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Abstract

The correspondence of competitive partial equilibrium with a social optimum
is well documented in the welfare theorems of economics. These theorems can be
applied to single-period electricity pool auctions in which price-taking agents max-
imize profits at competitive prices, and extend naturally to standard models with
locational marginal prices. In hydro-thermal markets where the auctions are re-
peated over many periods, agents seek to optimize their current and future profit
accounting for future prices that depend on uncertain inflows. This makes the agent
problems multistage stochastic optimization models, but perfectly competitive par-
tial equilibrium still corresponds to a social optimum when all agents are risk neutral
and share common knowledge of the probability distribution governing future in-
flows. The situation is complicated when agents are risk averse. In this setting
we show under mild conditions that a social optimum corresponds to a competitive
market equilibrium if agents have time-consistent dynamic coherent risk measures
and there are enough traded market instruments to hedge inflow uncertainty. We
illustrate some of the consequences of risk aversion on market outcomes using a
simple two-stage competitive equilibrium model with three agents.

1 Introduction

Most industrialised regions of the world have over the last twenty years established whole-
sale electricity markets that take the form of an auction that matches supply and demand.
The exact form of these auction mechanisms vary by jurisdiction, but they typically re-
quire offers of energy from suppliers at costs they are willing to supply, and clear a market
by dispatching these offers in order of increasing cost. Day-ahead markets such as those
implemented in most North American jurisdictions, seek to arrange supply well in ad-
vance of its demand, so that thermal units can be prepared in time. Since the demand

∗This project has been supported in part by the Air Force Office of Scientific Research, the Department
of Energy, the National Science Foundation, and the USDA National Institute of Food and Agriculture.
†Electric Power Optimization Centre, University of Auckland, New Zealand.
‡University of Wisconsin, Madison.
§University of California, Davis.

1



cannot be predicted with absolute certainty, these day-ahead markets must be augmented
with balancing markets to deal with the variation in load and generator availability in
real time.

The market mechanisms are designed to be as efficient as possible in the sense that
they should maximize the total welfare of producers and consumers. In a deterministic
one-shot setting in which all agents act in perfect competition, the welfare theorems
of microeconomics ensure that the auction designs lead to welfare maximization. That
welfare maximization can be compromised by the exercise of market power by strategic
agents is well known, and many studies (see e.g. [2]) have been carried out to estimate
the extent of the inefficiency caused by this.

Market inefficiencies can also be created by uncertainty. Each agent in an electricity
market is faced with a dynamic stochastic optimization problem, to maximize their current
and (possibly risk-adjusted) future profit. Ideally, an electricity market auction would
provide every agent with a stochastic process of electricity prices with which they can
perform this optimization, but in practice this is too difficult to arrange. Most markets
operate in the short term with a day-ahead auction and a balancing market that is settled
in real time. These markets are settled separately which can be inefficient in comparison
with a single settlement procedure using stochastic programming, at least when agents
act as price takers [11]. In some jurisdictions (like New Zealand) there is no day-ahead
market and the market dispatch is computed close to real time for the next trading period
and implemented as the day unfolds. Offers of generation and demand forecasts for future
periods are used to forecast prices for future periods. These are used to guide each agent
in what they offer. In this sense, the auction is iterating towards (but possibly never
converging to) a set of prices that represent a realization of the stochastic process that
each price-taking agent would want to have at their disposal.

A similar price discovery process occurs on a longer time scale for markets with stored
hydro electricity. Generators with hydro-electric reservoirs face an inventory problem.
They would like to optimize the release of water from reservoirs to maximize profits using
a stochastic process of prices, but this process is not known, and must be deduced by
each agent using current and future market conditions and hydrological models of future
reservoir inflows. For an agent controlling releases from a hydro-electric reservoir, the
marginal cost of supply in the current period involves some modeling of opportunity cost
that includes possible high prices in future states of the world with low inflows.

In this paper we study the possible causes of market inefficiency that arise from uncer-
tainty in reservoir inflows. To simplify this analysis, we assume that all agents are price
takers who do not act strategically. It is well known that competitive electricity prices for
a single trading period and single location can be computed as shadow prices from convex
economic dispatch models that maximize total social welfare. These results remain true
in the presence of a transmission network as long as the use of transmission assets is
appropriately priced [19]. In other words the market must contain enough instruments to
price transmission (or equivalently have locational marginal prices). Similarly when hydro
reservoirs operated by different agents form a cascade on the same river system, as in the
model studied by Lino et al [12], the market needs to be completed by an instrument that
allows agents to trade water between reservoirs in order for a competitive equilibrium to
correspond to the social optimum.
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A similar incompleteness arises from uncertainty in future inflows. If all agents share
the same view about future inflows in the sense that there is a single stochastic process
of inflows that is common knowledge, and all agents maximize expected profit using the
probability law determining these inflows then a competitive equilibrium will correspond
to the welfare-optimizing solution computed by a social planner. If agents have different
preferences regarding future inflows and are risk averse then such a welfare result might
no longer be true. Indeed it is not clear what risk measure the social planner should
use in determining a welfare optimizing solution. This raises the question on how one
might complete the market with suitable instruments to enable a welfare maximizing
competitive equilibrium.

We provide a partial answer to this problem in the setting where there is a single
stochastic process of inflows that is common knowledge, but agents have different attitudes
to risk. Following previous work of [10] and [15], we assume that agents are endowed with
coherent risk measures as defined by [1]. This means that each agent maximizes their
expected profit using a worst-case probability distribution chosen from a well-defined set
of distributions that is possibly different for each agent. As shown in [10] and [15], as
long as the agents’ risk sets intersect, the addition of suitable instruments can provide a
complete market for risk that yields a single probability law. In equilibrium, all agents
share this law, and so a social planner might compute a welfare maximing solution using
a stochastic optimization model.

Our results provide market regulators with a competitive counterfactual model to serve
as a benchmark for market prices. A risk-neutral counterfactual solution is likely to incur
some energy shortages and corresponding high prices, as these will happen occasionally to
minimize the expected cost [14]. To avoid these shortages in the real market, hydro offer
prices are often observed to be higher than expected opportunity cost by agents seeking
to conserve water. Since these markups can also be interpreted as unilateral exercise of
market power by hydro-generators [20], the prices from a risk-averse competitive equilib-
rium model can provide some indication of the extent of inefficiency of the market, either
from incompleteness or exercise of market power.

The paper is laid out as follows. In section 2, to establish notation we present a
multistage social planning model, and present the concept of a time-consistent dynamic
coherent risk measure. Section 3 restricts this to a two-stage stochastic model with random
inflows in the second stage, and presents some example instances of the model with
one consumer, one thermal plant and one reservoir. In section 4, we turn attention to
competitive equilibrium under risk and derive the central theorem of the paper that shows
how an optimal risk-averse social plan matches competitive equilibrium when agents use
dynamic coherent risk measures and markets for risk are complete. Section 5 revisits the
examples in section 3 to illustrate the theorem, and we then conclude the paper with some
remarks.

2 Multistage equilibrium

We begin by defining a risk-averse social planning model for hydroelectric generation. This
serves to introduce the modelling framework we will use as well as defining our notation.
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Figure 1: A scenario tree with nodes N = {1, 2, . . . , 17}, and T = 4

We then use a standard Lagrangian decomposition argument to establish a theorem that
shows that the optimal risk-averse social plan corresponds to a competitive equilibrium
in which each agent maximizes expected profit at equilibrium prices using a risk-adjusted
probability measure.

Consider a model of several agents a ∈ A assumed to be at the same geographical
location (so electricity transmission is ignored). Uncertainty is modeled using a scenario
tree with nodes n ∈ N and leaves in L. By convention we number the root node n = 0.
The unique predecessor of node n 6= 0 is denoted by n−. We denote the set of children
of node n ∈ N \ L by n+, and let Mn = card(n+). The set of predecessors of node n on
the path from n to node 0 is denoted P(n) (so P(n) = {n, n−, n−−, . . . , 0}), and the set
of all successors (not including n) is denoted S(n) (so S(n) = (n+) ∪m∈n+ (m+) ∪ . . . .).
The depth δ(n) of node n is the number of nodes on the path to node 0, so δ(0) = 1 and
we assume that every leaf node has the same depth, say δL. The depth of a node can be
interpreted as a time index t = 1, 2, . . . , T = δL. A pictorial representation of a scenario
tree with 4 time stages is given in Figure 1.
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We denote the actions of agent a in node n by ua(n), defining a stochastic process
{ua(n), n ∈ N} for agent a. We assume that actions might affect later actions through
state variables xa. Observe that the agents consist of producers and consumers. By
convention we assume that ua(n) ≥ 0 for producers and ua(n) ≤ 0 for consumers.

We consider a setting in which the electricity generators and consumers are risk averse,
and study first a risk-averse social plan, which would be the result of an optimization
problem solved by a risk-averse central planner who determines the actions of all agents.
Throughout the paper we assume that all agents (and the social planner) use a coherent
risk measure as defined by [1] in the context of minimizing some (risk-adjusted) disbenefit
function Z. A coherent risk measure ρ(Z) has a dual representation expressing it as

ρ(Z) = sup
µ∈D

Eµ[Z]

where D is a convex subset of probability measures (see e.g. [1, 10]). D is called the
risk set of the coherent risk measure. The dual representation using a risk set plays an
important role in the analysis we carry out in this paper.

Example 1 Suppose Z represents the random disbenefit of an agent (or social planner),
and AVaR1−α[Z] denotes average value at risk at level 1− α that can be expressed as the
well-known formula [17]

AVaR1−α[Z] = inf
t
{t+ α−1E[(Z − t)+]}.

Then for any choice of λ ∈ [0, 1]

ρ(Z) = (1− λ)E[Z] + λAVaR1−α[Z] (1)

is a coherent risk measure. Here λ = 0 corresponds to a risk-neutral agent and λ = 1 is the
most risk averse setting in which all the weight in the objective is placed on AVaR1−α[Z].
If Z has ten equally likely realizations Z(ω), and α ≤ 0.1 then the risk set D is the convex
hull of 10 extreme points, where the kth extreme point has probability 9λ+1

10
for scenario k

and 1−λ
10

for the others. Thus

ρ(Z) = min{θ : θ ≥
10∑
ω=1

pk(ω)Z(ω), k = 1, 2, . . . , 10}

where

pk(ω) =

{
9λ+1

10
, ω = k

1−λ
10
, otherwise.

For a multistage decision problem, we require a dynamic version of risk. The concept
of coherent dynamic risk measures was introduced in [16] and is described for general
Markov decision problems in [18]. Formally one defines a probability space (Ω,F , P )
and a filtration {∅,Ω} = F1 ⊂ F2 . . . ⊂ FT ⊂ F of σ-fields where all data in node 0 is
assumed to be deterministic, and decisions at time t are Ft-measurable random variables
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(see [18]). Working with finite probability spaces defined by a scenario tree simplifies this
description.

Given a tree defined by N , suppose the random sequence of actions {u(n), n ∈ N}
results in a random sequence of costs {Z(n), n ∈ N}. We seek to measure the risk of this
cost sequence when viewed by a decision maker at node 0. At node n the decision maker
is endowed with a one-step risk set D(n) that measures the risk of random risk-adjusted
costs accounted for in m ∈ n+. Thus elements of D(n) are finite probability distributions
of the form (p1, p2, . . . , pMn)1.

The risk-adjusted disbenefit of future outcomes at node n is then defined recursively
to be

ρn({Z(m) : m ∈ S(n)})

=

{
0, n ∈ L,
sup

µ∈D(n)

∑
m∈n+

µ(m)(Z(m) + ρm({Z(q) : q ∈ S(m)})), n ∈ N \ L. (2)

When viewed in node n, ρn can be interpreted to be the fair one-time charge we would
be willing to incur instead of the sequence of random future costs {Z(m) : m ∈ S(n)}.
In other words the measure ρn is a certainty equivalent cost or risk-adjusted expected cost
of all the future costs in the subtree rooted at node n. As demonstrated in [18, Theorem
1], any time-consistent dynamic risk measure has this recursive form.

In the rest of this paper we shall assume that D(n) is a polyhedron with extreme points
(p1(1), p2(2), . . . , pk(Mn)), k ∈ K(n). The recursive structure defined by (2) can then be
simplified as follows. Denote the risk-adjusted costs occuring in m ∈ n+ by {Z(m)+θ(m),
m ∈ n+}, where Z(m) is the cost in period δ(m) and θ(m) is a risk-adjusted future cost.
Then

sup
µ∈D(n)

∑
m∈n+

µ(m)(Z(m) + θ(m)) = max
k∈K(n)

∑
m∈n+

pk(m)(Z(m) + θ(m))

since the maximum of a linear function over D is attained at an extreme point. By a
standard dualization, this gives

sup
µ∈D(n)

∑
m∈n+

µ(m)(Z(m) + θ(m))

=

{
min θ
s.t. θ ≥

∑
m∈n+

pk(m) (Z(m) + θ(m)) , k ∈ K(n). (3)

Example 2 Suppose that in Figure 1 we have random costs

Z(7) = 2/3, Z(8) = 1, Z(14) = 3, Z(15) = 5, Z(16) = 1, Z(17) = 2

and that at every node n we have equal probability to move to any node in n+. Also suppose
the one-step risk measure at any node n is given by (1) with α ≤ 1/3 and λ = 1/5. Then

1Note that D(n) in our model is a one-step risk set and does not directly account for the risk of all
random sequences of future costs (or their sum over time) conditional on being at node n , unless these
costs have been converted to some risk-adjusted cost that is added to the period cost.
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following the argument of Example 1, we determine D(7) = {1},

D(3) = conv

{(
3
5
2
5

)
,

(
2
5
3
5

)}
,D(8) = conv


 7

15
4
15
4
15

 ,

 4
15
7
15
4
15

 ,

 4
15
4
15
7
15

 .

Using (2) and (3), it is easy to calculate

θ(7) = ρ7({Z(14)}) = 3

and

θ(8) = ρ8({Z(15), Z(16), Z(17)}) =

(
7

15
,

4

15
,

4

15

) 5
1
2

 =
47

15
.

Applying the recursive formula at node 3, we compute

θ(3) = ρ3({Z(7), Z(8), Z(14), Z(15), Z(16), Z(17)})

= max

{(
3

5
,
2

5

)(
Z(7) + θ(7)
Z(8) + θ(8)

)
,

(
2

5
,
3

5

)(
Z(7) + θ(7)
Z(8) + θ(8)

)}
= max{289

75
,
296

75
} =

296

75
.

(Note that we can compute this value directly from (1) as

4

5
∗ 1

2

(
11

3
+

62

15

)
+

1

5
∗ 62

15

using the costs in period 3 plus the risk-adjusted future costs.)

We now turn our attention to a social planning problem that minimizes risk-adjusted
generation cost using a social risk measure. At each node n ∈ N \ L the social planner
uses a risk set Ds(n) = conv{(pks(1), pks(2), . . . , pks(Mn)), k ∈ Ks(n)}. Given actions ua(n),
n ∈ N the social disbenefit in node n is measured by a function

∑
a∈ACa(ua(n)). Here for

generator a, Ca measures generation cost, and for consumer a, Ca measures consumption
disbenefit that increases as ua increases towards 0. We assume that each Ca is convex.
The risk-adjusted disbenefit at node 0 is

∑
a∈ACa(ua(0)) + θ(0) where θ(0) is defined

recursively by (2), i.e.

θ(n) =

{
0, n ∈ L,
max

µ∈Ds(n)

∑
m∈n+

µ(m)
(∑

a∈ACa(ua(m)) + θ(m)
)
, n ∈ N \ L.

Now using (3) a risk-averse social planning problem can be formulated as the convex
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programming problem

SP: min
∑
a∈A

Ca(ua(0)) + θ(0)

s.t. θ(n) ≥
∑

m∈n+

pks(m)
(∑

a∈ACa(ua(m)) + θ(m)
)
,

k ∈ Ks(n), n ∈ N \ L,

xa(n) = xa(n−)− ua(n) + ωa(n), a ∈ A, n ∈ N ,∑
a∈A

ga(ua(n)) ≥ 0 n ∈ N ,

θ(n) = 0, n ∈ L,

ua(n) ∈ Ua, xa(n) ∈ Xa, n ∈ N , a ∈ A.

Here we assume that the (given) initial reservoir storage of agent a is denoted xa(0−). The
only uncertainty in the model is in future reservoir inflows. The inflow realization ωa(n)
is revealed to the generators at the beginning of stage δ(n) (before they have determined
their actions). If agent a is a hydro generator, ga(u) denotes a concave production function,
while Ua and Xa are assumed polyhedral. Without loss of generality, this notation can
be extended to other agents in the model SP, namely thermal plant (ga(u) = u, ωa = 0,
Xa = R) and consumers (ga(u) = u, ωa = 0, Xa = R, Ua = {ua | ua ≤ 0}). We shall
assume throughout the paper that any nonlinear constraints in SP satisfy a constraint
qualification, so SP is equivalent to solving its Karush-Kuhn-Tucker conditions. To keep
the choice of the constraint qualification general, we make this a general assumption.

Assumption 1 The nonlinear constraints in SP satisfy a constraint qualification.

Suppose that the optimal solution to SP consists of a set of actions {usa(n), a ∈ A,
n ∈ N}, defining {xsa(n), a ∈ A, n ∈ N} and {θs(n), n ∈ N}. This gives an optimal
risk-adjusted social plan by virtue of the following result.

Lemma 2 The solution {ua(n), a ∈ A, n ∈ N}, {θ(n), n ∈ N} to SP satisfies

θ(n) =


0, n ∈ L,

max
µ∈Ds(n)

∑
m∈n+

µ(m)

(∑
a∈A

Ca(ua(m)) + θ(m)

)
, n ∈ N \ L. (4)

Proof. Suppose {usa(n), a ∈ A, n ∈ N}, {θs(n), n ∈ N} solves SP. We show that θs(n)
satisfies (4). First, for n ∈ L, θs(n) = 0. Now suppose (4) is violated for some n̄ ∈ N \L,
i.e. there is some ε > 0 such that for every k ∈ Ks(n̄)

θs(n̄)− ε ≥
∑
m∈n̄+

pks(m)

(∑
a∈A

Ca(u
s
a(m)) + θs(m)

)
.
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It follows that

θ̄(n) =

{
θs(n̄)− ε, n = n̄,
θs(n), otherwise.

satisfies the constraints of SP. Also if q = n̄−, then∑
n∈q+

pks(n)

(∑
a∈A

Ca(u
s
a(n)) + θ̄(n)

)
=

∑
n∈q+

pks(n)
∑
a∈A

Ca(u
s
a(n)) +

∑
n∈q+\{n̄}

pks(n)θs(n) + pks(n̄)(θs(n̄)− ε)

=
∑
n∈q+

pks(n)

(∑
a∈A

Ca(u
s
a(n)) + θs(n)

)
− εpks(n̄)

and
θ̄(q) = θs(q) ≥

∑
n∈q+

pks(n)(
∑
a∈A

Ca(u
s
a(n)) + θs(n)), k ∈ Ks(q)

so

θ̄(q)− εpks(n̄) ≥
∑
n∈q+

pks(n)

(∑
a∈A

Ca(u
s
a(n)) + θ̄(n)

)
, k ∈ Ks(q).

Repeating the argument for q− and its parents shows that there is a feasible solution
{usa(n), a ∈ A, n ∈ N}, {θ̄(n), n ∈ N} to SP with θ̄(0) < θs(0) contradicting the
assumption that θs(n), n ∈ N solves SP. Thus for every n ∈ N \ L

θs(n) = max
k∈Ka(n)

∑
m∈n+

pks(m)

(∑
a∈A

Ca(u
s
a(m)) + θs(m)

)

= max
µ∈Da(n)

∑
m∈n+

µ(m)

(∑
a∈A

Ca(u
s
a(m)) + θ∗a(m)

)
showing that θ∗a(n) satisfies (4).

Now consider a competitive equilbrium in a market of risk-neutral agents each of
whom maximizes their expected profit assuming a common probability distribution σ(n),
n ∈ N . The equilibrium is formally defined by a set of prices{π(n), n ∈ N}, and
actions{(u(n), x(n), n ∈ N} that solve

SPL(a): min
∑
n∈N

σ(n)(Ca(ua(n))− π(n)ga(ua(n)))

s.t. xa(n) = xa(n−)− ua(n) + ωa(n), n ∈ N ,

ua(n) ∈ Ua, xa(n) ∈ Xa, n ∈ N .
for each agent a and satisfy

0 ≤
∑
a∈A

ga(ua(n)) ⊥ π(n) ≥ 0, n ∈ N . (5)

We label the MOPEC problem (see Appendix A) defined by the collection of SPL(a) and
(5) as CE(σ).
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Theorem 3 Suppose Assumption 1. If (u, x, θ) solves SP, then there exists a probability
distribution σ(n), n ∈ N and prices π(n), n ∈ N so that (u, x, π) solves CE(σ). That
is, the social plan is decomposable as a collection of multi-stage stochastic optimization
problems per agent, with coupling via complementarity constraints (5).

Proof. Suppose (u, x, θ) solves SP. This gives an optimal risk-adjusted social plan by
virtue of Lemma 2. The formula (4) yields a collection of “worst case” probability
measures µ∗, one for each node in N \ L. These measures define conditional probabilities
µ∗(m) for each child m ∈ n+, so that∑

m∈n+

µ∗(m) = 1.

If Ds(n) does not lie in the interior of the positive orthant in R|n+| then it is conceivable
that µ∗(m) = 0 for some m ∈ n+. In this case we can prune N (by deleting m and all
nodes in S(m)) so that µ∗(n) > 0 for every n ∈ N \ {0}. Since every node in N \ L has
at least one child m with µ∗(m) > 0 this pruning retains the property that every leaf
node has the same depth. The problem SP has an optimal solution in the pruned tree
that matches an optimal solution at the same nodes in the original tree and has the same
objective value as SP in the original tree. Therefore, without loss of generality we can
assume that for every n ∈ N \ {0}, µ∗(n) > 0.

Now setting µ∗(0) = 1, define nodal probabilities

σ(n) =
∏

j∈P(n)

µ∗(j), n ∈ N ,

with the property that σ(n) > 0, n ∈ N . Since SP is a convex program, there exist
Lagrange multipliers σ(n)π(n) for the constraints∑

a∈A

ga(ua(n)) ≥ 0 n ∈ N , (6)

(because they satisfy the constraint qualification) so that the optimal solution of SP will
minimize the Lagrangian giving

min
∑
a∈A

(Ca(ua(0))− π(0)ga(ua(0)))

+
∑

m∈0+

µ∗(m)

(∑
a∈A

(Ca(ua(m))− π(m)ga(ua(m)))

+
∑

q∈m+

µ∗(q)

(∑
a∈A

(Ca(ua(q))− π(q)ga(ua(q))) + (. . .)

))
s.t. xa(n) = xa(n−)− ua(n) + ωa(n), a ∈ A, n ∈ N ,

ua(n) ∈ Ua, xa(n) ∈ Xa, n ∈ N , a ∈ A.
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or
SPL: min

∑
n∈N

σ(n)
∑

a∈A(Ca(ua(n))− π(n)ga(ua(n)))

s.t. xa(n) = xa(n−)− ua(n) + ωa(n), a ∈ A, n ∈ N ,

ua(n) ∈ Ua, xa(n) ∈ Xa, n ∈ N , a ∈ A.

SPL decouples into a stochastic optimization problem for each agent a, namely

SPL(a): min
∑
n∈N

σ(n)(Ca(ua(n))− π(n)ga(ua(n)))

s.t. xa(n) = xa(n−)− ua(n) + ωa(n), n ∈ N ,

ua(n) ∈ Ua, xa(n) ∈ Xa, n ∈ N .

Thus if each agent a chooses the social planning solution, and evaluates this using prices
π(n), n ∈ N and probabilities σ(n), n ∈ N , then their actions will optimize SPL(a).
Observe that σ(n) > 0 implies that

0 ≤
∑
a∈A

ga(ua(n)) ⊥ π(n) ≥ 0. (7)

Thus (u, x, π) solves CE(σ).
Theorem 3 establishes a correspondence between agent optimization and system op-

timization that is of limited use. Observe that each agent must maximize their own
expected profit using probabilities σ(n), n ∈ N that are derived from identifying the
worst outcomes as measured by social disbenefit. These will correspond to the worst out-
comes for each agent only under very special circumstances. In general, agent preferences
will differ from the social planner’s. To model this, we endow each agent a ∈ A with their
own polyhedral node-dependent risk set Da(n), n ∈ N \ L, where

Da(n) = conv{(pka(1), pka(2), . . . , pka(Mn)), k ∈ Ka(n)} (8)

where Mn = card(n+) and Ka(n) is a finite index set.
In order to get some alignment between the objectives of agents and the social planner,

we establish a connection between their risk sets. Henceforth we shall assume that the
social planning risk set

Ds(n) = ∩a∈ADa(n), n ∈ N \ L,

which requires the following assumption.

Assumption 4 For every n ∈ N \ L, ∩a∈ADa(n) 6= ∅.

Under Assumption 4 we can highlight a special case of Theorem 3.

Corollary 5 If Da(n) = {µn} for all a and n then every agent is risk neutral, as is
the social planner, since Ds(n) = {µn}. If (u, x, θ) solves SP and σ(n)π(n) ≥ 0 are the
Lagrange multipliers on (6) in SP, then (u, x, π) solves CE.
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When Da(n) is not a singleton for some a and n, a social plan using risk sets Ds(n)
and a risked competitive equilibrium may not coincide. The latter is defined using the
agent problem

P(a): min Za(0) + θa(0)

s.t. θa(n) ≥
∑

m∈n+

pka(m)(Za(m) + θa(m)),

k ∈ Ka(n), n ∈ N \ L,

xa(n) = xa(n−)− ua(n) + ωa(n), n ∈ N ,

Za(n) = Ca(ua(n))− π(n)ga(ua(n)), n ∈ N ,

θa(n) = 0, n ∈ L,

ua(n) ∈ Ua, xa(n) ∈ Xa, n ∈ N .

(9)

Definition 6 A multistage risked equilibrium is a stochastic process of prices {π(n) |
n ∈ N}, and for each agent a ∈ A, a corresponding collection of actions, {ua(n), θa(n),
n ∈ N} with the property that

0 ≤
∑
a∈A

g(ua(n)) ⊥ π(n) ≥ 0, n ∈ N ,

and {ua(n), θa(n), n ∈ N} ∈ arg max P(a).

In general we do not have a guarantee that multi-staged risked equilibrium will ex-
ist. In simple examples, we can find them numerically using complementarity software
described in Appendix A. In section 4 we examine a model in which agents trade risk
to give a competitive equilibrium that corresponds to an optimal solution to SP. When
the market for risk in each node n is complete, this gives a methodology of constructing
equilibria using optimization.

3 Two-stage hydro-thermal problems

To illustrate the results of the previous section, we study a simple two-stage stochastic
programming example of hydrothermal scheduling under risk. The scenario tree consists
of root node 0 and second stage nodes m = 1, 2, . . . , 10 with equal probability. We use
the risk measure ρ defined in Example 1, namely

ρ(Z) = (1− λ)E[Z] + λAVaR1−α[Z],

where Z measures disbenefit, λ = 0.2 and α = 0.1.
The example problem has a hydro-thermal system with one reservoir (a = 1), one

thermal plant (a = 2), and one consumer (a = 3). We have

C1(u1) = 0, g(u1) = 1.5u1 − 0.015u2
1 u1 ∈ [0, 10]

C2(u2) = u2
2, g(u2) = u2 u2 ∈ [0, 12]

C3(u3) = 2u2
3 + 40u3, g(u3) = u3 u3 ∈ [−∞, 0]

12



Agent 1 is the only player with reservoir dynamics. In all examples its reservoir has inflow
equal to 4 in period 1 (node 0), and inflows ω(n) = 1, 2, . . . , 10 in period 2. We assume
that reservoir storage x1 at the end of the second stage has a value

V (x1) = 10 log(0.1x1 + 0.01).

This changes our general formulation in a minor way: the hydro player now incurs a
disbenefit of C1(u1(m))−V (x1(m)) in every second stage node. This can be incorporated
into our framework with few essential changes.

Risk-neutral case With an initial storage level of 10 units this problem gives the
risk-neutral competitive equilibrium shown in Table 1.

stage m price storage release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 1.336 7.590 6.410 0.668
1 1 2.539 2.865 5.725 1.269 2.057 20.417 362.283 384.758
1 2 2.053 3.590 6.000 1.027 1.500 19.418 366.863 387.781
1 3 1.696 4.387 6.203 0.848 1.165 18.809 370.264 390.238
1 4 1.431 5.236 6.355 0.716 0.958 18.514 372.809 392.281
1 5 1.231 6.121 6.470 0.616 0.825 18.445 374.746 394.016
1 6 1.076 7.031 6.559 0.538 0.735 18.529 376.252 395.516
1 7 0.953 7.961 6.629 0.477 0.673 18.716 377.446 396.835
1 8 0.855 8.904 6.686 0.427 0.629 18.969 378.411 398.008
1 9 0.774 9.857 6.733 0.387 0.596 19.264 379.204 399.064
1 10 0.706 10.818 6.772 0.353 0.571 19.585 379.866 400.022

Table 1: Competitive equilibrium (solution to CE) with initial storage of 10.

The social planner’s problem that maximizes expected welfare (by minimizing expected
generation cost) is shown in Table 2. One can observe that the two solutions are identical,
as predicted by Corollary 5.

Risk-aversion We now study each agent’s risk-averse optimization problem with given
prices (π1, π2(m)) when all decision makers use the risk measure

ρ(Z) = 0.8E[Z] + 0.2AVaR0.9[Z].

Here each agent’s optimization problem can be augmented with a risk term that models
their aversion to risk. Observe that such risk aversion will only affect the actions of
the hydro agent. The thermal agent and consumer react to the prices they observe in
each outcome and minimize their instantaneous disbenefit at these prices. Their optimal
actions are thus “wait-and-see” decisions and are not made suboptimal by a change in
risk attitude (athough the risked disbenefit arising from these actions will change with
choice of risk measure).
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stage m price storage release thermal profit profit welfare cost
(T) (H) (C) (total)

0 1.336 7.590 6.410 0.668
1 1 2.539 2.865 5.725 1.269 2.057 20.417 362.283 -384.758
1 2 2.053 3.590 6.000 1.027 1.500 19.418 366.863 -387.781
1 3 1.696 4.387 6.203 0.848 1.165 18.809 370.264 -390.238
1 4 1.431 5.236 6.355 0.716 0.958 18.514 372.809 -392.281
1 5 1.231 6.121 6.470 0.616 0.825 18.445 374.746 -394.016
1 6 1.076 7.031 6.559 0.538 0.735 18.529 376.252 -395.516
1 7 0.953 7.961 6.629 0.477 0.673 18.716 377.446 -396.835
1 8 0.855 8.904 6.686 0.427 0.629 18.969 378.411 -398.008
1 9 0.774 9.857 6.733 0.387 0.596 19.264 379.204 -399.064
1 10 0.706 10.818 6.772 0.353 0.571 19.585 379.866 -400.022

Table 2: Social planning solution (solution to SP) with initial storage of 10.

stage m price storage release thermal profit profit welfare cost
(T) (H) (C) (total)

0 0.816 12.291 6.709 0.408
1 1 1.118 6.757 6.534 0.559 0.479 14.131 380.898 -395.508
1 2 0.987 7.681 6.610 0.494 0.410 14.291 382.175 -396.876
1 3 0.882 8.621 6.671 0.441 0.361 14.527 383.202 -398.090
1 4 0.796 9.571 6.720 0.398 0.325 14.811 384.042 -399.178
1 5 0.725 10.530 6.761 0.363 0.298 15.127 384.740 -400.164
1 6 0.665 11.495 6.796 0.333 0.277 15.460 385.328 -401.065
1 7 0.614 12.466 6.825 0.307 0.261 15.803 385.829 -401.893
1 8 0.571 13.440 6.851 0.285 0.248 16.150 386.262 -402.659
1 9 0.532 14.418 6.873 0.266 0.237 16.497 386.638 -403.372
1 10 0.499 15.399 6.892 0.249 0.229 16.842 386.968 -404.039

Table 3: Risk averse social planning solution with initial storage of 15

High initial storage The first example has initial reservoir storage of 15 units. The
solution to SP is shown in Table 3 and the competitive equilibrium under risk is shown in
Table 4. The solutions as before are identical. Observe that scenario 1 is the worst-case
outcome in this example. It leads to the highest system cost, as well as to the lowest
profit for the hydro generator and worst welfare for the consumer. The thermal generator
has highest profit in scenario 1, but, as shown above it is indifferent to risk in this model
as it solves a wait-and-see model.

The risk set of the social planner (with λ = 0.2) is

D=conv{(p̄, p, . . . , p), (p, p̄, . . . , p), . . . , (p, p, . . . , p̄)}.

where p̄ = 9λ+1
10

= 0.28, p = 1−λ
10

= 0.08. Since scenario 1 is the worst case, the risk-averse
social planning solution is therefore the same as a risk-neutral social planning solution
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stage m price storage release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 0.816 12.291 6.709 0.408
1 1 1.118 6.757 6.534 0.559 0.479 14.131 380.898 395.508
1 2 0.987 7.681 6.610 0.494 0.410 14.291 382.175 396.876
1 3 0.882 8.621 6.671 0.441 0.361 14.527 383.202 398.090
1 4 0.796 9.571 6.720 0.398 0.325 14.811 384.042 399.178
1 5 0.725 10.530 6.761 0.363 0.298 15.127 384.740 400.164
1 6 0.665 11.495 6.796 0.333 0.277 15.460 385.328 401.065
1 7 0.614 12.466 6.825 0.307 0.261 15.803 385.829 401.893
1 8 0.571 13.440 6.851 0.285 0.248 16.150 386.262 402.659
1 9 0.532 14.418 6.873 0.266 0.237 16.497 386.638 403.372
1 10 0.499 15.399 6.892 0.249 0.229 16.842 386.968 404.039

Table 4: Risk averse competitive equilibrium with initial storage of 15

with adjusted probabilities

(µ(1), µ(2), . . . , µ(10)) = (0.28, 0.08, . . . , 0.08).

This corresponds to a risk-neutral competitive equilibrium in which all players maximize
expected profit assuming these probabilities. The hydro agent will solve P(1) as defined
in (9), the thermal agent will solve P(2), and the consumer will solve P(3). Therefore
by Corollary 5 we get the same solutions in the social planning solution as we do in the
competitive equilibrium, as confirmed by Table 3 and Table 4.

Low initial storage We now assume an initial storage of 10 units. The risk-neutral
results in equilibrium are the same as the social planning solution as predicted by Corollary
5 and demonstrated in Table 1 and Table 2. When we include risk aversion, we obtain
the results shown in Table 5 and Table 6. Table 5 shows a solution to SP when the social

stage m price storage release thermal profit profit welfare cost
(T) (H) (C) (total)

0 1.545 7.710 6.290 0.773
1 1 2.472 2.948 5.763 1.236 2.125 21.918 360.888 -384.931
1 2 2.004 3.682 6.028 1.002 1.601 20.968 365.307 -387.876
1 3 1.660 4.486 6.224 0.830 1.286 20.401 368.589 -390.276
1 4 1.404 5.340 6.370 0.702 1.090 20.138 371.050 -392.277
1 5 1.210 6.229 6.482 0.605 0.963 20.090 372.927 -393.980
1 6 1.060 7.142 6.568 0.530 0.878 20.189 374.390 -395.457
1 7 0.940 8.073 6.637 0.470 0.818 20.385 375.553 -396.756
1 8 0.844 9.018 6.692 0.422 0.775 20.644 376.495 -397.914
1 9 0.765 9.972 6.738 0.382 0.743 20.944 377.270 -398.957
1 10 0.699 10.934 6.776 0.349 0.719 21.267 377.919 -399.905

Table 5: Risk averse social planning solution with initial storage of 10
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planner uses a risk measure ρ0 with λ = 0.2, and Table 6 shows the risked competitive
equilibrium when all agents use this measure. Observe that the solutions are different.

stage m price storage release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 1.317 7.580 6.420 0.658
1 1 2.545 2.858 5.722 1.272 2.053 20.280 362.407 384.740
1 2 2.057 3.582 5.998 1.029 1.492 19.277 367.002 387.771
1 3 1.700 4.378 6.202 0.850 1.156 18.664 370.413 390.233
1 4 1.434 5.226 6.353 0.717 0.948 18.366 372.965 392.279
1 5 1.233 6.111 6.469 0.616 0.814 18.295 374.908 394.017
1 6 1.077 7.022 6.558 0.539 0.724 18.378 376.418 395.520
1 7 0.955 7.951 6.629 0.477 0.661 18.564 377.615 396.840
1 8 0.856 8.894 6.686 0.428 0.617 18.816 378.582 398.015
1 9 0.775 9.847 6.733 0.387 0.584 19.111 379.377 399.071
1 10 0.707 10.808 6.772 0.353 0.559 19.432 380.040 400.031

Table 6: Risk averse competitive equilibrium with initial storage of 10

Low initial storage - elastic demand The solutions above assume a consumer dis-
benefit measured by C2(u3) = 2u2

3 + 40u3 which corresponds to a linear inverse demand
function

P (d) = 40− 4d.

We can see the effect of a more elastic inverse demand function by solving SP and CE
using C2(u3) = 0.5u2

3 + 20u3, still with initial storage of 10. This gives the results shown
in Table 7 and Table 8. Table 7 shows a solution to SP when the social planner uses a
risk measure ρ0 with λ = 0.2, and Table 8 shows the solution to CE when all agents use
this measure.

In these examples the worst case profits for the hydro and thermal producers both
occur in scenario 10 when water is plentiful. By releasing large amounts of water the
(elastic) price decreases to levels that erode their profits. The consumer welfare is maxi-
mized in this scenario. The worst-case overall welfare occurs in scenario 1. Although we
do not present the results here, this form of equilibrium is not altered by starting with
more storage. In contrast to the less elastic case, the worst profits for the hydro producer
are always in scenario 10.

In both examples with low storage one can see that the risk-averse social planning
solution and the risk-averse competitive equilibrium are different. The social planning
solution has highest system cost in scenario 1. In contrast the lowest hydro profit in
the risk-averse competitive equilibrium is in scenario 5 in the inelastic case and scenario
10 in the elastic case. Since the hydro generator and the system do not agree on a
worst-case outcome, the probability distributions that correspond to an equivalent risk
neutral decision will not be common. This means that the competitive equilibrium differs
from the plan maximizing total risk-adjusted welfare. We can attempt to construct some
agreement on what would be the worst-case outcome by trading risk. This the subject of
the next section.
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stage m price storage release thermal profit profit welfare cost
(T) (H) (C) (total)

0 5.637 5.598 8.402 2.819
1 1 7.917 0.851 5.746 3.959 23.614 105.874 176.144 -305.633
1 2 7.149 0.975 6.623 3.575 20.721 109.091 185.720 -315.532
1 3 6.416 1.122 7.476 3.208 18.236 110.626 195.407 -324.269
1 4 5.722 1.297 8.301 2.861 16.129 110.722 205.082 -331.932
1 5 5.069 1.507 9.090 2.535 14.369 109.636 214.610 -338.614
1 6 4.463 1.760 9.838 2.232 12.924 107.638 223.844 -344.406
1 7 3.907 2.062 10.536 1.954 11.761 105.006 232.633 -349.400
1 8 3.406 2.421 11.177 1.703 10.844 102.014 240.831 -353.689
1 9 2.961 2.844 11.754 1.480 10.136 98.914 248.314 -357.363
1 10 2.573 3.333 12.265 1.286 9.599 95.915 254.997 -360.511

Table 7: Risk averse social planning solution with elastic demand and initial storage 10

stage m price storage release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 5.004 4.829 9.171 2.502
1 1 8.530 0.770 5.060 4.265 24.448 99.555 178.230 302.233
1 2 7.736 0.878 5.951 3.868 21.222 104.221 187.644 313.087
1 3 6.976 1.007 6.823 3.488 18.426 107.028 197.256 322.710
1 4 6.252 1.160 7.670 3.126 16.031 108.208 206.951 331.190
1 5 5.567 1.342 8.487 2.783 14.006 108.007 216.605 338.619
1 6 4.925 1.562 9.267 2.462 12.322 106.686 226.079 345.086
1 7 4.330 1.825 10.004 2.165 10.946 104.516 235.223 350.685
1 8 3.786 2.140 10.690 1.893 9.843 101.777 243.888 355.508
1 9 3.298 2.513 11.316 1.649 8.978 98.739 251.930 359.646
1 10 2.866 2.951 11.878 1.433 8.312 95.645 259.234 363.191

Table 8: Risk averse competitive equilibrium with elastic demand and initial storage 10

17



4 Risk trading with polyhedral risk sets

We now turn our attention to the situation where agents with polyhedral risk sets can
trade financial contracts to reduce their risk. We assume that the risk sets for each agent
have nonempty intersection and there are enough financial instruments to trade. For a
general multistage convex program, formulated in a scenario tree, we prove that a social
planning solution corresponds to a perfectly competitive equilibrium with risk trading.
This result is then illustrated on our hydro-thermal optimization example.

The financial instruments that are traded are assumed to take a specific form.

Definition 7 Given any node n, an Arrow-Debreu security for node m ∈ n+ is a contract
that charges a price µ(m) in node n ∈ N , to receive a payment of 1 in node m ∈ n+.

We assume that at every node n ∈ N , there is an Arrow-Debreu security for each
child node m ∈ n + . In other words the market for risk is complete. To reduce its risk,
suppose that each agent a in node n purchases Wa(m) Arrow-Debreu securities for node
m ∈ n+.

Suppose that the optimal social plan consists of a set of actions {usa(n), n ∈ N}, and
disbenefits accruing to each agent a in node n denoted Zs

a(n), and defined by

Zs
a(n) = Ca(u

s
a(n))− π(n)ga(u

s
a(n)).

Note that by virtue of (5) ∑
a∈A

Zs
a(n) =

∑
a∈A

Ca(u
s
a(n)). (10)

We show that prices for energy and for Arrow-Debreu securities can be found so that
the optimal social plan is a competitive equilibrium when risk-averse agents trade energy
and risk at these prices. Given disbenefits Zs

a(m), m ∈ n+, and future risk-adjusted
disbenefits θsa(m), m ∈ n+, and µ, agent a in node n seeks a portfolio of Arrow-Debreu
securities to solve

RT(a, n): min θa +
∑

m∈n+ µ(m)Wa(m)

s.t. θa +
∑

m∈n+ p
k
a(m)Wa(m)

≥
∑

m∈n+ p
k
a(m)(Zs

a(m) + θsa(m)), k ∈ Ka(n).

The optimal solution θ∗a,W
∗
a (m) for a set of risk prices µ defines what risk products agent

a will buy to improve their risked position. If µ is chosen suitably then these risk trades
will clear the risk market. The purchases can be negative, and in equilibrium we require
the trades in these to balance. Thus we require for each m ∈ n+, n ∈ N \ L,

0 ≤ −
∑
a∈A

Wa(m) ⊥ µ(m) ≥ 0.

The equilibrium trades in each node n that clear the market for Arrow-Debreu securities

18



in that node can be found from solving

RT(n): min
∑

a∈A θa

s.t. θa +
∑

m∈n+ p
k
a(m)Wa(m)

≥
∑

m∈n+ p
k
a(m)(Zs

a(m) + θsa(m)), k ∈ Ka(n), a ∈ A,

−
∑

a∈AWa(m) ≥ 0, m ∈ n+ .

The social plan gives a system risk-adjusted disbenefit θs(n), which by virtue of (10)
is defined by

θs(n) =

{
0, n ∈ L,
maxµ∈Ds(n)

∑
m∈n+ µ(m)[

∑
a∈A Z

s
a(m) + θs(m)], n /∈ L. (11)

Given each agent’s disbenefits Zs
a(n), n ∈ N from a social plan, we define θa (n) to

be the risk-adjusted current and future disbenefit of agent a in node n with optimal risk
trading in that node. We show how θa (n) can be constructed recursively. This makes use
of the following result.

Lemma 8 Let n ∈ N be given and suppose for each m ∈ n+, that
∑

a∈A θ
s
a (m) = θs(m).

Then there exists a risk price µ∗ that solves

DTP(n): maxµ∈Ds(n)

∑
m∈n+ µ(m)

(∑
a∈A Z

s
a(m) + θs(m)

)
and gives an optimal solution (θ∗a (n) ,W ∗

a (m)) to RT(a, n), satisfying
∑

a∈A θ
∗
a (n) = θs(n)

and
0 ≤ −

∑
a∈A

W ∗
a (m) ⊥ µ∗(m) ≥ 0.

Proof. Consider the risk trading problem RT(n). The linear programming dual of RT(n)
is

RTD(n): max
∑
m∈n+

∑
a∈A

Ka(n)∑
k=1

λkap
k
a(m)

 (Zs
a(m) + θsa (m))

s.t.
∑

k∈Ka(n)

λkap
k
a(m)− µ(m) = 0, µ(m) ≥ 0, m ∈ n+, a ∈ A,∑

k∈Ka(n)

λka = 1, λka ≥ 0, a ∈ A.

The feasible region of RTD(n) is clearly bounded, and nonempty since by assumption 1,
∩a∈ADa(n) 6= ∅. Thus RTD(n) has an optimal solution. Recalling Ds(n) = ∩a∈ADa(n),
RTD(n) is equivalent to DTP(n) when µ(m) is substituted for

∑
k∈Ka(n) λ

k
ap
k
a(m), and

we recall the hypothesis that
∑

a∈A θa (m) = θs(m). By the duality theorem of linear
programming this means that there exists an optimal solution (θ∗a,W

∗
a ) to RT(n) with the

same value
∑

a∈A θ
∗
a as DTP(n), which equals θs(n) by (11).
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By complementary slackness the solution (θ∗a,W
∗
a ) to RT(n) clears the market for risk

trading, so for each m ∈ n+,

0 ≤ −
∑
a∈A

W ∗
a (m) ⊥ µ∗(m) ≥ 0. (12)

The result now follows from the observation that the KKT conditions of RT(n) are pre-
cisely equal to the MOPEC formed as the collection of the KKT conditions of RT(a, n)
combined with the complementarity constraints (12).

We now define an agent’s risk-averse optimization problem including risk trading.
Given prices π(n), n ∈ N , this involves optimizing profits evaluated with risk trading and
risk-adjusted probabilities. The problem for all agents is:

SPMT: min
∑

a∈A (Za(0) + θa(0))

s.t. θa(n) +
∑

m∈n+ p
k
a(m)Wa(m) ≥

∑
m∈n+ p

k
a(m)(Za(m) + θa(m)),

k ∈ Ka(n), n ∈ N \ L, a ∈ A [λka(n)σ(n)]

−
∑

a∈AWa(n) ≥ 0, n ∈ N \ {0} [σ(n)]

Za(n) = Ca(ua(n))− π(n)ga(ua(n)), n ∈ N , a ∈ A

xa(n) = xa(n−)− ua(n) + ωa(n), n ∈ N , a ∈ A

θa(n) = 0, n ∈ L, a ∈ A

ua(n) ∈ U , xa(n) ∈ X , n ∈ N , a ∈ A,

where the quantities in square parentheses indicate the associated multipliers on those
constraints.

The next lemma establishes that an optimal solution to SP yields an optimal solution
to each agent’s problem when they trade risk.

Lemma 9 If (ua, xa), a ∈ A, solves SP with prices π, then there is a set of risk trades
Wa, a ∈ A such that (ua, xa,Wa), a ∈ A solves SPMT and for every m ∈ N \ {0}∑

a∈A

Wa(m) = 0. (13)

Proof. Suppose (ua, xa), a ∈ A, solves SP. Then by Theorem 3, there exists π and µ so
that (ua, xa) solves SPL. We first use this solution to construct Wa, a ∈ A. Given (ua, xa)
we can construct the system optimal risk-adjusted future disbenefit using Lemma 2, where
we recall that

∑
a∈A Z

s
a(m) =

∑
a∈ACa(ua(m)) by (10). Consider any node n that has

depth δL−1. The solution to SP defines for each agent a ∈ A, xsa(n), and usa(m), m ∈ n+.
Since n+ ⊆ L, θs(m) = 0, m ∈ n+, we let θsa(m) = 0, m ∈ n+. The risk price µ∗ from
the risked social plan solves

DTP(n): maxµ∈Ds(n)

∑
m∈n+ µ(m)

(∑
a∈A Z

s
a(m) + θs(m)

)
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and so by Lemma 8 this defines an optimal solution (θa (n) ,Wa(m)) to RT(a, n) for each
agent a ∈ A, satisfying

∑
a∈A θa (n) = θs(n) and

0 ≤ −
∑
a∈A

Wa(m) ⊥ µ∗(m) ≥ 0, m ∈ N \ {0}.

Note that using the same argument as in Theorem 3, we may assume without loss of
generality that µ∗(m) > 0,m ∈ N \ {0} so we can recover (13).

This shows that
∑

a∈A θa (n) = θs(n) for every n with depth δL − 1. By induction,
Lemma 8 implies for any node n ∈ N \ L that the risk price µ∗ that solves DTP(n) gives
an optimal solution (θa (n) ,Wa(m)) to RT(a, n) for each agent a ∈ A, and satisfies (13).

Now observe that by Assumption 4, given µ ∈ Ds(n), we can construct λ satisfying∑
k∈Ka(n) λ

k
a(n) = 1, n ∈ N \ L, a ∈ A,∑

k∈Ka(n) λ
k
a(n)pka(m) = µ(m), n ∈ N \ L, m ∈ n+ , a ∈ A,

λka(n) ≥ 0, µ(n) ≥ 0, k ∈ Ka(n), n ∈ N \ L, a ∈ A.
It follows that for fixed n ∈ N \ L and m ∈ n+ that∑

k∈Ka(n)

λka(n)pka(m)σ(n) = µ(m)σ(n) = σ(m) =
∑

k∈Ka(m)

λka(m)σ(m). (14)

Also note that for any function γ defined over N it follows that∑
n∈N\{0}

γ(n) =
∑

n∈N\L

∑
m∈n+

γ(m),

a fact that we will use in the sequel without further reference.
Now, since (ua, xa), a ∈ A is an optimal solution of SPL, then it also solves

LT: min
∑

a∈A
∑

n∈N σ(n)Za(n)

s.t. Za(n) = Ca(ua(n))− π(n)ga(ua(n)), n ∈ N , a ∈ A

xa(n) = xa(n−)− ua(n) + ωa(n), n ∈ N , a ∈ A

θa(n) = 0, n ∈ L, a ∈ A,

ua(n) ∈ U , xa(n) ∈ X , n ∈ N , a ∈ A.

Using (14) to make substitutions denoted in {} brackets, the following three equations
hold:

∑
a∈A

∑
n∈N

σ(n)Za(n) =
∑
a∈A

σ(0)Za(0) +
∑
a∈A

∑
n∈N\{0}

σ(n)Za(n)

=
∑
a∈A

Za(0) +
∑
a∈A

∑
n∈N\L

∑
m∈n+

σ(m)Za(m)

=
∑
a∈A

Za(0) +
∑
a∈A

∑
n∈N\L

∑
m∈n+

 ∑
k∈Ka(n)

λka(n)pka(m)σ(n)

Za(m)
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and

0 =
∑
a∈A

∑
n∈N\L

∑
m∈n+

Wa(m) · 0

=
∑
a∈A

∑
n∈N\L

∑
m∈n+

Wa(m)

σ(m)−
∑

k∈Ka(n)

λka(n)pka(m)σ(n)


=
∑
a∈A

∑
n∈N\{0}

Wa(n)σ(n)−
∑
a∈A

∑
n∈N\L

∑
m∈n+

∑
k∈Ka(n)

Wa(m)λka(n)pka(m)σ(n)

and

0 =
∑
a∈A

∑
n∈N\L

∑
m∈n+

θa(m) · 0 +
∑
a∈A

θa(0) · 0

=
∑
a∈A

∑
n∈N\L

∑
m∈n+

θa(m)

 ∑
k∈Ka(n)

λka(n)pka(m)σ(n)−
∑

k∈Ka(m)

λka(m)σ(m)


+
∑
a∈A

θa(0)

1−
∑

k∈Ka(0)

λka(0)


=
∑
a∈A

∑
n∈N\L

∑
k∈Ka(n)

∑
m∈n+

θa(m)λka(n)pka(m)σ(n)−
∑
a∈A

∑
n∈N\{0}

θa(n)
∑

k∈Ka(n)

λka(n)σ(n)

+
∑
a∈A

θa(0)−
∑
a∈A

θa(0)
∑

k∈Ka(0)

λka(0)σ(0)

=
∑
a∈A

∑
n∈N\L

∑
k∈Ka(n)

∑
m∈n+

θa(m)λka(n)pka(m)σ(n)−
∑
a∈A

∑
n∈N\L

∑
k∈Ka(n)

θa(n)λka(n)σ(n)

+
∑
a∈A

θa(0)

where we use θa(n) = 0, n ∈ L to discard
∑

a∈A
∑

n∈L
∑

k∈Ka(n) θa(n)λka(n)σ(n) in the
last line. Summing these three equations and rearranging terms we get∑
a∈A

∑
n∈N

σ(n)Za(n) =
∑
a∈A

Za(0) + θa(0)

+
∑
a∈A

∑
n∈N\L

∑
k∈Ka(n)

(
−

(
θa(n) +

∑
m∈n+

pka(m)Wa(m)

))
λka(n)σ(n)

+
∑
a∈A

∑
n∈N\L

∑
k∈Ka(n)

(∑
m∈n+

pka(m)(Za(m) + θa(m)))

)
λka(n)σ(n)

+
∑
a∈A

∑
n∈N\{0}

σ(n)Wa(n).

But this is just the Lagrangian for SPMT and thus (ua, xa,Wa), a ∈ A solves SPMT.

22



Observe that σ are the Lagrange multipliers for the constraint

0 ≤ −
∑
a∈A

Wa(n), n ∈ N \ {0}.

This means that the optimal σ from the social planning problem decouples SPMT into
agent problems

SPM(a): min Za(0) + θa(0) +
∑

n∈N\{0}Wa(n)σ(n)

s.t. θa(n) +
∑

m∈n+ p
k
a(m)Wa(m) ≥

∑
m∈n+ p

k
a(m)(Za(m) + θa(m)),

k ∈ Ka(n), n ∈ N \ L,

Za(n) = Ca(ua(n))− π(n)ga(ua(n)), n ∈ N ,

xa(n) = xa(n−)− ua(n) + ωa(n), n ∈ N ,

θa(n) = 0, n ∈ L,

ua(n) ∈ U , xa(n) ∈ X , n ∈ N .

with the property that (ua, xa,Wa, Za, θa) solves SPM(a). Moreover the optimal solution
of SPM(a) gives

θa(n) = max
ν∈Da(n)

∑
m∈n+

ν(m)

(∑
a∈A

Zs
a(m)−W s

a (m) + θa(m)

)
, n ∈ N \ L.

(Since xa, Za, and θa are uniquely defined by (ua,Wa), we may also say equivalently that
the actions (ua,Wa) ∈ arg max SPM(a).)

Definition 10 A multistage risk-trading equilibrium is a stochastic process of prices
{π(n) : n ∈ N}, {µ(n) : n ∈ N \ {0}}, and for each agent a ∈ A, a corresponding
collection of actions, {ua(n), n ∈ N}, {Wa(n), n ∈ N \ {0}} with the property that

0 ≤
∑
a∈A

ga(ua(n)) ⊥ π(n) ≥ 0, n ∈ N ,

0 ≤ −
∑
i∈A

Wa(n) ⊥ µ(n) ≥ 0, n ∈ N \ {0},

and {ua(n), n ∈ N}, {Wa(n), n ∈ N \ {0}} ∈ arg max SPM(a).

Theorem 11 Consider a set of agents a ∈ A, each endowed with a polyhedral node-
dependent risk set Da(n), n ∈ N \ L satisfying Assumption 4. Now let {usa(n) : n ∈
N , a ∈ A} be a solution to SP with risk sets Ds(n) = ∩a∈ADa(n). Suppose this gives
rise to µ and prices {π(n) : n ∈ N} where π(n)σ(n) are the Lagrange multipliers for
constraints (6). These prices and quantities form a multistage risk-trading equilibrium
in which agent a solves SPM(a) with a policy defined by ua(·) together with a policy of
trading Arrow-Debreu securities defined by {Wa(n), n ∈ N \ {0}}.
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Proof. By Lemma 9 there is a set of risk trades Wa, a ∈ A such that {ua(n), n ∈
N}, {Wa(n), n ∈ N \ {0}} ∈ arg max SPM(a), a ∈ A. Since {usa | a ∈ A} solves SP,

0 ≤
∑
a∈A

ga(ua(n)) ⊥ π(n) ≥ 0, n ∈ N ,

and ∑
i∈A

Wa(n) = 0, n ∈ N \ {0}

by Lemma 9. Thus {(ua(n),Wa(m)} defines a multistage risk-trading equilibrium.

Theorem 11 shows that under an assumption of a complete market for risk, we may
construct a competitive equilibrium with risk trading from a social planning solution.
This entails identifying the sets Ds(n) defined by the intersection of the agents’ risk sets.
The trading in risk to give this equilbrium is not unique, since if (θa,Wa(m)) is feasible
for RT(a, n), then so is (θa + 1,Wa(m) − 1) with the same objective. In other words, if
n ∈ N \ L then we can add a constant c to every payout from the risk contract in node
m ∈ n+, and improve the risked position θ, as long as we pay c back in node n with the
contract payment

∑
m∈n+ µ(m)c = c.

5 Risk trading examples

The risk-trading analysis of the previous section can be applied to our two-stage example
problem. Suppose (in contrast to section 3) that we assume that the thermal generator
is risk-neutral (i.e. λ = 0). This seems reasonable without risk trading since given
electricity prices he will act the same irrespective of his choice of λ. (The same is true of
the consumer, although we need only one risk-neutral agent for the following example.)
Any risk neutral agent has risk set

D0= {(0.1, 0.1, . . . , 0.1)}.

It follows that the intersection of D0 and the other agent’s risk sets (which contain
(0.1, 0.1, . . . , 0.1)) is D0. A complete market for trading risk will then result in an equi-
librium that has risk measure

sup
µ∈D0

Eµ[
N∑
i=1

Zi] = E[
N∑
i=1

Zi].

Adding risk trading to the risked competitive equilibrium will then give the optimal risk-
neutral social planning solution.

To illustrate this, suppose that the initial storage in the hydro reservoir is 10. Table
9 shows the competitive equilibrium when risk trading is allowed in a complete market.
Since the thermal generator is risk neutral, the intersection of risk sets for the agents is
the singleton {0.1, 0.1, . . . , 0.1}. Agents in a competitive equilibrium with risk trading
will optimize using the worst-case measure in this set. Thus the solution shown in Table
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stage m price storage release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 1.336 7.590 6.410 0.668
1 1 2.539 2.865 5.725 1.269 -8.123 19.067 373.814 384.758
1 2 2.053 3.590 6.000 1.027 -5.100 19.067 373.814 387.781
1 3 1.696 4.387 6.203 0.848 -2.643 19.067 373.814 390.238
1 4 1.431 5.236 6.355 0.716 -0.600 19.067 373.814 392.281
1 5 1.231 6.121 6.470 0.616 1.135 19.067 373.814 394.016
1 6 1.076 7.031 6.559 0.538 2.635 19.067 373.814 395.516
1 7 0.953 7.961 6.629 0.477 3.954 19.067 373.814 396.835
1 8 0.855 8.904 6.686 0.427 5.127 19.067 373.814 398.008
1 9 0.774 9.857 6.733 0.387 6.183 19.067 373.814 399.064
1 10 0.706 10.818 6.772 0.353 7.142 19.067 373.814 400.023

Table 9: Risk averse competitive equilibrium with initial storage of 10 and risk trading
with λ = 0 for the thermal generator. The equilibrium price of risk is µ(m) = 0.1.

stage m price storage release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 1.336 7.590 6.410 0.668
1 1 2.539 2.865 5.725 1.269 2.057 20.417 362.283 384.758
1 2 2.053 3.590 6.000 1.027 1.500 19.418 366.863 387.781
1 3 1.696 4.387 6.203 0.848 1.165 18.809 370.264 390.238
1 4 1.431 5.236 6.355 0.716 0.958 18.514 372.809 392.281
1 5 1.231 6.121 6.470 0.616 0.825 18.445 374.746 394.016
1 6 1.076 7.031 6.559 0.538 0.735 18.529 376.252 395.516
1 7 0.953 7.961 6.629 0.477 0.673 18.716 377.446 396.835
1 8 0.855 8.904 6.686 0.427 0.629 18.969 378.411 398.008
1 9 0.774 9.857 6.733 0.387 0.596 19.264 379.204 399.064
1 10 0.706 10.818 6.772 0.353 0.571 19.585 379.866 400.022

Table 10: Risk neutral competitive equilibrium with initial storage of 10.

9 is the same as the risk neutral competitive equilibrium shown in Table 1 (which is
reproduced for convenience as Table 10).

This result depends on the assumption that λ = 0 for the thermal generator. In section
3, where risk trading was not included, we argued that the thermal generator solves a
wait-and-see optimization problem, and so he is indifferent to the choice of λ. We can
then assume λ = 0 for the thermal generator with no loss in generality. However, once
the thermal plant can trade risk the choice of λ makes a difference to his actions.

To see this consider the equilibrium with risk trading where both agents choose risk
measures with λ = 0.2. The equilibrium solution is shown in Table 11. Observe that the
risk-averse competitive equilibrium differs from the risk-neutral social planning solution
in Table 10. The thermal agent, faced with the possibility of trading risk, is no longer
indifferent to his choice of λ and now wishes to reduce his exposure to low profits. In the
absence of risk trading he could not change his exposure by any actions at all, and so we
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stage m price storage release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 1.545 7.710 6.290 0.773
1 1 2.472 2.948 5.763 1.236 -1.232 18.320 367.842 384.931
1 2 2.004 3.682 6.028 1.002 -0.039 19.568 368.347 387.876
1 3 1.660 4.486 6.224 0.830 0.700 20.309 369.267 390.276
1 4 1.404 5.340 6.370 0.702 1.405 21.045 369.826 392.277
1 5 1.210 6.229 6.482 0.605 1.999 21.663 370.319 393.980
1 6 1.060 7.142 6.568 0.530 2.510 22.189 370.758 395.457
1 7 0.940 8.073 6.637 0.470 2.956 22.647 371.153 396.756
1 8 0.844 9.018 6.692 0.422 3.353 23.050 371.511 397.914
1 9 0.765 9.972 6.738 0.382 3.708 23.410 371.838 398.957
1 10 0.699 10.934 6.776 0.349 4.031 23.735 372.139 399.905

Table 11: Risk-averse competitive equilibrium with risk trading.

could assume that he was risk neutral. Now we assume that he is endowed with the same
risk measure as the hydro generator. The same observations also hold for the consumer.
The intersection of the risk sets of all three agents is non-empty, but is not a singleton:
it is the risk set shared by each agent.

The risk trading that occurs is shown in Table 12. Risk trading produces the equilib-

stage m price trade trade trade
(T) (H) (C)

0
1 1 0.280 1.658 0.768 -2.426
1 2 0.080 3.375 2.966 -6.341
1 3 0.080 4.429 4.274 -8.703
1 4 0.080 5.330 5.274 -10.604
1 5 0.080 6.051 5.938 -11.989
1 6 0.080 6.647 6.366 -13.013
1 7 0.080 7.153 6.627 -13.781
1 8 0.080 7.593 6.772 -14.364
1 9 0.080 7.980 6.832 -14.813
1 10 0.080 8.327 6.834 -15.161

Table 12: Risk trading between three agents in equilibrium

rium shown in Table 11 that corresponds to a social planning solution that maximizes
total expected profit with the worst-case probability distribution in this risk set. We can
verify this by examining the total welfare of all agents in the risk-averse equilibrium. This
is shown in the last column of Table 11. The smallest welfare occurs in scenario 1. This
is the riskiest from the perspective of all agents objectives summed together, and they
trade risk to give a minimum risk solution for the sum of their positions. The probability
distribution in the intersection of risk sets that corresponds to this equilibrium assigns
0.28 to scenario 1 and 0.08 to the other scenarios.
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The social planning solution that maximizes total social welfare with this risk set is
the same as the the risked equilibrium with risk trading. The risk-neutral social planning
solution computed with the probabilities defined by the risk price is shown in Table 13.
One can observe that the generation levels are the same in each solution but the agents
profits differ from those in the equilibrium with trading. Their total is however the same
as the total welfare in the equilibrium with trading. The trades have enabled each agent
to use the same risk measure, and agree on a worst-case probability distribution.

stage m price storage release thermal profit profit welfare cost
(T) (H) (C) (total)

0 1.545 7.710 6.290 0.773
1 1 2.472 2.948 5.763 1.236 2.125 21.918 360.888 -384.931
1 2 2.004 3.682 6.028 1.002 1.601 20.968 365.307 -387.876
1 3 1.660 4.486 6.224 0.830 1.286 20.401 368.589 -390.276
1 4 1.404 5.340 6.370 0.702 1.090 20.138 371.050 -392.277
1 5 1.210 6.229 6.482 0.605 0.963 20.090 372.927 -393.980
1 6 1.060 7.142 6.568 0.530 0.878 20.189 374.390 -395.457
1 7 0.940 8.073 6.637 0.470 0.818 20.385 375.553 -396.756
1 8 0.844 9.018 6.692 0.422 0.775 20.644 376.495 -397.914
1 9 0.765 9.972 6.738 0.382 0.743 20.944 377.270 -398.957
1 10 0.699 10.934 6.776 0.349 0.719 21.267 377.919 -399.905

Table 13: Risk-neutral social planning solution with probabilities defined by risk prices

6 Conclusions

The comparison of competitive market equilibrium with social planning solutions is not
straightforward when these markets involve uncertain inflows into hydro reservoirs. Even
in the risk-neutral setting we need to ensure that there are sufficiently many traded instru-
ments (pricing water exchanges between reservoirs on the same river chain for example)
to make a competitive equilibrium coincide with a social planning solution. We have
presented a simple class of models for which this result is true in the risk-neutral case.

In a setting with risk-averse agents, further sets of traded instruments are needed to
ensure that a social planning solution and a risked equilibrium coincide. Assuming that
in each node of the scenario tree there are sufficient Arrow-Debreu securities to cover
the possible future outcomes at the next stage, we can derive a multi-stage competitive
equilibrium with different risk trades in each node of the scenario tree from a risk-averse
social planning solution in this scenario tree.

Finding the appropriate social planning problem to solve is not straightforward since
it requires that the social planner have knowledge of the risk sets of each agent (which is
private information). However we show that given this information, the planner can in
principle solve a risk-averse dynamic optimization problem with an appropriate coherent
risk measure (using e.g. the methods discussed in [13]) to yield a stochastic process of
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energy prices that correspond to the outcomes of a competitive equilibrium with risk
trading.

This result raises some interesting questions for regulators who are seeking competitive
benchmarks with which to monitor the competiveness of electricity markets with hydro-
electric reservoirs. A risk-neutral social planning solution is likely to incur some energy
shortages and corresponding high prices, as these will happen occasionally to minimize
the expected cost. A hydro-thermal market that avoids these shortages is preferable, but
prices in periods without shortages will incur risk premiums that are often attributed
to unilateral exercise of market power by hydro-generators. The models we develop in
this paper are a first step towards estimating perfectly competitive risk premia for these
markets, and will assist regulators to diagnose strategic behaviour by generators.

A further question raised by this work is the effect on hydro-firming investment. This
requires high prices in dry periods to cover its long-run marginal cost of supply. This
raises the possibility of devising an investment model that incorporates risk premia from
a risk-averse competitive hydro-thermal model to cover these costs. This would provide
an interesting comparison to observed investment in hydro-firming plant.

Finally we remark that the risk-trading models we solve using optimization assume
market completeness, which is unrealistic in practice. However in many circumstances,
these models admit equilibrium solutions in incomplete markets (as we have demonstrated
in some of the above examples). We have also computed equilibria for incomplete market
models in which specific financial instruments (such as contracts for differences) are in-
cluded. Similar computational experiments have been carried out by [6] for models with
thermal plant and two-stage uncertainty. Such incomplete market models are currently of
small scale, but we expect that before too long improvements in computation will provide
regulators and market analysts with a methodology to test the welfare gains that might
be realized by introducing practical hedging instruments into markets in which these are
absent.
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A Extended Mathematical Programming

All of the computational results in this paper are solved using the Extended Mathemati-
cal Programming (EMP) [9, 7, 3] features of the GAMS modeling system [4]. The EMP
framework exists to enable formulations of problems that fall outside the standard frame-
work within the modeling system. A high-level description of these extended models,
along with tools to automatically create the different realizations or formulations possi-
ble, pass them on to the appropriate solvers, and interpret the results in the context of
the original model, makes it possible to model more easily, to conduct experiments with
formulations otherwise too time-consuming to consider, and to avoid errors that can make
results meaningless or worse.

Multiple Optimization Problems with Equilibrium Constraints (MOPEC) involves a
collection of agents A that determine their decisions xA = (xa, a ∈ A) by solving, inde-
pendently, an optimization problem,

xa ∈ argmaxx∈Rnafa(p, x, x−a), a ∈ A, (15)

where fa(p, ·, x−a) : Rna → R = R ∪ {−∞,+∞} is their criterion function, with x−a =
(xo, o ∈ A \ {a}) representing the decision of the other agents and p ∈ Rd being a
parameter that may refer to prices in an economic application, stresses in mechanical
systems, and environmental conditions in numerous other applications. This parameter
and the decisions xA satisfy a global equilibrium constraint, formulated as a geometric
variational inequality,

F (p, xA) ∈ NC(p), (16)

with NC(p) the normal cone to C at p. We refer to (15)-(16) as a MOPEC, whose
solution is a pair (p, xA) that satisfies the preceding inclusions. Even though (15) omits
an explicit expression of constraints on xA, that possibility is handled herein by extended-
value functions.

EMP provides the ability to describe a variational inequality within a modeling system.
We annotate existing equations in the model, detailing which ones provide the function
F , and which ones are part of the description of the underlying feasible set C. Note that
there is no requirement that C is polyhedral, and the format generalizes both nonlinear
equations and nonlinear complementarity systems. The main formulation of interest here
is MOPEC, for example the problem described via (15) and (16). In this setting that
variables xa and p, and the functions fa and F are defined with the usual model system
(along with C being defined by equations defC), but an additional annotation is provided
of the form:

equilibrium

max f_1 x_1

max f_2 x_2

...

max f_k x_k

vi F p defC

This describes a problem involving k agents, each of which solve an optimization
problem whose objective function involves not only variables xk but also other agents
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variables, and the price vector p. Similarly to above, the VI involving F and p nails down
the values of p. In the GAMS implementation, the VI is converted into its KKT form, and
then solved using the PATH solver [5, 8] - this allows problems of hundreds or thousands
of variables to be processed.

Other features of EMP include stochastic programming and risk measures, hierar-
chical optimization, such as bilevel programming, extended nonlinear programming and
disjunctive programming.
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