.1 for con-
strained nonsmooth convex optimization under specific conditions.

Corollary 4.2. Suppose that the assumptions in Theorem 4.2 hold. If there exists β(i) > 0

(i ∈ I) such that α(i) > β(i)2/(β(i)2 + 2) and d(x
(i−1)
n , X) := ‖x(i−1)

n − PX(x
(i−1)
n )‖ ≤

β(i)‖x(i−1)
n − Q

(i)
α (x

(i−1)
n )‖ (i ∈ I, n ∈ N) and if (‖x(i−1)

n − Q(i)(x
(i−1)
n )‖)n∈N (i ∈ I) is

monotone decreasing, then, for all i ∈ I and for all n ∈ N,

∥

∥

∥
x(i−1)
n −Q(i)

(

x(i−1)
n

)∥

∥

∥

2

≤ d (x0, X)
2
+ 3IN1

∑n

k=0 λ
2
k

(

1− α(i)
) {(

β(i)2 + 2
)

α(i) − β(i)2
}

(n+ 1)
,

where (λn)n∈N satisfies
∑∞

n=0 λ
2
n < ∞, N1 := maxi∈I N

(i)2

1 < ∞, and N
(i)
1 (i ∈ I) is defined

as in Assumption 4.1. Moreover, for a large enough n ∈ N,

f(xn)− f⋆ ≤ I

{

(

√

N1 +
(I + 1)N2

2

)

√

N3

n+ 1
+

(

(I − 1)
√
N1N2

2
+N1

)

λn

}

,

where N2 := maxi∈I N
(i)
2 < ∞, N

(i)
2 (i ∈ I) is defined as in Assumption 4.1, N3 :=

maxi∈I N
(i)
3 < ∞, and N

(i)
3 := (d(x0, X)2+3IN1

∑∞

k=0 λ
2
k)/((1−α(i)){(β(i)2+2)α(i)−β(i)2})

(i ∈ I).
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Consider the case where α(i) := 1/2 and Q(i) := (1/(1 − α(i)))(PX − α(i)Id) (i ∈ I);
i.e., Q

(i)
α = PX (i ∈ I) and Q(i) (i ∈ I) is nonexpansive [3, Proposition 4.25]. Then,

β(i) = 1 can be chosen such that α(i) = 1/2 > β(i)2/(β(i)2 + 2) = 1/3 and d(x
(i−1)
n , X) =

β(i)‖x(i−1)
n −Q

(i)
α (x

(i−1)
n )‖ (i ∈ I, n ∈ N).

Corollary 4.2 implies that, when the same step size sequence is used, the efficiency of
Algorithm 4.1 may decrease as the number of users I increases. This can also be seen in
Corollary 3.2, indicating the rate of convergence of Algorithm 3.1 for constrained nonsmooth
convex optimization.

Proof. Define d(x,X) := ‖x − PX(x)‖ (x ∈ H) and z
(i)
n := PX(x

(i)
n ) (i ∈ I, n ∈ N). From

(4.1), for all i ∈ I and for all n ∈ N,

∥

∥

∥
x(i)
n − z(i−1)

n

∥

∥

∥

2

≤ d
(

x(i−1)
n , X

)2

− 2α(i)
(

1− α(i)
)∥

∥

∥
x(i−1)
n −Q(i)

(

x(i−1)
n

)∥

∥

∥

2

+ 2N1λ
2
n + 2λn

〈

z(i−1)
n − x(i−1)

n , g(i)n

〉

, (4.18)

which, together with d(x
(i)
n , X) ≤ ‖x(i)

n − z
(i−1)
n ‖ (i ∈ I, n ∈ N) and the definition of xn

(n ∈ N), implies that, for all n ∈ N,

d (xn+1, X)2 ≤ d (xn, X)2 − 2
∑

i∈I

α(i)
(

1− α(i)
)∥

∥

∥
x(i−1)
n −Q(i)

(

x(i−1)
n

)∥

∥

∥

2

+ 2IN1λ
2
n + 2λn

∑

i∈I

〈

z(i−1)
n − x(i−1)

n , g(i)n

〉

.

Furthermore, the Cauchy-Schwarz inequality and 2‖x‖‖y‖ ≤ ‖x‖2 + ‖y‖2 (x, y ∈ H) ensure

that, for all i ∈ I and for all n ∈ N, 2〈z(i−1)
n −x

(i−1)
n , λng

(i)
n 〉 ≤ ‖z(i−1)

n −x
(i−1)
n ‖2+λ2

n‖g(i)n ‖2,
which, together with the definition of N1 and ‖x(i−1)

n − z
(i−1)
n ‖ ≤ β(i)‖x(i−1)

n −Q
(i)
α (x

(i−1)
n )‖

(i ∈ I, n ∈ N), implies that

2

N
∑

n=0

∑

i∈I

〈

z(i−1)
n − x(i−1)

n , λng
(i)
n

〉

≤
N
∑

n=0

∑

i∈I

β(i)2
∥

∥

∥
x(i−1)
n −Q(i)

α

(

x(i−1)
n

)
∥

∥

∥

2

+ IN1

N
∑

n=0

λ2
n.

Accordingly, for all N ∈ N,

N
∑

n=0

∑

i∈I

(

1− α(i)
){(

β(i)2 + 2
)

α(i) − β(i)2
}∥

∥

∥
x(i−1)
n −Q(i)

(

x(i−1)
n

)∥

∥

∥

2

≤ d (x0, X)
2
+ 3IN1

N
∑

n=0

λ2
n.

Since (‖x(i−1)
n −Q(i)(x

(i−1)
n )‖)n∈N (i ∈ I) is monotone decreasing, for all j ∈ I and for all
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N ∈ N,

(N + 1)
(

1− α(j)
){(

β(j)2 + 2
)

α(j) − β(j)2
}
∥

∥

∥
x
(j−1)
N −Q(j)

(

x
(j−1)
N

)
∥

∥

∥

2

≤ (N + 1)
∑

i∈I

(

1− α(i)
){(

β(i)2 + 2
)

α(i) − β(i)2
}∥

∥

∥
x
(i−1)
N −Q(i)

(

x
(i−1)
N

)∥

∥

∥

2

≤ d (x0, X)
2
+ 3IN1

N
∑

n=0

λ2
n,

which implies that, for all j ∈ I and for all N ∈ N,

∥

∥

∥
x
(j−1)
N −Q(j)

(

x
(j−1)
N

)∥

∥

∥

2

≤ d (x0, X)2 + 3IN1

∑N

n=0 λ
2
n

(

1− α(j)
) {(

β(j)2 + 2
)

α(j) − β(j)2
}

(N + 1)
.

Since ‖x(i−1)
n − x

(i)
n ‖ ≤ ‖x(i−1)

n −Q
(i)
α (x

(i−1)
n )‖+√

N1λn (i ∈ I, n ∈ N), for all i ∈ I and
n ∈ N,

∥

∥

∥
x(i−1)
n − x(i)

n

∥

∥

∥
≤
(

1− α(i)
)

√

N3

n+ 1
+
√

N1λn.

Moreover, since the triangle inequality implies that ‖xn − x
(i−1)
n ‖ ≤ ∑i−1

j=1 ‖x
(j−1)
n − x

(j)
n ‖

(i ∈ I, n ∈ N), for all n ∈ N,

∑

i∈I

∥

∥

∥
xn − x(i−1)

n

∥

∥

∥
≤
∑

i∈I

i−1
∑

j=1

{

(

1− α(j)
)

√

N3

n+ 1
+
√

N1λn

}

≤ I(I − 1)

2

(

√

N3

n+ 1
+
√

N1λn

)

.

Accordingly, for all n ∈ N,

∑

i∈I

∥

∥

∥
xn −Q(i)

α

(

x(i−1)
n

)∥

∥

∥
≤
∑

i∈I

∥

∥

∥
x(i−1)
n −Q(i)

α

(

x(i−1)
n

)∥

∥

∥
+
∑

i∈I

∥

∥

∥
xn − x(i−1)

n

∥

∥

∥

≤ I

2

{

(I + 1)

√

N3

n+ 1
+ (I − 1)

√

N1λn

}

. (4.19)

In Case 1 in the proof of Theorem 4.2, lim infn→∞ Nn(x
⋆) ≤ 0, where {x⋆} = X⋆.

A discussion similar to the one for proving Mn(x
⋆) ≤ 0 (n ≥ k1) (see proof of Corollary

3.1) guarantees that there exists k3 ∈ N such that, for all n ≥ k3, Nn(x
⋆) = f(xn) −

f⋆ −√
N1

∑

i∈I ‖x
(i−1)
n −Q

(i)
α (x

(i−1)
n )‖ −N2

∑

i∈I ‖Q(i)
α (x

(i−1)
n )− xn‖ − IN1λn ≤ 0. From

(4.15) in Case 2 in the proof of Theorem 4.2, there exists k4 ∈ N such that, for all n ≥ k4,

f(xτ(n))−f⋆ <
√
N1

∑

i∈I ‖x(i−1)
τ(n) −Q

(i)
α (x

(i−1)
τ(n) )‖+N2

∑

i∈I ‖Q
(i)
α (x

(i−1)
τ(n) )−xτ(n)‖+IN1λn.

Therefore, from ‖x(i−1)
n −Q

(i)
α (x

(i−1)
n )‖2 ≤ N3/(n+1) (n ∈ N) and (4.19), for a large enough
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n ∈ N,

f(xn)− f⋆

≤
√

N1

∑

i∈I

∥

∥

∥
x(i−1)
n −Q(i)

α

(

x(i−1)
n

)∥

∥

∥
+N2

∑

i∈I

∥

∥

∥
Q(i)

α

(

x(i−1)
n

)

− xn

∥

∥

∥
+ IN1λn

≤
√

N1

∑

i∈I

(

1− α(i)
)

√

N3

n+ 1
+ IN1λn

+N2
I

2

{

(I + 1)

√

N3

n+ 1
+ (I − 1)

√

N1λn

}

≤ I

{

(

√

N1 +
(I + 1)N2

2

)

√

N3

n+ 1
+

(

(I − 1)
√
N1N2

2
+N1

)

λn

}

.

This completes the proof.

5 Numerical Examples

This section considers the following problem over the intersection of sublevel sets of convex
functions [13, Section 3.2] and numerically compares Algorithms 3.1 and 4.1 with the method
in [13, (2.1), (3.1), (3.14), (4.3)].

Problem 5.1. Let f (i) : RN → R and g(i) : RN → R (i ∈ I) be convex.

Minimize f(x) :=
∑

i∈I

f (i)(x) subject to x ∈ X :=
⋂

i∈I

lev≤0g
(i) 6= ∅,

where lev≤0g
(i) := {x ∈ R

N : g(i)(x) ≤ 0}.

Let us define the subgradient projection [2, Proposition 2.3], [34, Subchapter 4.3] relative
to g(i) (i ∈ I) for all x ∈ R

N by

Q(i)
sp (x) :=











x− g(i)(x)
∥

∥z(i)(x)
∥

∥

2 z
(i)(x) if g(i)(x) > 0,

x otherwise,

where z(i)(x) ∈ ∂g(i)(x) (i ∈ I, x ∈ R
N ). The mapping Q

(i)
sp (i ∈ I) is quasi-firmly nonex-

pansive, and Id − Q
(i)
sp (i ∈ I) is demiclosed in the sense of the Euclidean space setting [1,

Lemma 3.1]. Moreover, Fix(Q
(i)
sp ) = lev≤0g

(i). Hence, Problem 5.1 is an example of Problem
2.1 that can be solved by Algorithms 3.1 and 4.1 (see Theorems 3.1, 3.2, 4.1, and 4.2).

Here it is assumed that lev≤0g
(p) is bounded for some p ∈ I (see also [13, Proposition

3.4]). Accordingly, a closed ball Y with a large enough radius can be chosen so that Y ⊃
lev≤0g

(p) ⊃ X . Hence, setting X(i) := Y (i ∈ I) in (3.1) satisfies Assumptions 3.2 and 4.2.
The following is the incremental subgradient method (ISM) [13, (2.1), (3.1), (3.14),
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(4.3)] used for solving Problem 5.1 given x0 ∈ R
N and (λn)n∈N (⊂ (0,∞)):



































x
(0)
n := xn,

x
(i)
n := PY

(

x
(i−1)
n − λng

(i)
n

)

, g
(i)
n ∈ ∂f (i)

(

x
(i−1)
n

)

(i ∈ I) ,
y
(0)
n := x

(I)
n ,

y
(i)
n := Q

(i)
sp

(

y
(i−1)
n

)

(i ∈ I) ,
xn+1 := y

(I)
n .

(5.1)

Theorem 2.5 in [13] guarantees that, if (‖xn−PX(xn)‖)n∈N is bounded and if limn→∞ max{0, f(PX(xn))−
f(xn)} = 0, (xn)n∈N generated by (5.1) with (C2) and (C3) satisfies limn→∞ ‖xn−PX(xn)‖ =
0 and limn→∞ f(xn) = f⋆.

In an experiment, we define that, for all i ∈ I, f (i)(x) := |a(i)x + b(i)| (x ∈ R) and
g(i)(x) := 〈c(i), x〉 + d(i) (〈c(i), x〉 > −d(i)) or 0 (〈c(i), x〉 ≤ −d(i)), where a(i) > 0, b(i), d(i) ∈
R, and c(i) ∈ {x := (x1, x2, . . . , xI) ∈ R

I : xi > 0 (i ∈ I)}. We modified g(1)(x) := ‖x‖−2C,
where C > 0, to satisfy lev≤0g

(1) ⊂ Y := {x ∈ R
I : ‖x‖ ≤ 2C}. The experiment was

one using a 27-inch iMac with a 3.20 GHz Intel(R) Core(TM) i5-4570 CPU processor, 24
GB, 1600 MHz DDR3 memory, and Mac OSX Yosemite (Version 10.10.3) operating system.
ISM (Algorithm (5.1)), Algorithm 3.1, and Algorithm 4.1 were written in Python 3.4.3,
and gnuplot 5.0 (patchlevel 0) was used to graph the results. We set I := 2, 8, 16, 64, 256
and α(i) := 1/2 (i ∈ I) and used a(i) ∈ (0, 100], b(i) ∈ [−100, 100], c(i) with ‖c(i)‖ = 1,
d(i) ∈ [− I

√
C, I

√
C], ā(i) ∈ ∂f (i)(−b(i)/a(i)), and c̄(i) ∈ ∂g(i)(x) (〈c(i), x〉 = −d(i)) generated

randomly by numpy.random5 (a Mersenne Twister pseudo-random number generator).
To see how the choice of step size affects the convergence rate of the algorithms, we used

Constant step sizes: λn := 10−3, 10−5 (n ∈ N) ,

Diminishing step sizes: λn :=
10−3

(n+ 1)a
(a := 1, 0.1, 0.01, n ∈ N) .

(5.2)

From Theorems 3.1 and 4.1, it can be expected that Algorithms 3.1 and 4.1 with small
enough constant step sizes approximate solutions to Problem 5.1. Numerical results in
[14, 17] indicate that the existing fixed point optimization algorithms with small step sizes
(e.g., λn := 10−2/(n + 1)a, 10−3/(n + 1)a, 10−5/(n + 1)a (a := 0.1, 0.01, n ∈ N)) have fast
convergence. Accordingly, the experiment described in this section used the step sizes in
(5.2). We also found that, under the same conditions as in the above paragraph, ISM,
Algorithm 3.1, and Algorithm 4.1 when λn := 10−3/(n + 1)a and λn := 10−5/(n + 1)a

(a := 0.1, 0.01, n ∈ N) perform better than when λn := 1/(n + 1)a (a = 0.1, 0.01, n ∈ N).
Only the results for the step sizes in (5.2) are given due to lack of space. The step size
λn := 10−3/(n + 1) (n ∈ N) satisfying

∑∞

n=0 λ
2
n < ∞ was used to illustrate the proposed

methods’ efficiency and support the convergence rate analysis of the methods (Corollaries
3.1, 3.2, 4.1, and 4.2).

We used two performance measures for each n ∈ N:

Dn :=
1

100

100
∑

s=1

∑

i∈I

∥

∥

∥
xn (s)−Q(i)

sp (xn (s))
∥

∥

∥
, Fn :=

1

100

100
∑

s=1

∑

i∈I

f (i)
(

x(i)
n (s)

)

,

where (xn(s))n∈N defined by xn(s) := (x
(i)
n (s)) (n ∈ N, s = 1, 2, . . . , 100) is the sequence

generated by the initial point x(s) (s = 1, 2, . . . , 100) and each of ISM, Algorithm 3.1, and

5http://docs.scipy.org/doc/numpy/reference/routines.random.html
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Algorithm 4.1. If (Dn)n∈N converges to 0, they converge to some point in
⋂

i∈I Fix(Q
(i)
sp ) =

X .
First, let us consider the case where I := 64 and λn := 10−3 (n ∈ N). Figures 1 and

2 illustrate the results for ISM, Algorithm 3.1, and Algorithm 4.1. The y-axes in Figure 1
represent the value of Dn while the y-axes in Figure 2 represent the value of Fn. The x-axes
in Figures 1(a) and 2(a) represent the number of iterations while the x-axes in Figures 1(b)
and 2(b) represent elapsed time. Figure 1 shows that (Dn)n∈N generated by Algorithm
3.1 was stable and monotone decreasing while those generated by ISM and Algorithm 4.1
were unstable and approximately zero during the early iterations. Figure 2 shows that ISM,
Algorithm 3.1, and Algorithm 4.1 minimized Fn.

Figure 3 and 4 illustrate the results when I := 64 and λn := 10−5 (n ∈ N). Figures 1
and 3 show that Algorithm 3.1 when λn := 10−5 (D1000 ≈ 10−6) performed slightly better
than when λn := 10−3 (D1000 ≈ 10−4). In particular, the figures indicate that (Dn)n∈N

for Algorithm 4.1 when λn := 10−5 was more stable than when λn := 10−3 and that the
behavior of ISM when λn = 10−5 was unstable and almost the same as when λn := 10−3.
Figure 4 shows that (Fn)n∈N for ISM and Algorithm 4.1 decreased during the early iterations
compared with (Fn)n∈N for Algorithm 3.1.

Next, let us consider the case where I := 64 and λn := 10−3/(n+ 1)0.1 (n ∈ N). Figure
5 shows that (Dn)n∈N generated by Algorithm 3.1 was stable while those generated by ISM
and Algorithm 4.1 were unstable and approximately zero during the early iterations, as in
the case with λn := 10−3 (Figure 1). Figure 6 shows that Fn decreased faster with ISM
and Algorithm 4.1 than with Algorithm 3.1. Figures 7 and 8 illustrate the behaviors of Dn

and Fn when I := 64 and λn := 10−3/(n+1)0.01 (n ∈ N) and show that the behaviors were
almost the same as the ones when λn := 10−3/(n+ 1)0.1 (n ∈ N) (Figures 5 and 6).

Let us fix the step size λn := 10−3/(n+1)0.01 (n ∈ N) and see how the number of users
affects the efficiency of Algorithms 3.1 and 4.1. The behaviors of Dn and Fn for Algorithm
3.1 when I := 16, 64, 256 are illustrated in Figure 9. Although (Dn)n∈N and (Fn)n∈N were
stable, the larger the I, the greater the number of iterations that were required (Figure 9(a),
(c)) and the longer the elapsed time (Figure 9(b), (d)). That is, the efficiency of Algorithm
3.1 decreases as the number of users increases. The behaviors of Dn and Fn for Algorithm
4.1 when I := 16, 64, 256 are illustrated in Figure 10. Although (Dn)n≥40 were unstable,
D10 ≈ 10−5 held for the three cases (Figure 10(a), (b)), and (Fn)n∈N for the three cases
converged in the early stages (Figure 10(c), (d)).

Finally, let us consider the case when λn := 10−3/(n + 1) (n ∈ N) and f (1) replaced
by f (1)(x) := a(1)‖x + b(1)‖2 (x ∈ R

I), where a(1) ∈ (0, 100] and b(1) ∈ [−100, 100]I were
chosen randomly, to support the convergence analysis of Algorithms 3.1 and 4.1 discussed
in Subsections 3.2, 3.3, 4.2, and 4.3 (see also assumption (i) in Theorems 3.2 and 4.2 and
condition

∑∞

n=0 λ
2
n < ∞ in Corollaries 3.2 and 4.2). Since f (1) is strongly convex, Theorems

3.2 and 4.2 guarantee that Algorithms 3.1 and 4.1 converge to the solution to Problem 5.1.
Moreover, Corollaries 3.2 and 4.2 indicate that, under certain assumptions, Algorithm 3.1
satisfies inequality

∑

i∈I

∥

∥

∥
xn −Q(i)

sp (xn)
∥

∥

∥
≤ I

√
IM3√
n+ 1

,

f(xn)− f⋆ ≤ I
{(√

M1 +M2

)√
IM3 +M1

}

√
n+ 1

,

(5.3)
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while Algorithm 4.1 satisfies inequality

∑

i∈I

∥

∥

∥
x(i−1)
n −Q(i)

sp

(

x(i−1)
n

)
∥

∥

∥
≤ I

√
N3√

n+ 1
,

f(xn)− f⋆ ≤ I
{(

2
√
N1 + (I + 1)N2

)√
N3 +

(

(I − 1)
√
N1N2 + 2N1

)}

2
√
n+ 1

.

(5.4)

Inequalities (5.3) and (5.4) imply that the efficiencies of Algorithms 3.1 and 4.1 may decrease
as the number of users I increases. Figure 11 shows that (Dn)n∈N generated by Algorithm
3.1 was monotone decreasing and that, the larger the I, the greater the number of iterations
that were required (Figure 11(a), (c)) and the longer the elapsed time (Figure 11(b), (d)), as
seen in Figure 9. This can be seen in (5.3). Figure 12 illustrates the behaviors of Dn and Fn

for Algorithm 4.1. It shows that the behaviors of Algorithm 4.1 when one f (i) was strongly
convex were more stable than when all f (i) were convex (Figures 5–8 and 10). The strong
convexity condition of f (1) (i.e., the uniqueness of the solution to Problem 5.1) apparently
affects the stability of Algorithm 4.1. This is consistent with Theorem 4.2 and indicates that
the whole sequence (xn)n∈N in Algorithm 4.1 converges when one f (i) is strongly convex while
a subsequence of (xn)n∈N converges when all f (i) are convex. Although (5.4) and Figure 12
show that the efficiency of Algorithm 4.1 decreases as I increases, Algorithm 4.1 has fast
convergence regardless of the number of users. Furthermore, as shown by Figures 11 and
12, when I := 2, Algorithm 3.1 performed better than Algorithm 4.1 in the early stages.
This means that Algorithm 3.1 is well suited for use when the number of users is small.

From the above discussion, we conclude that Algorithm 3.1 is robust in terms of stability
regardless of the number of users and is well suited for small-scale convex optimization
problems over fixed point sets of quasi-nonexpansive mappings. We also conclude that
Algorithm 4.1 has fast convergence regardless of the number of users and is well suited for
solving large-scale convex optimization problems over fixed point sets of quasi-nonexpansive
mappings.

6 Conclusion and Future Work

This paper described parallel and incremental subgradient methods for minimizing the sum
of nondifferentiable, convex functions over the intersection of fixed point sets of quasi-
nonexpansive mappings in a real Hilbert space. Investigation of the convergence properties
for a constant step-size rule and a diminishing step-size rule showed that, with a small con-
stant step size, the two methods give an approximate solution to the minimization problem
and that, with a diminishing sequence, the sequence generated by each of the two methods
strongly converges to the solution to the minimization problem under certain assumptions.
The convergence rate of the two methods was analyzed under certain situations.

This paper also numerically compared the proposed methods with an existing method for
nonsmooth convex optimization over sublevel sets of convex functions. Numerical examples
demonstrated that, for concrete convex optimization problems when the number of users is
fixed, the parallel subgradient method with a constant or diminishing step size is more stable
than the incremental subgradient method with the same step size while the incremental
subgradient method has faster convergence. The numerical examples also demonstrated
that the efficiency of the parallel subgradient method decreased as the number of users
increased while the incremental subgradient method was robust even with a large number
of users.
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The proposed methods work well only when each user makes the best use of its own
private information while the distributed random projection method [20] works well even
when each user randomly sets one projection selected from many projections. This means
that consideration should be given to developing distributed random fixed point algorithms
that work when one user randomly chooses one quasi-nonexpansive mapping at a time. Con-
sideration should also be given to devising nonsmooth convex optimization algorithms that
combine stability and fast convergence, in contrast to the proposed methods. For example,
an algorithm combining the parallel and incremental subgradient methods could be devised
on the basis of the ideas in [16]. Such an algorithm should be numerically evaluated to see
whether it performs better than the two proposed methods.
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[25] Nedić, A., Bertsekas, D.P.: Incremental sugradient methods for nondifferentiable opti-
mization. SIAM Journal on Optimization 12, 109–138 (2001)
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Figure 12: Efficiency of Algorithm 4.1 for I when only f (1) is strongly convex
and λ

n
:= 10−3/(n+ 1)
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