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Markhov decision processes and linear programs. This improves a recent subex-
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starting from the previously chosen variable and proceeding in the given cir-
cular order. It is perhaps the simplest example from the class of history-based
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Our results are based on a new lower bound construction for parity games.
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lower bound for the round-robin rule applied to acyclic unique sink orientations
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2 David Avis and Oliver Friedmann

1 Introduction

The search for a polynomial time pivoting rule for the simplex method is as old
as the method itself. Klee and Minty showed in 1970 [16] that Dantzig’s original
rule was exponential and similar results were soon found for most of the other
known rules. All such lower bound constructions were based on variations of
the deformed hypercube that appeared in Klee and Minty’s original paper. The
constructions have the property that some variables pivoted only a very few
times - sometimes only once - in the exponential pivot path. This motivated
Cunningham [5], Zadeh [25] and others to consider so-called history based
rules. See [1] for a formal description of these and several other history based
rules.

Cunningham’s least recently consider rule (round-robin rule) assigns a cyclic
order to the variables and remembers the last variable to enter the basis. The
next entering variable is chosen to be the first allowable candidate starting
from the last chosen variable and following the given circular order. Zadeh’s
least entered rule chooses the entering variable to be the candidate that has en-
tered the basis least often. History based rules defeat the deformed hypercube
constructions because they tend to average out how many times a variable piv-
ots. This pseudo-random behaviour held out the possibility that they might
be at worst subexponential, if not polynomial, since the random facet rule [15]
[17] is subexponential.

Friedmann gave the first evidence that history-based rules can sometimes
be non-polynomial by showing the least entered rule [9] and the round-robin
rule [10] are superpolynomial in the worst case. These results were obtained by
first constructing a certain two person game, known as a parity game, for which
the players (zero and one) follow a superpolynomial number of moves. These
games are then related to Markhov decision processes (MDPs) and finally
to linear programs (LPs). It is shown that each strategy in the parity game
corresponds to a vertex in the derived LP and improving from one strategy to
the next corresponds to a pivot step in the LP.

In this paper we first obtain a new lower bound construction for parity
games. We define a strategy improvement rule for player zero that corresponds
to the least recently considered rule and show an exponential lower bound on
the number of strategy improvements made to complete the game. Using the
earlier transformations this shows an exponential lower bound for MDPs and
LPs using this rule.

However the nature of the new construction allows us to do more. An
acyclic unique sink orientation of a hypercube (AUSO) [23] is an orientation
of the hypercube’s edges so that the resulting directed graph has no cycles and
each face of the hypercube has a unique sink (vertex of outdegree zero). AUSOs
appear in many applications and are an abstraction of linear programming
itself [13]. LP pivot rules have natural analogues on AUSOs and their analysis
has been the subject of several papers. For example in [18] an exponential
lower bound is given for the random edge pivot selection rule. We are able
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to show an exponential lower bound for the least recently considered rule on
AUSOs, which are realizable as LPs.

The paper is organized as follows. In the next section we begin by defining
parity games and policy iteration, and present the new lower bound construc-
tion. The longest part of the paper is a proof that this game requires an ex-
ponential number of moves before terminating. The section is concluded with
some applications of this result to other types of games. In Section 3 we review
the known connection between parity games and Markhov decision processes.
This gives rise to an exponential lower bound on MDPs that use an analogue
of Cunningham’s rule. In Section 4 we again exploit a known connection to
obtain explicit LPs from the MDP examples. The least recently considered
pivot rule on these LPs is shown to require an exponential number of steps.
We turn to AUSOs in Section 5. Here we show that the parity game exhibited
in Section 2 gives a natural acyclic orientation of a hypercube built on player
zero’s strategies. Cunningham’s rule on this AUSO follows an exponentially
long path. Furthermore we show that the each AUSO can be realized as a
polytope. In fact the polytope is the one that arises from the same parity
game after transforming it to a MDP and then to an LP. The paper concludes
with some open problems for future research.

2 Parity Game Policy Iteration Lower Bound

This section is organized as follows. We first define parity games and how the
general strategy improvement algorithms operate on them. Since some readers
may not be familiar with this material we will illustrate them on an example
that will later be generalized for the lower bound results. We then describe
the lower bound construction and prove it correct. Finally, we show how to
extend the results to related game classes.

2.1 Parity Games

A parity game is a tuple G = (V, V0, V1, E,Ω) where (V,E) forms a directed
graph whose node set is partitioned into V = V0 ∪ V1 with V0 ∩ V1 = ∅, and
Ω : V → N is the priority function that assigns to each node a natural number
called the priority of the node. We assume the graph to be total, i.e. for every
v ∈ V there is a w ∈ V s.t. (v, w) ∈ E.

We depict parity games as directed graphs where nodes owned by player
0 are drawn as circles and nodes owned by player 1 are drawn as rectangles;
all nodes are labelled with their respective name and priority. An example of
such a graph is shown in Figure 1. For each node the name, a2, F1, t, · · · , is on
top and the priority is underneath. For the moment we ignore the colours on
the edges and that some edges are shown dashed. (For monochromatic figures,
we ignore that some edges are bold and some are dashed.) A very important
property of this game is that the out-degree of each node belonging to player
0 is two. We call a game with this property a binary game.
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Fig. 1 Parity Game Lower Bound Graph G3

We use infix notation vEw instead of (v, w) ∈ E and define the set of
all successors of v as vE := {w | vEw}. The size |G| of a parity game G =
(V, V0, V1, E, Ω) is defined to be the cardinality of E, i.e. |G| := |E|; since we
assume parity games to be total w.r.t. E, this is a reasonable way to measure
the size. The example has size 36 and F2E := {h2, e2, d2}.

The game is played between two players called 0 and 1: starting at a node
v0 ∈ V , they construct an infinite path through the graph as follows. If the
construction so far has yielded a finite sequence v0 . . . vn and vn ∈ Vi then



An exponential lower bound for Cunningham’s rule 5

player i selects a w ∈ vnE and the play continues with v0 . . . vnw. In the
example a game may have started as the sequence a2g2F2d2 ending at a node
owned by player 0. She can choose between F2 and g1 and could continue by
appending either node to the sequence.

Every play has a unique winner given by the parity of the greatest priority
that occurs infinitely often. The winner of the play v0v1v2 . . . is player i iff
max{p | ∀j ∈ N ∃k ≥ j : Ω(vk) = p} ≡2 i1. That is, player 0 tries to
make an even priority occur infinitely often without any greater odd priorities
occurring infinitely often, player 1 attempts the converse. In the example we
may consider the infinite path a2g2F2d2F2d2.... In this case 6 is the largest
priority that occurs infinitely often and player 0 wins since this number is
even.

A strategy for player i is a – possibly partial – function σ : V ∗Vi → V ,
s.t. for all sequences v0 . . . vn with vj+1 ∈ vjE for all j = 0, . . . , n− 1, and all
vn ∈ Vi we have: σ(v0 . . . vn) ∈ vnE. A play v0v1 . . . conforms to a strategy
σ for player i if for all j ∈ N we have: if vj ∈ Vi then vj+1 = σ(v0 . . . vj).
Intuitively, conforming to a strategy means to always make those choices that
are prescribed by the strategy. A strategy σ for player i is a winning strategy
in node v if player i wins every play that begins in v and conforms to σ.

A strategy σ for player i is called positional if for all v0 . . . vn ∈ V ∗Vi and all
w0 . . . wm ∈ V ∗Vi we have: if vn = wm then σ(v0 . . . vn) = σ(w0 . . . wm). That
is, the choice of the strategy on a finite path only depends on the last node
on that path. So in this case we need only specify σ(v) for each v ∈ V . The
set of positional strategies for player i is denoted by Si(G). In the example a
partial positional strategy could consist of σ(a2) = g2, σ(g2) = F2, σ(F2) = d2,
σ(d2) = F2 and player 0 wins. Note that we do not need to give a strategy for
out-degree one nodes, such as g2, and will omit these in the sequel.

Recall that a binary game is one where each node belonging to player 0 has
out-degree two. In this case player 0’s positional strategy has a very simple
representation. Suppose she owns n nodes and labels the out-edges for each
of them 0 or 1 in any arbitrary way. Then her positional strategy can be
represented as a binary n-vector specifying for each node which edge is chosen
in the strategy.

With G we associate two sets W0,W1 ⊆ V , where Wi is the set of all nodes
v where player i wins the game G starting at v. Here we may restrict ourselves
to positional strategies because it is well-known that a player has a (general)
winning strategy if and only if she has a positional winning strategy for a
given game. In fact, parity games enjoy positional determinacy meaning that
for every node v in the game either v ∈ W0 or v ∈ W1 [7]. Furthermore, it is
not difficult to show that, whenever player i has winning strategies σv for all
v ∈ U for some U ⊆ V , then there is also a single strategy σ that is winning
for player i from every node in U .

The problem of solving a parity game is to compute W0 and W1 as well as
corresponding winning strategies σ0 and σ1 for the players on their respective

1 x ≡2 y if and only if x and y are congruent mod 2
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winning regions. In the example F3 ∈ W1 since player 1 can set σ(F1) = h3
and end up in the infinite loop on t with priority one which is odd.

2.2 Strategy Improvement

We describe here the basic definitions of the strategy improvement algorithm.
For a given parity game G = (V, V0, V1, E, Ω), the reward of node v is defined
as follows: rew(v) := Ω(v) if Ω(v) ≡2 0 and rew(v) := −Ω(v) otherwise. The
set of profitable nodes for player 0 resp. 1 is defined to be V⊕ := {v ∈ V |
Ω(v) ≡2 0} resp. V	 := {v ∈ V | Ω(v) ≡2 1}.

The relevance ordering < on V is induced by Ω: v < u :⇐⇒ Ω(v) < Ω(u).
Additionally one defines the reward ordering ≺ on V by v ≺ u :⇐⇒ rew(v) <
rew(u). In our construction, although priorities are not unique, they are unique
on each cycle. Therefore on each cycle both orderings are total.

Let v be a node, σ be a positional player 0 strategy and τ be a positional
player 1 strategy. Starting at v, there is exactly one path πσ,τ,v that conforms
to σ and τ . Since σ and τ are positional strategies, this path can be uniquely
written as follows.

πσ,τ,v = v1 . . . vk(w1 . . . wl)
ω

The superscript ω denotes an infinite cycle on the given vertex or vertices.
Here v1 . . . vk is a (possibly empty) non-repeating set of vertices and w1 . . . wl
is an infinite cycle with w1 > wj for all 1 < j ≤ l. If k ≥ 1 then v = v1
otherwise v is a member of the cycle. Note that the uniqueness follows from
the fact that all nodes on the cycle have different priorities.

Discrete strategy improvement relies on a more abstract description of such
a play πσ,τ,v. In fact, we only consider the dominating cycle node w1, the set
of more relevant nodes – i.e. all vi > w1 – on the path to the cycle node, and
the length k of the path leading to the cycle node.

The node valuation of v w.r.t. σ and τ is defined as follows.

ϑσ,τ,v := (w1, {vi > w1 | 1 ≤ i ≤ k}, k)

Given a node valuation ϑ, we refer to w1 as the cycle component, to {vi > w1 |
1 ≤ i ≤ k} as the path component, and to k as the length component of ϑ.

In the example if we have σ(a3) = g3, τ(F3) = d3 and σ(d3) = F3

then πσ,τ,h2
= h2a3g3(F3d3)ω and node valuation ϑσ,τ,h2

:= (F3, {h2, g3}, 3).
{F3, d3} is the cycle component with dominating node F3, {h2, a3, g3} is the
path to the cycle and has length 3, {h2, g3} are the more relevant nodes.

In order to compare node valuations with each other, we introduce a partial
ordering ≺ on the set of node valuations. For this we first define a partial
ordering on the path components. For a set of nodes M , let Ω(M) denote the
priority occurence mapping :

Ω(M) : p 7→ |{v ∈M | Ω(v) = p}|

Let M and N be two distinct sets of vertices. If Ω(M) = Ω(N) then M and N
are not comparable and we write this M ∼ N . Otherwise let p be the highest
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priority s.t. Ω(M)(p) 6= Ω(N)(p). Then M ≺ N if Ω(M)(p) > Ω(N)(p) and
p ≡2 1, or Ω(M)(p) < Ω(N)(p) and p ≡2 0. Otherwise N ≺ M . We observe
that in a game with all priorities unique ≺ defines a total order on the subsets
of vertices.

In the example, if we compare M = {c3, c2, g2} with N = {h1, a2, g2}, we
have Ω(M) = {3 7→ 2, 11 7→ 1} and Ω(N) = {10 7→ 1, 3 7→ 1, 11 7→ 1}. The
priority with maximum value in which both sets differ is 10. Since this priority
is even we have M ≺ N .

Now we are able to extend the partial ordering on sets of nodes to node
valuations. If u ≺ v then (u,M, e) ≺ (v,N, f). Otherwise rew(u) = rew(v)
and

(u,M, e) ≺ (v,N, f) ⇐⇒


M ≺ N
M ∼ N , e < f and u ∈ V	
M ∼ N , e > f and u ∈ V⊕

We write (u,M, e) ∼ (v,N, f) iff neither (u,M, e) ≺ (v,N, f) nor (v,N, f) ≺
(u,M, e). We write (u,M, e) � (v,N, f) to abbreviate (u,M, e) ≺ (v,N, f) or
(u,M, e) ∼ (v,N, f).

We observe that if all priorities are unique then we have a total order on
node valuations. For in this case if rew(u) = rew(v) then u = v and if M ∼ N
then M = N . We cannot have e = f for otherwise (u,M, e) = (v,N, f).

The motivation behind the above ordering is a lexicographic measurement
of the profitability of a positional play w.r.t. player 0: the most prominent
part of a positional play is the cycle in which the plays eventually stays, and
here it is the reward ordering on the dominating cycle node that defines the
profitability for player 0. The second important part is the loopless path that
leads to the dominating cycle node. Here, we measure the profitability of a
loopless path by a lexicographic ordering on the relevancy of the nodes on path,
applying the reward ordering on each component in the lexicographic ordering.
Finally, we consider the length, and the intuition behind the definition is that,
assuming we have an even-priority dominating cycle node, it is better to reach
the cycle fast whereas it is better to stay as long as possible out of the cycle
otherwise.

In the example suppose σ and τ give rise to the paths c3c2g2(F2d2)ω and
h1a2g2(F2d2)ω. We have node evaluations ϑσ,τ,h1

:= (F2, {h1, g2}, 3), ϑσ,τ,c3 :=
(F2, {g2}, 3) and ϑσ,τ,c2 := (F2, {g2}, 2). We have

(F2, {g2}, 2) ≺ (F2, {g2}, 3) ≺ (F2, {h1, g2}, 3)

The first ≺ is due to the fact that the length of the path to the cycle node is
smaller in the first node evaluation. The second ≺ is because the symmetric
difference of the path components is h1 with priority 10 which is even.

Given a player 0 strategy σ, it is player 1’s goal to find a best response
counter-strategy τ that minimizes the associated node valuations. A strategy
τ is an optimal counter-strategy w.r.t. σ iff for every opponent strategy τ ′ and
for every node v we have: ϑσ,τ,v � ϑσ,τ ′,v.
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Is is well-known that an optimal counter-strategy always exists and that it
is efficiently computable.

Lemma 1 ([24]) Let G be a parity game and σ be a player 0 strategy. An
optimal counter-strategy for player 1 w.r.t. σ exists and can be computed in
polynomial time.

A fixed but arbitrary optimal counter-strategy will be denoted by τσ from
now on. The associated game valuation Ξσ is a map that assigns to each node
the node valuation w.r.t. σ and τσ:

Ξσ : v 7→ ϑσ,τσ,v

In the example suppose player 0 has played to obtain the path a3g3(F3d3)ω.
It is easy to see that τσ(F3) = h3 is an optimal counter-strategy and ϑσ,τσ,a3 =
(t, {a3, g3, F3, h3}, 4). We have Ξσ(a3) = (t, {a3, g3, F3, h3}, 4) and player 1
wins.

Game valuations are used to measure the performance of a strategy of
player 0. For a fixed strategy σ of player 0 and a node v, the associated
valuation essentially states which is the worst cycle that can be reached from
v conforming to σ as well as the worst loopless path leading to that cycle (also
conforming to σ). We also write v ≺σ u to compare the Ξσ-valuations of two
nodes, i.e. to abbreviate Ξσ(v) ≺ Ξσ(u).

A run of the strategy improvement algorithm can be expressed by a se-
quence of improving game valuations; a partial ordering on game valuations
is quite naturally defined as follows:

Ξ �Ξ ′ :⇐⇒ (Ξ(v) � Ξ ′(v) for all v ∈ V ) and (Ξ 6= Ξ ′)

Let σ be a strategy, v ∈ V0 and w ∈ vE. We say that (v, w) is a σ-improving
switch iff σ(v) ≺σ w. If w ≺σ σ(v), we say that (v, w) is a σ-degradable switch.
We say that σ is improvable iff σ has an improving switch. We write Iσ to
denote the set of improving switches and write Iσ(v) = {w | (v, w) ∈ Iσ}.

Again things become very simple for binary games. For any node v we can
write vE = {σ(v), w} and an improving switch selects edge (v, w) if σ(v) ≺σ w.
Clearly the notion of improving switch requires that the node valuations of
σ(v) and w are ordered by ≺σ. The binary games we construct do not have
unique priorities and ≺ defines only a partial order on the node valuations.

Recall that for binary games player 0’s current strategy can be represented
by a binary n-vector. As improving switch just flips one of the bits in this
vector. The connection with paths on hypercubes now becomes apparent.

In the example consider strategies of the two players leading to the infinite
path d2g1F1h1a2a3t

ω with node valuation

ϑσ,τ,d2 := (t, {d2, g1, F1, h1, a2, a3}, 6).

Then (d2, F2) is an improving switch for player 0 since it leads to the infinite
path (d2F2)ω with node valuation ϑσ,τ,d2 := (F2, ∅, 0) which is better for her
since t ≺ F2.
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The improvement step from one strategy to the next is carried out by
an improvement rule. It is a map IG : S0(G) → S0(G) s.t. Ξσ � ΞIG(σ)

for every σ and additionally Ξσ � ΞIG(σ) if σ is improvable. We say that a
function IG : S0(G)→ S0(G) is a standard improvement rule iff it only selects
improving switches for finding a successor strategy, i.e.

1. For every node v ∈ V0 it holds that σ(v) �σ IG(σ)(v).
2. If σ is improvable then there is a node v ∈ V0 s.t. σ(v) ≺σ IG(σ)(v).

Jurdziński and Vöge [24] showed that an improving switch always exists
for any non-optimal strategy σ. They also showed that improving σ by an ar-
bitrary, non-empty selection of improving switches can only result in strategies
with valuations strictly better than the valuation of σ.

Theorem 1 ([24]) Let G be a parity game, σ be an improvable strategy and
IG be a standard improvement rule. Then Ξσ �ΞIG(σ).

If a strategy is not improvable, the strategy improvement procedure comes
to an end. The game has been solved. The winning sets for both players as well
as associated winning strategies can be easily derived from the given valuation.

Theorem 2 ([24]) Let G be a parity game and σ be a non-improvable strat-
egy. Then the following holds:

1. W0 = {v | Ξσ(v) = (w, , ) and w ∈ V⊕}
2. W1 = {v | Ξσ(v) = (w, , ) and w ∈ V	}
3. σ is a winning strategy for player 0 on W0

4. τσ is a winning strategy for player 1 on W1

5. σ is �-optimal

Strategy improvement starts with an initial strategy σ and runs for a given
improvement rule I as follows and returns an optimal player 0 strategy as
outlined in the pseudo-code of Algorithm 1.

Algorithm 1 Strategy Improvement
1: procedure StandardStratIt(I, G, σ)
2: while σ is improvable do
3: σ ← IG(σ)
4: end while
5: return σ.
6: end procedure

Given an initial strategy σ, a game G and a rule I, the unique execution
trace, called run, of strategy improvement is the sequence of strategies σ1, . . .,
σk s.t. σ1 = σ, σi+1 = IG(σi) for all i < k, σk optimal and σi improvable
for all i < k. The length of the run is denoted by k and we say that strategy
improvement requires k + 1 iterations to find the optimal strategy.

We call a parity game G (in combination with an initial strategy θ) a sink
game iff the following two properties hold:
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1. Sink Existence: there is a node v∗ (called the sink of G) with v∗Ev∗ and
Ω(v∗) = 1 reachable from all nodes; also, there is no other node w with
Ω(w) ≤ Ω(v∗).

2. Sink Seeking : for each player 0 strategy σ with Ξθ � Ξσ and each node w
it holds that the cycle component of Ξσ(w) equals v∗.

At this point the reader may wish to verify that the example is a sink
game with v∗ = t. Obviously, a sink game is won by player 1. Note that
comparing node valuations in a sink game can be reduced to comparing the
path components of the respective node valuations, for two reasons. First, the
cycle component remains constant. Second, the path-length component equals
the cardinality of the path component, because all nodes except the sink node
are more relevant than the cycle node itself. In the case of a sink game, we
will therefore identify node valuations with their path component.

Given a parity game G the sink existence property can be verified by stan-
dard graph algorithms. Given an initial strategy θ the sink seeking property
can also be easily checked, as shown by the following lemma.

Lemma 2 ([8]) Let G be a parity game with initial strategy θ fulfilling the
sink existence property w.r.t. v∗. G is a sink game iff G is completely won by
player 1 (i.e. W1 = V ) and for each node w it holds that the cycle component
of Ξθ(w) equals v∗.

Let G be a sink game and v, r ∈ VG. We define Ξ>rσ (v) to be the path
component of Ξσ(v) by filtering the nodes which are more relevant than r, i.e.

Ξ>rσ (v) = {u ∈ Ξ>rσ (v) | Ω(u) > Ω(r)}

It is easy to see that Ξ>rσ (v) ≺ Ξ>rσ (u) implies Ξσ(v) ≺ Ξσ(u). We assume
from now on that every game we consider is a sink game.

Cunningham’s rule [5] is a deterministic history based pivot rule for se-
lecting entering variables in the network simplex method. It fixes an initial
ordering on all variables and then selects the entering variables in a round-
robin fashion starting from the last entering variable selected. The history is
simply to remember this variable. The rule can be adapted in a straightforward
manner to other local improvement algorithms.

We describe Cunningham’s pivoting rule in the context of parity games.
We assume that we are given a total ordering ≺ on the player 0 edges of
the parity game. The history is simply to record the last edge that has been
applied.

Given a non-empty subset of player 0 edges ∅ 6= F ⊆ E0 and a player 0
edge e ∈ E0, we define a successor operator as follows:

succ≺(e, F ) :=

{
min≺{e′ ∈ F | e � e′} if {e′ ∈ F | e � e′} 6= ∅
min≺{e′ ∈ F | e′ � e} otherwise

See Algorithm 2 for a pseudo-code specification of the Cunningham’s rule
for applied to parity games.
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Algorithm 2 Cunningham’s Improvement Algorithm
1: procedure RoundRobin(G, σ, ≺, e)
2: while σ is improvable do
3: e← succ≺(e, Iσ)
4: σ ← σ[e]
5: end while
6: return σ.
7: end procedure

Let (σ1, e1), . . ., (σn, en) be a trace of the algorithm w.r.t. some selection
ordering ≺. We write (σ, e) ;≺ (σ′, e′) iff there are i < j s.t. (σ, e) = (σi, ei)
and (σ′, e′) = (σj , ej).

In the original specification of Cunningham’s rule [5] it is assumed that
the ordering on the edges and the initial edge e is given as part of the input.
In fact, we know that the asymptotic behavior of Cunningham’s improvement
rule highly depends on the ordering used, at least in the world of parity games
and strategy improvement for games in general. We have the following theorem
which is easy to verify (the idea is that there is at least one improving switch
towards the optimal strategy in each step).

Theorem 3 Let G be a parity game with n nodes and σ0 be a strategy.
There is a sequence policies σ0, σ1, . . . , σN and a sequence of different switches
e1, e2, . . . , eN with N ≤ n s.t. σN−1 is optimal, σi+1 = σi[ei+1] and ei+1 is an
σi-improving switch.

Since all switches are different in the sequence, it follows immediately that
there is always a way to select an ordering that results in a linear number of
pivoting steps to solve a parity game with Cunningham’s improvement rule.
However, there is no obvious method to efficiently find such an ordering. In
order to derive a lower bound we are entitled to give both the input graph and
the ordering to be used.

2.3 Lower Bound Construction

Our lower bound construction is a natural generalization of the parity game
G3, shown in Figure 1, that we used throughout the last subsection. For each
n ≥ 3 we define the underlying graph Gn = (V0, V1, E,Ω) as follows.

V0 := {ai, ci, di | 1 < i ≤ n} ∪ {bi | 1 < i < n} ∪ {ei | 1 ≤ i ≤ n}
V1 := {Fi | 1 ≤ i ≤ n} ∪ {gi, hi | 1 ≤ i ≤ n} ∪ {s, t}

Figure 2 defines the edge sets and the priorities of Gn. For convenience of
notation, we identify the node names an+1 with t, b1 with g1, and c1 with g1.
Explicit constructions of Gn for small n are available online [11].

Lemma 3 For every n, the game Gn is a binary sink parity game.
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Node Successors Priority Node Successors Priority

ai gi, ai+1 3 Fi hi, di>1, ei 6
bi gi, bi−1 3 gi Fi 2 · i+ 7
ci gi, ci−1 3 hi ai+1 2 · i+ 8
di Fi, bi−1 5 s cn 8
ei Fi, s 5 t t 1

Fig. 2 Parity Game Lower Bound Graph

To avoid special cases we assume n ≥ 3. It is easy to verify that the total
number of nodes is Gn is 8n − 3, the total number of edges is 15n − 9, the
number of different priorities is 2n + 5 and the highest priority is 2n + 8.
Therefore we have |Gn| ∈ O(n).

We refer to the edges of player 0 by the names given in Figure 3. For
convenience of notation, we write σ(ai) = j to indicate that aji ∈ σ etc.

Name Node Successor Name Node Successor

a1i ai gi a0i ai ai+1

b1i bi gi b0i bi bi−1

c1i ci gi c0i ci ci−1

d1i di Fi d0i di bi−1

e1i ei Fi e0i ei s

Fig. 3 Parity Game Lower Bound Player 0 Edges

From a high-level point of view, a run of the strategy improvement algo-
rithm mimics the counting process of a binary counter, yielding an exponential
number of steps. Obviously, the specifics of the run depend on our choice of
the edge-ordering. Every strategy that we obtain during a run corresponds
to the state of the binary counter. However, a single increment step of the
binary counter corresponds to several consecutive improvements in strategy
improvement. These intermediate steps can be partitioned into well-defined
phases.

Before describing the phases in detail, consider the layout of the game
graph. It is separated into uniform layers that correspond to the different bits
of the binary counter. The first and the last bit have less nodes than all the
other bits. We could include the additional nodes in the game graph but they
would be of no use for the counting process. Every (disregarding the first and
the last) such layer contains five player 0 nodes ai, bi, ci, di, ei, and three
player 1 nodes Fi, gi, hi.

The general construction extends Figure 1 in a natural way. We use terms
such as up, down, left, right, etc. based on the layout used in the figure. The
ai-nodes build up a ladder-like structure that connect layers with each other,
starting from the least-significant to the most-significant bit. For every layer,
player 0 has to the choice to either enter the layer or to directly pass on to
the next layer. By making gi highly unprofitable and hi highly profitable, it
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follows that it will only be profitable for player 0 to enter a layer, if player 1
moves from Fi to hi. This corresponds to a set bit.

Player 0 can force player 1 to move from Fi to hi by moving from both
di and ei to Fi. This is due to the fact the game is a sink game and so the
optimal counter-response to a strategy cannot be moving into any other cycle
than t.

The other two remaining nodes of player 0, bi and ci, build up ladder-like
structures as well that connect layers with each other, but this time starting
from the most-significant to the least-significant bit. The nodes di and ei have
direct access to these additional two ladders which will allow them to get reset,
corresponding to unsetting a set bit in the binary counter.

Next, we explain, from a high-level point of view, how the intermediate
phases contribute to incrementing the counter. At beginning of phase 1 the
switches have the following settings depending on the value in the binary
counter. All ai and ei point upwards if and only if bit i is zero, all di point to
the left, and both ladder b and c move down to the least significant set bit in
the counter. We initiate the binary counter at 00 · · · 001 which corresponds to
the to the initial strategy {a0∗, b0∗, c0∗, d1∗, e11, e0∗>1}.

1. We apply improving switches in this phase s.t. all ei point left, exactly all
those di point to the left that correspond to a set bit in the current or in
the next counter state, and update the ladder b s.t. it moves down to least
significant set bit in the next counter state.

2. In phase 2, we update the ladder c s.t. it moves down to least significant
set bit in the next counter state.

3. In phase 3, we apply improving switches s.t. exactly all those ei point left
that correspond to a set bit in the next counter state.

4. In phase 4, we apply improving switches s.t. all di point left.
5. In phase 5, we update the ai ladder to point to the right at exactly those

bits which are set in the next counter state.

After completing phase 5, the counter has been incremented by one and we
can start with phase 1 again.

Phases 1-5 finish when the counter reaches all ones. The ai nodes point to
the right, the di and ei nodes point to the left, the c chain leads down to g2, the
b chain leads down to g1 and all Fi nodes point vertically up. This corresponds
to the strategy {a1∗, b0∗, c0∗, d1∗, e1∗} with the exception that c12 is chosen instead
of c02. In fact replacing c12 by c02 is an improving switch and the only such
switch. Therefore it will be chosen by Algorithm 2. At this point Player 0
has no improving switches and loses the game. We call {a1∗, b0∗, c0∗, d1∗, e1∗} the
terminal strategy of the game.

Next we specify a total ordering of player 0 edges to be used in Algorithm 2.

{b∗∗, d0∗, e1∗}︸ ︷︷ ︸
Phase 1

≺ {c∗∗}︸︷︷︸
Phase 2

≺ {e0∗}︸︷︷︸
Phase 3

≺ {d1∗}︸︷︷︸
Phase 4

≺ {a∗∗}︸︷︷︸
Phase 5
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The detailed ordering for every phase is as follows:

Phase 1 : e11 ≺ d02 ≺ e12 ≺ b12 ≺ b02 ≺ . . . ≺ d0n−1 ≺ e1n−1 ≺ b1n−1 ≺ b0n−1 ≺ d0n ≺ e1n
Phases 2,3 : c02 ≺ c12 ≺ . . . ≺ c0n ≺ c1n, e01 ≺ e02 ≺ . . . ≺ e0n (1)

Phases 4,5 : d12 ≺ d13 ≺ . . . ≺ d1n, a1n ≺ a0n ≺ . . . ≺ a12 ≺ a02
For each n ≥ 3 we define Pn to be the sequence of improving switches generated
by Algorithm 2 following this edge ordering, starting at the initial strategy and
ending at the terminal strategy. Our goal will be to show that the sequence
Pn has exponential length in n.

Before proceeding with the proof let us apply Algorithm 2 to the example
in Figure 1. The edge ordering is

e11, d
0
2, e

1
2, b

1
2, b

0
2, d

0
3, e

1
3, c

0
2, c

1
2, c

0
3, c

1
3, e

0
1, e

0
2, e

0
3, d

1
2, d

1
3, a

1
3, a

0
3, a

1
2, a

0
2

Figure 1 corresponds to the initial state 001 of the binary counter, The
current strategy for player 0 is shown by the blues edges, and that for player
1 by the red edges. Improving edges for player 0 are shown in dotted green
and the other non-strategy edges are shown in dotted black. (Coloured edges
show in bold on monochromatic printing.)

Note that since bits 2 and 3 of the counter (reading from right to left) are
set to zero the strategy edges for a2, a3, e2 and e3 all point upwards. Each di
edge points to Fi, and the b and c ladders point to the first bit, which is the
least bit set. The improving edges for player zero are e12, e

1
3 and e12 is chosen as

it comes first in order. Since player 0 stands to win on the infinite loop (e2F2)
player 1 counters by changing the strategy on F2 to point to h2. The first five
phases involve nine player 0 moves and are given in Figure 4. Note in some
cases player 1 does not make a response as the position is still winning for
him. At the end of the nine moves the counter has moved to 010 and we are
back to the settings required to initiate Phase 1.

Phase Improving Selected Player 1
Edges Edge Response

1 e12, e
1
3 e12 F2h2

1 a12, b
1
2, c

1
2, e

1
3 b12

1 a12, c
1
2, d

0
3, e

1
3 d03

1 a12, c
1
2, e

1
3 e13 F3d3

2 a12, c
1
2, d

1
3 c12

3 a12, d
1
3, e

0
1, e

0
3 e03

3 a12, d
1
3, e

0
1 e01

4 a12, d
1
3 d13 F3e3

5 a12, e
1
3 a12 F1e1

Fig. 4 Binary counter moving from 001 to 010

Continuing in this fashion for a total of 36 improving switches by player
0 we arrive at the terminating position where she loses from each node and
has no further improving edges. A complete simulation is given on the website
[11].
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2.4 Lower Bound Proof

In this section we prove the fundamental result of the paper.

Theorem 4 The sequence Pn of improving switches followed by Algorithm 2
in Gn from the initial strategy to the terminal strategy using the ordering (1)
has length at least 2n where Gn has size O(n).

First, we introduce notation to succinctly describe binary counters. It will
be convenient for us to consider counter configurations with an infinite tape,
where unused bits are zero. The set of n-bit configurations is formally defined
as Bn = {b ∈ {0, 1}∞ | ∀i > n : bi = 0}.

We start with index one, i.e. b ∈ Bn is essentially a tuple (bn, . . . , b1), with
b1 being the least and bn being the most significant bit. By 0, we denote the
configuration in which all bits are zero, and by 1n, we denote the configuration
in which the first n bits are one. We write B =

⋃
n>0 Bn to denote the set of

all counter configurations.
The integer value of a b ∈ B is defined as usual, i.e. |b| :=

∑
i>0 bi · 2i−1 <

∞. For two b, b′ ∈ B, we induce the lexicographic linear ordering b < b′ by
|b| < |b′|. It is well-known that b ∈ B 7→ |b| ∈ N is a bijection. For b ∈ B let
b⊕ denote the unique b′ s.t. |b′| = |b|+ 1.

Given a configuration b, we access the least unset bit by µ(b) = min{j |
bj = 0} and the least set bit by ν(b) = min{j | bj = 1}. Let bµ denote
b[µ(b) 7→ 1].

We are now ready to formulate the conditions for strategies that fulfill one
of the five phases along with the improving edges. See Figure 5 for a complete
description (with respect to a bit configuration b). We say that a strategy σ
is a phase p strategy with configuration b iff every node is mapped by σ to a
choice included in the respective cell of the table.

Phase 1: ∃j ≥ µ(b), k ∈ {1, 2, 3} 2 3 4 5: ∃j ≤ µ(b)

σ(ai) bi bi bi bi

{
bi if i ≤ j
b⊕i if i > j

σ(bi)

{
11i=µ(b) if j > i

11i=ν(b) otherwise
11i=µ(b) 11i=µ(b) 11i=µ(b) 11i=µ(b)

σ(ci) 11i=ν(b) 11i=ν(b) 11i=µ(b) 11i=µ(b) 11i=µ(b)

σ(di)

{
bµi if j > i ∨ (j = i ∧ k > 1)

1 otherwise
bµi bµi 1, bµi 1

σ(ei)

{
1 if j > i ∨ (j = i ∧ k > 2)

bi otherwise
1 1, b⊕i b⊕i b⊕i

Fig. 5 Policy Phases

The following lemma computes an optimal counter-strategy along with the
associated valuations of the nodes Fi given a strategy σ belonging to one of
the phases.
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Lemma 4 Let n ≥ 3 and σ be a strategy belonging to one of the phases
w.r.t. b. Let k = max({i | σ(ai) 6= b⊕i } ∪ {1}). Then the following holds:
(τσ(Fi), Ξ

>6
σ (Fi)) =

(hi, {gj , hj | bj = 1, j > i} ∪ {hi}) if σ(di) = σ(ei) = 1

(ei, {gj , hj | bj = 1} ∪ {s}) if σ(ei) = 0 ∧ P = 1

(di, {gj , hj | b⊕j = 1}) if σ(di) = 0 ∧ (σ(ei) = 1 ∨ P 6= 1)

(ei, {gj , hj | b⊕j = 1} ∪ {s}) if σ(ei) = 0 ∧ σ(di) = 1 ∧ P 6= 1 ∧ i ≥ k
(hi, {gj , hj | bj = 1, j > i} ∪ {hi}) if σ(ei) = 0 ∧ σ(di) = 1 ∧ P 6= 1 ∧ i < k = µ(b)

(hi, {gj , hj | b⊕j = 1 ∨ i < j < k} ∪ {s, hi, gk}) if σ(ei) = 0 ∧ σ(di) = 1 ∧ P 6= 1 ∧ i < k < µ(b)

Proof Let n ≥ 3 and σ be a strategy belonging to one of the phases w.r.t. b.
Let k = max({i | σ(ai) 6= b⊕i } ∪ {1}).
– Phase 1 : First, if σ(di) = σ(ei) = 1, it follows that τσ(Fi) = hi since we

have a sink game. Furthermore it follows by definition of phase 1 that

Ξ>6
σ (Fi) = {gj , hj | bj = 1, j > i} ∪ {hi}

Otherwise, i ≥ µ(b). It follows by definition of phase 1 that

Ξ>6
σ (s) = {gj , hj | bj = 1} ∪ {s}

Ξ>6
σ (hi) = {gj , hj | bj = 1, j > i} ∪ {hi}

and if σ(di) = 0 that

Ξ>6
σ (s) = {gj , hj | b⊕j = 1}

Second, if σ(di) = 1 and σ(ei) = 0, it follows that ei ≺σ hi and therefore
τσ(Fi) = ei and

Ξ>6
σ (Fi) = {gj , hj | bj = 1} ∪ {s}

Third, if σ(di) = 0 and σ(ei) = 1, it follows that di ≺σ hi and therefore
τσ(Fi) = di and

Ξ>6
σ (Fi) = {gj , hj | b⊕j = 1}

Fourth, if σ(di) = σ(ei) = 0, it follows that ei ≺σ di ≺σ hi and therefore
τσ(Fi) = ei and

Ξ>6
σ (Fi) = {gj , hj | bj = 1} ∪ {s}

– Phase 2 : First, if bµi = 1, it follows that σ(di) = σ(ei) = 1 by definition of
phase 2. Since we have a sink game, it follows that τσ(Fi) = hi. Furthermore
it follows by definition of phase 2 that

Ξ>6
σ (Fi) = {gj , hj | bj = 1, j > i} ∪ {hi}

Second, if bµi = 0, if follows that i > µ(b) and from definition of phase 2
that σ(di) = 0, σ(ei) = 1, and

Ξ>6
σ (hi) = {gj , hj | bj = 1, j > i} ∪ {hi}

Ξ>6
σ (bi−1) = {gj , hj | b⊕j = 1}
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Hence, bi−1 ≺σ hi and therefore τσ(Fi) = di and

Ξ>6
σ (Fi) = {gj , hj | b⊕j = 1}

– Phase 3 & 4 : First, if b⊕i = 1, it follows that σ(di) = σ(ei) = 1 by
definition of phase 3 and phase 4. Since we have a sink game, it follows that
τσ(Fi) = hi. Furthermore it follows by definition of phase 3 and phase 4
that

Ξ>6
σ (Fi) = {gj , hj | bj = 1, j > i} ∪ {hi}

Second, if bµi = 0, it follows that i > µ(b). By definition of phase 3 and
phase 4, we have

Ξ>6
σ (hi) = {gj , hj | bj = 1, j > i} ∪ {hi}

Ξ>6
σ (bi−1) = {gj , hj | b⊕j = 1}
Ξ>6
σ (s) = {gj , hj | b⊕j = 1} ∪ {s}

It follows that bi−1 ≺σ s ≺σ hi and hence τσ(Fi) = di and

Ξ>6
σ (Fi) = {gj , hj | b⊕j = 1}

if σ(di) = 0, and τσ(Fi) = ei and

Ξ>6
σ (Fi) = {gj , hj | b⊕j = 1} ∪ {s}

if σ(di) = 1.
Third, if i < µ(b) = k, we show by backward induction on i that τσ(Fi) =
hi, which implies that

Ξ>6
σ (Fi) = {gj , hj | bj = 1, j > i} ∪ {hi}

By induction hypothesis or by considering the base case i = k− 1 directly,
we have

Ξ>6
σ (hi) = {gj , hj | bj = 1, j > i} ∪ {hi}

and therefore hi ≺σ s, implying τσ(Fi) = hi.
– Phase 5 : First, if b⊕i = 1, it follows that σ(di) = σ(ei) = 1 by definition of

phase 5. Since we have a sink game, it follows that τσ(Fi) = hi. Furthermore
it follows by definition of phase 5 that

Ξ>6
σ (Fi) = {gj , hj | bj = 1, j > i} ∪ {hi}

Second, if b⊕i = 0 and i ≥ k, it follows by definition of phase 5 that

Ξ>6
σ (hi) = {gj , hj | b⊕j = 1, j > i} ∪ {hi}
Ξ>6
σ (s) = {gj , hj | b⊕j = 1} ∪ {s}

It follows that s ≺σ hi and hence τσ(Fi) = ei and

Ξ>6
σ (Fi) = {gj , hj | b⊕j = 1} ∪ {s}
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Third, if i < µ(b) = k, we show by backward induction on i that τσ(Fi) =
hi, which implies that

Ξ>6
σ (Fi) = {gj , hj | bj = 1, j > i} ∪ {hi}

By induction hypothesis or by considering the base case i = k− 1 directly,
we have

Ξ>6
σ (hi) = {gj , hj | bj = 1, j > i} ∪ {hi}

and therefore hi ≺σ s, implying τσ(Fi) = hi.
Fourth, if i < k < µ(b), we show by backward induction on i that τσ(Fi) =
hi, which implies that

Ξ>6
σ (Fi) = Ξ>6

σ (s) ∪ {gj+1, hj | i ≤ j < k}

By induction hypothesis or by considering the base case i = k− 1 directly,
we have

Ξ>6
σ (hi) = Ξ>6

σ (s) ∪ {gj+1, hj | i < j < k} ∪ {hi, gi+1}

and therefore hi ≺σ s, implying τσ(Fi) = hi.
ut

Figure 6 specifies the sets of improving switches for each phase p. It should
be read as follows: an edge e is included in the set of improving switches I(σ)
iff e 6∈ σ and the condition holds that is specified in the respective cell. If a
cell contains a question mark, we do not specify whether the edge is included
in the set.

Phase 1 2 3 4 5

a1i ∈ I(σ) ? ? ? ? i = µ(b)

a0i ∈ I(σ) ? ? ? ? i < µ(b) ∧ σ(ai+1) = b⊕i
b1i ∈ I(σ) i = µ(b) ∧ σ(ei) = 1 ? ? ? ?
b0i ∈ I(σ) i > µ(b) ∧ σ(eµ(b)) = 1 ? ? ? ?
c1i ∈ I(σ) ? i = µ(b) ? ? ?
c0i ∈ I(σ) ? i 6= µ(b) ? ? ?
d1i ∈ I(σ) ? ? ? Yes ?
d0i ∈ I(σ) σ(bµ(b)) = 1 ∧ σ(bν(b)) = 0 ? ? ? ?
e1i ∈ I(σ) Yes ? ? ? ?

e0i ∈ I(σ) ? ? b⊕i = 0 ? ?

Fig. 6 Improving Switches

We finally arrive at the following main lemma describing the improving switches.

Lemma 5 Let n ≥ 3. The improving switches from policies that belong to the
phases in Figure 5 are as specified in Figure 6.

Proof Let n ≥ 3 and σ be a strategy belonging to one of the phases w.r.t. b.
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– Phase 1 : It follows from Lemma 4 that

Ξ>6
σ (gi) =


{gj , hj | bj = 1, j > i} ∪ {gi, hi} if σ(di) = σ(ei) = 1

{gj , hj | bj = 1} ∪ {gi, s} if σ(ei) = 0

{gj , hj | b⊕j = 1} ∪ {gi} if σ(di) = 0 ∧ σ(ei) = 1

Since τσ(Fi) = ei if σ(ei) = 0, it immediately follows that e1i is an improv-
ing switch. It can furthermore be easily observed that d0i is an improving
switch for bi = 0, i > ν(b) iff σ(eν(b)) = 1 and σ(bν(b)) = 1.

– Phase 2 : It follows from Lemma 4 that

Ξ>6
σ (gi) =

{
{gj , hj | bj = 1, j > i} ∪ {gi, hi} if bµi = 1

{gj , hj | b⊕j = 1} ∪ {gi} if bµi = 0

If b1 = 0 and b2 = 1, it follows that

Ξ>6
σ (ci) = {gj , hj | bj = 1}

It immediately follows that c02 is the only improving switch w.r.t. c.
Otherwise, if b1 = 0 and b2 = 0, it follows that

Ξ>6
σ (ci) =

{
{gj , hj | bj = 1} if i ≥ ν(b)

{gj , hj | b⊕j } if i < ν(b)

It immediately follows that c0ν(b) is the only improving switch w.r.t. c.
Otherwise, if b1 = 1, it follows that

Ξ>6
σ (ci) = {gj , hj | bj = 1}

Hence, it follows that c1µ(bit) is the only improving switch w.r.t. c.

– Phase 3 : Let i s.t. σ(ei) = 1. It follows from Lemma 4 that

Ξ>6
σ (Fi) =

{
{gj , hj | bj = 1, j > i} ∪ {hi} if σ(di) = 1

{gj , hj | b⊕j = 1} if σ(di) = 0

Ξ>6
σ (s) = {gj , hj | b⊕j = 1} ∪ {s}

Hence, we have Fi ≺σ s.
– Phase 4 : Let i s.t. σ(di) = 0. It follows from Lemma 4 that τσ(Fi) = di

and hence Ξσ(Fi) = {Fi} ∪Ξσ(di), i.e. σ(di) ≺σ Fi.
– Phase 5 : Let k = max({i | σ(ai) 6= b⊕i } ∪ {1}). It follows from Lemma 4

that

Ξ>6
σ (gi) =


{gj , hj | bj = 1, j > i} ∪ {gi, hi} if b⊕i = 1 ∨ (i < k = µ(b))

{gj , hj | b⊕j = 1} ∪ {gi, s} if b⊕i = 0 ∧ i ≥ k
{gj , hj | b⊕j = 1 ∨ i < j < k} ∪ {s, gk, gi, hi} if b⊕i = 0 ∧ i < k < µ(b)

Hence, it follows that if k > 1, the only improving switch is either a1k or a0k
w.r.t. a.



20 David Avis and Oliver Friedmann

ut

We are now ready to formulate our main lemma describing the transitioning
from an initial phase 1 strategy corresponding to b to a successor initial phase
1 strategy corresponding to b⊕, complying with the given ordering selection.

Lemma 6 Let σ be a phase 1 strategy with configuration 0n < b < 1n. Let z
be an edge with z � e11 or a1n � e. Then, there is a phase 1 strategy σ′ with
configuration b⊕ and an edge z′ with z′ � e11 or a1n � z′ s.t. (σ, z) ;≺ (σ′, z′).

Proof The proof of the lemma is ultimately based on the five phases described
in Figure 5, the corresponding improving switches given in Figure 6 (proven
correct in Lemma 5) and the introduced selection ordering.

We prove the lemma by outlining the complete sequence of switches that
are applied to σ in order to obtain σ′ (we do not explicitly describe the inter-
mediate strategies which can be derived by applying all mentioned switches
up to that point).

Let i1, . . . , ik be the complete sequence of ascending indices s.t. bij = 0 for
1 ≤ j ≤ k. The following holds:

P1
; e1i1 ; b1i1 ; d0i2 ; e1i2 ; d0i3 ; e1i3 ; . . .; d0ik ; emik1

P2
; c1i1
P3
; {e0i | b⊕ = 0}
P4
; {d1i | bν = 0}
P5
; a∗i1 ; a∗i1−1 ; . . .; a∗2

ut

It follows immediately that the parity game provided here indeed simulate
a binary counter by starting with the designated initial strategy and the ≺-
minimal edge. This completes the proof of Theorem 4.

2.5 Application to Other Games

Theorem 4 can be applied to a variety of other games using known connections
between these games. For completeness we give these results here. However
we will not give definitions of the games concerned, referring instead to the
relevant literature, as they will not be needed in the rest of the paper.

Parity games can be reduced to mean payoff games [21], mean payoff games
to discounted payoff games, and the latter ones to turn-based stochastic games
[26]. Friedmann showed [8] that the strategy improvement algorithm for payoff
and stochastic games, when applied to the reduced game graphs of sink parity
games, behaves exactly the same on the reduced games. In other words, the
strategies in both the original game and the reduced game graphs coincide as
well as the associated sets of improving switches.
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Theorem 5 ([8]) Let G be a sink parity game. Discrete strategy improvement
requires the same number of iterations to solve G as strategy improvement for
the induced payoff games as well as turn-based stochastic games to solve the
respective game G′. The game G′ is induced by applying the standard reduction
from G to the respective game class, assuming that the improvement rule solely
depends on the combinatorial valuation-ordering of the improving edges.

By this, we can conclude that the exponential lower bound for Cunning-
ham’s rule on parity games presented here also applies to payoff and turn-
based stochastic games. We will see in the next section that it also applies
to Markov decision processes, which can be seen as a one-player version of
turn-based stochastic games.

Corollary 1 There is a family of mean payoff games, discounted payoff games
resp. turn-based stochastic games on which number of improving steps per-
formed by Algorithm 2 is at least 2n, where the size of the games are O(n).

3 Markov Decision Process Policy Iteration Lower Bound

Markov decision processes (MDPs) provide a mathematical model for sequen-
tial decision making under uncertainty. They are employed to model stochas-
tic optimization problems in various areas ranging from operations research,
machine learning, artificial intelligence, economics and game theory. For an in-
depth coverage of MDPs, see the books of Howard [14], Derman [6], Puterman
[22] and Bertsekas [3].

3.1 Markov Decision Processes and Policy Iteration

Formally, an MDP is defined by its underlying graph G=(V0, VR, E0, ER, r, p).
Here, V0 is the set of vertices (states) operated by the controller, also known
as player 0, and VR is a set of randomization vertices corresponding to the
probabilistic actions of the MDP. We let V = V0 ∪ VR. The edge set E0 ⊆
V0 × VR corresponds to the actions available to the controller. The edge set
ER ⊆ VR × V0 corresponds to the probabilistic transitions associated with
each action. The function r : E0 → R is the immediate reward function. The
function p : ER → [0, 1] specifies the transition probabilities. For every u ∈ VR,
we have

∑
v:(u,v)∈ER p(u, v) = 1, i.e., the probabilities of all edges emanating

from each vertex of VR sum up to 1.

A policy σ is a function σ : V0 → V that selects for each vertex u ∈ V0
a target node v corresponding to an edge (u, v) ∈ E0, i.e. (u, σ(u)) ∈ E0.
We assume that each vertex u ∈ V0 has at least one outgoing edge). There
are several objectives for MDPs and we consider the expected total reward
objective here. The values valσ(u) of the vertices under σ are defined as the
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unique solutions of the following set of linear equations:

valσ(u) =

{
valσ(v) + r(u, v) if u ∈ V0 and σ(u) = v∑
v:(u,v)∈ER p(u, v) valσ(v) if u ∈ VR

together with the condition that valσ(u) sum up to 0 on each irreducible
recurrent class of the Markov chain defined by σ.

All MDPs considered in this paper satisfy the unichain condition (see [22]).
It states that the Markov chain obtained from each policy σ has a single
irreducible recurrent class.

This condition implies, in particular, that all vertices have the same value.
It is not difficult to check that valσ(u) is indeed the expected reward per turn,
when the process starts at u and policy σ is used. The potentials potσ(u)
represent biases. Loosely speaking, the expected reward after N steps, when
starting at u and following σ, and when N is sufficiently large, is about
N valσ(u) + potσ(u).

Howard’s [14] policy iteration algorithm is the most widely used algorithm
for solving MDPs. It is closely related to the simplex method, which provides
a practical way to solve such problems. Nevertheless in the worst case, Meleko-
poglou and Condon [19] showed that the simplex method with the smallest
index pivot rule needs an exponential number of iterations to compute an
optimal policy for a specific MDP problem regardless of discount factors.

Although most MDPs can be solved in polynomial time using the interior
point method the search continues for a strongly polynomial time method.
Post and Ye [20] have recently made progress in this direction by showing
that the simplex method with the greedy pivot rule terminates in at most
O(m3n2log2m) pivot steps when discount factors are uniform, or in at most
O(m5n3log2m) pivot steps with non-uniform discounts. No such results have
been proved for the policy iteration method. As history based pivot rules
provide good candidates for subexponential time behaviour it is important to
analyze their worst case performance for policy improvement algorithms.

As is the case for parity games, the policy iteration algorithm starts with
some initial policy σ0 and generates an improving sequence σ0, σ1, . . . , σN of
policies, ending with an optimal policy σN . In each iteration the algorithm
first evaluates the current policy σi, by computing the values valσi(u) of all
vertices. An edge (u, v′) ∈ E0, such that σi(u) 6= v′ is then said to be an
improving switch if and only if either valσi(v

′) > valσi(u). Given a policy σ,
we again denote the set of improving switches by Iσ.

A crucial property of policy iteration is that σ is an optimal policy if and
only if there are no improving switches with respect to it (see, e.g., [14], [22]).
Furthermore, if (u, v′) ∈ Iσ is an improving switch w.r.t. σ, and σ′ is defined
as σ[(u, v′)] (i.e., σ′(u) = v′ and σ′(w) = σ(w) for all w 6= u), then σ′ is strictly
better than σ, in the sense that for every u ∈ V0, we have valσ′(u) ≥ valσ(u),
with a strict inequality for at least one vertex u ∈ V0.

Lemma 7 Let σ be a policy and (v, w) be a σ-improving switch. Let σ′ =
σ[v 7→ w]. Then the following holds:
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1. valσ′(u) ≥ valσ(u) for all u ∈ V ,
2. valσ′(v) > valσ(v), and particularly
3.
∑
u∈V0

valσ′(u) >
∑
u∈V0

valσ(u).

3.2 Lower Bound Construction

We relate the description of the lower bound construction for Markov decision
processes closely to the construction of the parity games. For that reason, we
relax our definition of MDPs such that it corresponds almost directly to parity
games.

As defined in the previous subsection, the underlying graph G is bipartite.
However one can relax this condition and allow edges from V0 to V0 and from
VR to VR. It suffices to subdivide these edges by inserting a node belonging
to player 1 or player 0, respectively, with out-degree 1 and no priority. This
leads to the following definition.

A relaxed MDP is a tuple M = (V, V0, VR, E,E0, ER, r, p), where V =
V0 ∪ VR, E ⊆ V × V , E0 = E ∩ (V0 × V ), ER = E ∩ (VR × V ), r : E 7→ R and
p : ER → [0, 1] with

∑
w∈vE p(v, w) = 1 for all v ∈ VR.

Relaxed MDPs allow us to show the close relationship between the original
parity games and the corresponding MDPs.

1. Edges (v, w) ∈ E0 ∩ V0 × V0 can be realized by adding a randomization
node (v, w) and by replacing the edge (v, w) with new edges (v, (v, w)) and
((v, w), w). The outgoing edge from (v, w) obviously has probability 1.

2. Edges (v, w) ∈ ER∩VR×VR can be realized by adding a player 0 node (v, w)
and by replacing the edge (v, w) with new edges (v, (v, w)) and ((v, w), w).
Note that player 0 does not obtain new choices by adding this node since
the out-degree is one.

3. Randomization edges are not allowed to have rewards in MDPs. Hence we
insert, for every outgoing edge of a randomization node with reward, a new
node of player 0 connected to a new node of the randomizer connected to
the original target node. We push the reward to the new player 0 edge.

4. Since we consider the expected total reward here, adding new intermediate
nodes does not change the value of the nodes.

For each n ≥ 3 we define the underlying graphMn = (V, V0, VR, E,E0, ER, r, p)
of a relaxed MDP as shown schematically in Figure 8 which the reader is in-
vited to compare with Figure 1.

More formally:

V0 := {ai, ci, di | 1 < i ≤ n} ∪ {bi | 1 < i < n} ∪ {ei | 1 ≤ i ≤ n}
VR := {Fi | 1 ≤ i ≤ n} ∪ {gi, hi | 1 ≤ i ≤ n} ∪ {s, t}

With Mn, we associate a large number N ∈ N and a small number 0 < ε.
We require N to be at least as large as the number of nodes with priorities, i.e.
N ≥ 2n and ε−1 to be significantly larger than the largest occurring priority
induced reward, i.e. ε ≤ 1

2n .
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Some of the vertices are assigned integer priorities. If a vertex v has prior-
ity Ω(v) assigned to it, then a reward of 〈v〉 = (−N)Ω(v) is added to all edges
emanating from v. This idea of using priorities is inspired by the reduction
from parity games to mean payoff games, see [21].

Figure 7 defines the edge sets, the probabilities and the priorities of Mn.
For convenience of notation, we identify the node names an+1 with t, b1 with
g1, and c1 with g1. Explicit constructions for small n are available online [11].

Node Successors Probability

Fi hi ε
Fi di 0.5 · (1− ε)
Fi ei 0.5 · (1− ε)

Node Successors Priority

gi Fi 2 · i− 1
hi ai+1 2 · i
s cn 0

Node Successors

ai gi, ai+1

bi gi, bi−1

ci gi, ci−1

di Fi, bi−1

ei Fi, s
t t

Fig. 7 MDP Lower Bound Graph

In comparing Figure 8 with Figure 1 the connections between MDPs and
parity games becomes clear. Blue edges show respectively the current policy
and current policy for player 0, and red edges for player 1. Improving edges
for player 0 are shown in dotted green and the other current non-policy and
non-strategy edges are shown in dotted black. (Coloured edges show in bold
on monochromatic printing.) Whereas Figure 1 shows the initial strategy for
parity game G3, Figure 8 shows the initial policy for the MDP M3. The se-
quence Pn of improving switches we constructed in Gn starting at the initial
strategy and following Algorithm 2 using the ordering (1) will be shown to
correspond to an identical sequence of improving switches in Mn using policy
iteration and the same ordering.

Lemma 8 The Markov chains obtained by any policy reach the sink t almost
surely (i.e. the sink t is the single irreducible recurrent class).

It is not too hard to see that the absolute value of all nodes corresponding
to policies are bounded by ε−1. More formally we have:

Lemma 9 Let P = {s, g∗, h∗} be the set of nodes with priorities. For a subset
S ⊆ P , let

∑
(S) =

∑
v∈S 〈v〉. For non-empty subsets S ⊆ P , let vS ∈ S be

the node with the largest priority in S.

1. |
∑

(S)| < N + 1 and ε · |
∑

(S)| < 1 for every subset S ⊆ P , and
2. |vS | < |vS′ | implies |

∑
(S)| < |

∑
(S′)| for non-empty subsets S, S′ ⊆ P .

3.3 Lower Bound Proof

In this section we prove the following theorem. The initial policy, {a0∗, b0∗, c0∗, d1∗, e0∗},
corresponds exactly to the initial strategy for the parity game Gn.
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Fig. 8 (Relaxed) Markov Decision Process Lower Bound Graph

Theorem 6 The sequence Pn of improving switches followed by policy itera-
tion in Mn from the initial policy to the terminal policy using the ordering (1)
has length at least 2n, where Mn has size O(n).

We will show that the sequence Pn in Theorem 6 is in one-to-one corre-
spondence with the sequence Pn in Theorem 4. We first show that Figure 6
indeed specifies the sets of improving switches for each phase p.
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Lemma 10 Let n > 1. The improving switches from policies that belong to
the phases in Figure 5 are as specified in Figure 6.

Proof Let n > 1 and σ be a policy belonging to one of the phases w.r.t. b. Let
µ = µ(b). Define Ti = 〈hi〉+

∑
j>i,bj=1(〈gj〉+ 〈hj〉) and Si = 〈gi〉+ Ti.

– Phase 1 : The following holds:

valσ(gi) =


Si if σ(di) = 1, σ(ei) = 1

ε · Ti + 〈gi〉+ (1− ε) · (〈s〉+ Sµ) if σ(di) = 1, σ(ei) = 0

ε · Ti + 〈gi〉+ (1− ε) · Sµ if σ(di) = 0, σ(ei) = 1

ε · Ti + 〈gi〉+ 1−ε
2 · (〈s〉+ 2 · Sµ) if σ(di) = 0, σ(ei) = 0

valσ(ei) =
{
〈s〉+ Sµ if σ(ei) = 0

It is easy to see that e1i are improving switches as Ti > Sµ. It can further-
more be easily observed that d0i is an improving switch for bi = 0, i > ν(b)
iff σ(eν(b)) = 1 and σ(bν(b)) = 1.

– Phase 2 : Similar to phase 5.
– Phase 3 : Similar to phase 4.
– Phase 4 : The following holds:

valσ(bi) =

{
Sµ if i ≥ µ
S1 otherwise

valσ(Fi) =


Ti if b⊕i = 1

ε · O(1) + 1
2 · (〈s〉+ Sµ + valσ(bi−1)) if bµi = 0 ∧ σ(di) 6= Fi

ε · O(1) + 〈s〉+ Sµ otherwise

We conclude: valσ(Fi)− valσ(bi−1) =
Ti − valσ(bi−1) ≥ Ti − Sµ > 0 if Sµ

ε · O(1) + 1
2 · (〈s〉+ Sµ − valσ(bi−1)) ≥ ε · O(1) + 1

2 · 〈s〉 > 0 if bµi = 0 ∧ σ(di) 6= Fi

ε · O(1) + 〈s〉+ Sµ − valσ(bi−1) ≥ ε · O(1) + 〈s〉 > 0 otherwise

– Phase 5 : The following holds:

valσ(gi) =

{
Si if b⊕i = 1

ε · O(1) + 〈gi〉+ 〈s〉+ Sµ otherwise

valσ(ai) =


Si if b⊕i = 1 ∧ (i > µ ∨ σ(aµ) = gµ)

valσ(ai+1) if i = µ ∧ σ(aµ) 6= gµ)

Sµ if i < µ ∧ σ(ai) 6= gi

ε · O(1) + 〈gi〉+ 〈s〉+ Sµ if i < µ ∧ σ(ai) = gi

By computing the difference we again see that the improving switches are
as described.

Now Lemma 6 becomes applicable again and the proof of Theorem 6 fol-
lows.
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4 Linear Program Simplex Method Lower Bound

In this section we use the well known transformation from MDPs to linear
programs to obtain an exponential lower bound for the simplex method using
Cunningham’s rule.

4.1 Linear Programs and the Simplex Method

We briefly give a few basic definitions and state our notation. For more infor-
mation the reader is referred to any standard linear programming text, such
as [4]. Given an m by n matrix A with m ≤ n, an n-vector c and m-vector b
we consider the primal linear program in the standard form

max cTx
s.t. Ax = b

x ≥ 0

Let B and N be a partition of the indices {1, 2, . . . , n} such that |B| = m. We
denote by AB the submatrix of A with columns indexed by B, and xB the
m-subvector of x with indices in B. We say that B is a feasible basis if AB is
non-singular and

xB = A−1B b ≥ 0.

A corresponding basic feasible solution(BFS) x is obtained if we extend xB to
x by setting xN = 0.

We call cTx the objective function. A pivot from a feasible basis B is defined
by a pair of indices i ∈ B and j ∈ N for which B \ {i} ∪ {j} is also a feasible
basis. If the corresponding BFS are x and x′, then the pivot is improving
if cTx ≤ cTx′. If the inequality is strict then we call the pivot step non-
degenerate otherwise it is called degenerate. An optimal basis is one for which
the corresponding BFS maximizes the objective function. A deterministic pivot
rule gives a unique pivot pair for every non-optimal feasible basis.

The simplex method starts from a given feasible basis and applies improv-
ing pivots until an optimal basis is obtained. The sequence of pivots depends
on the specific pivot rule, and care must be taken to ensure that it does not
cycle if there are degenerate pivots.

The corresponding dual LP is written

min bT y
s.t. AT y ≥ c.
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4.2 Markov Decision Processes as LPs

Optimal policies for MDPs that satisfy the unichain condition can be found
by solving the following primal linear program (see, e.g., [22].)

(P )

max
∑

(u,v)∈E0
r(u, v)x(u, v)

s.t.
∑

(u,v)∈E x(u, v)−
∑

(v,w)∈E0,(w,u)∈ER p(w, u)x(v, w) = 1, u ∈ V0
x(u, v) ≥ 0 , (u, v) ∈ E0

The variable x(u, v), for (u, v) ∈ E0, stands for the probability (frequency)
of using the edge (action) (u, v). The constraints of the linear program are
conservation constraints that state that the probability of entering a vertex u
is equal to the probability of exiting u. It is not difficult to check that the
BFS’s of (P) correspond directly to policies of the MDP. For each policy σ we
can define a feasible setting of primal variables x(u, v), for (u, v) ∈ E0, such
that x(u, v) > 0 only if σ(u) = (u, v). Conversely, for every BFS x(u, v) we can
define a corresponding policy σ. It is well known that the policy corresponding
to an optimal BFS of (P) is an optimal policy of the MDP. (See, e.g., [22].)

Lemma 11 Let σ be a policy and x(u, v) be a corresponding BFS. Then the
following holds: ∑

u∈E0

valσ(u) =
∑

(u,v)∈E0

r(u, v)x(u, v)

The dual linear program (for unichain MDPs) is:

(D)
min

∑
u∈V y(u)

s.t. y(u)−
∑

(v,w)∈ER p(v, w)y(w) ≥ r(u, v) , (u, v) ∈ E0

together with the condition that y(u) sum up to 0 on the single irreducible
recurrent class.

If y∗ is an optimal solution of (D), then y∗(u), for every u ∈ V0, is the
value of u under an optimal policy. An optimal policy σ∗ can be obtained by
letting σ∗(u) = (u, v), where (u, v) ∈ E0 is an edge for which the inequality
constraint in (D) is tight, i.e., y(u)−

∑
w:(v,w)∈ER p(v, w)y(w) = r(u, v). Such

a tight edge is guaranteed to exist.

4.3 Policy Iteration and Simplex Method

A policy iteration algorithm with policy σ that perform a single switch at each
iteration – like Cunningham’s rule – corresponds to a variation of the simplex
method where the selection rule behaves like σ. Indeed σ gives rise to a feasible
solution x(u, v) of the primal linear program (P) . We use σ to define a Markov
chain and let x(u, v) be the ‘steady-state’ probability that the edge (action)
(u, v) is used. In particular, if σ(u) 6= v, then x(u, v) = 0.

We can also view the values corresponding to σ as settings of the vari-
ables y(u) of the dual linear program (D). By linear programming duality, if
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y(u) is feasible then σ is an optimal policy. It is easy to check that an edge
(u, v′) ∈ E0 is an improving switch if and only if the dual constraint corre-
sponding to (u, v′) is violated. Furthermore, replacing the edge (u, v) by the
edge (u, v′) corresponds to a pivoting step, with a non-negative reduced cost,
in which the column corresponding to (u, v′) enters the basis, while the column
corresponding to (u, v) leaves the basis.

4.4 Lower Bound Construction

Let n > 1. The variables of the LP correspond to the edges E0 controlled by
player 0, i.e. we have 10(n− 1) variables

{a1i , a0i , c1i , c0i , d1i , d0i | 1 < i ≤ n} ∪ {b1i , b0i | 1 < i < n} ∪ {e1i , e0i | 1 ≤ i ≤ n}.

The LP has 5(n− 1) constraints, corresponding to the nodes V0 controlled by
player 0, and labelled

{ai, ci, di | 1 < i ≤ n} ∪ {bi | 1 < i < n} ∪ {ei | 1 ≤ i ≤ n}.

The linear program is defined as follows for each n ≥ 3 (non-existent variables
are assumed to be zero):

LPn :
max

∑n
i=1

((
a1i + b1i + c1i

)
(Ω(gi) + εΩ(hi)) + ε

(
d1i + e1i

)
Ω(hi) + e0iΩ(s)

)
subject to:
(a2) a02 + a12 = 1 + ε(b02 + c02 + d02 + e11)
(ai) a0i + a1i = 1 + a0i−1 + ε(a1i−1 + b1i−1 + c1i−1 + d1i−1 + e1i−1) 3 ≤ i ≤ n
(bi) b0i + b1i = 1 + b0i+1 + d0i+1 2 ≤ i < n
(ci) c0i + c1i = 1 + c0i+1 2 ≤ i < n
(cn) c0n + c1n = 1 +

∑n
j=1 e

0
j

(di) d0i + d1i = 1 + 1−ε
2 (a1i + b1i + c1i + d1i + e1i ) 2 ≤ i ≤ n

(e1) e01 + e11 = 1 + (1− ε)(b02 + c02 + d02 + e11)
(ei) e0i + e1i = 1 + 1−ε

2 (a1i + b1i + c1i + d1i + e1i ) 2 ≤ i ≤ n
All variables non-negative

Note that the size of LPn is linear in n. Depending on the context we let LPn
denote both the linear program and the polytope defined by its constraints.
For small values of n explicit constructions of LPn and it dual are available
online [11].

We now use the correspondence between the parity game Gn, the MDP
Mn and linear program LPn to get a lower bound for the simplex method
using Cunningham’s rule. The initial strategy for Gn and initial policy for
Mn, {a0∗, b0∗, c0∗, d1∗, e11, e0∗>1}, defines a starting basis for LPn. We construct a
path on the polytope LPn from this starting basis using the least recently
considered rule with ordering (1). Using this construction, Theorem 6 implies
that the path generated will be in one-to-one correspondence with the sequence
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Pn of improving switches generated in Mn (and hence Gn). We observe that
the objective function strictly increases with each pivot due to Lemma 11 and
Lemma 7. Therefore we have the following result.

Theorem 7 The pivot path Pn for LPn from the starting basis to the optimum
basis followed by the least recently considered rule with ordering (1) has length
at least 2n. The objective function strictly increases with each pivot.

5 Acyclic Unique Sink Orientations

Our final result concerns acyclic unique sink orientations (AUSOs), which are
abstractions of various optimization problems including linear programming,
linear complementarity and binary payoff games. In this section we extend
our exponential lower bound to finding the sink of an AUSO using the least
considered rule. For background information on AUSOs, see [23,12,13].

5.1 Definitions and previous results

AUSOs can be defined on arbitrary polytopes, but here we consider only hy-
percubes. An AUSO on a n-dimensional hypercube is an orientation of its
edges that is acyclic and such that every face of the hypercube has a unique
sink (vertex of outdegree 0). The goal is to find the unique sink of the AUSO.
There is at present no known polynomial time algorithm for doing this, nor is
it known to be NP-hard.

A natural class of algorithms to find the sink of an AUSO are path following
algorithms. Such an algorithm would start at any vertex v of the hypercube
and repeatedly choose an outgoing edge according to some rule until the unique
sink is located. Each edge of the path corresponds to flipping one bit of the
current vertex.

There is a very natural analogy between path following algorithms and
pivoting in linear programming. Pivot rules for LPs therefore have natural
analogues for AUSOs and a full discussion of this is contained in [1]. In partic-
ular the least recently considered rule can be adapted to give a path following
algorithm to find the unique sink of an n-cube AUSO starting at any given
vertex as follows.

We define, for each i = 1, 2, ..., n, the variable vi to denote a flip of bit i
from 0 to 1, and variable vn+i to denote a flip of bit i from 1 to 0. We may
now arrange the 2n variables v1, v2, ..., v2n in any cyclic order. For any vertex
of the AUSO that is not the sink we find the first allowable flip in this cyclic
order starting at the last chosen vi.

Suppose we are given a polytope and an objective function that is not
constant on any edge of the polytope. We can can then orient each edge in the
direction of increasing objective function. The corresponding directed graph
on the skeleton of the polytope can be shown to be an AUSO. The converse
is not always true. Indeed, we call an AUSO realizable if there is a polytope
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and objective function that induces a directed graph on its skeleton which is
graph isomorphic to the AUSO. Not all AUSOs are realizable.

The Klee-Minty examples[16] are realizations of AUSOs on hypercubes,
so exponential lower bounds for most of the non-history based deterministic
LP pivot rules immediately give similar bounds for AUSOs. Gärtner[12] gives
an exp(2n1/2) lower bound for random facet algorithms and Matousek and
Szabó[18] give an exp(const n1/3) lower bound for the random edge rule on
AUSOs. In the next subsection we derive an exponential lower bound for find-
ing the sink of a realizable AUSO using a path following algorithm based on
Cunningham’s rule.

5.2 Lower Bound Construction

As we saw in Section 2 there is a direct relationship between binary parity
games and oriented hypercubes. Each vertex v corresponds to a strategy σ for
player 0. A partial orientation of the hypercube’s edges is given by the notion
of improving switches: the orientation goes from σ to σ′ iff there is a game
edge e belonging to player 0 s.t. σ′ = σ[e] and e is σ-improving. This is only a
partial orientation since there are strategies for the parity game that are not
used in the lower bound construction and for which the notion of improving is
not well defined. For each n ≥ 3 we denote this partially oriented n-cube Hn.

Our goal is to embed Hn into an AUSO An whose edges orientations are
consistent with those already set in Hn. Note that this is not a trivial opera-
tion, as even for n = 3 it can be readily verified that there are partial acyclic
orientations of the 3-cube which are USOs on every complete face but do not
embed into an AUSO. We will achieve this embedding via the linear program-
ming formulation of the last section, achieving the stronger result that the
AUSO is realizable.

Lemma 12 LPn is a realization an AUSO An which is consistent with the
edge orientations of Hn.

Proof We argued in Section 4.2 that each basic feasible solution of LPn cor-
responded directly to a policy of the corresponding MDP Mn, and hence to
strategy of the parity game Gn. Also each edge of LPn corresponded to a
switch in Mn and hence to an edge owned by player 0 in Gn. It follows that
the vertices and edges of LPn and Hn are in one-to-one correspondence. Since
Hn is an n-cube so is the skeleton of LPn. By applying symbolic dual pertur-
bation if necessary to resolve ties in the objective function (see, e.g. [4]) An
can be oriented to give an AUSO, which we denote as An. By definition An is
realizable.

According to Theorem 7 the objective function of LPn is non-constant on
every edge and increases in the direction corresponding to an improving switch
in Mn. However improving switches in Mn correspond to improving edges in
Gn. The edges of Hn were directed in the same way as these improving edges.
Since dual perturbation will not change the direction of any edges for which
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the objective function is strictly increasing, the directed edges in Hn maintain
their directions in An. The lemma follows. ut

The lemma implies that not only is Hn an AUSO but stronger properties,
such as the Holt-Klee condition and the shelling property, also hold (see, e.g.
[2]). For small values of n the AUSOs An are available online [11].

We may now apply the least recently considered rule to An as described
in Section 5.1. The starting basis of LPn {a0∗, b0∗, c0∗, d1∗, e0∗} defines a starting
vertex of An. We construct a path from this vertex using the least recently
considered rule with ordering (1). Using this construction, Theorem 7 implies
that the path generated will be in one-to-one correspondence with the path
Pn generated in LPn.

Theorem 8 The directed path Pn in An from the starting vertex to the unique
sink followed by the least recently considered rule with ordering (1) has length
at least 2n.

6 Conclusions

We have shown in this paper that Cunningham’s least considered rule can
lead to exponential worst case behaviour in parity and other games, Markhov
decision processes, linear programs and AUSOs. This appears to be the first
such result for a history based rule for AUSOs. However Cunningham’s rule
was in fact first proposed for the network simplex method. The LPs presented
in Section 4 are not networks, but are structurally remarkably close to them.
Our first open problem would be to extend our results to network LPs.

As remarked in the introduction, Zadeh’s rule has recently been shown
to have superpolynomial worst case behavior on linear programs. The parity
games behind these LPs were not binary, so it does not immediately follow
that Zadeh’s rule has similar behaviour on AUSOs. This is a second open
problem. More generally it is of interest determine whether all of the history
based rules mentioned in [1] have exponential behaviour on AUSOs.

Finally it would be of interest to study the AUSOs presented in Section 5
to see if they have a simple enough structure to be stated explicitly. If so it
may be possible to prove the existence of exponentially long paths in a simpler
manner than that done in Section 2.
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