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Abstract

Nearly convex sets play important roles in convex analysis, optimization and theory
of monotone operators. We give a systematic study of nearly convex sets, and con-
struct examples of subdifferentials of lower semicontinuous convex functions whose
domain or ranges are nonconvex.
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1 Introduction

In 1960s Minty and Rockafellar coined nearly convex sets [22, 25]. Being a generalization
of convex sets, the notion of near convexity or almost convexity has been gaining popu-
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larity in the optimization community, see [6, 11, 12, 13, 16]. This can be attributed to the
applications of generalized convexity in economics problems, see for example, [19, 21].
One reason to study nearly convex sets is that for a proper lower semicontinuous convex
function its subdifferential domain is always nearly convex [24, Theorem 23.4, Theorem
6.1], and the same is true for the domain of each maximally monotone operator [26, Theo-
rem 12.41]. Maximally monotone operators are extensively studies recently [1, 2, 3, 4, 27].
Another reason is that to study possibly nonconvex functions, a first endeavor perhaps
should be to study functions whose epigraphs are nearly convex, see, e.g., [13].

All these motivate our systematic study of nearly convex sets. Some properties of
nearly convex sets have been partially studied in [6, 11, 12, 13] from different perspec-
tives. The purpose of this paper is to give new proofs to some known results, provide
further characterizations, and extend known results on calculus, relative interiors, reces-
sion cones, and applications. Although nearly convex sets need not be convex, many
results on convex sets do extend. We also construct proper lower semicontinuous convex
functions whose subdifferential mappings have domains being neither closed nor open;
or highly nonconvex.

We remark that nearly convex was called almost convex in [11, 12, 13]. Here, we adopt
the term nearly convex rather than almost convex because of the relationship with nearly
equal sets which was noted in [6]. Note that this definition of nearly convex does not
coincide with the one provided in [11, Definition 2] and [12], where nearly convex is a
generalization of midpoint convexity.

The remainder of the paper is organized as follows. Some basic notations and facts
about convex sets and nearly convex sets are given in Section 2. Section 3 gives new
characterizations of nearly convex sets. In Section 4, we give calculus of nearly convex
sets and relative interiors. In Section 5, we study recessions of nearly convex sets. Sec-
tion 6 is devoted to apply results in Section 4 and Section 5 to study maximality of sum
of several maximally monotone operators and closedness of nearly convex sets under a
linear mapping. In Section 7, we construct examples of proper lower semicontinuous
convex functions with prescribed nearly convex sets being their subdifferential domain.
As early as 1970s, Rockafellar provided a convex function whose subdifferential domain
is not convex [24]. We give a detailed analysis of his classical example and use it to gener-
ate new examples with pathological subdifferential domains. Open problems appear in
Section 8. Appendix A contains some proofs of Section 7.
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2 Preliminaries

2.1 Notation and terminology

Throughout this paper, we work in the Euclidean space Rn with norm ‖ · ‖ and inner
product 〈·, ·〉. For a set C ⊆ Rn let cl C denote the closure of C, and aff C the affine hull of
C; that is, the smallest affine set containing C. The key object we shall study is:

Definition 2.1 (near convexity) A set E ⊆ Rn is nearly convex if there exists a convex set
C ⊆ Rn such that

C ⊆ E ⊆ cl C.

Obviously, every convex set is nearly convex, but they are many nearly convex sets which
are not convex. See Figure 1 for two nearly convex sets.

Figure 1: A GeoGebra [17] snapshot. Left: Neither open nor closed convex set. Right:
Nearly convex but not convex set

Note that nearly convex sets do not have nice algebra as convex sets do [24, Section 3],
as the following two simple examples illustrate.

Example 2.2 The nearly convex set C ⊆ R2 given by

C :=
{
(x1, x2) | −1 < x1 < 1, x2 > 0

}
∪ {(−1, 0), (1, 0)}.

has 2C 6= C + C, since

2C =
{
(x1, x2) | −2 < x1 < 2, x2 > 0

}
∪ {(−2, 0), (2, 0)},

C + C = 2C ∪ (0, 0).
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On the contrary, 2C = C + C whenever C is a convex set [24, Theorem 3.2].

Example 2.3 Define

E1 :=
{
(x1, x2) | x1 ≥ 0, x2 ∈ R

}
\
{
(0, x2) | |x2| < 1

}
,

E2 :=
{
(x1, x2) | x1 ≤ 0, x2 ∈ R

}
\
{
(0, x2) | |x2| < 1

}
.

The set E1 ∩ E2 =
{
(0, x2) | |x2| ≥ 1

}
is not nearly convex. On the contrary, E1 ∩ E2 is

convex if both E1, E2 are convex.

Let B(x, ε) ⊂ Rn be the closed ball with radius ε > 0 and centered at x, and let I be an
index set I := {1, 2, . . . , m} for some integer m. We use conv C for the convex hull of C.
The interior of C is int C, the core is

core C := {x ∈ C | (∀y ∈ Rn)(∃ε > 0) [x− εy, x + εy] ⊆ C},

and the relative interior is

ri C := {x ∈ aff C | ∃ε > 0, (x + εB(0, 1)) ∩ (aff C) ⊆ C}.

The recession cone of C is

rec C := {y ∈ Rn | (∀λ ≥ 0) λy + C ⊆ C}. (1)

The lineality space of C is the largest subspace contained in rec C, see [24, page 65] for
more on lineality spaces. We denote the projection operator onto the set C ⊆ Rn by PC
and the normal cone operator by NC.

For a set-valued mapping A : Rn ⇒ Rn, the domain is dom A := {x ∈ Rn | Ax 6= ∅},
the range is ran A :=

⋃
x∈Rn Ax, and the graph is gra A := {(x, u) ∈ Rn ×Rn | u ∈ Ax}.

A is monotone if (∀(x, u) ∈ gra A)(∀(y, v) ∈ gra A) 〈x− y, u− v〉 ≥ 0, and maximally
monotone if there exists no monotone operator B such that gra A is a proper subset of
gra B.

2.2 Auxiliary results on convex sets

Properties of convex sets play a prominent role in the paper, we need to review some key
results.

Fact 2.4 (Rockafellar) Let C and D be convex subsets of Rn, and let λ ∈ R. Then the following
hold:
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(i) ri C and cl C are convex.

(ii) C 6= ∅⇒ ri C 6= ∅.

(iii) cl (ri C) = cl C.

(iv) ri C = ri(cl C).

(v) aff(ri C) = aff C = aff(cl C).

(vi) ri C = ri D⇔ cl C = cl D⇔ ri C ⊆ D ⊆ cl C.

(vii) ri λC = λ ri C.

(viii) ri(C + D) = ri C + ri D.

Proof. (i)&(ii): See [24, Theorem 6.2]. (iii)&(iv): See [24, Theorem 6.3]. (v): See [24, The-
orem 6.2]. (vi): See [24, Corollary 6.3.1]. (vii): See [24, Corollary 6.6.1]. (viii): See [24,
Corollary 6.6.2]. �

Fact 2.5 [24, Theorem 6.5] Let Ci be a convex set in Rn for i = 1, . . . , m such that
m⋂

i=1
ri Ci 6= ∅.

Then

cl
( m⋂

i=1

Ci
)
=

m⋂
i=1

cl Ci,

and

ri
( m⋂

i=1

Ci
)
=

m⋂
i=1

ri Ci.

Fact 2.6 [24, Theorem 6.1] Let C be a convex set in Rn, x ∈ ri C, and y ∈ cl C. Then

[x, y[⊆ ri C.

Fact 2.7 [24, Theorem 6.6] Let C be a convex set in Rn and let A be a linear transformation from
Rn to Rm. Then

ri(AC) = A(ri C),

and
A(cl C) ⊆ cl (AC).

Fact 2.8 [24, Theorem 6.7] Let C be a convex set in Rn and let A be a linear transformation from
Rn to Rm such that A−1(ri C) 6= ∅. Then

ri(A−1C) = A−1(ri C),

and
cl (A−1C) = A−1(cl C).
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Fact 2.9 [24, Theorem 8.1 & Theorem 8.2] Let C be a nonempty convex subset in Rn. Then
rec C is a convex cone and 0 ∈ rec C. If in addition C is closed then rec C is closed.

Fact 2.10 [24, Theorem 8.3] Let C be a nonempty convex subset in Rn. Then rec(ri C) =
rec(cl C).

Fact 2.11 [24, Theorem 9.1] Let C be a nonempty convex subset in Rn and let A be a linear
transformation from Rn to Rm. Suppose that (∀z ∈ rec(cl C) \ {0}) with Az = 0 we have that
z belongs to the lineality space of cl C. Then

cl (AC) = A(cl C),

and
rec A(cl C) = A[rec(cl C)].

Fact 2.12 [24, Corollary 9.1.1] Let (Ei)i∈I , be a family of nonempty convex subsets in Rn sat-
isfying the following condition: if (∀i ∈ I)(∃zi ∈ rec(cl Ei)) and ∑i∈I zi = 0 then (∀i ∈ I)zi
belongs to the lineality space of cl Ei. Then

cl (E1 + · · ·+ Em) = cl E1 + · · ·+ cl Em, (2)
rec[cl (E1 + · · ·+ Em)] = rec(cl E1) + · · ·+ rec(cl Em). (3)

2.3 Auxiliary results on nearly convex sets

Near equality introduced in [6] provides a convenient tool to study nearly convex sets
and ranges of maximally monotone operators.

Definition 2.13 (near equality) Let C and D be subsets of Rn. We say that C and D are nearly
equal, if

cl C = cl D and ri C = ri D. (4)

and denote this by C ≈ D.

Fact 2.14 [6, Lemma 2.7] Let E be a nearly convex subset of Rn, say C ⊆ E ⊆ cl C, where C is
a convex subset of Rn. Then

E ≈ cl E ≈ ri E ≈ conv E ≈ ri conv E ≈ C. (5)

In particular, the following hold.

(i) cl E and ri E are convex.
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(ii) If E 6= ∅, then ri E 6= ∅.

Fact 2.15 [6, Proposition 2.12(i),(ii),(iii)] Let E1 and E2 be nearly convex subsets of Rn. Then

E1 ≈ E2 ⇔ ri E1 = ri E2 ⇔ cl E1 = cl E2. (6)

Fact 2.16 [6, Proposition 2.5] Let A, B and C be subsets of Rn such that A ≈ C and A ⊆ B ⊆
C. Then A ≈ B ≈ C.

Fact 2.17 (See [26, Theorem 12.41].) Let A : Rn ⇒ Rn be maximally monotone. Then dom A
and ran A are nearly convex.

Remark 2.18 Fact 2.17 can not be localized. Suppose that A := PB(0,1) is the projection
onto the unit ball in R2, which is a gradient mapping of the continuous differentiable
convex function f : R2 → R given by

f (x) :=

{
‖x‖2/2 if ‖x‖ ≤ 1,
‖x‖ − 1/2 if ‖x‖ > 1.

(i) Let S :=
{
(x, y) ∈ R2 | x + y > 2, x > 0, y > 0

}
be open convex. The set

ran PB(0,1)(S) =
{
(x, y) ∈ R2 | x2 + y2 = 1, x > 0, y > 0

}
is not nearly convex.

(ii) Let S :=
{
(x, y) ∈ R2 | x + y ≥ 2, x ≥ 0, y ≥ 0

}
be closed convex. The set

ran PB(0,1)(S) =
{
(x, y) ∈ R2 | x2 + y2 = 1, x ≥ 0, y ≥ 0

}
is not nearly convex.

We refer readers to [9, 10, 4, 24, 27] for more materials on convex analysis and monotone
operators.

3 Characterizations and basic properties of nearly convex
sets

Utilizing near equality, in [6] the authors provide the following characterizations of nearly
convex sets.

Fact 3.1 (characterization of near convexity) [6, Lemma 2.9] Let E ⊆ Rn. Then the follow-
ing are equivalent:

(i) E is nearly convex.

7



(ii) E ≈ conv E.

(iii) E is nearly equal to a convex set.

(iv) E is nearly equal to a nearly convex set.

(v) ri conv E ⊆ E.

We now provide further characterizations of nearly convex sets.

Theorem 3.2 Let E be a nonempty subset of Rn. Then the following are equivalent:

(i) E is nearly convex.

(ii) ri E is convex and cl (ri E) = cl E.

(iii) (∀x ∈ ri E) (∀y ∈ E) [x, y[⊆ ri E.

(iv) cl E is convex and ri(cl E) ⊆ ri E.

Proof. (i)⇒(ii): This follows from Fact 2.14. (ii)⇒(i): We have ri E ⊆ E ⊆ E = cl (ri E).
Since ri E is convex, E is nearly convex. (ii)⇒(iii): Since E is nearly convex, by Fact 2.14(i)
cl E is convex. Using Fact 2.6 applied to the convex set cl E we conclude that (∀x ∈ ri E)
(∀y ∈ cl E) [x, y[⊆ ri(cl E) = ri E. In particular, (∀x ∈ ri E) (∀y ∈ E) [x, y[⊆ ri E. (iii)⇒(ii):
Let x ∈ ri E and y ∈ ri E. Then [x, y] = [x, y[ ∪ {y} ⊆ ri E ∪ ri E = ri E, that is ri E is
convex. It is obvious that cl (ri E) ⊆ cl E. Now we show that cl E ⊆ cl (ri E). Indeed, let
y ∈ cl E. Then (∃(yn)n∈N) ⊆ E such that yn → y. Therefore (∀x ∈ ri E) [x, yn[⊆ ri E,
and consequently [x, yn] ⊆ cl (ri E). That is, (yn)n∈N ⊆ cl(ri E), hence y ∈ cl (ri E), and
therefore cl E ⊆ cl (ri E), as claimed. (i)⇒(iv): This follows from Fact 2.14. (iv)⇒(i): Since
E is nonempty we have cl E is nonempty and convex by assumption, hence cl [ri(cl E)] =
cl E. Now ri(cl E) ⊆ ri E ⊆ E ⊆ cl E = cl [ri(cl E)], hence ri(cl E) ≈ E. Since cl E is convex
we have ri(cl E) is convex. It follows from Fact 3.1(iii) that E is nearly convex. �

Theorem 3.3 Let E be a nonempty subset in Rn. Then E is nearly convex if and only if E = C∪ S
where C is a nonempty convex subset of Rn and S ⊆ cl C \ ri C.

Proof. (⇒) Suppose that E is nearly convex, and notice that E = ri E ∪ (E \ ri E). Set

C := ri E and S := E \ ri E ⊆ cl E \ ri E. (7)

Since E is nearly convex, it follows from Fact 2.14 that C is nonempty and convex. More-
over cl E = cl (ri E) = cl C. Therefore E = C ∪ S with C convex and S ⊆ cl C \ ri C.
(⇐) Conversely, assume that E = C ∪ S where C is a nonempty convex subset of Rn and
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S ⊆ cl C \ ri C. Clearly, S ⊆ ∂(cl C), where ∂(cl C) is the relative boundary of cl C. Hence
ri E = ri C and consequently ri E is nonempty and convex. Moreover, since cl S ⊆ cl C, we
have cl E = cl (C ∪ S) = cl C ∪ cl S = cl C and consequently cl E is convex. Finally notice
that

ri C = ri E ⊆ E ⊆ cl E = cl C = cl (ri C). (8)

That is E ≈ ri C and hence E is nearly convex by Fact 3.1(iii). �

To study the relationship among core, interior and relative interior of a nearly convex
set, we need two facts.

Fact 3.4 Let C be a convex set in Rn. Then int C = core C. Moreover, if int C 6= ∅ then
int C = ri C.

Proof. For the first part, see [8, Remark 2.73] or [4, Proposition 6.12]. The second part is
clear from [24, pg 44]. �

Fact 3.5 [6, Proposition 2.20] Let E be a nearly convex subset of Rn. Then int E = int(cl E).

Theorem 3.6 Let E be a nonempty nearly convex subset in Rn. Then the following hold:

(i) core E = int E.

(ii) If int E 6= ∅ then int E = ri E.

(iii) aff(ri E) = aff E = aff(cl E).

Proof. (i): Since E is nonempty and nearly convex, cl E is nonempty and convex by
Fact 2.14(i). Using Fact 3.5 and Fact 3.4 applied to the convex set cl E we have

int(cl E) = int E ⊆ core E ⊆ core(cl E) = int(cl E). (9)

Hence int E = core E, as claimed.

(ii): Notice that Fact 3.5 gives ∅ 6= int E = int(cl E). Moreover since E is nearly convex,
Fact 2.14 implies that ri E = ri(cl E). Applying Fact 3.4 to the convex set cl E gives

int E = int(cl E) = ri(cl E) = ri E. (10)

(iii): It follows from Fact 2.14 that

ri E = ri(ri E) and cl (ri E) = cl E. (11)
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Using (11) and Fact 2.4(v) applied to the convex set ri E we have

aff(ri E) = aff[cl (ri E)] = aff(cl E). (12)

�

Under mild assumptions, a nearly convex set is in fact convex as our next result shows.

Definition 3.7 We say that a set E ⊆ X is relatively strictly convex if ]x, y[⊆ ri E whenever
x, y ∈ E.

Proposition 3.8 Let E ⊆ Rn be nearly convex. Then the following hold:

(i) If E is relatively strictly convex, then E is convex.

(ii) If E is open, then E is convex.

(iii) If E is closed, then E is convex.

(iv) If for every x, y ∈ E \ ri E, we have [x, y] ⊆ E, then E is convex.

Proof. (i): Let x, y ∈ E. As E is relatively strictly convex, ]x, y[⊆ ri E ⊆ E, so [x, y] ⊆ E.
Hence E is convex.

(ii): For a nearly convex set E, we have ri E = ri C where C is a convex set. When E is
open and int E 6= ∅, by Theorem 3.6(ii) we have E = ri E = ri C = int C is convex. Hence
E is convex.

(iii): Since there exists a convex set C such that C ⊆ E ⊂ cl C and E closed, we have
E = cl C, so E is convex.

(iv) Let x, y ∈ E. If one of x, y is in ri E, then [x, y] ⊆ E; if both x, y ∈ E \ ri E, then the
assumption guarantees [x, y] ⊆ E. Hence E is convex. �

4 Calculus and relative interiors of nearly convex sets

In this section we extend the calculus for convex sets provided in [24, Section 6 and Sec-
tion 8] to nearly convex sets. More precisely, we study the properties of images and
pre-images of nearly convex sets under linear transforms. One distinguished feature is
that when two nearly convex sets are nearly equal, their linear images or linear inverse
images are also nearly equal. We start with
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Proposition 4.1 (i) Let E ⊆ Rn be nearly convex, and λ ∈ R. Then ri(λE) = λ ri E.

(ii) If (∀i ∈ I) Ei ⊆ Rn be nearly convex, then

ri(E1 × · · · × Em) = ri E1 × · · · × ri Em,

and cl (E1 × · · · × Em) = cl (ri E1)× · · · × cl (ri Em).

Proof. (i) As E is nearly convex set, there exists a convex set C ⊆ Rn such that ri E = ri C.
Then ri(λE) = ri(λC) = λ ri C = λ ri E by Fact 2.4(vii).

(ii) By Fact 2.14, we have

ri(E1 × · · · × Em) = ri[cl(E1 × · · · × Em)] = ri(cl E1 × · · · × cl Em)

= ri(cl E1)× · · · × ri(cl Em) = ri E1 × · · · × ri Em.

Also by Fact 2.14, cl(E1 × · · · × Em) = cl E1 × · · · × cl Em = cl (ri E1) × · · · × cl (ri Em).
�

Theorem 4.2 Let E be a nearly convex set in Rn and let A : Rn → Rm be a linear transforma-
tion. Then the following hold:

(i) A(E) is nearly convex.

(ii) AE ≈ A(ri E) ≈ A(cl E).

(iii) ri(AE) = A ri E.

Proof. (i): Since E is nearly convex we have ri E is convex. It follows from Fact 2.14 that
cl E = cl ri E. Moreover Fact 2.7 applied to the convex set ri E implies that A(cl (ri E)) ⊆
cl A(ri E). Therefore,

A(ri E) ⊆ A(E) ⊆ A(cl E) = A(cl (ri E)) ⊆ cl A(ri E). (13)

Since A is linear and ri E is convex, we conclude that A(ri E) is convex, hence by (13)
A(E) is nearly convex.

(ii): It follows from Fact 2.14, (13) and the fact that A(ri E) is convex that

AE ≈ A(ri E). (14)

To show A(ri E) ≈ A(cl E), applying (14) to the convex set cl E we obtain A(cl E) ≈
A(ri(cl E)). Since E is nearly convex, we have ri E = ri(cl E) by Fact 2.14, hence A(cl E) ≈
A(ri E), and (ii) holds.
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(iii): By (ii) and Fact 2.7, we have

ri(AE) = ri[A(cl E)] = A(ri(cl E)) = A(ri E).

�

Remark 4.3 Theorem 4.2(i)&(iii) was proved in [13, Lemmas 2.3, 2.4], our proof is differ-
ent from theirs.

Corollary 4.4 Let (∀i ∈ I) Ei be nearly convex sets in Rn. Then

ri(E1 + · · ·+ Em) = ri E1 + · · ·+ ri Em.

Proof. Apply Theorem 4.2(iii) and Proposition 4.1(ii) with A : (x1, . . . , xm) 7→ ∑i∈I xi
where xi ∈ Rn, and E := E1 × · · · × Em. �

Theorem 4.5 Let A : Rn → Rm be a linear transformation and let E ⊆ Rm be a nearly convex
set such that A−1(ri E) 6= ∅. Then

(i) A−1E is nearly convex,

(ii) ri(A−1E) = A−1(ri E),

(iii) cl [A−1(E)] = A−1(cl E).

Proof. As E is nearly convex, there exists a convex set C such that C ⊆ E ⊆ cl C and ri E =
ri C. The assumption A−1(ri E) 6= ∅ is equivalent to A−1(ri C) 6= ∅, so A−1(ri cl C) 6= ∅
by Fact 2.4(iv). Because A−1(ri C) 6= ∅, by Fact 2.8, we have cl [A−1(C)] = A−1(cl C).
Then

A−1(C) ⊆ A−1(E) ⊆ A−1(cl C) ⊆ cl [A−1(cl C)] = cl [A−1(C)]

which gives A−1(C) ⊆ A−1(E) ⊆ cl [A−1(C)], so (i) holds. It also follows that
ri(A−1(E)) = ri(A−1(C)). By Fact 2.8,

ri(A−1(C)) = A−1(ri C) = A−1(ri E).

Therefore (ii) holds. (iii) follows from

cl [A−1(E)] = cl [A−1(C)] = A−1(cl C) = A−1(cl E).

�

Remark 4.6 Theorem 4.5 was proven in [13, Theorem 2.2, Corollary 2.1]. However our
proof is different.
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Theorem 4.7 Let A : Rn → Rm be a linear transformation and let E ⊆ Rm be a nearly convex
set such that A−1(ri E) 6= ∅. Then A−1(E) ≈ A−1(ri E) ≈ A−1(cl E).

Proof. First notice that since E is nearly convex we have ri E and cl E are convex and
ri E = ri (cl E), hence A−1(ri(cl E)) = A−1(ri E) 6= ∅. Using Fact 2.14 we have

ri E = ri(ri E). (15)

Applying Fact 2.8 to the convex sets ri E and cl E we have

A−1(ri E) = A−1(ri(ri E)) = ri A−1(ri E) (16)

A−1(ri E) = A−1(ri(cl E)) = ri A−1(cl E). (17)

Since ri E and cl E are convex we have

A−1(ri E) and A−1(cl E) are convex. (18)

Moreover, it follows from (16) and (17) that ri A−1(ri E) = ri A−1(cl E). Therefore, using
Fact 2.15 we conclude that

A−1(ri E) ≈ A−1(cl E). (19)

Notice that A−1(ri E) ⊆ A−1(E) ⊆ A−1(cl E). Therefore using (19) and Fact 2.16 we
conclude that A−1(E) ≈ A−1(ri E) ≈ A−1(cl E). �

The next result generalizes Rockafellar’s Fact 2.5 to nearly convex sets. Our proof is
different from the one given in [13, Theorem 2.1].

Corollary 4.8 Let Ei be nearly convex sets in Rn for all i ∈ I such that
m⋂

i=1
ri Ei 6= ∅. Then the

following hold:

(i)
m⋂

i=1
Ei is nearly convex.

(ii)
m⋂

i=1
ri Ei = ri

m⋂
i=1

Ei.

(iii) cl
m⋂

i=1
Ei =

m⋂
i=1

cl Ei.

Proof. Define A : Rn → Rn × · · · × Rn by Ax := (x, . . . , x) where x ∈ Rn. The set
E := E1 × · · · × En is nearly convex. The results follow by combining Theorems 4.5, 4.7.
�
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Corollary 4.9 Let E1 and E2 be nearly convex sets in Rn such that E1 ≈ E2 and let A : Rn →
Rm be a linear transformation. The following hold.

(i) AE1 ≈ AE2,

(ii) If A−1(ri E1) 6= ∅, then A−1E1 ≈ A−1E2.

Proof. Indeed, since E1 ≈ E2 we have ri E1 = ri E2. It follows from Theorem 4.2 that

AE1 ≈ A(ri E1) = A(ri E2) ≈ AE2. (20)

This gives (i). For (ii), apply Theorem 4.7. �

5 Recession cones of nearly convex sets

In this section we extend several of the results for the calculus of recession cones in [24,
Chapter 8] to nearly convex sets. Intuitively, it would seem that most recession cone
results on convex sets should hold for nearly convex sets. Unfortunately, this is not the
case. On the positive side, we establish that rec E of a nearly convex set E is nearly convex
provided that span(E− E) = rec(cl E)− rec(cl E).

Fact 5.1 [24, Theorem 8.1] Let C be a nonempty convex subset of Rn. Then rec C is a convex
cone and 0 ∈ rec C. Moreover,

rec C = {y ∈ Rn | y + C ⊆ C} . (21)

When E is nonempty nearly convex subset of Rn, the characterization (21) may fail to be
equivalent to (1) as illustrated in the following example. Let N denote the set of natural
numbers.

Example 5.2 Suppose that E :=
{
(x, y) | y ≥ x2, x ≥ 0

}
\
(
{0} ×N

)
⊆ R2. Notice that

the set Ẽ =
{
(x, y) | y ≥ x2, x ≥ 0

}
is convex and E ≈ Ẽ and therefore E is nearly convex

by Fact 3.1(iii). Clearly (∀y ∈ {0} ×N) y + E ⊆ E, however y 6∈ rec E = {0}, since
(∀λ ∈ R+ \N) λy + E 6⊆ E.

Lemma 5.3 Let E be a nonempty nearly convex subset in Rn. Then rec(ri E) = rec(cl E), in
particular, a closed convex cone.
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Proof. Since E is nearly convex, it follows that ri E and cl E are convex sets. Fact 2.14 gives
ri(ri E) = ri E and cl (ri E) = cl E. Applying Fact 2.10 to the convex set ri E we conclude
that

rec(ri E) = rec[ri(ri E)] = rec[cl (ri E)] = rec(cl E). (22)

As cl E is closed convex, Fact 2.9 completes the proof. �

Proposition 5.4 Given (∀i ∈ I) Ei ⊆ Rn. Then the following hold:

(i) rec(E1 × · · · × Em) = rec E1 × · · · × rec Em.

(ii) If, in addition, each Ei is nearly convex, then

rec[cl(E1× · · · × Em)] = rec(cl E1)× · · · × rec(cl Em) = rec(ri E1)× · · · × rec(ri Em).

Proof. (i): This follows from the definition recession cone (1).

(ii): By (i) and Lemma 5.3, we have

rec[cl(E1 × · · · × Em)] = rec(cl E1 × · · · × cl Em)

= rec(cl E1)× · · · × rec(cl Em)

= rec(ri E1)× · · · × rec(ri Em).

�

The following result is folklore, and we omit its proof.

Fact 5.5 Let S ⊆ Rn be nonempty, and K ⊆ Rn be a convex cone. Then the following hold:

(i) The set S is bounded if and only if cl S is bounded.

(ii) For every x ∈ S,
aff(S) = {x}+ span(S− S). (23)

In addition, if 0 ∈ S, then span S = aff S = span(S− S).

(iii) span(S− S) = span(cl S− cl S).

(iv) K− K = span K.

Fact 5.6 [24, Theorem 8.4] Let C be a nonempty closed convex subset in Rn. Then C is bounded
if and only if rec C = {0}.

15



Proposition 5.7 Let E be a nonempty nearly convex subset in Rn. Then E is bounded if and only
if rec(cl E) = {0}.

Proof. Since E is nearly convex, cl E is a nonempty closed convex. Using Fact5.5(i) and
Fact 5.6 applied to cl E we conclude that

E is bounded ⇔ cl E is bounded ⇔ rec(cl E) = {0} . (24)

�

The following example shows that rec(cl E) = {0} cannot be replaced by rec E = {0}.

Example 5.8 The almost convex set

E :=
{
(x1, x2) | −1 ≤ x1 ≤ 1, x2 ∈ R

}
\
{
(x1, x2) | x1 = ±1,−1 < x2 < 1

}
has rec E = {(0, 0)}, but E is unbounded.

Lemma 5.9 Let S be a nonempty subset of Rn. Then rec S ⊆ rec(cl S).

Proof. Let y ∈ rec S and let s ∈ cl S. Then (∃(sn)n∈N) ⊆ S such that sn → s. Since (∀n ∈
N) sn ∈ S, it follows from that definition of rec S that (∀n ∈ N) (∀λ ≥ 0) λy + sn ∈ S,
hence λy + sn → λy + s ∈ cl S. That is y ∈ rec(cl S), which completes the proof. �

We are now ready for the main result of this section.

Proposition 5.10 Let E be a nonempty nearly convex subset of Rn. Suppose that

span[rec(cl E)] = span(cl E− cl E), (25)

equivalently,
rec(cl E)− rec(cl E) = span(E− E). (26)

Then the following hold:

(i) ri[rec(cl E)] ⊆ rec E.

(ii) rec E is nearly convex.

(iii) rec E ≈ ri[rec(cl E)].

(iv) rec(ri E) ≈ rec E ≈ rec(cl E).
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Proof. Observe that (25) and (26) are equivalent because of Fact 5.5(iii)&(iv).

(i): Let y ∈ ri[rec(cl E)] ⊆ rec(cl E). Then (∃ε > 0) such that

B(y, ε) ∩ aff[rec(cl E)] ⊆ rec(cl E). (27)

Therefore (∀x ∈ cl E), x + y ∈ cl E, and

x +
(

B(y, ε) ∩ aff[rec(cl E)]
)
⊆ cl E. (28)

Using Fact 5.5(ii), (25) and (28) we have

B(x + y, ε) ∩ aff(E) = B(x + y, ε) ∩ (x + span(E− E))

= x + (B(y, ε) ∩ (span(E− E)))

= x +
(

B(y, ε) ∩ aff[rec(cl E)]
)

⊆ cl E. (29)

That is, x + y ∈ ri(cl E). Since E is nearly convex we have ri(cl E) = ri E, hence x + y ∈
ri E ⊆ E. In particular, it follows from (29) that (∀z ∈ E) z + y ∈ E. Note that rec(cl E) is a
cone, and aff[rec(cl E)] is a subspace. For every λ > 0, λy ∈ ri[rec(cl E)], multiplying (27)
by λ > 0 gives

B(λy, λε) ∩ aff[rec(cl E)] ⊆ rec(cl E).

The above arguments show that (∀z ∈ E) z+λy ∈ E. Consequently y ∈ rec E, as claimed.

(ii)&(iii): Since E is nearly convex we have cl E is a nonempty closed convex set. There-
fore by Fact 2.9 and Fact 2.4(i)&(iii) applied to the convex set rec(cl E) we have rec(cl E)
is a nonempty closed convex cone, ri[rec(cl E)] is a nonempty convex set and

rec(cl E) = cl [rec(cl E)] = cl
(

ri[rec(cl E)]
)
.

It follows from Lemma 5.9 that rec E ⊆ rec(cl E). Therefore using (i) we have

ri[rec(cl E)] ⊆ rec E ⊆ rec(cl E) = cl [rec(cl E)] = cl
(

ri[rec(cl E)]
)
. (30)

Using Fact 2.14 we conclude that rec E is nearly convex and rec E ≈ ri[rec(cl E)], as
claimed. (iv): It follows from (30) that

cl (rec E) = cl [rec(cl E)]. (31)

Since rec E is nearly convex by (ii), and rec(cl E) is convex by Fact 2.9, it follows from (31)
and Fact 2.15 that rec E ≈ rec(cl E). Now combine with Lemma 5.3. �

The following example shows that in Theorem 5.10, condition (25) cannot be removed.
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Example 5.11 Suppose that E is as defined in Example 5.2. Then {0} = rec E 6≈ rec E =
R+ · (0, 1). Note that (25) fails because span(E− E) = R2 6= {0} ×R = span[rec(cl E)].

Unfortunately, in general we do not know whether the recession cone of a nearly con-
vex set is nearly convex. We leave this as an open question.

6 Applications

In this section, we apply results in Section 5 and Section 4 to study the maximality of
a sum of maximally monotone operators and the closedness of linear images of nearly
convex sets.

6.1 Maximality of a sum of maximally monotone operators

Fact 6.1 (See, e.g., [26, Corollary 12.44].) Let A : Rn ⇒ Rn and B : Rn ⇒ Rn be maximally
monotone such that ri dom A ∩ ri dom B 6= ∅. Then A + B is maximally monotone.

One can apply Fact 6.1 and Corollary 4.8 to show the following well-known result.

Theorem 6.2 Let {Ai}i∈I be finite family of maximally monotone operators from Rn ⇒ Rn such
that ∩m

i=1 ri(dom Ai) 6= ∅. Then A1 + · · ·+ Am is maximally monotone.

Proof. We proceed via induction. When m = 2, the proof follows from Fact 6.1. Next,
assume that for m ∈N with m ≥ 2 we have ∩m

i=1 ri(dom Ai) 6= ∅ implies that A1 + · · ·+
Am is maximally monotone. Now suppose that ∩m+1

i=1 ri(dom Ai) 6= ∅. By Fact 2.17, for
all i ∈ {1, . . . , m + 1}, dom Ai is nearly convex set. Moreover, by Corollary 4.8(ii),

∩m+1
i=1 ri dom Ai = ∩m

i=1 ri dom Ai ∩ ri dom Am+1

= ri
(
∩m

i=1 dom Ai
)
∩ ri dom Am+1

= ri dom(A1 + · · ·+ Am) ∩ ri dom Am+1.

Therefore, ∩m+1
i=1 ri dom Ai 6= ∅ implies that ∩m

i=1 ri dom Ai 6= ∅ and that ri dom(A1 +
· · · + Am) ∩ ri dom Am+1 6= ∅. By the inductive hypothesis we have A1 + · · · + Am is
maximally monotone. The proof then follows from applying Fact 6.1 to the maximally
monotone operators A1 + · · ·+ Am and Am+1. �
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6.2 Further closedness results

Theorem 6.3 Let E be a nonempty nearly convex subset in Rn and let A be a linear transforma-
tion from Rn to Rm. Suppose that (∀z ∈ rec(cl E) \ {0}) with Az = 0 we have that z belongs to
the lineality space of cl E. Then

cl AE = A(cl E),

and
rec A(cl E) = A(rec(cl E)).

Proof. Since E is nonempty and nearly convex, it follows from Fact 2.14 that ri E is a
nonempty convex subset and cl (ri E) = cl E. Therefore by assumption on E we have
(∀z ∈ rec(cl (ri E)) \ {0} = rec(cl E) \ {0}) with Az = 0 we have that z belongs to the
lineality space of cl (ri E) = cl E. Using Theorem 4.2(ii) we have

cl AE = cl [A(ri E)]. (32)

Using (32), Fact 2.11 applied to the nonempty convex set ri E, and Fact 2.14, we obtain

cl AE = cl [A(ri E)] = A(cl (ri E)) = A(cl E),
rec A(cl E) = rec A(cl (ri E)) = A(rec(cl (ri E))) = A(rec(cl E)), (33)

as claimed. �

As a consequence, we have:

Corollary 6.4 Let (Ei)i∈I be a family of nonempty nearly convex subsets in Rn satisfying the
following condition: if (∀i ∈ I)(∃zi ∈ rec(cl Ei)) and ∑i∈I zi = 0 then (∀i ∈ I)zi belongs to the
lineality space of cl Ei. Then

cl (E1 + · · ·+ Em) = cl E1 + · · ·+ cl Em = cl (ri E1) + · · ·+ cl (ri Em),

and

rec[cl (E1 + · · ·+ Em)] = rec(cl E1) + · · ·+ rec(cl Em) = rec(ri E1) + · · ·+ rec(ri Em).

Proof. Define a linear mapping A : Rn× · · · ×Rn → Rn by A(x1, . . . , xm) := x1 + · · ·+ xm
where xi ∈ Rn. The set E := E1 × · · · × Em is nearly convex in Rn × · · · ×Rn. It suffices
to apply Theorem 6.3, Lemma 5.3, and Proposition 5.4. �

Corollary 6.4 generalizes Fact 2.12 from convex sets to nearly convex sets.
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7 Examples of nearly convex sets as ranges or domains of
subdifferential operators

It is natural to ask: is every nearly convex set a domain or a range of the subdifferen-
tial of a lower semicontinuous convex function, or a domain or a range of a maximally
monotone operator? While we cannot answer the question, we construct some interest-
ing proper lower semicontinuous convex functions with prescribed domains or ranges of
subdifferentials. Our constructions rely on the sum rule of subdifferentials for a sum of
convex functions, while each convex function has a subdifferential domain with specific
properties.

Recall that for a proper lower semicontinuous convex function f : Rn → ]−∞,+∞], its
subdifferential at x ∈ Rn is

∂ f (x) := {u ∈ Rn | (∀y ∈ Rn) 〈y− x, u〉+ f (x) ≤ f (y)}

when f (x) < +∞; and ∂ f (x) := ∅ when f (x) = +∞. If f is continuous at x (e.g., when
x ∈ int dom f ), then ∂ f (x) 6= ∅; if f is differentiable at x, then ∂ f (x) = {∇ f (x)}. Fact 8.2
provides a convenient tool to compute ∂ f . A celebrated result due to Rockafellar states
that the subdifferential mapping ∂ f is a maximally monotone operator, see, e.g., [26, The-
orem 12.17], [28, Theorem 3.1.11]. In [24, page 218], Rockafellar gave a proper lower
semicontinuous convex function whose subdifferential domain is not convex. (Rockafel-
lar’s function is Example 7.5 when α = 1.) According to Fact 2.17, dom ∂ f must be nearly
convex. The Fenchel conjugate f ∗ of f is defined by

(∀ x∗ ∈ Rn) f ∗(x∗) := sup
{
〈x∗, x〉 − f (x) | x ∈ Rn}.

The conjugate f ∗ is a proper lower semicontinuous convex function as long as f is, and
∂ f ∗ = (∂ f )−1. The indicator function of a set C ⊆ Rn is

ιC(x) :=

{
0 if x ∈ C;
+∞ otherwise.

A brief orientation about our main achievements in this section is as follows. We show
that: Every open or closed convex set in Rn is a domain of a subdifferential mapping, so
are their intersections under a constraint qualification; Every nearly convex set in R is a
domain of a subdifferential mapping; In R2 every polyhedral sets with its edges removed
but keeping its vertices is a domain of a subdifferential mapping.
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7.1 Some general results

A set A ⊆ Rn is absorbing if for every x ∈ Rn there exists sx such that x ∈ tA when
t > sx. Define the gauge function of A by

ρA(x) := inf
{

t | t > 0, x ∈ tA
}

.

Then ρA is finite-valued, nonnegative, and positive homogeneous.

Theorem 7.1 Let C ⊆ Rn be open convex set. Then there exists a lower semicontinuous convex
function g : Rn → ]−∞,+∞] such that such that ran ∂g = C, equivalently, dom ∂g∗ = C.

Proof. Take x0 ∈ C, and let A := C− x0. Define the lower semicontinuous convex function

g(x) :=

{
1

1−ρA(x) if x ∈ A,

+∞ otherwise.

The convexity of g follows from that ρA is a finite-valued convex function on Rn, A ={
x ∈ Rn | ρA(x) < 1

}
by [15, Exercise 2.15], and that t→ 1

1−t is increasing and convex on
[0, 1). Since

∂g(x) =

{
∂ρA(x)

(1−ρA(x))2 (∀x ∈ A),

∅ otherwise,

we have dom ∂g = A, so ran ∂g∗ = ran(∂g)−1 = A. Then ran ∂(g∗ + 〈x0, ·〉) = A + x0 =
C. �

Theorem 7.2 Every nonempty closed convex set C ⊆ Rn is a domain or range of a subdifferential
mapping of a proper lower semicontinuous convex function.

Proof. The proper lower semicontinuous convex function ιC has ∂ιC = NC so that
dom ∂ιC = C. Its Fenchel conjugate σC := ι∗C has ran ∂σC = ran(∂ιC)

−1 = C. �

Corollary 7.3 Assume that (∀i = 1, . . . , m) Oi ⊆ Rn is open convex, that (∀j =
1, . . . , k) Fj ⊆ Rn is closed convex, and that

(∩m
i=1Oi)

⋂
(∩k

j=1 ri Fj) 6= ∅. (34)

Then there exists a lower semicontinuous convex function f : Rn → ]−∞,+∞] such that
dom ∂ f = (∩m

i=1Oi)
⋂
(∩k

j=1Fj), equivalently, ran ∂ f ∗ = (∩m
i=1Oi)

⋂
(∩k

j=1Fj).
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Proof. Without loss of generality, we can assume 0 ∈ (∩m
i=1Oi)

⋂
ri(∩k

j=1Fj). For each Oi,
as in Theorem 7.1, define a lower semicontinuous convex function

gi(x) :=

{
1

1−ρOi
(x) if x ∈ Oi,

+∞ otherwise.

For each Fj, as in Theorem 7.2, define a lower semicontinuous convex function ιFj . For the
lower semicontinuous convex function

f := g1 + · · ·+ gm + ιF1 + · · ·+ ιFk ,

the constraint qualification (34) guarantees that the subdifferential sum rule applies, see,
e.g., [24, Theorem 23.8] or [4, Corollary 16.39]. This gives

∂ f = ∂g1 + · · ·+ ∂gm + ∂ιF1 + · · ·+ ∂ιFk .

Therefore, the subdifferential operator ∂ f has

dom ∂ f = (∩m
i=1 dom ∂gi)

⋂
(∩k

j=1 dom ∂ιFj) = (∩m
i=1Oi)

⋂
(∩k

j=1Fj).

�

7.2 Nearly convex sets in R

Suppose that C is a nonempty nearly convex subset of R. Then either C is a singleton or
C is an interval, and consequently C is convex.

Theorem 7.4 Suppose that C is a nonempty nearly convex (hence convex) subset of R. Then
there exists a proper lower semicontinuous convex function f : R → ]−∞,+∞] such that
dom ∂ f = C. Consequently, ran ∂ f ∗ = C.

Proof. We argue by cases.
Case (i): C is closed. This covers C := (−∞,+∞), (−∞, b], [a,+∞), [a, b] where a, b ∈ R.
We let f := ιC. Then ∂ f = NC has dom ∂ f = C.

Case (ii): C := (a,+∞) or (−∞, b). We only consider C = (a,+∞), since the arguments
for C := (−∞, b) is similar. Let

f (x) :=

{
1

x−a if x > a,
+∞ otherwise.
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Then

∂ f (x) =

{
− 1

(x−a)2 if x > a,

∅ otherwise,

has dom ∂ f = (a,+∞).

In the remaining cases, we can and do assume a, b ∈ R.

Case (iii): If C :=]a, b[ with a, b ∈ R and a < b, we put

f (x) :=

− b−a
π ln cos

(
π(x−a)

b−a −
π
2

)
if a < x < b,

+∞ otherwise.

Then

∂ f (x) =

tan
(

π
b−a (x− a)− π

2

)
if a < x < b,

∅ otherwise.

has dom ∂ f = (a, b).

Case (iv): C is half-open interval. Suppose without loss of generality that C :=]a, b]
with a, b ∈ R and a < b. We put

f (x) :=

{
−
(

ln(x− a)− x
(b−a)

)
if a < x ≤ b,

+∞ otherwise.

Then

∂ f (x) =


1

a−x −
1

a−b if a < x < b,
[0,+∞[ if x = b,
∅ otherwise.

(35)

has dom ∂ f = (a, b]. �

7.3 Nearly convex sets in R2

We start with a complete analysis of the classical example by Rockafellar [24, page 218].
Often in literature, it only gives that dom ∂ f is not convex without details. His function
is modified for the convenience of our later constructions. The set of nonpositive real
numbers is R− :=

{
x ∈ R | x ≤ 0

}
.

23



Example 7.5 Let α > 0 and define f (ξ1, ξ2) : R2 → ]−∞,+∞] by

f (ξ1, ξ2) :=

max
{

α− ξ1
1
2 , |ξ2|

}
if ξ1 ≥ 0,

+∞ otherwise.
(36)

Then ∂ f (ξ1, ξ2) =

∅ if ξ1 < 0,
∅ if ξ1 = 0, and |ξ2| < α,
R− × {1} if ξ1 = 0, and ξ2 ≥ α,
R− × {−1} if ξ1 = 0, and ξ2 ≤ −α,

conv
{
(−1

2 ξ1
−1/2, 0), (0, 1)

}
if ξ2 = α−

√
ξ1, and 0 < ξ1 < α2,

conv
{
(−1

2 ξ1
−1/2, 0), (0,−1)

}
if −ξ2 = α−

√
ξ1, and 0 < ξ1 < α2,

(−1
2 ξ1
−1

2 , 0) if 0 < ξ1 < α2, and α−
√

ξ1 > |ξ2|,
(0, 1) if 0 < ξ1 < α2, and ξ2 > α−

√
ξ1,

(0,−1) if 0 < ξ1 < α2, and − ξ2 > α−
√

ξ1,

conv
{
(− 1

2α , 0), (0, 1), (0,−1)
}

if ξ1 = α2, and ξ2 = 0,

conv {(0, 1), (0,−1)} if ξ1 > α2, and ξ2 = 0,
(0, 1) if ξ1 > α2, and ξ2 > 0,
(0,−1) if ξ1 > α2, and − ξ2 > 0.

(37)

Consequently,
ran ∂ f = {(ξ1, ξ2) | ξ1 ≤ 0, |ξ2| ≤ 1} , (38)

and the domain of ∂ f

dom ∂ f = {(ξ1, ξ2) | ξ1 > 0, ξ2 ∈ R} ∪ {(0, ξ2) | |ξ2| ≥ α} (39)

is almost convex but not convex. Moreover, the Fenchel conjugate of f is f ∗(x∗1 , x∗2) =

0 if x∗1 ≤ 0 and |x∗2 | = 1, or x∗1 = 0 and |x∗2 | < 1,
α2x∗1 if −1

2α ≤ x∗1 ≤ 0, and |x∗2 | ≤ 1 + 2αx∗1 ,

− (1−|x∗2 |)2

4x∗1
− α(1− |x∗2 |) if x∗1 < 0, and max{0, 1 + 2αx∗1} ≤ x∗2 ≤ 1,

− (1−|x∗2 |)2

4x∗1
− α(1− |x∗2 |) if x∗1 < 0, and − 1 ≤ x∗2 ≤ min{0,−(1 + 2αx∗1)},

+∞ otherwise.

(40)
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See Appendix A for its proof. A different example is given in [7].

Figure 2: A Maple [20] snapshot. Left: Plot of f with α = 1. Right: Plot of f ∗ with α = 1.

Example 7.6 Let α ≥ 0. Define f : R2 → ]−∞,+∞] by

f (x1, x2) :=

{
max{α−√x1, x2} if x1 ≥ 0,
+∞ otherwise.

Then

∂ f (x1, x2) =



(−1/2x−1/2
1 , 0) if x1 > 0, and x2 < α−√x1,

conv{(0, 1), (−1/2x−1/2
1 , 0)} if x1 > 0, and x2 = α−√x1,

{(0, 1)} if x1 > 0, and x2 > α−√x1,
∅ if x1 = 0, and x2 < α,
R− × {1} if x1 = 0, and x2 ≥ α,
∅ if x1 < 0.

In particular, dom ∂ f =
{
(x1, x2) | x1 ≥ 0

}
\
{
(0, x2) | x2 < α

}
is neither open nor closed,

but it is convex. The same holds for the range

ran ∂ f =
{
(x1, x2) | x1 ≤ 0, 0 ≤ x2 ≤ 1

}
\
{
(0, x2) | 0 ≤ x2 < 1

}
.

See Appendix A for its proof.
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We are finally positioned to construct proper lower semicontinuous convex functions
on R2 whose subdifferential domains are nearly polyhedral sets but nonconvex. Recall
that C ⊆ Rn is said to be polyhedral if it can be expressed as the intersection of a finite
family closed half spaces or hyperplanes, i.e.,

C =
(
∩m

i=1
{

x ∈ Rn | fi(x) ≤ 0
})⋂ (

∩k
j=1
{

x ∈ Rn | f j(x) = 0
})

where each fi is affine.

Theorem 7.7 In R2, every polyhedral set C having a nonempty interior and having edges re-
moved but keeping all its vertices is a domain of a subdifferential mapping of a proper lower semi-
continuous convex function on R2.

Proof. Each polyhedral set is closed and convex [26, Example 2.10]. Associated each edge
[xi, xi+1] of C, one can find a closed half space Hi ⊆ R2 contains C and has [xi, xi+1]
in its boundary. By using translation, rotation and dilation for the convex function in
Example 7.5, we can get a lower semicontinuous convex function fi : R2 → ]−∞,+∞]
such that dom ∂ fi = Hi\]xi, xi+1[. For each edge of the form emanating from xj in the
direction vj: Rj =

{
xj + τvj | τ ≥ 0

}
, one can find a closed half space Hj ⊆ R2 containing

C and has Rj in its boundary. Again, by using translation, rotation, and dilation for the
convex function in Example 7.6, we get a lower semicontinuous convex function f j : R2 →
]−∞,+∞] such that dom ∂ f j = Hj \

{
xj + τvj | τ > 0

}
. Define the lower semcontinuous

convex function f : R2 → ]−∞,+∞] by

f := ιcl C + ∑
i∈I

fi + ∑
i∈J

f j.

As int C 6= ∅, by the subdifferential sum rule we have ∂ f = ∂ιcl C + ∑i∈I ∂ fi + ∑i∈J ∂ f j.
The maximally monotone operator ∂ f has dom ∂ f = C. �

Immediately from Theorem 7.7, we see that each set in Figure 3 is the subdifferential
domain of a proper lower semicontinuous convex function on R2.
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Figure 3: A GeoGebra [17] snapshot. Nearly convex but not convex sets

As a concrete example, we have

Example 7.8 Suppose that f : R2 → ]−∞,+∞] is defined as f := ∑i∈I fi, where I :=
{1, 2, 3, 4} and (∀i ∈ I) fi are defined as

f1 : R2 → R : (x, y) 7→ max
{√

2−
√

1√
2
(2 + x− y), | 1√

2
(2 + x + y)|

}
, (41)

f2 : R2 → R : (x, y) 7→ max
{

3−
√

1 + y, |x|
}

, (42)

f3 : R2 → R : (x, y) 7→ max
{

1−
√

1− y, |x|
}

, (43)

f4 : R2 → R : (x, y) 7→ max
{√

2−
√

1√
2
(2− x− y), | 1√

2
(−2 + x− y)|

}
. (44)

Then f is a proper, convex, lower semicontinuous function and

dom ∂ f = ran(∂ f )−1 = ran ∂ f ∗

= {(x, y) | |x| < 3, |y| < 1, 2 + x− y > 0, 2− x− y > 0} ∪ {(1, 1), (−1, 1), (3,−1), (−3,−1)} ,

as shown in Figure 4.
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(a) f (ξ1, ξ2) (b) dom ∂ f

Figure 4: The function f and dom ∂ f of Example 7.8.

Proof. Let

gα : R2 → R : (x, y) 7→
{

max
{

α−
√

x, |y|
}

, if x ≥ 0;
+∞, otherwise,

and

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Then (∀(x, y) ∈ R2) we have,

f1(x, y) = g√2(Rπ/4((x, y)− (−2, 0))),

f2(x, y) = g3(R−π/2((x, y)− (0,−1))),
f3(x, y) = g1(Rπ/2((x, y)− (0, 1))),
f4(x, y) = g√2(R5π/4((x, y)− (2, 0))).

As ∂ f = ∑i∈I ∂ fi, using Example 7.5, and particularly (39), we see that

dom ∂ f = ∩i∈I dom ∂ fi

= {(x, y) | |x| < 3, |y| < 1, 2 + x− y > 0, 2− x− y > 0} ∪ {(1, 1), (−1, 1), (3,−1), (−3,−1)} .

Using [4, Proposition 16.24] we have (∂ f )−1 = ∂ f ∗, which completes the proof. �

We finish this section by remarking that each set in Figure 1 is a subdifferential domain
of a proper lower semicontinuous convex function. For the first set, use f := ιB(0,1) +
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g1 + g2 where each gi has dom ∂gi being an open convex set whose boundary consists of
one dotted line part of the unit circle and two dotted rays tangent to the circle. For the
second set, use f := ιB(0,1) + g1 + g2 where each gi is obtained by rotation and translation
of Rockafellar’s function, and dom ∂gi is a closed half space with an open line segment
on its boundary removed.

8 Discussions and open problems

In this paper we systematically study nearly convex sets: criteria for near convexity; topo-
logical properties such as relative interior, interior, recession cone of nearly convex sets;
formulas for the relative interiors and closures of nearly convex sets, which are linear im-
age or inverse image of other nearly convex sets. Rockafellar provided the first convex
function whose subdifferential domain is not convex. To build more examples, we com-
pute the subdifferential and the Fenchel conjugate of an modified Rockafellar’s function.
It turns out every polyhedral set in R2 with edges removed but keeping its vertices is a
domain of the subdifferential mapping of a proper lower semicontinuous convex func-
tion.

Although we have constructed some proper lower semicontinuous convex functions
whose subdifferential mappings have prescribed domain or ranges, the general problem
is still unsolved. Let us note that

Theorem 8.1 Let C ⊆ Rn (not necessarily convex). Then there exists a monotone operator (not
necessarily maximal monotone) A : Rn ⇒ Rn such that ran A = C.

Proof. Consider the projection operator PC : Rn ⇒ Rn. Then PC is monotone because
gra PC ⊆ gra Pcl C, and Pcl C is monotone by [26, Proposition 12.19]. Clearly ran PC = C.
�

According to [26, Theorem 12.20], a closed set C ⊆ Rn is convex if and only if PC is
maximally monotone. Therefore, it is the maximality to force C having more structural
properties.

We finish the paper with three open questions:

(i) Is every convex set a domain or range of a subdifferential mapping of a proper
lower semicontinuous convex function (or a maximally monotone operator) in Rn

with n ≥ 2?

(ii) Is every nearly convex set a domain or range of a subdifferential mapping of a
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proper lower semicontinuous convex function (or a maximally monotone operator)
in Rn with n ≥ 2?

(iii) What is the intrinsic difference between the ranges of subdifferentials of proper
lower semicontinuous convex functions and the ranges of maximally monotone op-
erators?
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Appendix A

We shall need two facts. The first one is a structural characterization of ∂ f when a convex
function f is lower semicontinuous, and ∇ f is not empty. (See also [26, Theorem 12.67]
for the structure of maximally monotone operators.) The second one concerns the domain
of the Fenchel conjugate of convex functions.

Fact 8.2 ([24, Theorem 25.6]) Let f be a closed proper convex function such that dom f has a
non-empty interior. Then

∂ f (x) = cl(conv S(x)) + K(x), ∀x,

where K(x) is the normal cone to dom f at x (empty if x 6∈ dom f ) and S(x) is the set of all limits
of sequence of the form ∇ f (x1),∇ f (x2), . . . , such that f is differentiable at xi, and xi tends to x.

Lemma 8.3 Assume that f : Rn → ]−∞,+∞] is proper lower semicontinuous convex function.
If ran ∂ f is closed, then dom f ∗ = ran ∂ f .

Proof. As ran ∂ f = dom ∂ f ∗, by the Bronsted-Rockafellar’s theorem [23, Theorem 3.17]
or [4, Proposition 16.28], we obtain ran ∂ f ⊆ dom f ∗ ⊆ cl(ran ∂ f ). Therefore, the result
holds. �

I. Proof of Example 7.5

Proof. First, we calculate ∂ f . We argue by cases:
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(i) α −
√

ξ1 > |ξ2|, 0 < ξ1 < α2: ∇ f (ξ1, ξ2) =
{
(−1

2 ξ1
−1/2, 0)

}
because f (ξ1, ξ2) =

α− ξ1
1/2.

(ii) ξ1 = 0, |ξ2| < α: ∂ f (0, ξ2) = ∅. Indeed, by (i), lim(x1,x2)→(0,ξ2)∇ f (x1, x2) =

lim(x1,x2)→(0,ξ2)(−
1
2 x1
−1/2, 0) does not exists. Apply Fact 8.2.

(iii) ξ1 = 0, ξ2 ≥ α: ∂ f (0, ξ2) = R− × {1}. Note that Ndom f (0, ξ2) = R− × {0}. When
x2 > α−√x1, α2 > x1 > 0, we have f (x1, x2) = x2, so

lim
(x1,x2)→(0,ξ2)

∇ f (x1, x2) = {(0, 1)};

When α−√x1 > x2, 0 < x1 < α2, x2 > 0, we have f (x1, x2) = α− x1
1/2, so

lim
(x1,x2)→(0,ξ2)

∇ f (x1, x2) = lim
(x1,x2)→(0,ξ2)

(−1
2 x1
−1/2, 0)

does not exist. Apply Fact 8.2 to obtain ∂ f (0, ξ2).

(iv) ξ1 = 0, ξ2 ≤ −α: ∂ f (0, ξ2) = R− × {−1}. The arguments are similar to (iii).

(v) ξ2 > α−
√

ξ1, α2 > ξ1 > 0: ∂ f (ξ1, ξ2) = {(0, 1)} because f (ξ1, ξ2) = ξ2.

(vi) ξ2 = α −
√

ξ1, α2 > ξ1 > 0: Notice that f (ξ1, ξ2) = max { f1(ξ1, ξ2), f2(ξ1, ξ2)},
where f1(ξ1, ξ2) = α−

√
ξ1 and f2(ξ1, ξ2) = ξ2. When |ξ2| = α−

√
ξ1, ξ1 > 0, and

ξ2 > 0, we have f1(ξ1, ξ2) = f2(ξ1, ξ2), hence it follows from [26, Theorem 10.31]
that

∂ f (ξ1, ξ2) = conv {∇ f1(ξ1, ξ2),∇ f1(ξ1, ξ2)} = conv
{
(−1

2 ξ1
−1

2 , 0), (0, 1)
}

.

(vii) −ξ2 = α −
√

ξ1, α2 > ξ1 > 0: The proof is similar to the previous case with
f (ξ1, ξ2) = max { f1(ξ1, ξ2), f2(ξ1, ξ2)}, where f1(ξ1, ξ2) = α−

√
ξ1, and f2(ξ1, ξ2) =

−ξ2, thus
∂ f (ξ1, ξ2) = conv

{
(−1

2 ξ1
−1/2, 0), (0,−1)

}
.

(viii) ξ1 = α2, ξ2 = 0: We have f (ξ1, ξ2) = max { f1(ξ1, ξ2), f2(ξ1, ξ2), f3(ξ1, ξ2)}, where
f1(ξ1, ξ2) = α−

√
ξ1, f2(ξ1, ξ2) = ξ2 and f3(ξ1, ξ2) = −ξ2, thus

∂ f (ξ1, ξ2) = conv
{
(− 1

2α , 0), (0, 1), (0,−1)
}

.

(ix) When ξ1 > α2, f (ξ1, ξ2) = |ξ2| = max {ξ2,−ξ2}. If ξ2 > 0, then f (ξ1, ξ2) = ξ2, so
∂ f (ξ1, ξ2) = {(0, 1)}. If ξ2 < 0, then f (ξ1, ξ2) = −ξ2, so ∂ f (ξ1, ξ2) = {(0,−1)}. If
ξ2 = 0, then ∂ f (ξ1, 0) = conv{(0, 1), (0,−1)} = {0} × [−1, 1].
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Next, we calculate the Fenchel conjugate of f .

In view of (38), ran ∂ f is closed, so dom f ∗ = ran ∂ f by Lemma 8.3. Recall that

f ∗(x∗1 , x∗2) = x1x∗1 + x2x∗2 − f (x1, x2) (45)

We proceed by cases using (37).

(i) x∗1 ≤ 0 and x∗2 = 1: In this case x1 = 0 and |x2| = x2 ≥ α, hence f (x1, x2) = x2.
Therefore (45) implies that f ∗(x∗1 , x∗2) = x2 − x2 = 0.

(ii) x∗1 ≤ 0 and x∗2 = −1: In this case x1 = 0 and |x2| = −x2 ≥ α, hence f (x1, x2) = −x2.
Therefore (45) implies that f ∗(x∗1 , x∗2) = −x2 + x2 = 0.

(iii) −1/(2α) ≤ x∗1 ≤ 0 and |x∗2 | ≤ 1 + 2αx∗1 : In this case, this is exactly the region

given by the set conv
{
(− 1

2α , 0), (0, 1), (0,−1)
}
= ∂ f (α2, 0). Hence, by (37) we have

(x∗1 , x∗2) ∈ ∂ f (α2, 0) so that x1 = α2, x2 = 0 and f (x1, x2) = 0. Therefore,

f ∗(x∗1 , x∗2) = x1x∗1 + x2x∗2 − f (x1, x2)

= α2 · x∗1 + 0 · x∗2 − 0 = α2x∗1 . (46)

(iv) x∗1 < 0 and max{0, 1 + 2αx∗1} ≤ x∗2 < 1: In this case, this is the region given by⋃{
conv{(−1/2x−1/2

1 , 0), (0, 1)} : 0 < x1 < α2, x2 = α− x1/2
1

}
\ {(0, 1)}.

Then each (x∗1 , x∗2) ∈ conv
{
(− 1

2
√

x1
, 0), (0, 1)

}
for some (x1, x2) satisfying 0 < x1 <

α2, x2 = α− x1/2
1 . Thus, there exists λ ∈ ]0, 1] such that x∗1 = − λ

2
√

x1
and x∗2 = 1− λ.

Therefore we have 1√
x1

= − 2
λ x∗1 = − 2

1−x∗2
x∗1 ,
√

x1 = −1−x∗2
2x∗1

, x2 = α −√x1 = α +
1−x∗2
2x∗1

, and f (x1, x2) = α−√x1 = x2. Now (45) implies that

f ∗(x∗1 , x∗2) = x1x∗1 + x2x∗2 − f (x1, x2)

=
(1−x∗2)

2

4x∗1
2 x∗1 + (α +

1−x∗2
2x∗1

)x∗2 − (α +
1−x∗2
2x∗1

)

=
(1−x∗2)

2

4x∗1
+ (α +

1−x∗2
2x∗1

)(x∗2 − 1) = (1−x∗2)
2

4x∗1
− (1−x∗2)

2

2x∗1
− α(1− x∗2)

= − (1−x∗2)
2

4x∗1
− α(1− x∗2).

(v) x∗1 < 0 and −1 < x∗2 ≤ min{0,−(1 + 2αx∗1)}: In this case, this is the region given by⋃{
conv{(−1/2x−1/2

1 , 0), (0,−1)} : 0 < x1 < α2,−x2 = α− x1/2
1

}
\ {(0,−1)}.
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Then each (x∗1 , x∗2) ∈ conv
{
(− 1

2
√

x1
, 0), (0,−1)

}
for some (x1, x2) satisfying 0 <

x1 < α2,−x2 = α − x1/2
1 . As before, let λ ∈ ]0, 1]. Then x∗1 = − λ

2
√

x1
and x∗2 =

−(1 − λ) = λ − 1. Therefore we have 1√
x1

= − 2
λ x∗1 = − 2

1+x∗2
x∗1 ,
√

x1 = −1+x∗2
2x∗1

,

x2 = −(α−√x1) = −α− 1+x∗2
2x∗1

, and f (x1, x2) = α−√x1 = −x2. Now (45) implies
that

f ∗(x∗1 , x∗2) = x1x∗1 + x2x∗2 − f (x1, x2)

=
(1+x∗2)

2

4x∗1
2 x∗1 − (α +

1+x∗2
2x∗1

)x∗2 − (α +
1+x∗2
2x∗1

)

=
(1+x∗2)

2

4x∗1
− (α +

1+x∗2
2x∗1

)(x∗2 + 1) = (1+x∗2)
2

4x∗1
− (1+x∗2)

2

2x∗1
− α(1 + x∗2)

= − (1+x∗2)
2

4x∗1
− α(1 + x∗2) = −

(1−|x∗2 |)2

4x∗1
− α(1− |x∗2 |). (47)

(i)-(v) together finish the computation of f ∗.

Altogether, the proof is complete. �

II. Proof of Example 7.6

Proof. We argue by cases.

Case 1: x2 < α − √x1 and x1 ≥ 0. We have f (x1, x2) := α − √x1. When x1 > 0,
f (x1, x2) = α−√x1 so ∂ f (x1, x2) = (−1/2x−1/2

1 , 0); When x1 = 0 and x2 < α, f (0, x2) =
α, f (x1, x2) = α−√x1 when x1 > 0, so ∂ f (0, x2) = ∅.

Case 2: x2 > α−√x1 and x1 ≥ 0. When x1 > 0, f (x1, x2) = x2, ∂ f (x1, x2) = {(0, 1)};
When x1 = 0, ∂ f (0, x2) = (0, 1) + R− × {0}.

Case 3: x2 = α−√x1. When x1 > 0, ∂ f (x1, x2) = conv{(0, 1), (−1/2x−1/2
1 , 0)}; When

x1 = 0, x2 = α, ∂ f (0, α) = (0, 1) + R− × {0}. �
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[18] N. Hadjisavvas, S. Komlósi, and S. Schaible, “Handbook of generalized convex-
ity and generalized monotonicity, nonconvex optimization and its applications,”
Springer-Verlag, New York, 2005.

[19] R. John, “Uses of generalized convexity and generalized monotonicity in eco-
nomics,” In [18], pp. 619–666.

[20] http://www.maplesoft.com/.

[21] J.E. Martinez-Legaz, “Generalized convex duality and its economic applications,” In
[18], pp. 237–292.

[22] G.J. Minty, “On the maximal domain of a ”monotone” function,” Michigan Math. J. 8,
pp. 135–137, 1961.

[23] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, 2nd Edition,
Springer-Verlag, 1993.

[24] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

[25] R.T. Rockafellar, “On the virtual convexity of the domain and range of a nonlinear
maximal monotone operator,” Math. Ann. 185, pp. 81–90, 1970.

[26] R.T. Rockafellar and R. J-B Wets, Variational Analysis, Springer-Verlag, corrected 3rd
printing, 2009.

[27] S. Simons, From Hahn-Banach to Monotonicity, Springer-Verlag, 2008.
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