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An interior-point trust-funnel algorithm

for nonlinear optimization

Frank E. Curtis,»"? Nicholas I. M. Gould,>? and Daniel P. Robinson®® and Philippe L. Toint”

ABSTRACT

We present an interior-point trust-funnel algorithm for solving large-scale nonlinear optimization prob-
lems. The method is based on an approach proposed by Gould and Toint (Math. Prog., 122(1):155-196,
2010) that focused on solving equality constrained problems. Our method, which is designed to solve
problems with both equality and inequality constraints, achieves global convergence guarantees by com-
bining a trust-region methodology with a funnel mechanism. The prominent features of our algorithm
are that (i) the subproblems that define each search direction may be solved approximately, (ii) criti-
cality measures for feasibility and optimality aid in determining which subset of computations will be
performed during each iteration, (iii) no merit function or filter is used, (iv) inexact sequential quadratic
optimization steps may be computed when advantageous, and (v) it may be implemented matrix-free
so that derivative matrices need not be formed or factorized so long as matrix-vector products with
them can be performed.
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1 Introduction

In this paper, we introduce a method for solving optimization problems of the form

minimize f(z) subject to c(x) <0, (NP)
zeRN

where f: RY — R and ¢ : RY — RM are twice continuously differentiable. (Our method can also be
applied when equality constraints are present, but, for simplicity in our discussion, they are suppressed
in our algorithm development and analysis; see §§ for further discussion.) Our algorithm is designed to
solve large-scale instances of (NP). In particular, it is designed to be matrix-free in the sense that an
implementation of it only requires matrix-vector products with the constraint Jacobian, its transpose,
symmetric approximations of the Hessian of the Lagrangian, and corresponding preconditioners. That
is, iterative methods may be used to approximately solve each subproblem arising in the algorithm.

The method we propose utilizes components of both interior-point (IP) and sequential quadratic
optimization (commonly known as SQP) methods. Algorithms of this type are often referred to as
barrier-SQP methods. The interior-point aspects of our algorithm allow us to avoid the combinatorial
explosion that may occur within, say, an active-set approach. The efficiency of interior-point methods for
solving linear and convex quadratic optimization problems has been well-established [T1,7}[T2HT4}[18}[19]
261[301[32]. Extending these methods for solving nonlinear problems has been the subject of research for
decades [BI46,T533H37] and numerical evidence illustrates strong performance. We follow an approach
similar to Byrd et. al. [3l[4] and solve a sequence of so-called barrier subproblems for decreasing values of
the barrier parameter. This means that we must solve a sequence of equality constrained subproblems,
and these may be solved efficiently with an SQP-based method. It is well known that traditional SQP
methods are very efficient for solving small- to medium-sized optimization problems [8,[9},16]17], while
more recently proposed SQP methods utilize exact second derivatives and are, in theory, capable of
solving large problems [2TH23|[3T]. Preliminary results when solving small- to medium-sized problems is
promising, but their effectiveness on large problems has not yet been confirmed. There have, however,
been several proposed SQP strategies that have proved capable of solving large equality constrained
problems [2125[29].

In this paper, we use the trust-funnel approach originally described in [25], and then corrected
in [24], as the basis for solving a sequence of equality constrained barrier subproblems that arise in an
interior-point framework. We note, however, that a naive implementation of the SQP method described
in [241[25] within an interior-point paradigm may result in a method for which the establishment of
convergence guarantees is elusive. This is a consequence of the fact that interior-point methods—as
their name suggests—require the algorithm iterates to remain in the strict interior of the feasible region
associated with the inequality constraints, while the method in [24125] does not innately possess the
mechanisms necessary to avoid the boundary of the feasible region in this context. In this paper, we
describe modifications of this trust-funnel method that are appropriate for our interior-point setting.
These modifications include imposing explicit constraints in the trust-region subproblems to ensure
that the iterates remain in the strict interior of the feasible region, and the incorporation of scaled
trust-region constraints and optimality measures. Scalings of these types have been used previously in
interior-point methods; e.g., see [3,[6].

The paper is organized as follows. In Section 2, we introduce our trust-funnel algorithm for solving
the barrier subproblem in an interior-point approach. In Section Bl we prove that our trust-funnel
algorithm will terminate finitely with arbitrarily small positive tolerances on the criticality measures.
In Section @ we consider convergence of the barrier subproblem solutions for a decreasing sequence of
the barrier parameter. Finally, conclusions are provided in Section
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Notation

The gradient and Hessian of f at x are written as g(z) and V,f(x) respectively. The M x N matrix

J(x) represents the Jacobian of the constraint function ¢ evaluated at x, with its jth row being Ve, (z)7.

The matrix V,c;(x) is the Hessian of ¢; evaluated at . We let e denote the vector of all ones and I
denote the identity matrix, both of whose dimensions are determined by the context in which they are
used. Given a vector s € RM | [s]; is the jth element of s and S := diag([s]1, [s]2, ..., [s]a). A forcing
function w : [0,00) — [0, 00) is defined as any continuous and strictly increasing function that satisfies
w(0) =0.

Preliminaries

We make the following assumption throughout the paper.
Assumption 1.1. The functions f and c are twice continuously differentiable.

Problem (NP)) is not solved directly by our algorithm. Rather, we introduce a vector of slack
variables s € RM and solve the equivalent optimization problem

inimize subject to ,8) 1= +s5s=0, s>0. NPs
mrélnlxrflvl,l;nelﬂzwf f(z) subj c(z,s) :=c(z) +s s (NPs)

The following definition gives first-order stationarity conditions for (NPd) [27.28].

Definition 1.1 (First-order KKT point for problem (NPg)). The vector triple (x,s,y) is a first-order
KKT point for problem (NPd) if it satisfies

g(@)+ J(x) 'y =0, c(x,s)=0, Sy=0, and (s,y) > 0.
To solve (NPs), we compute a sequence of (approximate) minimizers of the barrier subproblem

minimize x,s) subject to c(x,s) =0, s>0, 1.1
minimize, f(2.5) subject o c(z,s) (1)

where for each fixed value of ;1 > 0 we define the barrier function

M
fz,5) = f(z) —uzln([S]i)- (1.2)

Given a Lagrange multiplier estimate vector y for the constraint ¢(z,s) = 0, the Lagrangian function
associated with (LI and its gradient with respect to (x, s) are given by

L(.I, Svy) = f('rv S) + C(Ia S>Ty and v(m,s)‘c('rv Svy) = Vf(I, S) + J(.I, S)Tyv

where we define J(z,s) := Ve(x,s) = (J(z) 1) to represent the Jacobian of ¢(x,s) with respect to
(x,8). A primal-dual point (z,s,y) is called a first-order KKT point of the barrier problem (L)) if it
satisfies

Viz,)L(7,8,y) =0, c(x,5) =0, and (s,y) > 0.

Multiplying the second block of the first equation by S leads to the following equivalent definition.

Definition 1.2 (First-order KKT point for the barrier subproblem (LII)). The vector triple (z, s,y) is
a first-order KKT-point for the barrier subproblem (1) if it satisfies

g(z) + J(I)Ty =0, Sy=upe, c(x,s)=0, and (s,y)>0.
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A comparison of Definitions[[.T] and [[.2 suggests that KKT points of the barrier subproblem become
increasingly accurate solutions to problem (NPs) for decreasing values of the barrier parameter p.

2 A Trust-Funnel Algorithm for Solving the Barrier Subprob-
lem

In this section, we present our trust-funnel algorithm for (approximately) solving the barrier subprob-
lem (ITJ) for a fixed value of the barrier parameter p > 0. As p is fixed for a particular instance of (ILT),
the dependence on p of certain quantities in this section is ignored. However, these dependences—in
particular, with respect to criticality tolerances that are employed in the algorithm—will be a central
focus in §4] that addresses the “outer” algorithm for solving problem (NPJ).

2.1 Algorithm overview

Our method generates a sequence {(x, si, yx) } of primal, slack, and dual variables. In addition, defining
the measure of constraint violation

v(z, s) := [|c(z, 5)]|2, (2.3)
our method maintains a monotonically decreasing sequence of positive scalars {vy*} such that
s >0, c(ag,sx) >0, vk i=v(wg, sp) < vp™, and vpPy < op™ forall £ > 0. (2.4)

We require sg > 0, and the restriction that sy > 0 is maintained via explicit constraints imposed on
all search direction calculations. Additionally, we ensure that ¢(xg, sx) > 0 holds at the beginning of
iteration k by incorporating a slack reset procedure that sets

(sili [skli if [c(zk, sk)li = 0, (2.5)
’ —[e(xg)];  otherwise.
If we let s denote the value of sj, prior to the slack reset in iteration k, then it follows that
v < v(xg, Sp), SZ“"’“ < sk, and f(xzg,sk) < f(xg, 52’”“). (2.6)

That is, both the barrier function and constraint violation decrease as a result of the (trivial) slack reset
computation (2.5]). We explicitly enforce vy, < vp™ with the updating strategy discussed in Section 241
Finally, the sequence {vj**} is positive and monotonically decreasing by construction and guides the
iterates toward feasibility; the set of points permitted by the gradually narrowing region defined by
v(z,s) < vp* is called the funnel [24,125]. Overall, the claims in (24]) are formally established in
Section

Given the current estimate (zy, si) of a solution of (ITl), a trial step dj, := (df, d;) is computed as

the sum of a “normal” step ny := (n§,nj) and a “tangential” step ¢ := (¢7,¢5), i.e.,

dy = ( l;) —( lz)—l—(?) =ng + tk.
dy Ny tk
The normal step is computed to (approximately) minimize a Gauss-Newton model of v at (x, sg);
thus, it has the purpose of reducing linearized infeasibility. The tangential step ¢ is intended to reduce
the barrier function (LZ) and is calculated as an (approximate) minimizer of a quadratic model of
the barrier function within an appropriate subspace that does not undo the improvement in reducing

linearized infeasibility achieved by ng. Once di = ng + t; is computed, an attempt to decrease the
constraint violation and/or barrier function is made, where the decision of which to consider is based
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on quantities that reflect the overall merit of the constituent steps. We discuss these details in turn in
the following subsections.

2.2 The normal step

The normal step is designed to predict a reduction in constraint violation as measured by v defined
in (Z3). To achieve this goal, we compute the normal step nj := (nf,n;) as an approximate solution
of

minimize mj(n) subject to [P, 'n|ls < min{d}, k.7p}, Sk + N > Kawsk, (2.7)

n=(n%ns)

where k, > 1 and ke, € (0,1) are constants, d; > 0 is a dynamic algorithm parameter, and we define

I 0
my(n) = [lc(zy, sk) + J (2, sp)nl2 and Py o= (0 Sk) (2.8)

along with the “v-criticality” measures

/o if v #0,
0 otherwise.
(2.9)
The quantities 7 and x} serve as criticality measures at (zj, si) for minimizing v subject to the slacks
being nonnegative. The scaling matrix Py is important in the trust region constraint since it assists in
keeping the iterates within the nonnegative orthant; it restricts [n}]; to be relatively small when [sg];
is close to zero. Overall, problem (27) involves the local minimization of the norm of a Gauss-Newton
approximation of v at (z, s;) subject to a trust-region constraint and a fraction-to-the-boundary rule.

= (Tk, Sk) 1= ||PkJ(ark,sk)Tc(a:k,sk)||2 and xjp = x" (g, sk) := {

It is not necessarily prudent to compute a normal step in every iteration. Indeed, computing a
normal step may be wasteful if the current iterate is nearly feasible and computational efforts may be
better spent on computing a new Lagrange multiplier estimate or tangential step. In our algorithm, we
only require a normal step to be computed when either our v-criticality measure 7} is sufficiently large
relative to our previous “f-criticality” measure 7r£71 (defined in (2:28) in the next subsection), or when
vy, is sufficiently large relative to vp™ (see (2:4)). Specifically, for some ., € (0, 1) and forcing function
wy, (and with xf 1 = 0), we require the computation of a normal step if either

T > wn(wgil) Or U > Ry Up™. (2.10)

(If (210)) does not hold, but 7w} > 0, then one may still consider computing a normal step since the fact
that 77 > 0 implies that the computation would be well-defined. However, in such cases, a normal step
is not necessary for our convergence analysis.) When a normal step is not computed, we set ng < 0.

By an approximate solution to (2.1), we mean that ny := (n},n})—when it is computed—should
be feasible for (27) and yield a decrease in m} no less than that achieved along a scaled steepest
descent direction for (m};)2 The scaled steepest descent direction that we employ for this comparison
is derived in the following manner. Performing the change of variables n* := P,~ ' so that the trust-
region constraint becomes |[n”||2 < min{dY, 7V}, the transformed problem for minimizing (m?)? has
the conventional £3-norm steepest descent direction —Py.J(x, s1)Te(zk, s1). Returning to the original
space gives the scaled steepest descent direction —P2.J (zy, si)Te(zy, si). For @), we define the Cauchy
step nf, = (ng*, n;®) as the minimizer of the objective of (27) in this scaled steepest descent direction,
i.e.,

" ()
ni* (@)

ng = nj(ay), where ni(a) = < > = —aP2J(xy, s1) " c(xk, k) (2.11)
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and oy is the solution to

mini>rr(}ize my(ng(a)) subject to [Py 'ng(a)llz < min{d}, k.mp}, sk +nEi(a) > Kpask.  (2.12)
aZ

We show in Lemma [2.8 that the decrease in mj}, obtained by n§, is positive.

Overall, when ([2.10) holds, we require a normal step ny satisfying the constraints of [2.7)), i.e.,
HPk_lnkH? < min{&zv Knﬂ—lg}v Sk + ni > KionSk) (2.13)

along with
Am" == mj(0) — mi(ng) > mi(0) — mp(nyg). (2.14)

Many steps satisty (2.13]) and ([2.14) with the simplest choice being ni = nf.

2.3 Lagrange multipliers and the tangential step

Having dealt with the normal step, we now consider computing estimates of an optimal Lagrange
multiplier vector and/or a tangential step. The multiplier estimates, if computed, are intended to
(approximately) minimize a measure of criticality for the barrier subproblem (LI]) that takes into
account changes in the problem function values that are predicted by the normal step. The tangential
step, if computed, is designed to reduce the barrier function without having too adverse an effect on
the reduction in linearized infeasibility predicted by the normal step. Since the conditions imposed on
the multiplier estimates and tangential step are intertwined—e.g., the computed multiplier estimates
are required to have a well-defined Cauchy point for the tangential step subproblem—we consider their
computations together in this subsection. Our motivation in this section is to compute quantities related
to those in a traditional SQP approach applied to subproblem (L.II).

Given the kth estimate y, of an optimal Lagrange multiplier vector, a traditional SQP trial step
associated with the barrier subproblem (1) is defined as the solution (when it exists) of

r;lir(lim;z)e f(ack,sk)—i—Vf(:Ck,sk)Td—i—%dTV(Iys)(z’S),C(:vk,sk,yk)d subject to c(xy, sg)+J (zk, s)d = 0.

It may be verified that a solution d = (d”, d®) of this subproblem (when it exists) satisfies

Vol zk,yr) J()™ 0 dr g(zk)
J(xg) 0 I y | =—|clzr,sk) |, (2.15)
0 Sk ,uS,;l d® —pe

where y is an estimate of an optimal Lagrange multiplier vector for the constraint ¢(z, sk)+J (zk, sk)d =
0. The SQP step generated in this fashion is often called a primal step since the dual vector y; does
not appear in ([2.I5) other than in the Hessian VL. We can instead compute a primal-dual step by
applying Newton’s Method to the conditions in Definition [[.2] which leads to

VoLl we,yr)  J(ax)™ 0\ [d* 9(zk)
J(zk) 0 I y | =— | clag,sk) | - (2.16)
0 Sk Yk d® —ue

This system is identical to (210, except that the (3, 3)-block now contains dual information. It is also
easily verified that a solution of (ZI6]) is a KKT point for

Igir(lcilméz)e f(zr, sk) + Vf(zr, si)Td + %dTH(:zzk, Sk,yr)d subject to c(xg, sk) + J(xk, sk)d =0,
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where

H (g, s, yn) = (Vmﬁ(iﬂk,yk) 0 ) '

0 YkSk*l

The previous paragraph, along with the widely accepted view that the primal-dual approach is gen-
erally superior to the primal approach in practice, motivates us to approximate the barrier function ([2])
with

mi(d) = f(ak, sk) + Vf(xn,sp)'d + %dTde, (2.17)
where, for all k, we define
,_ Vmﬁ(xk,y}?) 0
Gy = ( 0 D, (2.18)

with y? a (bounded) Lagrange multiplier vector satisfying
[yp]i >0 forallie {1,2,...,M} and |yg|l2 <k, for some scalar k, > 0, (2.19)
and choose D, ~ Y,.S, ! as a positive-definite diagonal matrix satisfying

IDyll2 < kp for some scalar ki, > 0. (2.20)

Overall, our goal is to compute a tangential step t; that satisfies m'}; (ng +tr) < m'}; (nk) and lies
approximately in the null space of the constraint Jacobian J(xg, sx) so as not to undo the predicted gain
in linearized feasibility provided by the normal step. This latter requirement implies that improvement
in the barrier function should be sought within the trust-region {d : ||P; 'd|s < 67}, since it is only
within this region that the linearized constraint model is believed to be trustworthy. In addition, we
assume that the barrier function model m£ may be trusted as a faithful representation within the
trust-region {d : || P, 'd||2 < 5{;} for a given tangential trust-region radius 5,{ > (. Consequently, we use

P ngll2 < kp min{6y, 67} with ks € (0,1) (2.21)

as a necessary condition for computing a tangential step. If (2.2I)) is satisfied, then we require the
computation of a new Lagrange multiplier estimate and, potentially, a tangential step. Otherwise, we
set yr < yr—1 and tx < 0 since the cost of computing new multipliers and a tangential step may be
wasteful.

When (227 is satisfied, we seek an approximate solution of the tangential step subproblem

minimize mi(nk +1)
t=(t",t%) (2.22)
subject to J(zg, s1)t =0, [Py (ng + t)]|2 < min{oy, 67}, sk +ni + 5> k(55 + 1)

for some kg, € (0,1). Observing the change of variables t* = P, 1, this subproblem is equivalent to

s f P
minimize my (ng + Pyt
tP:(th,tPS) k( k k )

subject to J(zy, sg)Pet” =0, [Py 'ng + 7|2 < min{éz,é,{}, 7 > (Kay — 1) (e + S} 'n3).

To define an appropriate Cauchy point, we first compute approximate least-squares multipliers corre-
sponding to the scaled subproblem at t¥ = 0, i.e., we compute y; as an approximate solution of

minimize mj (y), where mf(y) := %HP;C(Vm{(nk) + J(zk, 51) T y)||3. (2.23)

yeRIW

Scaling the resulting (approximate) projected gradient back into the original space, we obtain the
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(approximate) oblique projected gradient
T = TE(Yk) == P,S(Vmi(nk) + J(xk, s6) yr) (2.24)
and the related f-criticality measures

Vi () Tri (y)
] (yx)

f

f =7l (yk) = | Pe(Vmf (ne) + J (i, ) y) 2 and xf o= xf (i) = (2.25)

associated with minimizing the barrier function. In this computation, we require that y; and the
resulting 7, 7r£ , and x£ satisfy at least one of the following three sets of conditions:

71',]: <er and v < €3 (2.26a)
71',]: < wi(my); (2.26b)
x£ > nxwg. (2.26¢)

Here, {€r,€,} > 0 and &, € (0,1) are constants and w; is a forcing function. For technical reasons (in
the proof of Lemma 2.6{vii)), we require that the functions w, and w; (see [ZI0) and (2.26D))) satisfy

wi(wn (7)) < k,7 for all 7 > 0 and for some «,, € (0,1). (2.27)

The presence of Py in (Z23]) forces components of the approximate projected gradient in (Z24) to
be large when the corresponding components of s; are small. Thus, this scaling matrix helps prevent
slack variables from approaching zero, just as it did in the formulation of the normal step subproblem
@0). Later, Lemma 2.T0 shows that we can always satisfy one of the three sets of conditions in (2.26)),
and thus this strategy for computing y; (and the related quantities r, 7T£ , and X;é) is well-posed.

If [226a) is satisfied, then (zg,sk,yx) is an approximate first-order KKT point for the barrier
subproblem for the tolerances {e,,€,} > 0, so we terminate the algorithm for solving (I.I)). However,
if (226al) is not satisfied, but ([2.26H]) holds, then the f-criticality measure 7r£ is insubstantial compared
to the v-criticality measure 7. In this case, the computation of a tangential step is skipped, i.e.,
we simply set ¢, < 0. Otherwise, when (226a) and (226D) do not hold (and necessarily (226d)
holds), we proceed to compute a tangential step. In this case, it follows from the definition (2.23]),
the condition (Z26d) and the fact that m] > 0 (since otherwise (226h) would have held) that 7y, is
a direction of strict ascent for m? (-) at ng. This property allows us to compute a tangential step tj
satisfying one of two sets of conditions as outlined in the following two subsections. Our choice of which
set of conditions to satisfy depends on whether a normal step is computed. Specifically, if ny # 0, then
we require the computation of what we call a relaxed SQP tangential step. Otherwise, if ny = 0, then
we are still free to attempt to compute a relaxed SQP tangential step, but we may instead compute
what we call a very relaxed SQP tangential step. In such a case, this latter option may be preferable
as it involves a weaker restriction on linearized infeasibility of the step.

2.3.1 A relaxed SQP tangential step

Given constants kg, € (0,1) and k,, € (0,1), a relaxed SQP tangential step is defined as follows.

Definition 2.1 (Relaxed SQP tangential step). Define the Cauchy point

157 (@) ry
C ._ 4C(.C e} R k e k ——
ty, =1ty (ag), where ti(a):= <t§s(o¢)> = —a <7”Z) ary (2.28)
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and af is the minimizer of

minimize m£ (ng +t5 ()

a0 (2.29)
subject to [|Py (ng + t¢())|l2 < min{oy, 61}, sp +ng +t95(@) > kae(sn +n5).
Then, ty is a relazed SQP tangential step if
Am{’t = mi(nk) - mi(nk + ) > mi(nk) - m'};(nk +t%), 2.30a

(2.30a)
Skt ng 1t > Kee(Sk + 1), (2.30b)
[Py (g + ) ||2 < min{op, 6]}, and (2.30c)
my(ne + tk) < Keemp (0) + (1 — Keg)mg (ng). (2.30d)
Condition (2.30al) ensures that the model of the barrier function is decreased at least as much as by
the Cauchy point ¢{, (2.30D) is a fraction-to-the-boundary constraint, (2:30d) is a trust-region constraint,
and (2.30d) is a relaxation of the traditional SQP constraint that c(zy, sx) + J (2, sk)(nk +tx) = 0 that
ensures that linearized constraint infeasibility is sufficiently reduced.
If a relaxed SQP tangential step satisfying (2.30) is computed, then we must evaluate its usefulness
in the sense that we must ensure that a relatively large tangential step results in a sufficient decrease
in the model mi of the barrier function. With this in mind, we check whether the conditions

| Py |2 > kvs|| Py ngll2 for some ys > 1 (2.31)
and
Aml® = AmI™ + Amlt > k;Amlt for some ks € (0,1) with Am!™ == m{(0) —mf(ny)  (2.32)

are satisfied. The inequality ([2.32)) indicates that the predicted decrease in the barrier function obtained
from the tangential step is substantial when compared to the possible increase resulting from the normal
step. If the step tj satisfies ([231)) but violates ([Z32)), it does not serve its role so we reset it to zero.

2.3.2 A very relaxed SQP tangential step

Condition ([230) may be too restrictive in certain cases. Specifically, if vy = 0, then the algorithm will
set ng = 0, from which it follows that ([2.30d)) requires 5 to be in the null space of J(zy, sx). This is an
unreasonable requirement in matrix-free settings; indeed (2.30d)) may be unreasonable in any situation
when ny = 0. Thus, to avoid such a requirement, we allow for the computation of an alternative
tangential step. Given the constant kg, € (0,1) employed in (230B), a constant k, € (1,00), and a
constant k,, € (K., 1) (with s, € (0,1) defined for (2.10)), the salient feature of our alternative is that
it involves a relaxed condition on the linearized infeasibility of the step. We emphasize that we are
only allowed to compute a tangential step of this type when nj; = 0, though we incorporate n into the

conditions in the following definition so that one may more easily compare them to the conditions in
Definition 2.1}

Definition 2.2 (Very relaxed SQP tangential step). Define the Cauchy point

1= 19(aS),  where 19(a) = (tiz(a)> -~ —a (”ﬂ) — —an (2.33)

ti* (@)
and af is the minimizer of

s f c
minimize my (ng + 17 («

a>0 i £(@) , (2.34)
subject to ||Pk_1(nk +t5 () |2 < min{dy, 5{3‘,&1};“”‘}, Sk +ng +t5° () > Ka(sk +n7).
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Then, ti is a very relaxed SQP tangential step if

Ami’t = m',ﬁ(nk) — mi(nk +t) > mi(nk) — m'};(nk +t7), (2.35a)
Sp+ng + 1t > Ka(sk +n3), (2.35Db)

1P (g + tg)||2 < min{oy, 6], koop=}, and (2.35¢)

my(ng + tr) < K vp™. (2.35d)

Conditions (2.35al)-(2.35d) resemble and play the same role as conditions (2.30a)-([2.30d). However,
we emphasize that since the Cauchy point defined by (2.33)—([2.34) involves a potentially smaller trust-

region radius than that defined in (229), the bound imposed in (235a) may be different from that
imposed in ([2:30a), and this difference in the trust-region radii is matched in (Z35d) (c.f., 230d)). The
name “very relaxed SQP tangential step” has been chosen because of condition (2.35dl), which merely
requires that the predicted constraint violation be sufficiently less than a fraction of the upper bound
vpe* rather than a fraction of the current violation (c.f., (2.30d)). In fact, the smaller trust-region radii
in 234) and (Z35d) (as compared to those in ([229) and ([2:30d)) have been chosen to compensate for
this relaxation.

2.4 Tteration type, step acceptance, and updating strategy

As in other trust-region methods, once we have computed the trial step di := ng + tx and the trial
point
(xf, s) = (g, sk) + dy,

we are left with the task of accepting or rejecting them. Our proposal for making this choice is based
on the distinction between y-iterations, f-iterations and v-iterations in the spirit of [9HII]. This char-
acterization is made based on model values computed with the trial step, and the type of iteration
influences the updates performed for various algorithmic quantities.

2.4.1 A y-iteration

A y-iteration is any iteration satisfying the following definition.
Definition 2.3 (y-iteration). The kth iteration is a y-iteration if di = 0.

Note that a y-iteration will occur when ny, and ¢, are both set to zero, but could (in theory) occur if
ny = —t) and some components are nonzero. (This latter case is ruled out by Lemma 2.6|(vi).) During
a y-iteration, we perform the updates

(Tt 1, Sk41) 4 (Tro 8k)s Ohq < 0L, Oy < 0, and oY P (2.36)

Since a y-iteration is defined by a zero primal step, the only computation of interest is that of a new
vector of Lagrange multiplier estimates. Therefore, the updates in (230 leave the trust-region radii
and bound on the maximum allowed infeasibility unchanged for the subsequent iteration.

2.4.2 An f-iteration

The primary goal of an f-iteration is to reduce the barrier function.
Definition 2.4 (f-iteration). The kth iteration is an f-iteration if t;, # 0, 232) holds, and

v(f,s)) < ope (2.37)
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Condition (Z37) ensures that, at the trial point (2}, s;), the constraint violation remains within
the upper bound imposed by vp*. Combining this with the fact that (Z32)) holds, it follows that the
main achievement of interest is a predicted decrease in the value of the barrier function (2.

Our updating strategy for f-iterations is based on the quantity

ol = flaw, si) = flag,sh)
g Am'};’d

; (2.38)

that measures the ratio of actual-to-predicted decrease in the barrier function. Specifically, if p£ >,

we set
(@rr1ss041) < (2, 87) (2.39)
[5p11]s — [Sk+1]i if [e(zry1,5041)] > 0, (2.40)
M —[e(zk41)];i  otherwise,
sf | €lloo) it pl >, (2.41)
MY e [725{;,5{;] otherwise,
h1 = max{rs,, ™ (Tkt1, Sk+1), ) } (2.42)

Otherwise (i.e., if p£ <m), we set

(Tht1s Sk41) + (Tks Sk, (2.43)
3l .1 € ol 7207, (2.44)
o1 & Op. (2.45)
In both cases, we set
Vg1 € U (2.46)

In Z39)-(246), the constants should be chosen to satisfy 0 < g1 <13 < 1,0 < 73 < 72 < 1, and
Ksu € (0,00). Overall, we accept the trial point (x7, s;) if the achieved decrease in the barrier function
is comparable to the predicted decrease (and reject it otherwise), update 5,’; 41 using a typical trust-region
updating strategy, possibly increase the normal step trust-region radius, and leave the infeasibility limit
unchanged (since the success or failure of an f-iteration depends only on whether the barrier function
was substantially reduced).

2.4.3 A v-iteration

When the conditions that define a y- and an f-iteration are not satisfied, the iteration type defaults to
that of a v-iteration. As we shall see in the convergence analysis of our algorithm, the main achievement
of interest in such an iteration is a reduction in constraint violation.

Definition 2.5 (v-iteration). The kth iteration is a v-iteration if it is not a y- or an f-iteration, i.e.,

if di, # 0 and either t, = 0, (232) does not hold, or (Z31) does not hold.

A measure of decrease one might expect in v from the trial step dj, is
Am?® = my(0) — my(dy). (2.47)
Indeed, our updating strategy in a v-iteration is based on the conditions

ni #0 and AmZ’d > Kea A" (2.48)
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for some constant .4 € (0,1 — k,,] C (0,1) with £,, defined in ([230d), and the quantity

. v —olal,sh)
pp = —— KTk (2.49)
Amy’

that measures the ratio of actual-to-predicted decrease in the constraint violation. Using these condi-
tions and quantities, if ([2.48) holds and p} > 11, we set

(Tha1, Sk41) < (27, 57) (2.50)
i if ; i >0,
oy o 4 Lk i fe(@e1, sicen)] (2.51)
—[e(xg+1)]):  otherwise,
v > max{Ks, T (Tpt1, Sk+1), 051 if p} > ma, (2.52)
M = max{Ks,, ™ (Tht1,Sk+1),05  otherwise, .
v < max{ Ko U™, U(Thg 1, Skt1) F Ko (vk - 'U(fL']gJ,.l,SkJ,_l))}. (2.53)
Otherwise (i.e., if ([2:48) does not hold or p} < 1), we set
(Tht1, Sk+1)  (Tk, S1), (2.54)
Op1 € [7105,720%], (2.55)
Pl ot (2.56)
In both cases, we set
5., + 6. (2.57)

In Z50)-(257), the constants should be chosen to satisfy {k., %} C (0,1), and we recall that xs,,
is defined in (242]). In this manner, the trial point is accepted if the normal step is nonzero and the
improvement in linearized feasibility is comparable to its predicted value, which is itself comparable to
the improvement yielded by the normal step. Moreover, the radius d;, ; is set by a standard trust-region
radius updating strategy, but the radius 5,{ 41 1s left unchanged. Finally, we decrease the upper bound
vp™ when the trial step is accepted. It will be shown in our convergence analysis that the amount that
this bound is decreased is nontrivial, but it is modest enough so that the funnel does not contract too
quickly.

2.5 The trust-funnel algorithm

We formally state our trust-funnel method as Algorithm [T on page For convenience in our conver-
gence analysis, we define several sets that classify each iteration, as well as the types of computations
performed in them. The first group of sets distinguishes between y-, f-, and v-iterations, respectively:

Y:={keN:d, =0}, F:={keN:t,#0and @32) and Z37) hold}, and V:=N\(YUF).
As can be seen by the results in Lemma below, these sets are mutually exclusive and exhaustive.

Our next collection of index sets distinguishes iterations for which the normal and/or tangential
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steps satisfy various conditions, and whether the tangential step was reset to zero:

N :={k € N: nj; was computed to satisfy [2I3)) and 2I4)};
T :={k € N : t;, was computed to satisfy either (230) or ([2.35)};
Tp :={k € T : the computed ¢, satisfied [230)};
To := {k € Tp : the computed ¢, satisfied [Z30) and (231), but not (Z32)), and was reset to zero}.

Furthermore the set of iterations for which dj satisfies the linearized constraint contraction condi-
tion (2.30d) plays an important role in our analysis. Thus, in addition to the sets above, we define

D := {k € N: the step d, = ny, + t) satisfies (2.30d)}.

Our last collection of sets distinguishes iterations that produce a change in the primal space. In
particular, if p'}; > 11 holds during an f-iteration, or if (2:48) holds and p} > m; during a v-iteration,
then iteration k is called successful. The following sets capture these types of iterations:

Sf = {ke]—':pizm}; Sy:={keV: @243 holds and p}, > m}; S:=8;US,.

When a tangential step is computed, the size of the step is restricted by a trust-region radius (see
([2:30d) and (2.35d)). For convenience, we capture these radii by defining § ; := 1 and, for k& > 0,

Ok ifk¢T,
5t = { min{6y, 6/} if k€ TN Tp, (2.58)
min{d}, 5,’;, koop>} itk e T\ Tp.

As a guide to the salient properties of the various types of iterations we have defined, we provide
the following lemma regarding basic facts that may be deduced from the design of our algorithm.
Unless stated otherwise, reference to the tangential step ¢; corresponds to the value used in Step
of Algorithm [ i.e., the value after the possible reset in Step For the purposes of this lemma, we

assume that if the algorithm does not terminate during iteration k, then all steps of the algorithm
during the iteration are well-defined. We prove this fact formally in the next subsection.

Lemma 2.6. If Algorithm [l does not terminate during the kth iteration, then the following hold.
(i
(ii

) Ifk € N, then x> 0, 7% > 0, m¥(0) — m¥(ng) > 0, my(0) — mp(nkg) >0, and ny # 0.

)
(i) If k € T, then X';ﬁ > I€X7T£ >0 and mi(nk) - m'}i(nk +t) > 0.

)

Ifn, #0, then k € N.

If k€ T\ To, then ty, # 0 and mi(nk) - m'}i(nk +ti) > 0, while if k € To, then t, =0 and (221
holds.

(iv

Ift, #0, then k€ T\ Tp.
k€Y if and only if ng =t = 0.

Ifke), then k € D and 7r£ < KW7T£71 with k., € (0,1) defined as in [221).

If k € D, then the inequality in (Z48) holds.

)

)

)

(viii) If k ¢ D, then k € T\ Tp and (Z38)) holds.

)

) To C D.
)

If ke T\ Tp, thenny =0 and k ¢ N.
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Proof. To prove part (i), let kK € A/, in which case we have that the conditions in Step @ held true. This
could occur only if 7} > 0, or if in (ZI0) we had m > wn(w{;_l) >0 or vy > K, vp**. Thus, to prove
that k € N implies mp > 0, all that remains is to investigate the case when v > k., v;2**. Since vi™ > 0
by construction, this inequality implies vy, > 0. If 7} = 0 (which, since vy > 0, implies x} = 0), then
the algorithm would have terminated in Step [§ with an infeasible stationary point. Thus, we may again
conclude that 7y > 0, which establishes this strict inequality for all £ € A. In turn, by (29) and the
fact that vy > 0 when 7} > 0, we must have x} > 0 for all £ € N. Now, since n} > 0, it follows that
—P2J(xg, s) T c(xk, si) is a direction of strict decrease for m at n = 0, from which it follows by 211
that m}(0) —mj(ny) > 0. In turn, 2I4) implies the remainder of part (i).

Part (ii) follows since if ng # 0, then the conditions in Step [@ must have held (or else the algorithm
would have set ny + 0), in which case k € .

Next, we prove part (iii). If k£ € T, then it follows from Steps of the algorithm that after the
computation of yx (and all dependent quantities) both (Z26al) and ([2.26H) did not hold (implying that
77}]: > 0), but (226d) did. Combining ([2:26d) and the fact that 7T£ > 0 yields Vmi(nk)Trk > Ky (7r,f)2 >0
(as desired), which implies that r is a direction of strict ascent for mi at ng. Combining this fact
with (228)/(@33) and @29)/@34) yields m] (ny) — mi (ny, + 1) > 0, as desired.

Building on the proof of part (iii), we next prove part (iv). If we have k € T\ T, then we may combine
mi (ny,) —mi (ny +1¢) > 0 with (230a)/(Z35a) to conclude that t;, # 0 and m] (ng) —ml (ng +tx) > 0,
as desired. (Since k ¢ To, this tangential step was not reset to zero, so we have maintained ¢ # 0 in
Step BHl) Finally, if k € 7o, it follows from Steps that ([221)) holds, but that the algorithm reset
tr < 0.

To prove part (v), we first note that if ¢ # 0, then a tangential step was computed and thus k € T.
Moreover, since ti # 0, we know that k ¢ 7o, which means k € T \ 7y, as desired.

We now prove part (vi). If ny = tx = 0, then di, = 0 and we have k € ) by the definition of Y; this
proves one direction. For the other direction, in order to derive a contradiction, suppose that k € ) (so
that dy, = ng +tx = 0), but that ng # 0 and/or t;, # 0. Indeed, since ny + tx = 0, we must have ny, # 0
and ti # 0. It then follows from parts (ii) and (v) that k € Y "N N (T \ Tp). Consequently, from part
(i) we have that m¥(0) > m}(nx). This fact and the equation nj + t; = 0 imply that (2.30d) must not
be satisfied. However, according to Steps of the algorithm, since k¥ € N' we compute t; to satisfy
230), a contradiction.

To prove part (vii), suppose k € Y. It follows from part (vi) that ny = ¢, = 0 so that ([2.30d)
holds (which means k € D, as desired), and then from part (i) that k& ¢ A. Hence, from Step [@ of the
algorithm, it follows that (ZI0) must be violated. Moreover, since nj = 0, we also know that (Z21]) holds
and thus an oblique projected gradient r; was computed (as stipulated in Step [[H]) to satisfy at least
one of ([Z264), (2:26h) and ([Z26d). In fact, under the conditions of this lemma, it follows that (226al)
must not have held, so we know that either (2.26D)) or ([2:26d) is satisfied as a result of this calculation.
Suppose that ([2.26d) holds so that the algorithm would have proceeded to compute a tangential step
and k € T. If k ¢ Ty, then it would follow from part (iv) that 5 # 0, which by part (vi) contradicts the
fact that k € ). Thus, we must have k € Ty, i.e., we reset t; < 0 because the computed tangential step
satisfied (223T)), but not (Z32). This is a contradiction because ([2332) would have been satisfied trivially
since ng = 0. Thus (2:26d) must not hold, which implies that (2.26b) must hold. Since we have shown
that (226H) holds and (ZI0) does not hold, we conclude that 7} < wi(n?) < wi(wn(ml_,)) < Kol 4,
where we have used the monotonicity of w; and (2:27]).

To establish part (viii), let k& ¢ D. It follows from part (vii) that & ¢ Y. Now, suppose that ¢, = 0.
Combining this with the fact that & ¢ ) implies from part (vi) that ny # 0, which may then be
combined with part (ii) to deduce that k € N. This fact along with part (i) and the fact that t; =0
implies that m} (ng + tg) < kemi(0) + (1 — ke)mp(ng) (c.f., 230d)), and hence k € D, which is a
contradiction. Therefore, we must have ¢ # 0, which from part (v) implies that k € T \ 7y and that
the computed tangential step was not reset to zero. Thus, t; satisfies either (230) or (Z33). In fact,
since k ¢ D so that (2.30d) is not satisfied, we conclude that k ¢ Tp and (2:35) must be satisfied.
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To prove part (ix), suppose k € D so that (2.30d) holds. It follows that

Amp® = mp(0) — mg(dy)
> my(0) — kmy(0) — (1 =k )mi(ny)

(
= (1= ko) (mE(0) = mi () = (1 — o) Am™, (2.59)

which, since k.4 € (0,1 — K], means that the inequality in ([2.48) holds, as desired.

To prove (x), let k € Tp. It follows that a relaxed SQP tangential step ¢, was computed to
satisfy (230). Thus, if ¢ is not reset to zero, we know that (2.30d)) holds. However, if ¢} was reset to
zero, then (2.30d)) holds trivially when nj = 0 and from parts (i) and (ii) when ns # 0. We have shown
in all cases that (2.30d)) holds, and therefore k € D.

Finally, to prove part (xi), let k € T \ Tp. By Steps of the algorithm, it follows that (Z33])
holds and k ¢ N for all k € T \ Tp. It then follows from part (ii) that nj = 0. O

2.6 Well-posedness

The purpose of this section is to prove that Algorithm [Ilis well-posed in the sense that if iteration k is
reached, then in a reasonable implementation of the algorithm, all computations within iteration &k will
terminate finitely. Our first result shows important consequences of the slack reset procedure.

Lemma 2.7. The slack reset (240) and (Z51)) in Steps[39 and[{]] yields s, such that (xy, sk) satisfies
sk > 0 and c(xg, sk) > 0.

Proof. The fact that s > 0 follows from the choice sg > 0, the fact that the slack reset ([2.40) and
(2351) only possibly increases the slack variables (as shown in (Z8])), and the fact that the fraction-to-
the-boundary rules in (2I3]) and (2.:30b)/(2.35b) hold when normal and tangential steps are computed.

We now prove that ¢(zy,s;) > 0 holds. Prior to the slack reset performed in Steps and [
if [¢(xk, sk)])i > 0, then (Z40) and (Z5I) leave [s]; unchanged so that [c(xk,sk)]; > 0 still holds.
Otherwise, if [¢(xg, s)]i < 0, then after the slack reset (2.40) and 2Z51) we have that [c(xy) + sx]: = 0,
which completes the proof. O

Next, we prove that the Cauchy step for the normal step subproblem is well-defined.
Lemma 2.8. If k € N, then the Cauchy step n§, defined by 2II)~(2I12) is computed and satisfies

mp(0) —mp(ny) > k7 xg min{ny, 60,1 — K} > 0, (2.60)

where .
Ky = € (0,1].

(14 17 (e, s6)Pel3)

Proof. Since k € N, we may observe from part (i) of Lemma that 7 > 0 and x} > 0, and hence
v > 0. We now show that nf(«) (recall (ZI1)) is feasible for (2I2) during any iteration k € N when

1
0 <o < —min {0}, k.7g, (1 = Kau)} =2 . (2.61)
Tk

Indeed, consider any « € [0, ag]. It then follows from the definitions of nf(«) and 7} that
1P ng(@)ll2 = llaPkd (zr, s6)Te(zr, sk)ll2 = amy < min{6}, kum}.
It also follows from the definitions of n{*(«) and Lemma 27 that

[—n5*(@)]i = Skl lc(zr, s6)li < afselill Ped (i, s6) e(zk, i) |2

=anp[sk)i < (1 — Kan)[sk]i fori=1,2,... M,
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which implies that si + ng*(®) > Kansk. Overall, nf (a) is feasible for problem (Z7) for all a € [0, ).
Now, observe that the minimizer of defined by 2I2)) yields mj} (nf) = m}(ng(ay)) < mp(nf(«))
for all @ € [0, ag]. It then follows from [3, Lemma 1] with the quantities

“0 = ag, “ad’ = 2||J(:1:k,sk)szJ(xk, sk)Tc(xk, sk)||§, “p7 = 2(#%)2 >0,
the fact that
“a” < 2| J(xx, sx) Pell3l| Ped (e, i) e(@r, si)lls = 211 (z, i) Pel3(x7)?

and the definition of 7} that

(m(0)° = (my(n)” = 07 mm{ . t}

1 v 1-—
> 2(77%)2 min { Ok Fron }

S S

| (x, k) Pell3” 7" " wp
Tr,]g v v

’ 5]95 K:nTr]gv 1_ Rtbn

= 27y min
F {1 + || (xk, 1) Pr I3

™
L+ ||J(x, sk)Prl3’

= 2uEX} min{ op, 1 — mfbn} > 0, (2.62)

where we have used the facts that 1+ ||.J(xx, sk)Pk||3 > 1 and &, > 1 to derive the last equality. Hence,
my(ng) < m(0), and therefore

000) — m? () — R0 = (mi(ng)? _ (mi(0))* = (mi(ni)))? _ (mi(0)* — (mj(ng))”
mk( ) mk(nk) - v V() C = v - !
my(0) +mg(ng) 2m;(0) 2uy,
The result follows from this inequality, (Z.62)), and the fact that 1 + ||J (@, sx)Px||3 > 1. O

Next we establish the remaining claims made in ([24]). (We remark that certain bounds established
in the proof of this lemma are specified in more detail in Lemma B.12)

Lemma 2.9. The slack reset (240) and (2.51) in Steps[39 and [{]] yields sy such that the pair (zk, Sk)

max

satisfies v < v and, at the end of iteration k, we have vy < ot

Proof. Our proof is by induction. We have vy < vg** by the initialization of v§**. Now suppose that
v; <vrfori=0,...,k—1for k> 1, and in particular that vy_1 < vp™| at the start of the (k —1)-st
iteration. The slack reset in Steps [39 and 1] cannot increase the constraint violation (recall ([Z6])), so
vp—1 < vp* holds following the slack reset. It is also clear from ([2.36]) and ([2.37) that for k—1 € YUF
the inequality v, < v{™* continues to hold at the start of iteration k. Hence, it remains to consider
k—1eV. If py_, <m or 248) (with k replaced by k — 1) does not hold, then the step is rejected, so
v < vpe holds at the start of iteration k as a consequence of ([254) and (Z56]). Otherwise, it follows
from Lemma 28 2T14) and 248)) that Amell > 0 and thus vy < vg—1 from p}_; > m, (Z49), and

@30). Since k. € (0,1) in 2E53), this implies
Vi < Vg + Ko (vk_l — k) < vp—1 < VP (2.63)

and hence from (253) we have vp*™ < vp®. Combining (2.53) and ([2.63), we have that vp> >
Vi + Ko (vk_l — vk) > vg. Thus, in all cases, we have v;, < vi**; the induction is complete.

To establish that vy < v, note that if k ¢ V), then vy < v**, so all that remains is to consider
k € V. Observing ([2.53), we see again that vjsy < vpe* if either (2.48) is violated or py < 1. By
contrast, if (2Z48) holds and p}, > 71, then we must have nj # 0 and from part (ii) of Lemma 20 that
k € N. Moreover, it follows from (Z50), (249), (248), (2.14) and Lemma 2.8 as above that vg41 < vy.
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Thus, if the maximum value in (2Z53)) is the second term, it follows that vy < vp < vp*. Otherwise,
if the maximum value in ([2.53) is the first term, then v;’{y < vp** trivially follows since «,, € (0,1). O

Next, we show that the computation of the least-squares multipliers yy—along with the accompa-
nying quantities rp, 71',{, and X{—is well-defined. We prove this result under the following reasonable
assumption.

Assumption 2.1. If ZZI) holds and the iterative solver employed to solve [223) is allowed to run
for an infinite number of iterations, then it produces a bounded sequence {y} with y®) = 0 such that

lim VimE (y™¥) = 0. (2.64)
11— 00

Lemma 2.10. If @21) holds and {y"} is produced by an iterative solver employed to solve [Z23)
that satisfies Assumption[21, then for some (finite) index i the vector yy, < y@ yields ry, 7T£, and x£

satisfying (2.26a), @2.26L), or 2.26d).

Proof. For the purpose of deriving a contradiction, suppose that the iterative solver applied to solve
([223) runs for an infinite number of iterations without satisfying ([2:26al), ([2.261), or (Z.26d). Under
Assumption 1] the sequence {3V} is bounded, so with (Z64) we have that it has a limit point 5>
satisfying

0= VimE(y™>®) = J(xk, s1)re(y™). (2.65)

Suppose 7r£ (y>) = 0. If vy, < ¢,, then this implies that there exists some smallest index ¢ such that

with y;, < y® condition (Z26a)) will be satisfied, which is a contradiction. Otherwise, if vy > €,, then
Xp > 0 or else Algorithm [I] would have terminated in Step [Bl Since this implies that 7 > 0 (recall
v > €), it follows from ﬂ',{(y‘x’) = 0 that there exists a smallest index i such that with y;, « y®
condition (2.26D)) will be satisfied, which is a contradiction. We have shown that W,f(yoo) > 0, which
combined with (268 and

Vinf () = Py 2 (y™) — J(w, si) 'y

shows that
Fioooy _ TR@)TVm () k)T (P () = Tk s) ) (w6 g
Xk(y )= 77 o = 77 o = 77 o —ﬂ-k(y ).
T (™) T (>°) ™ (™)
(2.66)
If Vm£(0) = 0, then we have with ([Z66) that yx + y(© = 0 satisfies ([Z226d), which is a contradiction.

By contrast, if Vm£ (0) # 0, then since x,, € (0, 1) we have from (Z66) and (Z.64) that there is a smallest
index i for which yj, + y(¥) satisfies condition (226d), which is another contradiction.

We have arrived at a contradiction in all cases, so the iterative solver must terminate finitely. O

We now give a bound on the decrease in our barrier model provided by the Cauchy step t}.

Lemma 2.11. If k € T, then the Cauchy step ti, defined by (Z28)-229) or 233)-2.34) is computed
and satisfies

mi(nk) - mi(nk +1ty) > /ﬁ;wg min {71']]:, (1- /@B)(S,tc, (1- /ifbt)nfbn} >0,

where

K2

Ky = X € (0,1/2).
FE 1RGP

Proof. We first consider the case when k € Tp, i.e., when the Cauchy step tf is computed from (Z.28))-
([229) with the trust region radius 8}, = min{dy, (5£ } (see (Z58). Tt follows from part (iii) of Lemma [Z6]
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that X£ > fixﬂ'f: > 0 so that Vmi(nk)Trk > Iix(ﬂ'}:)2 > 0. We now show that tf(a) (recall (Z28))) is
feasible for (2:29) during iteration k € Tp when

1
0<a<—min {(1 = ke)d}, (1 — K )Reon | =1 Ot
Tk

Indeed, consider any « € [0, o). It follows from the definitions of ¢ («), 7%, and ap that
1P 5 (@)l = 1P arille = al| P el = amf < (1= 5i)d (2.67)

Using the triangle inequality, (Z2I)) (which must hold since k € Tp C T), [258)), and (2.61), we then
have

1P (e + 15 (@) 2 < 1P iz + 1P (@) 2 < s + (1= £5)8f, < 6 = min{6}, 81}, (2.68)

which shows that tf;(«) satisfies the first constraint in problem (Z29). To show that ¢{*(«) also satisfies
the second constraint in problem (2.29)), first observe that if [t{%(a)]; = [—ari]; > 0, then [sy + nj +
t95(a)]i > [sk + nili > Knelsk +ni)i > 0 since ke, € (0, 1). Thus it suffices to consider ¢ such that
[r7]; > 0. It follows from the definitions of ag and wé, (Z2Z7), the fact that [rj]; > 0, Lemma 27, and

@I3) that
(1 - K’fbt)K’fbn (1 - K’fbt)K’fbn
mf ISl

(1 — lifbt)fifbn (1 - I{’fbt)lifbn [Sk]’i (1 - K:fbt)[sk + HZ]Z

a<ag <

IE T [ri)i - [r7)i

Using the definition of ¢5*(«) and the previous inequality leads to

(=t ()i = alrili < (1= Ka)[sk +nils

from which we may conclude overall that [s; + nj +t7°(a)]i > Kau[sk +nj); for i =1,2,..., M. This
proves that ¢° (o) satisfies the second constraint in problem (2.29)), and completes the proof that ¢§ ()
is feasible for problem (229)) for all o € [0, ag].

We now observe that the minimizer a$ of [2:29)) yields mi(nk +1i7) = mi(nk +t5(ag)) < mi(nk +
ty (o)) for all a € [0, og]. We also have from the Cauchy-Schwarz and standard norm inequalities that

. T 3 T
PTG rs| = ](Vmg(nk) + I (@, 51)Tyr) TPRGR P2 (Y] (i) + J (e, 51) Ty ] < (72| PuGi Pl 2.
It then follows from [3] Lemma 1] with the quantities

Y=, “a” = rEGrrgl, b7 = Vimd (ng)Try > 0,
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(the strict inequality was shown earlier in this proof) that

d o) = el s+ ) > - min {2 v}

< Vmi(nk)Trk min{ Vmi(nk)Trk (1-— ,IQ'B)(SItC (1 — K ) Fsom }

-2 (@2 IPGrPill LT ]
Vmi(nk)Trk . Vm£ (i) Try,

T o] Im{daﬂw@am

) (1 - 53)6127 (1 - fifbc)ﬁfbn}

1+ || PeGrPxll2)
f
’{i”k

>
- 2(1 + ||PkaPk||2

f f
— % min { ( Xk , (1= kp)dk, (1 — fifbt)fifbn}

) Inin {7T£, (1 — KJB)é]tw (1 - fifbc)lifbn} 9

where we have used 1 + || PGy Px|l2 > 1 and X£ > I€X7T£ with x, € (0,1) for the last inequality.
The proof for the case k € T \ Tp is similar, but uses 6, = min{dy, 5£, koope}, (Z33) instead of
(228), (Z39) instead of ([2:29), and (by Lemma [Z0[xi)) the fact that ny =0 for k € T \ Tp. O

Finally, we turn our attention to the tangential step computation. The following result shows one
way to find a tangential step t; that satisfies the required conditions described in Section 2.3

Lemma 2.12. If Z2Z1) holds and {yV} is produced by an iterative solver employed to solve (Z23) that
satisfies Assumption[Z]], then for some (finite) index i the vector yj + y @ yields ry, such that either

(i) the Cauchy point t5 defined by (Z28)—(229) satisfies (Z30), or
(i1) the Cauchy point t§ defined by (233)-234) satisfies (2.33).

Proof. As in the proof of Lemma 210, in order to derive contradictions, suppose that the iterative solver
employed to solve (Z23) runs for an infinite number of iterations without yielding the desired result,
in which case we have under Assumption 2.I] that the sequence {y(¥} has a limit point y>° satisfying
([@65). That is, as i — oo, we have 7 (y)) — 7 (y>) € Null(J(zx, sr)). We introduce the notation
97 (1) ==t when t¢ is the Cauchy point defined by Z28)-(@229) with 7, = 74 (y?) associated with the
relaxed SQP tangential subproblem, and ¢£¥(7) := ¢ when ¢t} is the Cauchy point defined by ([233)-
@34) with 7, = 7(y?) associated with the very relaxed SQP tangential subproblem. We observe
from (228) and (233)), the constraints of ([2.29) and ([2.34]), and the fact that ri(y>°) € Null(J(xk, sk))
that there exist vectors t"(co) and t§"(co) such that t"(i) — t{"(co0) € Null(J(z, si)) and (i) —
5V (00) € Null(J (zg, sk))-

By definition, the Cauchy point ¢5" (i) satisfies (2.30al)-(2:30d) for all i. Similarly, the Cauchy point
t$ (i) satisfies (235a)—(235d) for all . Thus, to reach contradictions, we need only show that for
sufficiently large i either ¢ (7) satisfies (2.30d) or ¢§* satisfies (2.35d).

Suppose that ng # 0, in which case part (ii) of Lemma [2Z.6] implies that k£ € N. It then follows from
part (i) of Lemma 26 that m}(nx) < m}(0), and thus the right-hand side of ([2.30d) is strictly greater
than mj(ng). Therefore, since ti*(c0) € Null(J(z, sk)), there exists some smallest index ¢ such that
1 () satisfies (2.30d), which is to say that statement (i) holds, which is a contradiction.

Now suppose that ny = 0, in which case part (i) of Lemma implies that & ¢ N. By virtue
of 2I0), this must mean that vy < s, ,vp>. It follows from the facts that ny, = 0, vy < K, Up™,
Ko € (Kuyy 1), and £57(i) — 5 (00) € Null(J (zk, sx)) that ¢5*(i) satisfies (2.35d) for all sufficiently large
i. We have reached the contradiction that statement (ii) holds. O
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3 Convergence of the Trust-Funnel Algorithm for Solving the
Barrier Subproblem

Our analysis requires the following assumption that is assumed to hold for the remainder of the paper.
Assumption 3.1. The sequence of iterates {xx} is contained in a compact set.
The following is an immediate consequence of Assumptions [[.1] and [311

Lemma 3.1. There exists a constant ky > 1 such that we have

e {1 oo e L0l [ o) s, )} <

We may now prove that important sequences related to our method are uniformly bounded.

Lemma 3.2. There exists a constant k., > Ky such that we have

max {ok, lIskll2s |1 @k, s1) Te(@r, s1) |20 70 || Pid (ks s6) T 20 X |1 PeGrPrll2, || PV (ks 58|25} < K-

Proof. The result is clearly true if the algorithm terminates finitely. Otherwise, it follows from Lemma[2.9]
that v, < vp™ < vg™ for all k, which proves that {vi} can be bounded as claimed. Combining this
with the reverse triangle inequality yields

lskll2 = lle(@r)ll2 < lle(zr) + sklla = [le(@r, sk)lls < vg™ for all k.

We may deduce from this bound and Lemma Bl that {||sk||2} can be bounded as claimed. It then
follows from the triangle inequality that
Netaien)
) c(xg, Sk)

which may then be combined with the Cauchy-Schwarz inequality, Lemma B.1] and the boundedness of
{v} to conclude that {||J(x,sk) c(xk, sk)||2} can be bounded as claimed. The boundedness of {7¥}
follows from that of {||sk|l2} and {||J(zx, sk)Tc(zk, sk)|l2}- It then follows from the boundedness of
{lskll2} and, by Lemma Bl that of {||J(zx)||2} that {||PsJ(zk, sk)T||2} can be bounded as claimed.
This, along with the Cauchy-Schwarz inequality, implies that {x}} can be bounded as claimed. The
boundedness of || PyGy Px||2 follows from the boundedness of {||sx|2}, (I8), (ZI9), Assumptions [l
and 3] and (220). Finally, it follows from Lemma [31] and the fact that P, Vf (zk, sk) = (9(xk), —ue)
that {|| PxVf(zk, sx)||2} can be bounded as claimed. O

1 (2, s1) e, s1)l2 < H (J(xk)Tc(xkaSk))

0

)
2

Using Lemma 3.2 we may now improve the Cauchy decrease bounds provided in Lemmas 2.8 and
211 by making the leading constants independent of the iteration number k.

Lemma 3.3. For all k, the following hold:
(i) If k € N, then the Cauchy step ng defined by 2I1)-(212) is computed and satisfies

mp(0) — mp(ny) > KeXp min{my, 05,1 — Keu} >0

for some constant k., € (0,1] independent of k.

(ii) If k € T, then the Cauchy step t5, defined by (Z28)-229) or [233)(Z34) is computed and
satisfies

m',ﬁ(nk) — mi(nk +ity) > ,%Cnr,f min{w;ﬁ, (1 — Kp)0k, (1 = Kepe ) Egom t > 0

for some constant k., € (0,1/2] independent of k.
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Proof. The results follow from Lemmas 2.8 and 2-TT] along with Lemma O

We require the next lemma that bounds the size of the trial step in different scenarios.

Lemma 3.4. If Algorithm [l does not terminate during iteration k, then the following holds:

= | P tngll2 < min{6y, k1) ifkeT,
||Pk_ldk||2 = ||Pk_1nk||2 < min{(sz,é{;,nnﬂ}c’} if k €T,
<6 ifk €T\ To.

In particular, for all k, we have || Py dy||2 < 07.

Proof. Let k ¢ T, from which we have that ¢, < 0 and dx = ng. If ny = 0, then the result holds
trivially. Conversely, if ny # 0, then part (ii) of Lemma implies that k € N and the result follows

from 2.13).
Next, let k € T. First, if k € Ty, then it follows from part (iv) of Lemma [0l that ¢, = 0 and (221))

holds. Combining this with dy = ng + tx = ng, (ZI3)), and the fact that x5 € (0,1) shows that
||P,;1d;€||2 = ||P,;1n;€||2 < min{kp min{&}é,&,{},&}g, KaTip b < min{é}é,é,{, KuTh }s

as desired. Second, if k € Tp \ 7o, then the result follows from ([2:30d) and the definition (Z58). Third,
if k € T\ Tp, then the result follows from (235d) and the definition (2.58). O

We now bound the discrepancies between the problem functions and their corresponding models.
Lemma 3.5. The following hold:

(i) There exists a constant kg > 0 independent of k such that
|f(@x + s+ d) — mf(di)] < kel P dgl3 for all k. (3.69)
(ii) There exists a constant ke > 0 independent of k such that
ok + dE, sk + df) — m(de)] < wel POYE for all k. (3.70)
Proof. We first prove part (i). By the triangle inequality, we have

\f (s + d, 51+ di) — mi (dy))|
< |f(xk +df) — flaw) — V() df — 2TV L, yp)dy|

(3.71)
M M
s dil) + S n(isgls) + e S i — i Dydy|.
i=1 i=1
Under Assumptions [T and Bl and by (2.19]), there exists a constant kg, > 0 such that
|f (@ +df) — flan) = Vf(@r)Tdf — 57" VLo, ) di] < real|di 13- (3.72)

Moreover, note that for each i € {1,..., M}, we have by (ZI3) and (2.30D)/(2.35D) that [s;]; + [d]; >
KmiRma|Sk)i > 0 for all k regardless of whether a tangential step ¢, was computed. The Mean Value

Theorem yields In([sg]; + [d;]:) — In[sk]; = [d}]i/&, where ; lies between [sg]; and [sx]; + [d}];. Hence

< sup ldili _ [}
E€([sw]i,[sk]i+[di]:] § [Sk]i

o () = e (1)

In([sx]i 4 [d}]i) — In[si]; — Ejgz
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where in the middle equation we have used the fact that the sup occurs at & = [si]; + [d}];. Hence, by
20) and Lemma B2 we have that

M M

S In(fsk + d3)e) + > In((swls) + pe” SN — 3T D,
i=1 i=1 (3.73)

1 — S S S — S
dzT(NSk )dj, + %'dkT‘Dkdk| < K|S i 13.

Rtbt Kebn

<

where Kqy = b/ Keihomn + %nfan > 0. The result now follows from B71)-B73), and Lemma B4 with
Kg = Ka1 + Kaga-

We now prove part (ii). By Lemma [BI] Taylor’s expansion theorem yields
clzn + df, sk + dy) = (g, sk) + J (@, si)dy, + wp where [wy]; = 27"V .0i(&n)dy,

for some scalars & € [, zk + di]. As a consequence, we obtain with the reverse triangle inequality
that there exists a constant K > 0 so that

[v(zk + di, s+ df) —mi(di)| = [[[e(zr + di, sk + di)ll2 — [[e(zr, sk) + T (zk, s di|2]
< Nlwkllz < melldgll3 < well Py drll3,

where we have used Lemma B.1] and the Cauchy-Schwarz inequality. The desired result follows. O

We now prove an important fact about v-iterations; namely, if £ € V and the trust region radii or
vip** are sufficiently small, then k € D.

Lemma 3.6. Ifk €V and
1- tt
min{ég,éﬁ, KOp>} < (= Fu) = Ky, (3.74)
Kok

then k € D.

Proof. For a proof by contradiction, suppose that [B.74) holds while k € V \ D. We show that all of
the conditions of an f-iteration are satisfied, implying that k& € F, contradicting the supposition that
keV.

Since k ¢ D, we have from part (viii) of Lemma 2.6 that k € T \ Tp and (230 holds. Then, since
To C Tp, it follows that k € T \ T, so by part (iv) of Lemma 2.6 we have ), # 0. Moreover, k € T \ To
implies by Lemma B4l that || P, 'dg |2 < 6¢, which along with the fact that k € 7\ 7p and (Z58) implies

[P |2 < min{ 6y, 6f, koop=} < kg, (3.75)
Combining this fact with (370), the reverse triangle inequality, (2.35d)), (3.75), and (374), we have that
v(zy +df, i+ di) < K OPE™ + ko[ Py i3 < kuop™ 4 Kok op™ min{ sy, 5£, R opes} < o

so (2.31) holds. We have also argued (see the discussion after equation ([2.37))) that (2Z:32]) holds whenever
(235 is satisfied. Thus, all of the conditions of an f-iteration are satisfied, so the result follows. O

Lemmas [3.4] and have the following useful consequence.
Lemma 3.7. There exists a constant k.. € (0,1] such that, if k € V and
min{dj, (5,5} < min{1, Ky, KuaaTh }s (3.76)

then k € N ND.



22 F. E. Curtis, N. I. M. Gould, D. P. Robinson and, Ph. L. Toint

Proof. We first note that, by Lemma [3:2] we have x} < k,, for all k. Then, with

Ry
Knas := min {1, } > 0, (3.77)
K;ub
we have with Lemma that
KuasTh = KnasXpUk < FuazkuUk < KU < KOS (3.78)

Let k € V and (8.76) hold. Then, along with [B.78) we have that
min{d, 5,{, K U™} = min{dj, 5,{} < Ky

Then, by Lemma[B.6] we have k € D (as desired), so k € VND. Now, in order to derive a contradiction
to the claim that k € A/, suppose that kK € (WND)\N. Since k ¢ N, we have from part (ii) of Lemma[2.6]
that niy = 0 (so that (Z32) holds). Then, since k € V, we must have t; # 0 (since otherwise part (vi)
of Lemma would imply that k € ), which is a contradiction). Thus, we have that k € T \ Tp. At
the same time, k£ ¢ A implies that (Z.I0) does not hold, so v < k., VF™ < K, vp*. This bound, (B.70),
the reverse triangle inequality, (2.30d), the fact that ny = 0, Lemma 2.9 the fact that & € T \ 7o,

Lemma B4 25]), B78) and E70) imply
v(zg + di, sk + di) < kU™ 4 ke (min{dy, 5,{})2 < Ry U™ + Kok, 0™ min{dy, 5,{},
which, when combined with (B76]) and B.74)), yields
U(Ik +dy, sk + dZ) < RV + (1 - “tt)vl?ax = v

so that (237) holds. Combining this with the fact that ¢ # 0 and the observation that (Z32) holds,
shows that k& € F, which is a contradiction. Thus, we must conclude that k € N. O

We now prove a relationship between the trust-region radii and a guarantee of a successful iteration.
Lemma 3.8. The following hold:

(i) If k € F and

b b
1— kg 1— kg Kg

1= Kn)bme T (1= k) (1 = mo)m]
54 < min {( i) T Fotice(l = Kp)(1 = m2)7y } = min{Kan, FapT) } (3.79)

then p£ > 1, k€ Sy, and (5}:“ > (5}:.
(ii)) Ifk eV and

5’1} < . v chﬁchZ(l B 772) . . v v
p Smin< Ky, 1 — Kpn, KnaoTh, n—’ = mlD{FéAcl, Rac2Tg, ﬁAcsxk}a (3-80)
C

thenke NNDNS,, pr = M2, andé};_i_l > 0p.

Proof. For part (i), the proof that p{ > 19, which implies that k € Sy, is the same as for [5, Theo-

rem 6.4.2] and uses (2.38), (Z32)) (which holds since k € F), (230a))/(2.35a), part (ii) of Lemma [B.3]
B29), B69), the fact that t; # 0, and Lemma B4l The fact that 6£+1 > 5£ then follows from (2:4T])
and (244).

To prove part (ii), we first observe from ([B.80) that 7} > 0 and x} > 0 since J; > 0 by construction
in the algorithm. Moreover, ([3.80) and Lemma 3.7 imply that ¥ € N'ND. We now conclude from part
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(ix) of Lemma [20 that ([2:48]) holds. Thus, using (B70), Lemma B4 [2:4]), (Z14), and Lemma B3(i),

we have

v(zk + di, sk + di) — mp(dy)
AmZ’d

50(52)2

Red AmZ’n

50(52)2

T ReaKen X min{my, 07,1 — K}

lpp — 1] = <

In fact, we have from (B80) and the fact that k.., € (0,1] that 6} < min{n},d},1 — K.} and

Kalp
-1 < —E— <1 —n9.
o, | < Kok Xl — 2
Thus, pj, > 12 > 11, which means that k € S, and, by ([2.52), 67, > d;, as desired. O

We now provide a uniform lower bound on the tangential trust-region radius when our criticality
measure 7T£ is bounded away from zero on f-iterates.

Lemma 3.9. If there exists a constant ey > 0 such that
ml >e¢; forallk e F, (3.81)
then, for some constant ex > 0, we have
5,{ >ex for all k. (3.82)

Proof. The statement follows from part (i) of Lemma[3.8] ([Z58), the fact that 7 C 7'\ 7o, and the fact
that 6], < o] for k ¢ F. O

Lemma 3.10. There exist constants {Kaca, Kaes, faes} C (0,1) such that
0p > min {Kacs, KaesThs Kacs Xt Jor all k. (3.83)
Moreover, if there exists a constant eg > 0 such that
min{vg, X3} > €o for all k €V, (3.84)

then
47 > min {fiAW Kaes€as mmﬁeg} =:¢ec for all k. (3.85)

Proof. With v1 € (0,1) defined for (2.44]), we prove by induction that
07 > y1 min{dg, Kacr, KsvoThs KacaThs KacsXp ) for all k. (3.86)

This inequality holds trivially for k£ = 0, so supposing that it holds for iteration k, we prove that it holds
for iteration k+1. First, suppose that k£ € YU(F\Sy). Since 01 < Oy and (Tkt1, Spt+1)  (zk, si) for
such iterations, we conclude that ([3.86) holds at iteration k+1. Second, if k € SyUS,,, then [2:42), (Z52),
and the fact that v; € (0, 1) ensure that ([3.80]) holds at iteration k+1. Finally, suppose that £ € V\S,. In
this case, Lemma [B.8((ii) implies that §) > min{kac:, KacaTh, KacsX}r }- This may then be combined with
([2.55) and the fact that (zpy1,5k11) < (ok,sk) to deduce that 67, > v min{kaci, KaceTy, Kacs X}
so that (380) again holds at iteration k& + 1. We therefore obtain that (83) holds for all k£ with
Kacs = 71 min{0y, Kac1 }, Kacs := 71 MIN{Ksy, Kacz} aNd Kaes := V1K aes- LThe bound ([B:8H) then directly
follows from (B.83), (3.84), (2.9), and the observation that d} is never decreased for k € Y U F. O

We now give our first main result, namely that if there are finitely many successful iterations, then
Algorithm [I] terminates finitely.

Theorem 3.11. If |S| < oo, then Algorithm [l terminates finitely.
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Proof. To derive a contradiction, suppose that Algorithm [Il does not terminate finitely. It then follows

from the fact that |S| < oo, (Z36), (Z43), (248), 254), and (Z56) that for some z, € RV, s, € RM,

and {v,, v ¥ xv} C R there exists an integer ks such that

(g, Sk) = (Tu, 8x), Vi = Vs, VR =00, W =70, X =X., and k ¢ S for all k > k. (3.87)

Also, the fact that |S| < co and Lemma [27] ensure that s, > 0.

First, we prove that [V| < co. In order to derive a contradiction, suppose that |V| = oco. Then, by
B.87) (in particular, the fact that k ¢ S for k > k), it follows that ([2.55) sets d; | < 720y forallk € V
with k > k. Combining this with the fact that ([2.36) and ([2.43)) set §;, <}, for all k € Y U F with
k > ks, it follows that {6} } — 0. We also have from part (ii) of Lemma [B.§ and the facts that |V| = oo
and |S| < oo that we must have 0 = limpey min{n}, x}} = limpey min{xjvg, xj} = min{xJv., x’}.
If v, > 0, then this implies that x? = 0. However, this implies that for £ = k, the algorithm would
terminate finitely in Step [} which contradicts the supposition of the proof. Thus, we must have that
vsx = 0. Since v, = 0, it follows from the conditions of Step [0 that ng = 0 for all k¥ > ks. This implies
that (221I)) will be satisfied for all ¥ > kg, which in turn implies by Step [[4] of the algorithm that yy,
Tk, w,f, and x£ will be computed to satisfy ([2.26al), (2.260)), or (2.26d). If (2.26a) were to hold, then the
algorithm would terminate finitely, which is a contradiction. Thus, we know that (226a) does not hold
for all £ > ks, which combined with the fact that v, = 0 implies that 7T]J: > e > 0forall k > k. It
follows from this fact, part (i) of Lemma [B.8] the fact that {§;} — 0, 258), Lemma 3.4 and the fact
that |S| < oo that we must have |F| < co. Next, it follows from the facts that v, = 0 and {0}} — 0,
Lemma B4 and ([B.87) that (Z37) will be satisfied for all sufficiently large k. We may also deduce
from the fact that ny = 0 for all k¥ > k, that (Z32) holds for all £ > ks;. Since we have shown that
|F| < oo and that both (Z32) and (23T) hold for sufficiently large k, we may conclude that t; = 0 for
all sufficiently large k. Therefore, since we have shown that ny = tx = 0 for all sufficiently large k, we
have from part (vi) of Lemma[Z06l that k£ € ) for all sufficiently large &, which combined with part (vii)
of Lemma [2.6] implies that {w,f } — 0. However, this contradicts our earlier conclusion that 7r£ >exr >0
for all k > ks. Overall, we have contradicted the supposition that [V| = .

Next, suppose that |F| < oo. Combining this with the fact that |V| < oo ensures that k € Y for all
sufficiently large k. It follows from this fact and part (vii) of Lemma 2.6 that {w,{} — 0, and that yx, 7%,
7T£ , and x£ will be computed to satisfy (2.26al), (2.26D]), or (2.26d)) for all sufficiently large k. During the
computation of these quantities, (2:26a]) can never be satisfied, since in that case the algorithm would
terminate finitely, which contradicts the supposition of the proof. Hence, since (2.264)) is never satisfied
and {w,{} — 0, we may deduce that v, > €, > 0. It then follows that x¥ > 0 (and from (29 that
w2 > 0), or else for k = ks the algorithm would terminate in Step [ which is a contradiction. Thus,
min{x?,7?,v,} > 0, which with (B.87), the fact that {w,f} — 0, and (ZI0) implies that k¥ € N for all
sufficiently large k. Thus, by Lemma 2.6(i), we have nj # 0, which by Lemma 2.6|(vi) contradicts our
earlier conclusion that k& € ). Overall, we have proven that we cannot have |F| < 0o, so we must have
|F| = oo.

Since |F| = o0, |V| < 00, and |S] < 0o, we know from ([236) and ([2:44) that {5£} — 0, which when
combined with ([258), the fact that F C T \ 7o, and part (i) of Lemma implies that {Wg}k;e]: —
0. Since (226al), ([226D), or [Z26d) holds for k € F C T \ To, and since the algorithm does not
terminate finitely, we know that ([2:26a)) must not hold for all £ € F. Combining this with the fact that
{ﬁ,{}ke}- — 0 implies that v > €, for all sufficiently large k € F. Hence, since |F| = oo, it follows
from [B87) that v. > €, > 0. We then must conclude that min{v,, x?} > 0, or else for k = k; the
algorithm would terminate finitely in Step B which is a contradiction. Also, from x? > 0 and (Z3)), it
follows that 7% > 0. Since {ﬂ',f trer — 0, it follows that (2:26H]) will be satisfied for all sufficiently large
k € F, which implies that ¢, = 0 and thus k ¢ F, which once again is a contradiction.

Overall, in all cases, we have reached contradictions of our supposition that Algorithm [I does not
terminate finitely, so the result is proved. O
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We next prove a technical result about the violation decrease following a successful v-iteration.

Lemma 3.12. There exist constants {K,r1, Kuxz, Kons p C (0,00) such that if k € S, then

v : v v
Uk1 < vk — X min{K, ., Ko Ths Ky Xi ), and (3.88a)

max

ot < ma{n, U, vk — (1 — )XY 0y, g7 XU (3.55b)
while 231)) does not hold.

Proof. Let k € S,, which by the definition of S, means that (2.48) holds. In particular, we have nj # 0.
Combining this fact with part (ii) of Lemma means that k € S, N N. It follows from this fact,
E30), 249), 247), T4), Lemma [33]i), Lemma 0 (specifically (3:83))), and Lemma 32 that there
exist constants {K.1, Kuros Koz} C (0,00) such that ([388al) holds, which in turn implies with (2353
that (3.88D) holds. Note that (3.88a) and Lemma 2.9 imply that (2.37) holds.

We now prove that (Z31]) does not hold. To reach a contradiction, suppose that (23] holds, which
immediately implies that ¢ # 0. Part (iv) of Lemma 2.6 then implies that k € T \ 7o, which combined
with the fact that ([23T)) is assumed to hold shows that (Z32) holds. Thus all the conditions of an
f-iteration are satisfied so that k € F, which, since VNJF = (), contradicts the fact that k € S, C V. O

We now show that if there are infinitely many iterations, then the v-criticality measure x; converges
to zero, at least along a subsequence of iterates.

Lemma 3.13. If Algorithm [ does not terminate finitely, then

lim min{vg, X3} if |Sy| = 00
- ‘ (3:89)
liminf min{vg, x5} i [Sy] < 0.

keSy

Proof. Lemma [Z9] shows that {v}»**} is monotonically decreasing and bounded below by zero. There-
fore, if |S,| = oo and the update [ZE3) sets vpey < m,vp® infinitely often, then {vp*} — 0,
which implies by Lemma 29 that {vr} — 0, so B89) holds. Otherwise, if |SU| = oo and the up-
date (2353) sets vy > kyvpe for all sufficiently large k, then by Lemma we have vpty <
v — (1 — ko)X min{k, ., K, .Th, KosXht for k € S,, which implies that {mln{xkvk,xk}}keg
{min{7}, x}}}kes, — 0. If there is an infinite subsequence Ky C S, over which {v;}x, remains
bounded away from zero, then this ensures that ([89) holds over Ky. Moreover, [B.89) clearly holds
over each subsequence of S, over which {v;} tends to zero. Thus, we deduce that ([B:89) holds over the
entire subsequence indexed by S, .

It remains to consider when [S,| < oo, in which case, by the fact that vg}y < vp** only when k € S,
there exists a constant v2®* > 0 such that vp™ = v3> for all sufficiently large k. By Theorem B.11]
the conditions of this lemma, and the fact that |S,| < oo, it follows that |Sy| = co. Now, to derive a
contradiction, suppose that there exists a constant ¢,,;,, > 0 such that

min{vg, X;} > Gmin > 0 for all sufficiently large k. (3.90)

Since |Sy| < oo, we know from (Z30) for k¥ € Y, from [239) and ZA43) for k € F, from [Z354) for
k € V\S,, and the fact that the slack reset only possibly decreases the barrier function that {f(xk, sk)}
is monotonically decreasing. Moreover, it follows from Assumptions [[L1] and Bl and Lemma that
{f(zk, sx)} is bounded below, so overall we have that { f(zg, Sx)} = fio. for some f,, > —oo. It follows
from this fact, the fact that |Sy| = oo, (2.38), (IZ{QI) (232)) (which holds for k € F), (Z30a)/(2.35a),
and part (ii) of Lemma B3 that limges, mln{wk,ét} = 0. Suppose that for some infinite index set
K1 C Sy and scalar 7l >0 we have 7r,£ >l for all k € K;. It follows that {6} }rex, — 0. However,
from part (ii) of Lemma B.8] the fact that |S,| < oo, and (3390), it follows that {d}}rey is bounded
away from zero. In fact, since 6}, < 0y for k ¢ V, we conclude that {d;} (defined over all k) is
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bounded away from zero. Combining this with the facts that {6} }rex, — 0 and v = v > 0 for
all sufficiently large k implies that {5 }kelcl — 0. It then follows from Lemma [3.9] that there exists an
infinite index set o C F such that {wk}ke;g2 — 0. Since Ko C F C T \ 7o, we know that (2.26al),
([2.26L)), or (2.26d) is satisfied for all k& € Ky. However, we also know that (2.26a) cannot be satisfied
since Algorithm [] is assumed not to terminate finitely. It does, however, follow from {w£ ek, — 0
and (3:90) that (2:26D) will be satisfied for all sufficiently large k € K2 so that ¢, = 0 for all sufficiently
large k € Ko C }' C T \ To, which is a contradiction. Thus, we conclude that the set K; cannot exist,
so that limges, 7% = 0. It follows from this fact, (3.90), the definition of x} given in ([2.9)), the fact that
(2:2Ga)), (2.261), or ([2.2Gd) is satisfied for all k € F C T \ 7o, and since the algorithm does not terminate
finitely that (2:261) will be satisfied (and hence t; = 0) for all sufficiently large k € F C T \ 7o, which
again is a contradiction. Thus, our supposition that (3.90) held must be incorrect and therefore there

is a subsequence K such that limgex min{vg, xj} = 0. Moreover, since |S,| < oo and |Sf| = oo, we
conclude that (3:89) holds. O

To proceed further, we define the active and inactive slack variable sets
A(s) :={ie{1,2,....M}:[s]; =0} and Z(s):={1,2,...M}\ A(s) (3.91)
at s € RM and denote these sets at a point z, by
A= A(sy) and T, := Z(s.).

Lemma 3.14. If Algorithm [l does not terminate finitely and there exists an infinite index set K such
that limpex min{vy, xp} — 0, then for an arbitrary limit point (x.,s.) of {(xk, sk)}rex it follows that
either v(T«,8.) = 0 so that (z.,s.) is feasible for problem [NPS), or x°(z«,s«) = 0 and x. is an
infeasible point at which the Jacobian of active constraints Ja, (x.) has linearly dependent rows.

Proof. We first partition K into two disjoint index sets, call them KC; and KCa, such that

klér’a vy =0 and klérlxclz X =0, (3.92)

and such that vy, is bounded away from zero on Ky. Any limit point (., s.) of the sequence { (2, sk) }rek,
yields v(zx, s«) = 0 so that (., s.) is feasible for problem (NPs]), as desired.

Consider now a limit point of the sequence {(zk, sk)}reic,, call it (z«, s«). By our definition of Ky
and slack reset procedure (c.f., [2.5)), it follows that (., s.) is infeasible for problem (NPg). Moreover,
since vy, is bounded away from zero on Ko, the second limit in (3.92) implies

v | P (@, sx) " c(an, si)ll2

T T
i 1111 > lim Omin J(xk) = Omin J(:I:*) )
kEo k€K v k€K lle(zk, k)2 keko Sk S

O—hmxk* lim £ = lim

where omin(B) denotes the minimum singular value of a matrix B. Thus, we deduce that (J(z.) Si)
must have a subset of linearly dependent rows. Due to the structure of this matrix, we may assume
without loss of generality that the subset does not contain row ¢ when [s.]; > 0; it only contains rows
indexed by A., and thus J4, (z.) has linearly dependent rows. O

We now make the following assumption throughout the rest of the paper.

Assumption 3.2. If Algorithm [l does not terminate finitely and K is an infinite index set such that
{mi}kek — 0, then for an arbitrary limit point (x4, s.) of {(xk,sk)}kek it follows that A, = 0 or
Ja, (xx) has full row rank (i.e., J(x,s.)P. with P, := diag(l, S«) has full row rank), which implies
that (z.,s4) is not an infeasible stationary point for problem (NPs).

Our claim in this assumption—i.e., that due to full row rank of the scaled constraint Jacobian,
the property {7} }rex — 0 implies that the algorithm avoids infeasible stationary points over K—is
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formally proved in the following lemma. This lemma represents a strengthening of Lemma 314

Lemma 3.15. If Algorithm [l does not terminate finitely and K is an infinite index set such that
{mi}keic = O, then for an arbitrary limit point (z., s«) of {(zk, sk)}kex it follows that v(z«,ss) =0 so
that (z.,s4) is feasible for problem (NPS).

Proof. Let us define the feasibility problem

minimize %v(x,s)2 subject to s> 0
x,s

for which we have the first-order KKT conditions
min{s,c(z,s)} =0 and J(z)%c(z,s) = 0. (3.93)
For an arbitrary limit point (2, s«) of {(zk, sk) }xex, it follows from Lemma 2.7 and {7} }rex — O that
5. >0, c(zs,5:) >0, Sic(xs,5.) =0, and J(z.) c(zs,5.) = 0. (3.94)

In particular, using the definitions in (3.91) and (:94]), we have

)
)

Hence, from B394) and B95), we have that (z., s.) satisfies (393). Now, if A, = 0, then by (B:95al)
we have that v(z., s.) = 0 and c(z,) < 0, as desired. Otherwise, by ([8.94)) and ([B.95al), we have

[ss]z. >0 and ez, (z.) < ez, (ms 0; (3.95a)
0.

(3.95b)

; Sx
; Sx

Y

[s:]a, =0 and cu, (z:) = ca, (v«

0= J(@) e(2e, 52) = Ja(ze) Tealzy, s0) = Ja(x) Tea(zs).

Under Assumption [3.2] we have that J4(z.) has full row rank, so the above implies that 0 = c4(z.) =
cA(Z«, 84). Combining this with (B.95al) again yields v(x,, sx) = 0 and c¢(x,) < 0, as desired. O

We now prove a useful fact about our employed infeasibility measures.

Lemma 3.16. For any infinite index set K, we have
li i 2} =0 ifand only if limm;, =0. 3.96
lim min{vg, X7 } if and only if lim 7§ (3.96)

Proof. First, suppose that {min{vg,x}}}rex — 0. Then, as in the proof of Lemma BI4, we can
partition K into disjoint subsets i and Ko such that ([3.92) holds and vy is bounded away from
zero on Ky. By Lemma B2 it then follows that {7} }rex, — 0, and by ([29) we must also have
{mP}kek, — 0. Consequently, {7} }rex — 0, as desired. Second, suppose that {7} }}rex — 0 and, to
obtain a contradiction, that there exists some € > 0 such that the set /Cc := {k € K : min{vg, x}} > €} is
infinite. It then follows from the definition of x} in ([2.9) that the infinite sequence {7} }rex. is bounded
away from zero, which is a contradiction. Hence, {min{vy, x}} }rex — 0, as desired. O

We now prove that if there are an infinite number of successful v-iterations, then, amongst other
things, feasibility is achieved at all limit points of the sequence of iterates computed by the algorithm.

Lemma 3.17. If |S,| = oo, then {vp*™} — 0, {vg} = 0, {7}} — 0, and {nx} — 0.

Proof. Since |S,| = oo, it must be true that Algorithm [ does not terminate finitely. This implies,
for one thing, that the result of Lemma holds true. Moreover, Lemma shows that {vp*} is
monotonically decreasing and bounded below by zero. Then, as in the proof of Lemma [3.13] we have
that if the update (253)) sets v} < m,,vp™ infinitely often, then {vy™} — 0 and {v} — 0, from which
it follows by Lemma 3.2 that {n}} — 0. It then follows from these facts and 213 that {ny} — 0.
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All that remains is to consider the case when the update ([Z.53)) sets vy > ki, vy for all large
k. From Lemma we have that {min{vk, x}}}kes, — 0, which in turn by Lemma implies
that {7} }xes, — 0. Then, by Lemma B.I5] Assumption B.I] and the boundedness of {s;} stated in
Lemma [B:2] there exists an infinite index set K C S, such that {vi}rex — 0. We then have from
Lemma (in particular, (B:88D)) that {v*}rex — 0, which means that {vp*} — 0 and hence
{vr} — 0 because of Lemma Combining this with Assumptions [Tl and [B1] and Lemma 32 we
thus have {7} } — 0. It follows from this fact, (2.13)), and Lemma [3.2] that {n;} — 0. O

We next prove a result illustrating the importance of the sequence {w,f }. In particular, the result
establishes that 7T]]: is a valid criticality measure for (II]).

Lemma 3.18. If K is any subsequence and (., sx) is any point such that limgeic(zk, Sk) = (Tx, Sx)
with v(xx, $x) = 0 and limgex 7T£ = 0, then limgeicyp = Yy« where (Tx,S«,ys) is a KKT point for

problem ([LI)).

Proof. Since v(z*,s*) = 0, it follows that limgex c(xk, sk) = ¢(x«, $+) = 0, which, when combined with
Lemma B2, proves that limgex 7j = 0. Thus, it follows from ([2.13) and Lemma B.2 that

%161% ng = 0. (3.97)
Next, observe that
0= lim 7/ = lim HPk (vmf (ng) + J (2 sk)Tyk) H
k7 kek k ’ 2

keK
(g(wk) + Vo L(@r, yg)ng + J(wk)Tyk>

3.98
—pe + SpDyni + Skyxk ( )

= lim
ke

2
9(xk) + Voo L@r, yp)ng + J (@) Ty
= lim [—pe+ Sk Dyny, + Stk A. . (3.99)

keK
[—pe + Sk Dyni + Skyklz. 2

Using (399) (specifically the third row of the matrix inside the norm) with limgex (2, sg) = (T«, Sx),
the fact that [s.]z, > 0, 220), Lemma 3.2l and (3.97)) shows that

lim [y]z, = (1S elz, = [yaz..
It then follows from ([B99) (specifically the first row of the matrix inside the norm), the fact that

limgex (Tr, Sk) = (@4, s+), Z20), @I9), Lemma BT (3.97), the fact that limgex ) = 0, and hence the
full row rank of J4, (z.) (stated in Assumption B2) that

limyla, = = [ (@) . @] Tac @) (9(@) + Iz (@) ]z ) = [y

We have shown that the multiplier sequence converges on K, i.e., that limgex yr = y. for some y, € RM.

Combining this with (8:98)), the fact that limpexc (zk, sk) = (T, s«), 220), (Z19), LemmaBI] and B.97)

proves that
g(x) + J(2) Ty =0 and  S.y. = pe. (3.100)

Note that it follows from (3.I00), Lemma 27, and the fact that pu > 0 that (s.,y.) > 0. Combining
this with (3I00) and v(z., s«) = 0 proves that (2., y«, s«) is a KKT point for problem (I]). O

Lemmas and [B.I8 prove that, under Assumption 3.2] we may obtain a first-order KKT point for
the barrier subproblem (L)) with any subsequence K over which {v;}rex — 0 and {w,{}ke x — 0. Now,
to prove that such a sequence will exist, we make the following assumption—which is, at nearly feasible
points, stronger than Assumption B.22for the remainder of our analysis. The assumption states that
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at any nearly feasible point, the singular values of a scaled constraint Jacobian are bounded away from
Zero.

Assumption 3.3. There exists a constant k., > 0 independent of k such that if vy < k., then the

smallest singular value of J(xy, sg)Px is greater than k; for some constant r; > 0 independent of k.
Observe that this implies that if vy, < k., then X}, > K;.

We also define the following projection operator. Note that this operator is used for theoretical
purposes only, i.e., computing such projections is unnecessary in an implementation of our algorithm.

Definition 3.19. Let Proj,(d) denote the orthogonal projection of d onto the range space of Py J(x, si)™ .

Lemma 3.20. If k € N ND and vy < K., then there exist constants {kg:, fr.} C (0,00) such that

P 2, v . .
|Proj.( Py 1d;€)||2 < Tk and Amk’d > Ky min{Kny, Kro ||[Proj,( Py 1d;€)||2}. (3.101)

J

Proof. Let k € N'ND and define m}'"(d) := ||c(zk, sx) + J(k, 55) Prd||2 and df := P_'d),. Then, it
follows from the fact that J(xy, sg)PpProj(df) = J(zy, si)Prdl, part (i) of Lemma 26, and ([2.30d)
that

my (Proji(df)) = llc(@k, ) + J (w, 1) PuProju(df )|z = lle(zk, sk) + J (zk, 56) Pedf, |12
= |le(zk, sk) + J(xk, sk)di||l2 < ||le(xg, sk)||2 = mZ’P(O). (3.102)

We may also note that since vy < k., we have under Assumption that the smallest eigenvalue of
Vo (miT(0))2 = PLJ(zk, 55) 7T 2k, sx) Py is bounded below by #2 > 0. We may now use this fact,

J

BI02), and [5, Lemma 6.5.1] applied to (m:"")? to conclude that

. _ . 2 v 2 v
[Proju(Py di)ll2 = [IProju(dy) 2 < ;Vw(mk’P(O)f = 37

J J

which proves the first inequality in (BI0T). It also follows from Lemma B4 and the fact that the
orthogonal projection operator is nonexpansive that

05 2 1Py |2 > |[Projy(Py dy )2

Combining this with the fact that k& € D, Lemma[26l(ix), the inequality in [2.48]), (Z14), Lemma B3(i),
Assumption B3 and the first inequality in (B.I0T), we have that there exist constants { kg1, £r2} C (0, 00)
such that the second inequality in (BI01]) holds. O

We now bound the size of the normal step along a certain subsequence of unsuccessful v-iterations.

Lemma 3.21. If k€ N NVND)\S, and

vk < min {K;m Raci 7 5Ac37 1- K;fbn, 1 — K } , (3'103)
Rac2Ry Racz R Rac2Rj
then, for some constants {Kaq, fsrn} C (0,1), we have
mp(di) < KaaVr  and ||Pr0jk(Pk_1dk)||2 > KSRn”Pk_lTLkHQ. (3.104)

Proof. Consider k € (NNVND)\S, such that (3I03) holds. It follows from the fact that k € N ND,
Lemma [26(ix), the inequality in (Z48), I4), Lemma B3[i), (3I03]), Assumption B3] and (Z3)) that

mp(di) < mp(0) — Kealen Xf MIn {7E, 07, 1 — Kpp } < MR(0) — KeaKenky min {K,05, 05, 1 — Kpn - (3.105)
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It also follows from Lemma B.8(ii), the fact that k € V' \ S,, Assumption B3 [Z3)), and BI03) that
07 > min {Kact, KacaThs KaesXp} = MIN{Kact, KacaKiUk, Kacsky } = KacakyUk-

Substituting this into (BI05]) ensures by (BI03) the existence of ko4 € (0,1) independent of k such that

mp(di) < mp(0) — Keqlen oy MIN {K 0k, KacakyVky 1 — Ko } = Uk — KeaKenfoy MIN{ Ky, Kacakiy } Uk < Ko Uk

This is the first desired result. Next, defining dkP = P Yds, we may use the inequality above, the
reverse triangle inequality, and the fact that J(zy, sg)PrdE = J(zk, si) PiProj,(df) to have

Ok = || (ks sk) PeProji(di )2 < lle(@n, sk) + J (@, ) PeProji(dy )|l
= ||c(zk, si) + J (21, 5%) Prdy ||2

=my(dr) < KaaVk.

e
o

Combining the above with the fact that k € N, (213), and standard norm inequalities then implies

1P, nkll2 < mumy) < Kol Ped 2k, s5) " [l2vk

B |J (, 51.) PrProji(df)]]2

< K| P (g, s1) 7|

1 — Kaa
J P, Proj.(df
< /fn”PkJ(zk, Sk)T”Q ” (Ikv Sk) 1k||2ﬁ|| rOJk( k )”2 )
— Mvela

It then follows from the definition of df, Lemma B2 and the fact that k., € (0,1) that for some
Kern € (0,1) independent of k, we have

1— Kaa
K|l (@h, 1) Pr|

IProjy(Py ' di)|l2 > 1Py nklle > Forall Py )2,
2

which is the second desired result. O

For our next pair of results, we define the constants

2K

tn = 1, 1 and 3.106

s fivs max{ (1 = Ks)(Kys — 1)kee(1 — HB)GW} - an ( 8)
i € (1 = K)ot
S5 1= mln{l, [ } € (0,1]. (3.106Db)
Lemma 3.22. Ifk & ),

> er >0, (3.107a)
min{dz, 5}{;} <<, and (3.107b)
1P tklle 2 sull Pl (3.1070)

then ty, # 0 and (2Z32) holds.

Proof. Let k ¢ Y be such that (3107) holds. If k € F, then the results follow by the definition of the
index set F. Thus, for the remainder of the proof, we may assume that k € V.

If ni, = 0, then t; # 0 (since otherwise k¥ € Y by Lemma [Z6|(vi)) and by ([230al)/([235a), and
Lemma B.3[(ii) we have Ami’d = Ami’t > 0, meaning that ([232) holds, as desired. Otherwise, if
ng # 0, then since s > 0 and P, > 0 for all k¥ and BI0Td) holds, we have ¢, # 0, which implies
ke T\ To and [22I)) holds. It then follows from the reverse triangle inequality, (3.107d), and (3.10Gal)
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that

| Py k|2

_ _ _ _ Kyvs — 1 _
1Pl > [ P e — B i = (1 1B ) 1P e > (—) 1P e (3.108)
”Pk tk”? Rys

We also have that
n T _ _ _
—Amk’ = Vf(xk,sk)Tnk—F%n;‘gGknk = (Pka(xk, Sk)) Pk 1nk—|—%(Pk lnk)TPkaPk(Pk 1nk). (3.109)

Using the triangle and Cauchy-Schwarz inequalities, Lemma 3.2, and the fact that 221)), (3107H) and
(BI06D) imply || P 'nk s < min{sy, 6]} < 1, we then have

| Am"| < (1P ez + 51 Py ) < 2601 P 2 (3.110)

Moreover, it follows from the fact that k& € T\ Ty, Lemma[B3.3(ii), (3.107al), [2.58)), (3.107h) and (3.106D))

that
Am'}z’t > Keer min{er, (1 — £5)05, (1 — Ky )Bron b = Kerbr (1 — kg )0k

Combining this with (3I10), the fact that £k € T \ 7o, Lemma B4 (BI08) and (3I07d) and (B.106al)
yields

Amf"| _ 2wl Pl 2nlPE Parvs P mels
= = _ = _ = — Pvs-
Am{’t Kebr(l — Kp)ob = Keeqr(1 — Kg)|| Py Ydplla ~ Keer (1 — Kg)(kvs — 1) Py M2
Hence, (232) holds, which completes the proof. O

We next prove that at nearly feasible points, certain v-iterates are guaranteed to be successful.

Lemma 3.23. If ke VND,

1P 2 < qull By o (3.111)
and
1- 1- ral(l —
v < min {fic; fac P K’AC37 I{fb"7 I{fb"7 s 3 I{JKJRW%SRH( 2 771) } ) (3112)
KJACQK/J K/ACZ KJJ K/ACZKJJ K/RQKJSRnKJnK/ub KJC(l + gtn) K;n’k‘./ub

then k € S, and 6, > &}

Proof. Consider k € V ND such that (BI1I) and BII2) hold. If ny = 0, then (BIII) implies that
tr = 0, which in turn implies by part (vi) of Lemma that k € ). However, this contradicts the
supposition that k € V, so we must have ng # 0. In this case, part (ii) of Lemma ensures that
k € N, so that overall we have k € NNV ND.

To obtain a contradiction, suppose that k¥ ¢ S,, so that overall we have k € (N NV N D)\ S,.
This and the bound BI12) imply that the results of Lemmas and 32T hold, i.e., that (BI0T]) and
(3104) hold. Moreover, the fact that k € D and Lemma[2.6(ix) imply that (Z48]) holds. Using this and
the facts that ny # 0 and k € V' \ S,, it follows from (Z54) that pj < 7:. However, since (3.I01]) and

(B104) hold,
Ay = kymindrg, s fpo Proju(Py dy)lla} 2 ko mindse, s Kok | Py 2}
In fact, it follows from ([2.I3]), Lemma and (3112) that
B Fern | Py 1k l|2 < B FamnbinTh < FppFannfnfun Uk < Kgys

and thus
Ampt > Ryt Py 2. (3.113)
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Furthermore, by (Z49), B10), BII3), the triangle inequality, BI11), @I3), the Cauchy-Schwarz
inequality, Lemma [B:2] and (3I12]), we have that

v(@k + digy sk + di) —mildi) | _ kol Pyl

lpk — 1| = < -
AmZ’d K.I“Rzﬁsr{nnpk 1nk||2
_ Rl IR il _ vt P
RjKRRr2KRsrn RjKRRr2RsRrn

and hence py > n1, which is a contradiction. Thus, we must conclude that £k € S,. The fact that
0341 = 0y now follows from the fact that k € S, and (2Z52). O

We now prove that our algorithm terminates finitely if there are finitely many successful v-iterations.
Lemma 3.24. If |S,| < oo, Algorithm [ terminates finitely.

Proof. We prove the result by contradiction, and so suppose that |S,| < co, but that Algorithm [ does
not terminate finitely. It then follows from Theorem B.ITlthat |S| = oo, which when combined with the
fact that |S,| < co implies that |Sy| = oo; i.e., it follows that there are an infinite number of successful
iterations, and all belong to Sy for all sufficiently large k. We may also deduce from these facts—and
since the barrier function is decreased for £ € Sy and the slack reset only possibly decreases the barrier
function—that the sequence { f(zk, si)} is monotonically decreasing for sufficiently large k. Moreover,
since vty < vp* for all k ¢ S, and |S,| < oo, we have that there exists a constant v3* > 0 such that

max max

vp = v > (0 for all sufficiently large k. (3.114)

oo

We complete the proof by considering two cases depending on whether, for some ey > 0, (B.81]) holds.
Case 1: Suppose that (381 holds for some e; > 0. It then follows from Lemma [B.9] that (3.82)) also
holds, in which case we have from (230al)/ (2.354), the fact that Sy C F C T\ To, Lemma[B3(ii), (B.81)),

(E52), @58), and (EI) that

Amft > kepmin{er, (1= kp)0h, (1 — KoK }

> K€ min{es, (1 — kg) min{d;, er, kK, v}, (1 — Kay )Knw b for sufficiently large k € Sy.
(3.115)

We now consider two subcases, deriving contradictions in each, which will prove that the condition of
this case (namely, that there exists ey > 0 such that (B.81) holds) cannot occur.
Subcase 1.1: Suppose there exists an infinite subsequence Ky C Sy such that {0} }rex, — 0. Since
Opp1 < oy only if k € V\S, and 6}, « 6} otherwise, it follows that there exists an infinite subsequence
Ky CV\ 'S, such that {6} }rex, — 0. Our goal in the remainder of this subcase is to prove that for all
sufficiently large k € IC,, C V, we have that all of the conditions of an f-iteration are satisfied, which is
a contradiction since ¥V N F = (). This will prove that such a sequence K ¢ € Sy cannot exist.

Using the fact that {6} }rex, — 0 and Lemma [3.6] we may conclude that for all sufficiently large
k € K, we have k € (WND)\S,. In addition, since |S,| < oo and {6} }rex, — 0, we may conclude from
part (i) of LemmaB.8 and Lemma[B.I0 that {7} }kex, — 0, which in turn implies with Lemma [3.T5] that
{vk}rek, — 0. Now, suppose that there exists an infinite subsequence K C IC,, such that K, "N = 0.
The following then hold for all sufficiently large k € K C K, CV\ S,:

(a) ng =0 by part (i) of Lemma 26 (and thus ([232]) holds);

(b) tx # 0 by (a), part (vi) of Lemma [2.6] and the fact that k£ € V; and

(€) vk < KW Up™ = Ky v by Step @ (210), and (E119).
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It then follows from Assumption [T} Lemma[3.4l the fact that {5} }xex; — 0, statement (c) above, and
the bound k., < 1 that v(zy + d}, sk + d;) < vp* for all sufficiently large & € K. Overall, this yields
231), and thus we have that all of the conditions of an f-iteration hold, so k € F. However, this is a
contradiction since k € K, CV and VN F = (). Thus, such an infinite subsequence K, C K, cannot
exist, so we may conclude that for all sufficiently large k € K, we have k € N. To summarize, at this
point in this subcase, we may assume without loss of generality that there exists an infinite subsequence
’Cv - (Nﬁ yn D) \ Sv over which {5Z}k€’Cv — 0, {ﬂ'}g}kg}cv — 0, and {'Uk}kele — 0.

It follows from Lemma [B.2]] and the facts that K, € (M NV N D)\ S, and {vg}rex, — 0 that
mj(di) < Kaavr for all sufficiently large k € KC,. Using this fact, (370), the reverse triangle inequality,
Lemma B4 Lemma [Z9, and (BI14), we have

v(xz, SZ) < K™ + ke (67)? for all sufficiently large k € IC,.

This relationship then implies that

1—
( Keia) e

Ko >

v(zf, s)) < v = vp™ for all sufficiently large k € K, such that (5})? <
Thus, since {0} }rex, — 0, we may conclude that (2.37) holds for all sufficiently large k € IC,.
Next, suppose that for ¢, > 0 defined in (BI06a]), we have

1Py "tkll2 < Gl Py tnklle for all sufficiently large k € KC,. (3.116)

We may then use the facts that £, € (M NV ND) and {vg}rex, — 0, (GII0), and Lemma to
conclude that |S, N K,| = oo, which contradicts the fact that |S,| < co. Therefore, there exists an
infinite subsequence K. C K, such that if k£ € X!/ then (B.110) fails.

We now show that with & € K C K, C V\ S,, the conditions of Lemma hold. Consider
k € K. First, since k € Kl C V, we know that k ¢ Y. Second, since k € K, we know from the
previous paragraph that (BII0) does not hold, and therefore that t; # 0 and r; was computed to
satisfy (226a), (2.26D), or ([Z26d). Since we have supposed that the algorithm does not terminate
finitely, we may use the fact that {vp}rex, — 0 along with (2.26al) to conclude that (BI07a]) holds for
all sufficiently large k € K. Third, since {0} }rex, — 0, we have that (3.I07D) holds for all sufficiently
large k € K. Fourth, we know from the definition of the set K! that [BII0) fails, which is to say
that (3I07d) holds. We may now apply Lemma to deduce that t; # 0 and ([232) holds for all
sufficiently large & € K!/. Thus, along with our previous conclusion that (Z37) holds for all sufficiently
large k € K,,, we may conclude that for all sufficiently large k € K! we have that all of the conditions
of an f-iteration are satisfied. However, as previously mentioned, this is impossible since K/ C K, CV
and F NV = (. Hence our stated supposition for Subcase 1.1, i.e., that there is infinite subsequence
Ky € Sy such that {6} }rex, — 0, must be impossible.
Subcase 1.2: Suppose that there exists e, > 0 such that ;) > e, for all k& € Sy, and recall that
|S¢| = 0o. We may combine (B.110]) and the bound d} > e, for all k € Sy to conclude that there exists
k' such that

Ami’t > kaepmin{er, (1 — k) min{e,, e, K02}, (1 — K )Kn } > 0 for all k > &' with k € Sy.
(3.117)
Combining the facts that |S,| < co and |Sy| = oo, [238), and ([232)) (which is required to hold for
k € F), we have that

k—1 k—1
faw,sw) = flaws) = D> [fl@g85) = Fagn )] 2 mes Yy Aml?, (3.118)
j=k' ,jES; J=k',j€S]

which in view of BIIT) proves that {f(zk,sk)} — —oo. However, this is a contradiction since the
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barrier function is bounded below as a consequence of Lemma and Assumptions [[.T] and 311

Since we have proved that neither Subcase 1.1 nor 1.2 can occur, the premise of Case 1 cannot be
true.
Case 2: Suppose that the condition of Case 1 does not hold, which is to say that there exists  C F
with

lim 7/ = 0. 3.119
LT (8.119)

Forall k e K C F C T\ To, we have that ¢, # 0 was computed (and not reset to zero), in which case
it must be true that (2.26D) does not hold. Combining this fact with [B.I19) yields

0 = lim 7r{; > lim wy (7)) >0, so that lim 7 = 0.
kek kek kek

It follows from this fact, Assumptions 3.1} [3:2] and B3] and Lemmas and BTH that {vg}rex — 0,
which when combined with (BI119) shows that (2:26al) will be satisfied for all sufficiently large k € K.
However, this contradicts our supposition that the algorithm does not terminate finitely. o

The previous result proves that if the algorithm does not terminate finitely, then there are an infinite
number of successful v-iterations. We now establish an important consequence of this fact.

Lemma 3.25. If |S,| = co and BIII) holds for all sufficiently large k € V N'D, then
0y > €x for some €, >0 for all k. (3.120)

Proof. First, by Lemma BT the fact that |S,| = oo implies that {vy} — 0. Hence, for sufficiently
large k € V N D, we have that (BI11) and BI12) hold, which in turn implies by Lemma [B.:23 that
041 = 0p. Second, if k € V\ D, then it follows from Lemma that 0} > min{d}, 5£, Ry} > Ky
Third, if £ € Y U F, then by (2.36), (242) and (2.43) we have that 0}, > d;. The result follows by
combining these facts. O

We next prove a result about certain v-iterations that are unsuccessful.

Lemma 3.26. If k € V\ S,, BI03) holds,

1— 21— s
v?axgmin{<%> (TH) K } (3.121)
C C

P < (opm) (3.122)

and

then k € D and [237) holds.

Proof. Let k € V\ S, and observe that (3121 and (3122) imply that 6} < x,,. Hence, by Lemma [3.6]
we have that k € D. That is, k € (W N D)\ S,. We now consider two cases depending on whether or
not k € N.

Suppose k € N so that k € NNV ND)\S,. It then follows from [B.70), the reverse triangle
inequality, the fact that (3I03) holds, and Lemmas 3.4 and B:2T] that

v(xg + di, sk + d}) < KaaVk + lic(5Z)2.
Then, from this inequality, Lemma 2.9 (3122), and (BI2I]), we have that
v(xg + di, sk + d}) < KaaVi™ + ke (vg"‘”‘)% = op™ (ndd + Ko 4 /v,‘;‘a") < o,

which means that ([2237) holds, as desired.
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Now suppose k ¢ N. It then follows from (B.70), the reverse triangle inequality, Lemmas [3.4] and
29 (@230d) (which holds since k € D), and the fact that vy < kv (which holds by (ZI0) since

k¢ N), BI21), and BIZ2) that
v(wk + df, s+ di) < mi(de) + Re(07)” < KoV + o ()2 < O™ (R + o VJOE™) < 0p™,

which again means that ([2.37) holds, as desired. O

We now come to the conclusion that there are a finite number of successful v-iterations.
Theorem 3.27. The set S, is finite.

Proof. We prove the result by contradiction, and so suppose that |S,| = oco. It then follows from
Lemma B.I7 that {vp~} — 0, {vx} — 0, {n}} — 0, and {nx} — 0. Moreover, from the fact that
|Sy| = oo, we have that (226a) must not hold for all sufficiently large k, or else the algorithm would
terminate finitely in Step [ or B2 which is a contradiction. Thus, since {v;} — 0, we have

7r,{ > e, > 0 for all sufficiently large k. (3.123)

It follows from this fact and Lemma 30 that ([B.82]) holds. Also it follows from the facts that {vx} — 0,
{vp>} — 0, and |S, | = oo that there exists ko such that (3I103), (B112), and I21) hold for all k > ko.

We now prove a lower bound for ¢} that holds for all sufficiently large k, written as equation [B127)
below. We prove the bound by considering two cases, the latter of which is composed of two subcases.
Case 1: Suppose that (BIII) holds for all sufficiently large k > ko such that k € V N D. Then, since
|Sy| = 00, we may apply Lemma [3.28] to deduce that (BI20) holds for all sufficiently large k.

Case 2: Suppose that the situation in Case 1 does not occur in that there exists an infinite index set

Kii={k>ko:keVnD and | P, tll2 > | Py 'nsll2 }.

max

Since 0} (vp™) is not decreased (increased) for k € S, UY U F, our goal is to provide a lower bound for
oy over k € K1\ S,. We do this by considering two subcases depending on whether or not k € N.
Subcase 1: Consider k such that ko < k € K1\ (S, UN). Since k ¢ N, it follows from part (ii) of
Lemma 2.6] that ny = 0. By part (vi) of Lemma 2.6, this means that ¢ # 0 (since otherwise we would
have k € )), which in turn means by part (v) of Lemma[2Z6 that k € T\ 7 and that [232) holds (since
ng = 0). We may then conclude from the fact that k € V' \ S, the choice of kg being large enough such
that BI03) and BI21)) hold for k > ko, and Lemma [320] that if (3122) holds, then ([237) also holds.
However, this would imply that k € F, which contradicts the definition of Ky since V N F = ). Thus,
(B122) must not hold and

op > (v,rgax)% for all k such that ko <k € K1\ (S, UN). (3.124)

Subcase 2: Consider k such that kg < k € (K1 NAN)\ S,. By 8123), we have that (3107a) holds.
Similarly, by the definition of K1, we have that (3.I07d) holds. Now suppose that (3.I07D) and (3.122)
both hold. Then, since k ¢ Y and (3.107a), (3.107h), and (B.I07d) all hold, we may apply Lemma [3.22]
to conclude that ¢t # 0 and ([Z32)) holds. Also, since k € V \ S,, we have shown that (BI03)) and
(BI2I) hold, and we have supposed that ([3.122) holds, we may apply Lemma to conclude that
231) holds. Overall, we have shown that all of the conditions of an f-iteration are satisfied so that
k € F. However, this contradicts the fact that k € Ky €V and VN F = (). Therefore, we may deduce
that at least one of (B.I07D) or (3122) must not hold, yielding

dp > min {§5, (v,;"""‘)%} for all k such that ko <k € (K1 NN)\S,. (3.125)
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Combining [3124) and BIZH) from Subcases 1 and 2 shows that, for Case 2, we have
57 > min {6, (o)1} for all & such that ko < k€ K1\ S,. (3.126)

Moreover, the fact that {vg} — 0 and LemmaB.23 implies that for any k with ko < k € (WND)\ Ky, we
have k € S,,. Thus, for all k > kg with £ € (VND)\S,, we have k € K1\ S,. As a result, the inequality
in (3120) holds for all k£ with ky < k € (WN D)\ S,. This conclusion, along with the deduction that
0y > Ky for all k € V\ D from Lemma 3.6 yields

e

5t > min {6, (o)1, | for all | with ko <k € V\'S,.
which, when combined with the fact that 6 (vp®) is not decreased (increased) for k € S, UY U F,
yields

e

47 > min {9;, (vE™) ,FLV} for all k > ko.

Combining the results of Cases 1 and 2, we have that
0, > min {e*, Ss) (vg"‘“‘)%’mv} for all sufficiently large k. (3.127)

Using this fact, (3.82)), and the fact that {vp*} — 0 yields

3

min{d, 5£} > min {e*, Ss, (VP™) T Ky, 6]:} = (v,‘;‘a")% for all sufficiently large k. (3.128)

Under our supposition that the set S, is infinite, at least one of the following two scenarios must
occur. In both, we reach a contradiction to this supposition that S, is infinite, which proves the theorem.

Scenario 1: Suppose that & := S, \ T is infinite. For k € Sy, we have that either (2.2I)) does not hold
or ([2:26D)) holds. In fact, since ([B123) holds and {7} } — 0, condition (2.26D) cannot hold infinitely
often for k € Sy, implying that for all sufficiently large k € S; we have that (Z2I]) does not hold. Then,
since tp, = 0 for k € §; C V, we have by Lemma [Z.6(vi) that ng # 0 (or else k € )). We may now use
the facts that vp> > 0, 6} > 0, and 5£ > 0 for all k, 213), (B128), Lemmas 2.9 and B2l and the fact
that {v;} — 0 to conclude that

pt v 1
[R5} nk”}? < K"W’“S < K“K“bfk < Kok < kg for sufficiently large k € Si.

1 v J max \ ;5 =
min{dy, 0} — (vp=)s (k)

However, this means that ([2.21]) holds for all sufficiently large k € Sy, contradicting our earlier conclusion
that it does not. This contradiction implies that this scenario cannot occur.

Scenario 2: Suppose that So = S, N'T is infinite. Our goal is to show that for all sufficiently large
k € S, we have that all of the conditions of an f-iteration are satisfied, which is impossible since S; C V
and VN F = (. We begin by showing that (2.32]) holds for all sufficiently large k € Ss. Using (3.109)),
the triangle and Cauchy-Schwarz inequalities, Lemma 321 ([2.I3)), and the fact that {7} — 0 (and
hence that k,mp < 1 for all sufficiently large k), it follows as in the proof of Lemma (see (BI110))
that

|[AmD™ | < k(|| P k|2 + HIP gl|3) < 2k kamh < 262 K05 for all sufficiently large k € So.
(3.129)
It also follows from the facts that {vp®™} — 0 and So C V along with Lemma that k € D for all
sufficiently large k € Sa. Moreover, since So C T, it follows that for all k € Sy a tangential step ¢ # 0
was computed to satisfy either [230) or (2Z35). However, for all k € Sy, it follows from ([2.48)) that
ng # 0, and then from Lemma [Z6(xi) that k € Tp, i.e., that (230) holds. This implies by (Z58) that
8t = min{dy, (5,5} for sufficiently large k € Sy. It follows from this fact, the fact that k € Tp, (2304,



An interior-point trust-funnel algorithm for nonlinear optimization 37

part (ii) of Lemma B3] BI123), 12]), the fact that {vp>} — 0, and Lemma [Z9] that
Am'};’t > K6 min {ex, (1 — £5)0}, (1 = K )R |
= K. €; Min {ew, (1 — k) min{dg, 5£}, (1- fifbt)fifbn}
> Keer(l — AB)(v,‘;‘a")% > Ke€r(l — /@B)vk% for all sufficiently large k € Ss.

Combining this with (3129) and the fact that {v;} — 0 shows that

1
|Am; " | 262, K, 0

Am'};’t - K;cteﬂ'(l - KB)

<1 — ks for all sufficiently large k € S,.

Hence, ([Z32) holds for sufficiently large k € Sa, as desired. From here, it follows from Step [27] that the
computed tangential step is not reset to zero, i.e., k € Tp\ Tp for all sufficiently large k € Sz, from which
it follows that t; # 0 for all sufficiently large k € S;. Moreover, since k € S, implies by Lemma
that (Z37) holds, we have from the fact that So C S, that (237) holds for all k¥ € S,. To summarize,
we have shown that for all sufficiently large k& € Sz, all conditions of an f-iteration are satisfied, which
is a contradiction. Thus, this scenario cannot occur.

Overall, we have shown that under our supposition that |S,| = oo, neither Scenario 1 nor 2 may
occur. However, since one of the two must occur in order to have |S,| = oo, we have reached a
contradiction to our supposition, meaning that the result is proved. O

We conclude by summarizing our convergence results.
Theorem 3.28. The following hold for Algorithm [1:

(i) If Assumptions [Tl 21, and Bl hold, then either Algorithm [ terminates finitely or there exists
an infinite subsequence IC such that limgex min{vg, x4} = limgex 75 = 0. In the latter case, any
limit point (x«,s+) of {(xk, sk)}kex satisfies TV (x4, 5.) = 0 and is therefore a critical point of
1v(z, 5)? subject to s > 0.

(ii) If Assumptions 1], 211, Bl and hold, then either Algorithm [ terminates finitely or there
exists an infinite subsequence K such that limgex min{vg, x4} = limgex 75 = 0. In the latter
case, any limit point (x., s.) of {(zk, sk) }kex satisfies v(x, sx) = 0 so that (x.,s«) is feasible for

(NES).

(iii) If Assumptions [LT], 21, B, B2, and hold, then either Algorithm [ terminates finitely in
Step[8 with an infeasible stationary point (xy, si) with vy > k. or it terminates finitely in Step[I7
or [32 with an approximate first-order KKT point (xk, sk, yx) for the barrier problem ([LTJ).

Proof. Part (i) follows from LemmasB.I3land B.T6, Assumption [Tl and the criticality conditions (B.93])
for minimizing $v(x, s)? subject to s > 0. Then, part (ii) follows from part (i) and Lemma[B.I5l Finally,
it follows from Theorems and that Algorithm [I] terminates finitely. Thus, part (iii) follows
since, under Assumption [3.3] the algorithm does not converge to an infeasible stationary point with
v < Ke. O

4 A Trust-Funnel Algorithm for Solving the Nonlinear Opti-
mization Problem

The previous section considers the global convergence properties of our new trust-funnel algorithm when
applied to the barrier subproblem (LII). This section describes how a sequence of barrier subproblems
with decreasing values for the barrier parameter may be solved to find an approximate first-order KKT
point for problem (NP) (equivalently, problem (NPs)).
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To achieve our stated goal, we require the constants e, and ¢, in Algorithm [ to depend on pu.
Moreover, for practical reasons, it is advisable to make other constants in Algorithm [I] depend on pu as
well. In the previous section, for ease of exposition, we did not explicitly state these dependencies since
1 was fixed. This does not pose a problem in this section since we use Algorithm [ to solve a sequence
of barrier problems where for each particular instance the penalty parameter is fixed and therefore our
previous analysis still holds. A summary of the constants that depend on p and precisely where they
are used is given in Table 4]l In addition to requiring them to be positive, it is practical to have them

satisfy
lim e,(p) = lim €,(p) = Im Kpn(p) = lim ke () =0  and (4.130)
pn—0 pn—0 pn—0 pn—0
lim k, (@) = lim £p(p) = co. (4.131)
n—0 n—0

Moreover, the convergence result that we present in this section additionally assumes that

ex(pg) < Guy and  e(py) < Gopy (4.132)

for some chosen constants ¢; € (0,1) and {» € (0,00), and that a particular choice for the positive-
definite matrix Dy, defined in (Z20) is used. Specifically, for each 1 < i < m, we define

Kp (5 if jlS ;2 > Kpl(lj),
[di)i := [Di)ui := {uj[(si ]j_ ) Oﬂ’f exi]se' (1) (4.133)

Other choices are possible, e.g., based on the primal-dual update Dy, = Y35, ! and only require a small
modification in the proof.
With these requirements, we may now state our algorithm for solving problem (NPs).

Table 4.1: Parameters from Algorithm [ that depend on the barrier parameter.

Parameter Used Parameter Used Parameter Used

Ky = ky (1) () kp = kp(p) 220 exr = ex(p) (E26a)
Koy = Ko () 30D)/@3BD) | kn = fma()  CD)/@RIF) | e =eo(p) ([@26a)

Algorithm 2 Trust-funnel algorithm for solving (NPs).

1: Input: (xo, S0, Yo, o) satisfying (s, yo, to) > 0.

2: Choose a parameter 7, € (0,1) and any two forcing functions e, () and €,(-).

3: Set (zf™r, sg*, yi**) < (o, S0, Yo) and j < 0.

4: loop

5: Call Algorithm [ with input (25, s5, y5*", ;)  and (ex(ps), €v(p;)) to compute
(@541, 8541, Yj+1)-

6 if Algorithm [ terminated in Step [§ then

7: Return the infeasible stationary point (z;41,S;41)-

8 Set pjp1 € (0, vup]-

9 Use pj, ptj+1, and (241, 85+1,¥;j+1) to compute the next starting point (w577, s557, Y577 ).

10: Set j « j+1.

Theorem 4.1. If Assumptions [T, 2T, B, B2, andB3 hold, and both [EI32) and [EI33) hold, then

either

(i) Algorithm Bl returns an infeasible stationary point in Step[d, or
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(ii) there exists a limit point (z«, s«,y«) of the iterates {(z;11,5;j+1,Yj+1)} computed by Algorithm
such that (., S«,Ys«) is a first-order KKT point for problem (NPs).

Proof. If statement (i) occurs, then there is nothing left to prove. Therefore, suppose that statement
(i) does not occur, in which case we have that Algorithm [[lnever terminates in Step [, which by (2.26al)
and ([@I32) means that for all 7 > 0 we have

w1 (W) < enlpy) < Gy and v < (1) < Gopy (4.134)

In particular, we have that the sequence {(zjt1,8;41,%;41)} is infinite, and from the second part
of [EI34), the reverse triangle inequality, and Assumption Bl that {s;+1} is bounded. Combining
this fact with Assumption Bl implies the existence of an infinite index set J and a point (x,, s,) with
s« > 0 such that

lig (241,5741) = (2,5.). (4.135)

It follows from this fact, (@I34), p; — 0, and Assumption [I1] that
]lierr}vﬂl = 0(Zy, 8x) = 0. (4.136)

We comment that for the remainder of the proof, the quantities Pj;1, nj41, etc. are used to represent
the final values of the relevant quantities computed in Algorithm [ when it is called in line [l during
iteration j of Algorithm [} they are the complementary quantities to (z;+1, 8j+1,Yj+1)-

It follows from norm inequalities, the definition of P;yq1, (213), (I3H), Assumption [T} and (@I34)
that

[”§+1]i

[$j+1]i

< ||S;-|-11”§+1||oo < ||S;4-11”;+1||2 < ||Pj7-|-11”j+1||2 < Kty = O(vjg1) = O(py) for j e J.

Since we maintain positive slack vectors throughout Algorithm [ we may then conclude that

[[nj 1)l = O(pjlsj41]i) forall1<i<mandjeJ. (4.137)

We now develop a crucial bound by considering two cases motivated by the definition of Dy. First,
suppose that for a given i we have p;[sj41]; > < kp(i ), so that from [@EI33) we have [dj11]; =
t;[8541]; 2. Tt then follows from this fact and (EI37) that

|[sj1)ildjalilns il = O(uF) for j e T,

Second, suppose that for a given i we have ;[s;+1]; > > kn (i), so that from ([ZI33) we have [dji1]; =
#ip(p5) < pslsj41]; 2, and thus [sj41]?[dj41]i < p;. Combining this fact with (@I317) shows that

[sjs1)ildjlilng )il = O(uilsj+1]i[dja)i) = O(3) forje J. (4.138)

Therefore, we have shown that ([@I38) holds in both cases, i.e., (ZI38]) holds for all 1 < i < m and
j € J. We may now use the same proof as for Lemma [BI8] combined with (£I30]), (£13]), and the
first part of (@I34) to deduce that lim;e 7 yj+1 = y« for some y. satisfying g(x.) + J(z.)Ty. = 0 and
S.ys = 0. To prove that (z., S«, y«) is a first-order KKT point for problem (NPs), it only remains to
prove that y* > 0, which we now proceed to do.
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From the first part of [I34), we know that

G > H (Q(IjJrl) + Vool (@)1, Y5 )01 + J(ijrl)TyjH)
= —pje + Sjt1Djtang iy + Sjt1yjt

2
> ||=nje + Sjr1Djrang g + Sjvayjll, = |=pye + Sjr1Djran g + Sjrays|
> | = pg + [sjalildjali[ni )i + [sjvalilyjra]i| forall 1 <i<m. (4.139)

We now consider two cases. First, suppose that 4 is such that [s.]; > 0. In this case it follows from

#I139), (£138), the fact that p; — 0, and @I30) that limje 7[yj+1]i = [v*]; = 0, as desired. Second,
suppose that ¢ is such that [s.]; = 0. It may be observed from (@I39) that

—Cuipg < —pj + [siralildipali[nf 1)i + [s541]ilyili,

and hence that .
=Gty + pg — [8j1]ildj41lilng )i
[yj+1li > :
[sj+1]i
It follows from the previous inequality, the facts that ¢; € (0,1) and p; — 0, (£I38)), and the fact that
the slack vectors are maintained to be positive in Algorithm [l that [y,+1]; > 0 for all sufficiently large
j € J. Combining this with lim;e 7 y;41 = y« shows that [y.]; > 0. This completes the proof. O

5 Conclusion and discussion

In this paper, we have presented a new algorithm for solving constrained nonlinear optimization prob-
lems. The algorithm is of the inexact barrier-SQP variety, i.e., it approximately solves a sequence of
barrier subproblems using an inexact SQP method. In Sections 2] and [B] we proved that each barrier
subproblem could be solved approximately using a new inexact-SQP method based on a trust-funnel
mechanism (not requiring a filter or penalty function). The algorithm is extremely flexible in that,
during each iteration, it automatically determines the types of steps and updates that are expected
to be most productive, where potential productivity is determined by available criticality measures.
In each iteration, each subproblem may be solved approximately using matrix-free iterative methods,
which means that the algorithm is viable for solving large-scale barrier subproblems. We then proved
in Section Ml that an approximate solution of the original nonlinear optimization problem may be ob-
tained by approximately solving a sequence of barrier subproblems for a decreasing sequence of barrier
parameters.

Although we have not considered them explicitly in this paper, we remark that equality constraints,
call them cg(x) = 0, may easily be included in our algorithm. To do this, one may simply redefine

clz,s) == < clw) + s )

cx ()

and adjust the barrier problem (IIJ), violation measure ([2.3]) and v-criticality measure ([2.9) in obvious
ways. Clearly, two-sided bounds on inequality constraints may also be incorporated in a similar fashion.

We are currently implementing our new algorithm. Once complete, it will be part of the GALA-
HAD [20] thread-safe library of Fortran 90 packages for the numerical solution of optimization problems.
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Algorithm 1 Trust-funnel algorithm for minimizing the barrier problem (L.

1. Input: (xq,s0,y—1, 1) and (er, €,) with (sg,y—1, ) > 0 and (e, €,) > 0, respectively.

2: ChOOSC {50f7(sgjlica)liy)liDjli6vv} C (0700)7 {K’ch’VS;Hv} C (1500)5 O < m S T2 < 1; O < 71 S Y2 <

1, Ko = 1, { Ky By Fogs By Bxy KB Kvey Ftons Kbty Koty Koz b C (0,1), and keq € (0,1 — Ke,)-
Perform a slack reset to sg as given by (Z.3]).
Set v5** +— max{K.a., £e:V(Z0, S0) }, and 7{1 « 0.
for k=0,1,... do

Compute vy, from ([2.4) and 7} and x} from (2.9).

if x}, =0 and vx > 0 then

Return the infeasible stationary point (z, si).
if [2.I0) holds, or at least 7} > 0 then

10: Compute ny, satisfying 2.13) and (Z14). [k € N

11: else
12: Set ng < 0.

13: Choose yp satisfying ([2.19) and Dy, satisfying (2:20), and then set Gy, by (218).
14: if (ZZ1)) holds then

15: Compute yg, 7k, 7r,{, and x£ from ([223)-(220) to satisfy (2.26al), (2.261), or ([2.26d).

16: if (2264l holds then

17: Return the (approximate) first-order KKT point (zy, s,y ) for the barrier problem ().
18: else if (2.26D) holds then

19: Set tp + 0.

20: else

21: if k € N then

22: Compute ¢ so that [230) is satisfied. [k e T
23: else

24: Compute tj so that either (230) or ([2.35]) is satisfied. [keT]
25: if (2.30) holds then

26: Add iteration k to the set Tp. [k € Tp]
27: if (237 is satisfied but (2.32) fails then

28: Set t, + 0. [k € To]
29: else

30: Set yr < yr_1 and t < 0, and then set 7y, 7T£, and X'}; by (Z24)—-(2.25).

31: if (2264l holds then

32: Return the (approximate) first-order KKT point (z, sk, yx) for the barrier problem (LI]).

33: if (2.30d)) holds then

34: Add iteration k to the set D. [k € D]
35: Set the trial step dj < ny + t and trial iterate (z,s7) < (@, sk) + di.

36: if d;, = 0 then

37: Perform the y-iteration updates given by (Z30]). [k €]
38: else if ¢ # 0 and both ([232) and ([237) hold then

39: Perform the f-iteration updates given by (239)—(2-44]). [k € F]
40: else

41: Perform the v-iteration updates given by (Z.50)—(2.57).

[k €V
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