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Abstract Kidney exchange programs have been set in several countries within
national, regional or hospital frameworks, to increase the possibility of kidney
patients being transplanted. For the case of hospital programs, it has been
claimed that hospitals would benefit if they collaborated with each other, shar-
ing their internal pools and allowing transplants involving patients of different
hospitals. This claim led to the study of multi-hospital exchange markets. We
propose a novel direction in this setting by modeling the exchange market as
an integer programming game. The analysis of the strategic behavior of the
entities participating in the kidney exchange game allowed us to prove that
the most rational game outcome maximizes the social welfare and that it can
be computed in polynomial time.
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1 Introduction

The Kidney Exchange Problem can be described as follows. A patient suffering
from renal failure can see her life quality improved through the transplantation
of a healthy kidney. Typically, a patient receives a kidney transplant from a
deceased donor, or from a living donor that is a patient’s relative or friend.
Unfortunately, these two possibilities of transplantation can only satisfy a tiny
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fraction of the demand, since deceased donors are scarce and patient-donor
incompatibilities may occur.

To potentially increase the number of kidney transplants, some countries’
recent legislation (e.g., United Kingdom [16], Netherlands [I0]) allows a pair-
wise exchange: e.g., for two patient-donor pairs P; and P, the patient of pair
Py receives a kidney from the donor of pair P, and vice versa, forming a cycle
of size 2. The idea can be extended to allow more than two pairs to be involved
in an exchange (for L-pairs, P, receives a kidney from the donor Py, P; from
the donor of P, etc, and, finally, P; from the donor of Py, closing a cycle), and
to include undirected (altruistic) donors, as well as pairs with other charac-
teristics [9]. The general aim is to define a match that maximizes the number
of transplants in a pool. Because in most cases the operations must take place
at the same time, for logistic reasons the number of pairs that can be involved
in an exchange is limited to a maximum value, say L. Furthermore, because
additional compatibility tests that must be performed prior to transplant may
lead to new incompatibilities, resulting in the cancellation of all transplants
involved in the cycle it is preferable for the cycles to be shorter.

Abraham et al. [I] formulated the kidney exchange problem (KEP) as an
integer program with an exponential number of variables, which maximizes
the number of vertices covered in a digraph by vertex-disjoint cycles of size at
most L. In this model the vertices of the digraph represent patient-donor pairs
and the arcs represent the compatibilities between pairs. A compact model,
where the number of variables and constraints increases polynomially with the
problem size, is proposed by Constantino et al. [9].

In the previous models, there is a centralized decision maker deciding the
exchange program. However, there are other potential decision makers to be
considered that can influence the exchange program. In Cechldrové et al. [§],
patient-donor pairs are the players in a cooperative kidney exchange game
that is structurally different from what is presented in this paper because the
players, the set of actions and utilities interact differently, as will be clear after
our game model description.

Multi-Agent Kidney Exchange. Although some countries have a national kid-
ney exchange pool with the matches being done by a central authority, other
countries have regional (or hospital) pools, where the matches are performed
internally with no collaboration between the different entities. Since it is ex-
pected that as the size of a patient-donor pool increases more exchanges can
take place, it became relevant to study kidney exchange programs involving
several hospitals or even several countries. In such cases each entity is a self-
interested agent that aims at maximizing the number of its patients receiving
a kidney [314].

To the extent of our knowledge, work in this area concentrates on the search
of a strategyproof mechanism that decides all exchanges to be performed in a
multi-hospital setting. A mechanism is strategyproof if the participating hos-
pitals do not have incentive to hide information from a central authority that
decides through that mechanism the exchanges that are to be executed. For the



2-hospital kidney exchange program with pairwise exchanges, the determin-
istic strategyproof mechanism in [2] provides a 2-approximation ratio on the
maximum number of exchanges, while the randomized strategyproof mecha-
nism in [7] guarantees a 3-approximation ratio. Additionally, Ashlagi et al. [2]
built a randomized strategyproof mechanism for the multi-hospital case with
approximation ratio 2, again only for pairwise exchanges. In these mechanisms,
in order to encourage the hospitals to report all their incompatible pairs, the
social welfare is sacrificed. In fact, the best lower bound for a strategyproof
(randomized) mechanism is 2 (), which means that no mechanism returning
the maximum number of exchanges is strategyproof [2]. In this context, the
question is whether, analysing the hospitals interaction from a standpoint of
a non-cooperative game, Nash equilibria would improve the program’s social
welfare.

We can formalize and generalize KEP to a competitive N-player kidney ex-
change game (N-KEG) with two sequential moves: first, simultaneously, each
player n, forn = 1,..., N, decides the internal exchanges to be performed; sec-
ond, an independent agent (IA) takes the first-stage unused pairs and decides
the external exchanges to be done such that the number of pairs participating
on it is maximized. Let us define V™ as the vertex set of player n, V = Uﬁ;l vn
and C as the set of cycles with size at most L. Let C" = {c € C: cNV™ = ¢}
be the subset of cycles involving only player n’s patient-donor pairs, and
I1=C\ UnN:1 C™ be the subset of cycles, involving at least two patient-donor
pairs of distinct players. Each player solves the following bilevel programming:

maximize w4+ w 1.1a
subject to Z g <1 VieV" (1.1b)
ceCn:iec

where y solves the problem

N
maximize Z Z WY (1.1c)

y€{0,1}7]

cel n=1
N
3 Soowe<1=> > ar viev (L1d)
cel:iec n=1ceCn:i€c

Player n controls a binary decision vector ™ with size equal to the cardinality
of C™. An element z of z™ is 1 if cycle ¢ € C™ is selected, 0 otherwise.
Similarly, the TA controls the binary decision vector y with size equal to the
cardinality of I. The objective function translates on the maximization
of player n’s patients receiving a kidney: w? the number of player’s n patient-
donor pairs in cycle ¢ (which is the size of ¢ if it is an internal). Constraints
(1.1b)) ensure that every pair is in at most one exchange. The TA objective
function represents the maximization of patient-donor pairs receiving a
kidney in the second-stage. Constraints are analogous to (L.1D]), but also



ensure that pairs participating in the first-stage exchanges are not selected by
the TA.

In the way that we defined N-KEG, it is implicit that it is a complete
information game. Initially, every player decides the pairs to reveal, and only
revealed pairs will be considered in each player utility as well as in the second
stage TA decision process. Note that there is no incentive for hiding informa-
tion, as each player has complete control over her internal exchanges, and,
therefore, can guarantee to be at least as good as if it was by herself. More-
over, if there are hidden pairs, they will not be considered in the IA decision,
and thus, the players will not benefit from external exchanges including them.
Consequently, this is intrinsically a complete information game.

The formulation above brings up the following research question: is the
generalization of KEP to N-KEG relevant? In particular, it is worth noting
that the special case of KEP with L = 2 can be formulated as a maximum
matching problem and consequently, solved in polynomial time. Moreover, the
multi-agent kidney exchange literature focuses mainly in exchanges with size
2. Thus, the most natural and relevant extension to look at is 2-KEG with
pairwise exchanges.

Our Contributions. In this paper we concentrate on the non-cooperative 2-
player kidney exchange game (2-KEG) with pairwise exchanges. A player can
be a hospital, a region or even a country. Under this setting it is inefficient to
follow the classical normal-form game approach [I3] by specifying all the play-
ers’ strategies. Note also that in our formulation of N-KEG, players’ strategies
are lattice points inside polytopes described by systems of linear inequalities.
Thus, according to [I5], N-KEG and, in particular, 2-KEG belongs to the
class of integer programming games.

We show that 2-KEG has always a pure Nash equilibrium (NE) and that
it can be computed in polynomial time. Furthermore, we prove the existence
of a NE that is also a social optimum, i.e., the existence of an equilibrium
where the maximum number of exchanges is performed. Finally, we show how
to determine a NE that is a social optimum, always the preferred outcome of
both players, and can be computed in polynomial time.

Our work indicates that studying the players interaction through 2-KEG
turns the exchange program efficient both from the social welfare and players’
point of view. In contrast, as mentioned before, there is no centralized mecha-
nism that is strategyproof and at the same time guarantees a social optimum.
Although we provide strong evidence that under 2-KEG the players’ most
rational strategy is a social optimum, we note the possibility of multiple equi-
libria. We show that the worst case Nash equilibrium in terms of social welfare
is at least % of the social optimum. Thus, the worst case outcome for our game
is comparable with the one for the best deterministic strategyproof mechanism
(recall that it guarantees a 2-approximation of the social optimum). Therefore,
the 2-KEG opens a new research direction in this field that is worth being
explored.



Organization of the Paper. Section[2]formulates 2-KEG in mathematical terms.
Section [ proves the existence of a Nash equilibrium that maximizes the social
welfare and measures the Nash equilibria quality enabling the comparison of
our game with strategyproof mechanisms. Section [4] proves that the players
have incentive to choose Nash equilibrium that are socially optimal. Section
refines the concept of social welfare equilibria motivating for a unique rational
outcome for the game. Section [f] discusses extensions to our model and Section
[@ draws some conclusions.

2 Definitions and preliminaries

Let the players of 2-KEG be labeled player A and player B. The operator
(-)~™ for some n € {A, B} denotes the opponent of player n. For representing
a 2-KEG as a graph, let V' be a set of vertices representing the incompatible
patient-donor pairs of players A and B, and E be the set of possible pairwise
exchanges, i.e., the set of edges (i,7) such that the patient of ¢ € V is com-
patible with the donor of 7 € V and vice versa. For each player n, V" C V
and E™ C F are her patient-donor pairs and internal compatibilities, respec-
tively. A subset M™ of E™ is called a matching of graph G™ = (V" E"™) if no
two edges of it share the same vertex. A player n’s strategy set is the set of
matchings in graph G™ = (V™, E™). A profile of strategies is the specification
of a matching for all players. The independent agent controls the external ex-
changes E! C E, i.e., (a,b) € E' if a € VA and b € VB, Let E/ (M4, MB)
be a subset of E such that no edge is incident upon a vertex covered by M4
or MB. For a player B’s matching MP define the player A’s reaction graph
GA(MP) = (V,EAUET(), MP)) and for a player A’s matching M define the
player B’s reaction graph GP(M#) = (V, EBUET (), M*)). We will represent
vertices that belong to V4 as gray circles and vertices that belong to VB as
white diamonds.

On the first stage of 2-KEG, each player n decides simultaneously a match-
ing M™ of graph G™ to be executed. On the second stage of the game, given
player A’s first-stage decision M4 and player B’s first-stage decision MZ, the
TA decides the external exchanges to be performed such that the number of
pairs covered by its decision is maximized. In other words, the TA finds a maz-
imum matching MY (M4, MB) of EI(M#, MP), i.e., a matching of maximum
cardinality. In the end of the game, player A’s utility is 2| M4 |+|M (M4, M B)|
and player B’s utility is 2| MB| + |[MT(M4, MP)|.

An important factor for a game is that its rules are executed efficiently. For
2-KEG this means that the TA optimization problem must be easy to solve.
Edmonds [I2] proved that the problem of computing a maximum matching
can be solved in polynomial time for any graph. Therefore, given the players’
decisions, the A optimization problem is solved in polynomial time.

A legitimate question that must be answered is if the game is well defined in
the sense that the rules are unambiguous. Note that the utility of each player
depends on the TA decision rule. In the general N-KEG case, there might



be situations where there are multiple optimal IA’s decisions that benefit the
players differently. However, for 2-KEG that is not possible, because only
pairwise exchanges are considered. That is, any IA matching leads to equal
benefits for both players.

Proposition 1 2-KEG is well defined.

One apparent difficulty in the treatment of the game has to do with
the bilevel optimization problem of each player. However, computing
a player’s optimal strategy to a fixed matching of the other player can be sim-
plified. From the standpoint of player A, the best reaction M to a player B’s
fixed strategy MP can be computed by dropping the IA objective function
(1.1¢) (game rule) and solving the single level matching problem in the reac-
tion graph G4(M?P). Basically, we are claiming that player A best reaction
predicts the appropriate IA decision given M4 and M?Z. This holds because
TA’s edges have a positive impact on the utility of player A.

Lemma 1 Let M be a matching of player B in 2-KEG. Player A’s best re-
action to MP can be achieved by solving a mazimum weight matching problem
on the graph GA(MP), where the edges of G in E4 have weight 2 and those
in EX(0, MB) weight 1. The equivalent for player B also holds.

3 Nash equilibria and social welfare

Normal form games are a class of finite games for which the players’ strategies
are explicitly specified. Unlike these games, the literature on integer program-
ming games is almost nonexistent and the intuition is that they are more
difficult to treat, since players’ set of feasible strategies can have exponential
size.

A Nash equilibrium is a widely accepted solution for a game. Nash [18§]
proved, in a non-constructive way, that any finite game has a NE. General
algorithms to compute NE for normal form games were devised, but they fail
to be polynomial [I9]. In particular, these algorithms are inappropriate for
integer programming games, as they require the explicit enumeration of all
feasible strategies and here, the set of feasible matchings grows exponentially
with the number of patient-donor pairs (vertices of the graph).

In this paper, we will concentrate on pure equilibria. A player A’s matching
M4 of G4 and a player B’s matching MZ of GP is a pure Nash equilibrium
for 2-KEG if

2|MA| + | ME(MA, MP)| > 2|RA| + M (RA, MP)| V¥ matching R4 of G*

2|MB| + |MT(MA, MB)| > 2|RB| + |MT(M*, R®)| V matching R” of G5.

Along the paper we use NE to refer to pure Nash equilibria. Under 2-KEG,
each player seeks to choose an internal matching that leads to the maximiza-
tion of the number of its patients receiving a transplant in the end of the



game. Hence, a rational profile of strategies is one that simultaneously maxi-
mizes each players’ utility. The NE satisfies this goal.

A mixed-strategy Nash equilibrium attributes a probability distribution
over the players’ feasible decisions; therefore, its description may involve an
exponential number of players’ strategies, which is computationally unsuitable.

In Section [3.1} we prove the existence of NE for 2-KEG and that it can
be computed in polynomial time. Through these results, in Section [3.2] we
prove the existence of a NE that maximizes the social welfare (sum of the
players’ utilities or, equivalently, number of vertices matched). In Section
we measure the quality of the NE in terms of social welfare. This analysis
allow us to conclude that the worst case Nash equilibrium to 2-KEG and the
best deterministic strategyproof mechanism guarantee that at least % of the
number of vertices matched in a social optimum is achieved.

3.1 Existence of a pure Nash equilibrium

In order to prove the existence of a pure NE we will use the concept of potential
function to games, as defined in [I7]. For 2-KEG, a potential function @ is
a real-valued function over the set of player A’s matchings in G4 and player
B’s matchings in G such that the value of @ increases strictly when a player
switches to a new matching that improves its utility. In particular, a potential
function is exact when this increase is equal to the player’s utility increase
when she unilaterally deviates to a new matching.

Observe that a player A’s decision does not interfere in the set of player B’s
matchings in GZ. In particular, player A cannot influence the part of player
B’s utility related with a matching in G®. The symmetric observation holds
for player B’s decision. With this in mind, it is not difficult to find an exact
potential function to 2-KEG.

Proposition 2 Function ®(M*, MP) = 2| M4 |+ 2|MB|+ |MT(MA, MB)| is
an exact potential function of 2-KEG.

A profile of strategies for which the potential function maximum is attained
is a NE (Lemma 2.1 of [I7]). Otherwise, at least one of the players would
have advantage in switching to a new strategy, which would imply that the
potential function would strictly increase its value in this new profile. However,
that contradicts the fact that the previous profile was a potential function
optimum.

Theorem 1 There exists at least one pure Nash equilibrium to 2-KEG and
it can be computed in polynomial time.

Proof A matching corresponding to the maximum of the function @ of Propo-
sition[2]is a NE of 2-KEG. Computing a maximum to & is equivalent to solving
a maximum weight matching problem, where the edges in E4 and E? weight
2 and the edges in ET weight 1. This can be done in polynomial time (see,



e.g., [20]). Observe that the set of external matchings associated with the so-
lution of this maximum weight matching problem is a maximum matching in
ET except edges incident with internal matchings of that solution. O

Consider the 2-KEG instance represented in Figure In this case, the
NE achieved by computing the potential function maximum is M4 = {(4,5)},
MB = {(2,3)} (and thus, MT(MA MPB) = ). There is another NE that
does not correspond to a potential function maximum: R4 = @, RE =
and consequently M1(RA, RB) = {(1,2), (4,3), (5,6)}. The latter helps all the
patient-donor pairs, and thus is more appealing to the players. This observation
motivates the need of studying efficient Nash equilibria that are possibly not
achieved through the potential function maximum.

>—>—>——O—

Fig. 3.1: Example of a 2-KEG instance with two distinct Nash equilibria.

3.2 Social welfare equilibrium

In what follows, we introduce a refinement of the NE concept in 2-KEG: the
social welfare equilibrium.

A social optimum of 2-KEG is a maximum matching of the overall graph
game G = (V, E), corresponding to an exchange program that maximizes the
number of patients receiving a kidney. A social welfare equilibrium (SWE) is
a NE that is also a social optimum.

Observe that any NE, and thus any SWE, is a local maximum of & if
the neighborhood of a strategy profile consists of a player’s unilateral devia-
tion. In what follows, we will use this fact to prove the existence and efficient
computation of a SWE.

Let us define some concepts of graph theory in matching (see Chapter 5
of [6] for details). For a matching M in graph G = (V, E), an M-alternating
path is a path whose edges are alternately in £\ M and M. An M-augmenting
path is an M-alternating path whose origin and destination are M-unmatched
vertices. The next property will be used often in what we will develop.

Property 1 Let M be a maximum matching of a graph G = (V, E). Consider
an arbitrary R C M and the subgraph H of G induced by removing the R-
matched vertices. The union of any maximum matching of H with R is a
maximum matching of G.

Next, we recall Berge’s theorem [5].

Theorem 2 (Berge [5]) A matching M of a graph G is mazimum if and
only if it has no augmenting path.



Berge’s theorem is constructive, leading to an algorithm to find a maximum
matching: start with an arbitrary matching M of G; while there is an M-
augmenting path p, switch the edges along the path p from in to out of M and
vice versa: update M to M & p, where @ represents the symmetric difference
of two sets. The updated M is a matching with one more edge, where the
previously matched vertices are maintained matched.

We have now the tools to prove the existence of a SWE.

Theorem 3 There is always a social welfare equilibrium to 2-KEG.

Proof Let M be a maximum matching (and thus, a social optimum) of the
graph G representing a 2-KEG, where EA N M and E® N M are players’ A
and B strategies, respectively. If M is not a NE, let us assume, without loss of
generality, that player A has incentive to deviate from E4 N M, given player
B’s strategy EZ N M. Let M4 be player A’s best reaction to EZ N M. Observe
that we can assume that M4 U M! (M4, EB 0 M) is a maximum matching of
A in the reaction graph GA(EB n M). If it is not, by Berge’s theorem, there
is a maximum matching such that it does not decrease the number of player
A’s matched vertices. Therefore, by Property |MA|+ | MI(MA, EBnM)|+
|EB N M| = |M]|.

Given that A has incentive to deviate, it holds by definition of potential
function that ®(EA N M, EP N M) < &(MA, EB N M). If M4 together with
EB N M is not a NE, then we can repeat the procedure above (alternating the
player) until a NE is obtained. Note that the value of the potential function
increases strictly, which means that no feasible profile of strategies is visited
more than once. In addition, players have a finite number of feasible matchings,
which implies that this process will terminate in an equilibrium. O

Besides the fact that a SWE is an appealing NE to the players, it also has
the advantage of being computable in polynomial time through the algorithm
of the last proof (translated to pseudo-code in Algorithm . It is a well-
known result that weighed matching problems can be solved in polynomial
time (see, e.g., [20]). Therefore, it remains to prove that the number of iter-
ations is polynomially bounded in the size of the instance. The next trivial
result can be used to this end.

Lemma 2 An upper bound to the mazximum value of the 2-KEG potential
function ®(MA, MB) = 2| MA| + 2| MB| + | M (M4, MB)| is |VA| + |V B|.

As noted before, the potential function @ strictly increases whenever a player
has incentive to unilaterally change her strategy. Therefore, our algorithm will
in the worst case stop once the maximum value to @ is reached, which is
bounded by |V4| + [VB|. Taking into account that the value of @ is always
an integer number, the number of evaluations of @ through the process is also
bounded by [VA| + [V B]|.

Theorem 4 The computation of a social welfare equilibrium to 2-KEG can
be done in polynomial time.
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Algorithm 3.2.1 Computation of a social welfare Nash equilibrium

Input: a 2-KEG instance G

Output: equilibrium matchings

1: M < maximum matching of G

2 MA« MNEA MB«+ MNnEB, M « MNnE! /* initial matchings */
3: while 3 player n € {A, B} with incentive to deviate from M"™ do
4

R™ < player n’s best reaction to M~" /* maximum weight matching on G™(M ~™)
*

5: Apply (unweighted) augmenting paths to R™ until R™ is a maximum matching of

G"(M~™) /* R™ N E4 continues to be a best reaction to M ~"*/
6: M"™ <+ R*"NEA M « MI(M™ M—™) /* update solution */
7: end while

8: return M4, MB

3.3 Price of stability and price of anarchy

In order to measure the quality of the Nash equilibria of a given game, we use
the standard measures: price of stability and price of anarchy (see Chapter
17 of [19]). The price of stability (PoS) is the ratio between the highest total
utilities value of one of its equilibria and that of a social optimum; the price
of anarchy (PoA) is the ratio between the lowest total utilities value within
its equilibria and that of a social optimum.

The following two results set PoS and PoA for 2-KEG.

Corollary 1 The price of stability of the 2-KEG is 1.

Proof Since we proved existence of a social welfare equilibrium:

PoS highest total utilities value among all Nash equilibria 1
oS = =

social optimum

O
Theorem 5 The price of anarchy is % for the 2-KEG.

Proof By the definition of price of anarchy

PoA lowest total utilities value among all Nash equilibria
0A = .

social optimum

Let M4, MB and MT(M#, MP) be the matchings of player A, B and the
TA, respectively, that lead to the Nash equilibrium with lowest total utilities
value, that is

2% = 2| MA| + 2|MB| + 2]MT (M4, MB)).

Let M be a maximum matching of the game graph G. Therefore, the social
optimum is equal to

Z=2|M N E| +2|MnE®| +2MnE.
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By the definition of NE, we know that under M“ and M?, none of the
players has incentive to deviate, thus
2* > 2IM N EA + |MI(M 0 EA, MB)| +2|M 0 EB| + | M1 (M4, M 0 EB)|
o2 >AMNEA| +2IM N EB| 4+ 2iM N El| = 2iM N E|+ |MI(M 0 EA, MB)| + |M! (M4, M n EB))|
&z >z - (M NET| — |M'(M*A, M0 EP)| - |M'(MnE*, MP))).
(3.1a)

The set M N ET may include matchings of vertices also matched under M4 or
MB | therefore

2|M N E'| < 2|M*| +2|MP| + |RA| + |R|

where R" is a subset of E considering all the edges in M N ET but not in M™
and incident with a vertex of V™, for n = A, B. See Figure 3.2l The number

MNEA MnNEB

Fig. 3.2: Illustration of the solutions associated with the worst Nash equilib-
rium and the social optimum.

of player B’s vertices matched in M7’ (M NEA MB ) is equal or greater than
RP, because this external matching has available the vertices incident with
the edges of R? and can match them with any vertex not in M N E4, thus
|RE| — |MI(MA, M N EP)| <o.
In a completely analogous way, it can be shown that
[RA| - M (M 0 B4, MP)| < 0.
The inequalities above imply

o)MNEY — | M (M2, MNEB)| — | MY (MnEA, MP)| < 2|MA|+2|MP| < 2*,
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which together with inequality (3.1a]) results in

| ¥
N | =

>z -2 e >

Now, we will use an instance to prove that the bound % is tight.

Consider a 2-KEG represented by the graph of Figure It is easy to see
that the worst Nash equilibrium in terms of total utilities is M4 = {(1,2)},
M?% = () and M' (MA, MB) = () with a total of z* = 2. On the other hand, the
social optimum is M = {(1,3),(2,4)} with a value of Z = 4. In this instance
the price of anarchy is % =2=-10

4 2°

O—<

Fig. 3.3: 2-KEG with price of anarchy equal to %

4 Rational outcome: social welfare equilibrium

A profile of strategies is dominated if there is another profile in which all the
players are equal or better, with at least one of them strictly better. A profile
of strategies is said to be Pareto efficient if it is not dominated [21I]. In this
section, we will prove that the social welfare equilibria are Pareto efficient
and any NE that is not social optimal is dominated by a SWE. Consequently,
from both the social welfare and the players’ point of view, these equilibria
are the most desirable game outcomes. Moreover, recall that in Section [3.2] we
presented an algorithm that computes a SWE in polynomial time emphasizing
its practicality.

Below we show that no SWE is dominated, i.e., all SWE are Pareto effi-
cient.

Lemma 3 In 2-KEG any social welfare equilibrium is Pareto efficient.

Proof Let M4 and M?P be players’ A and B strategies, respectively, in a SWE.
Assume that this SWE is not Pareto efficient, that is, there is a player A’s
feasible strategy R* and a player B’s feasible strategy R? that dominate this
equilibrium. Without loss of generality, these assumptions translate into

2MA| + M (M4, MP)| < 2[R + |MT (R, RP))|
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NP+ (M (MA,MP)| < 2|RP| + M (R, RP)|.
Summing the two inequalities above and simplifying, we obtain
|MA[+ (M (MA,MP)| + |[MP| < |[RA + [M'(RY, RP)| + |RP|,

which contradicts the assumption that the equilibrium given by M4 and M2
is a social optimum (maximum matching). O

Note that this result also holds for more than two players which reinforces the
interest of studying SWE.

In the next section, we prove any NE that is not a social optimum is
dominated by a SWE. In order to achieve this result we need the following
theorem, which fully characterizes an optimal reaction of a player.

Theorem 6 In 2-KEG, let M be a player B’s fized matching. A player A’s
matching M4 can be improved if and only if there is a M4 U MT(MA, MP)-
alternating path in GA(MP) whose origin is a vertex in VA, unmatched in
this path, and the destination is a

i. MAUMI(MA, MB)-unmatched vertex belonging to V4, or
ii. MT(MA, MP)-matched vertex in VB, or
iii. MT(MA, MB)-unmatched vertex in VE.

The symmetric result for player B also holds.

Proof Consider a fixed match MZ of GB.

(Proof of “if”). Let M4 be a player A’s strategy. Recall Lemma 1| in
which we state that given MP, we can assume that player A controls the
IA decision. If there is a path p in GA(M#) satisfying i., ii. or iii., then,
(MA U MI(MA, MP)) @ p improves player A’s profit in comparison with
MA UM (MA, MPB); see Figure for an illustration.

(Proof of “only if”). Let M4 be player A’s best reaction to M? and con-
sider a feasible player A’s strategy R4 that is not her best reaction to MPE.
We will show that assuming that there is no R4 U MT(RA, MP)-alternating
path of GA(M?) as stated in the theorem leads to a contradiction.

Note that given any two matchings M*! and M? of a graph, in the induced
subgraph with edges M! @ M?, each vertex can be incident to at most two
edges; hence, any connected component of M & M? is either an even cycle
with edges alternately in M and M?2, or a path with edges alternately in M*
and M?. Let us define H# as the subgraph of G# that results from consider-
ing the edges in M“ @ R”, and H as the subgraph of G4(M?) that results
from considering the edges in (M4 U M (M4, MPB)) @ (RA U MT(RA, MP)).
Connected components of H4 and of H are either even cycles or paths.

If [M4| > |R#|, HA has more edges of M4 than of R*, and therefore there
exists a path p of H4 that starts and ends with edges of M4. If the origin and
destination of p are MT(RA, MB)-unmatched, then p is an RAUM!(R*, M B)-
alternating path as stated in i., which contradicts our assumption. Thus, for
all paths of H# starting and ending with edges of M“, it holds that all their
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A MI(MA, MB
® G—L—@ DO ®

Case i. - The matching {(2,3),(4,5)} @ {(1,2),(2,3),(3,4),(4,5), (5,6)} increases player
A’s utility by two units.

MI(MA, MB A A (MA, MB
® L o) O—L @ G
O/ O/ O/ o/

Case #i. - The matching {(2,3), (4,5),(6,7)} @& {(1,2),(2,3),(3,4), (4,5),(5,6),(6,7)} in-
creases player A’s utility by one unit.

A MI(MA, MB
@ O—L—@ EED—

Case iii. - The matching {(2,3), (4,5)} & {(1,2), (2,3),(3,4), (4,5), (5,6)} increases player
A’s utility by one unit.

Fig. 4.1: Possibilities for player A’s to have an incentive to deviate from strat-
egy M4, given the opponent strategy MPZ.

MI(RA, MB) ML (RA, MB)

Fig. 4.2: The path p is not an R4 U M! (R4, M P)-alternating path of type i.

vertices are both M4-matched and R4 U MT(RA, MP)-matched (see Figure
. Therefore, the advantage of MAUMT (M4, MB) over RAUM!(RA, M P)
must be outside H”. Analogously, if |[M“| < |R%|, we also conclude that the
advantage of M4 U M (M4, M®B) over R* U M!(R#, M®) must be outside
HA.

In this way, there is « € V4 and b € VZ such that (a,b) € M (M4, MP),
but a is RY U MT(RA, MB )-unmatched. Then, since we assumed that there
is no R4 U M!(RA, MPB)-alternating path as stated in the theorem (and
the TA does not violate the game rules), the path of H starting in ¢ must
end in a vertex a' € V4 that is R4 U M!(RA, MB)-matched and M4 U
MT(MA, MB)-unmatched. Therefore, the number of V4 vertices covered by
MAUME(MA, MB) and RA U MT(RA, M®) on this component is the same
(see Figure 4.3)). In conclusion, any path of H starting in a vertex of V4 that
is R4 U MT(RA, MP)-unmatched and M'(M4, MP)-matched does not give
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RAUMI(RA, MB)
® Q O,

MI(MA, MB)

Fig. 4.3: Path component of H. The white circle is a vertex for which it is not
important to specify the player to which it belongs.

advantage to M4 U M (M4, MPB) over R4 U MT(RA, MP). This contradicts
the fact that strategy R“ is not a player A’s best reaction to MB. O

4.1 Computation of a dominant SWE

We present in Algorithm a method that, given a 2-KEG graph and a so-
cially suboptimal Nash equilibrium, computes a SWE that we claim dominates
the given equilibrium.

Algorithm 4.1.1 Computation of a dominant SWE

Input: a 2-KEG instance G, a NE M of G
Output: M if it is a SWE, else a SWE dominating it
1: S + a maximum matching of G

. if |M| = |S| then
return M
end if
t<+1

Pt « paths from M @ S with both extreme edges in S /* M-augmenting paths */

M+ M@®p1 ®...®pr where {p1,p2,...,pr} = P?

: while there is an M®-alternating path x = (vo,v1,...,v2m) of type 7. in GR(M!NE~™)
for some n € {A, B} do

9: Assume (vg,v1) € El'n Mt with vg € V™" and v1 € V™.

10:  j <+ max;—o,....2m—1{% : (vi,vi+1) € q for some g € P'}

PPN

11: Yy (Uo,U1,..., Uk, Ukt1,-..,uf) € P' used to determine j with (up,urq1) =
(vj,vj41)
120 24 (V2m, V2m—1, -, Vj41, Ukg2, - -, Uf)

13: Ml Maoyp:z

14: P« (Pt - {y}H u{z}

15: t—t+1

16: G’ + subgraph of G (M N E~") induced by considering only edges of = from vy to
vj = ug and of y from ug to up = vj

17: if there is a  +— Mt-alternating path of type . in G’ starting in (vo,v1) go to step

18: end while
19: return M?.
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In what follows we provide a proof of the correctness of this algorithm.
For sake of clarity, first of all, we provide an illustration of how the algorithm
works by applying it to a 2-KEG instance.

Ezample 1 Consider the 2-KEG instance represented in Figure [£.4]

A—D>—<>—@—G
O—>—>—O0—® 0—6O—0

Fig. 4.4: A 2-KEG instance.

NG AN
)

A Nash equilibrium M that is not a maximum matching is represented
by bold edges in the top-left graph of Figure The matching M is a Nash
equilibrium, since there is no M-alternating path as stated in Theorem [6} and
it is not a maximum matching because there are M-augmenting paths, e.g.,
(25,24,5,6,20,21,22,23). We will apply Algorithm to this NE in order
to achieve one that is a SWE and dominates it.

The algorithm starts by computing an arbitrary maximum matching S,
represented in the top-right graph of Figure [£5} the symmetric difference
between M and S is represented in the center-left graph of that figure. There
are 6 connected components in M @ S, three of which include M-augmenting
paths, namely

Pl = {(33,32,31,30,3,4, 26,27, 28, 29), (25,24, 5, 6, 20, 21, 22, 23),
(15,14,13,12,11, 10,19, 18,17, 16)}.

Therefore, at the end of step E we obtain a maximum matching M?, repre-
sented at the center-right of Figure [4.5]

The algorithm proceeds searching for an M'-alternating path of type ii. in
G"(M' N E~") for some n € {A, B}, i.e., the algorithm will check if M* is a
NE. In this step, path = (1,2,3,4,5,6,7,8,9) is found, which shows that M*
is not an equilibrium. The M-augmenting path y = (25,24, 5,6, 20, 21, 22, 23)
is replaced by z = (9,8,7,6,20,21,22,23), leading to matching M? repre-
sented at the bottom-left graph of Figure Next, step is used to ver-
ify if there is an M?2-alternating path of type 7. considering only the edges
(1,2),(2,3),(3,4),(4,5), (5,24), (24, 25). There is one, namely path (1,2, 3,4, 5, 24, 25).
The M-augmenting path (33, 32, 31, 30, 3,4, 26, 27, 28, 29) is modified into (25, 24, 5,4, 26, 27, 28, 29),
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obtaining M? represented in the lower-right graph of Figure In the next
iteration no M3-alternating path of type ii. can be found, and thus the algo-
rithm terminates. M3 is a SWE that dominates M.

Initial Nash equilibrium M Initial maximum matching S

Fig. 4.5: Computation of a dominant SWE in the 2-KEG instance of Fig-
ure [4.4] starting from the initial equilibrium in the top-left graph, and the
initial maximum matching of top-right graph.

Next we will prove that for any socially suboptimal NE, the Algorithm
417l returns a dominant SWE.

The algorithm starts by computing a maximum matching S. If the Nash
equilibrium from the input is a maximum matching, the algorithm returns it
and stops. Otherwise, it proceeds. At iteration ¢, P! is the set of M-augmenting
paths used to compute the maximum matching M?. In this way, step [7| aug-
ments M in order to obtain a maximum matching M*. Note that |P!| augment-
ing paths of M are used in order to get M! and that the symmetric difference
of a matching with an associated augmenting path only adds additional cov-
ered vertices. Therefore, none of the M-matched vertices is M!-unmatched,
which shows that the players’ utilities associated with M are equal to or
greater than the ones achieved through M.

Note that if there is an M1!-alternating path of type 4. or iii., then it is
also an augmenting path of M! contradicting the fact that M* is a maximum
matching. Therefore, by Theorem@ if M'! is not a Nash equilibrium then there
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is an M'-alternating path of type ii. in GA(M'NEP) or GB(M'NEA). In this
case, the algorithm will remove the M!-alternating path of type 7. through
stepsto In these steps an M-augmenting path y € P! is replaced by a new
M-augmenting path z. Thus, it is obvious that the new maximum matching
M? dominates the utilities achieved through M.

Suppose that in step [S|an M-alternating path z of type 4. is found. Since
M is a NE, the path = cannot be M-alternating. Thus, = intersects at least
one M'-matched edge of a y € Pt. The algorithm picks such y accordingly
with the one closest to vs,,, since this rule ensures that y never intersects x
from vj11 = Ug41 t0 v2n,. Then, through Step Vam is made M*T1-matched,
which eliminates the M?-alternating path x of type .. See Figure for
illustration.

Fig. 4.6: Modification of y to z through x. White circle vertices mean that
there is no need to specify the player to which the vertices belong.

So far, we proved that at any iteration ¢ of Algorithm the current
maximum matching M? dominates M and that if there is an M'-alternating
path of type 7., we eliminate it in the next maximum matching M*+!. It
remains to show that the elimination of paths of type #. will stop, leading to
a SWE.

By construction, the size of the augmenting path sets is maintained during
the algorithm execution. Indeed, in each iteration, an M-augmenting path is
replaced by a new one.

Lemma 4 |P!| = |P* Vt k> 1.

For an M-augmenting path y = (ug,u1, ..., uy), define o(y) as the number
of times that y switches the player’s graph plus one unit if the first internal
edge that follows the extreme ug € V* is in E~%, and plus one unit if the last
internal edge that precedes the extreme uy € V7 is in E~7. For instance, the
path

H>—O0—0—0—0—>——O
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has o-value equal to 3: count two unities because, the first extreme vertex, 1, is
in VB while the following internal edge, (2, 3), is in E4 and add 1 unit because
the rest of the path is in E®. Indeed, the o-value of M-augmenting paths has
to be greater or equal to two, otherwise it is not a Nash Equilibrium (i.e.,
there is an M-alternating path as described in Theorem [6] or the independent
agent is not choosing a maximum matching as obliged by the game rule). The
following lemma states that the o-value of the paths in P? is non-increasing.

Lemma 5 In an iteration t of Algorithm o(y) > o(z).

Proof Consider an arbitrary iteration ¢ of Algorithm Without loss of
generality, assume that the M?t-alternating path x of type 4. found is in
GA(M! N EB).

In step y = (ug,u1,...,us) is the selected augmenting path in P*. In
order to get z, the part of y from ug to uy is replaced by a path that has all the
edges in EAUE'. Note that there must be an internal edge in y after uy 1, oth-
erwise M is not an equilibrium: the path (wy, wy_1, ..., Ukt1, Vjt2, Vjts, .-, Vom)
would be an M-alternating path in G4 (M N EP) satisfying one of the condi-
tions of Theorem|[6] Thus, we continue the proof by distinguishing two possible
cases: the first internal edge in y after uy; is in EP or E4.

Case 1: The first internal edge in y after ug,; is in EZ. Then, o(z) is equal
to one plus the number of times that the path y from uy4q to uy switches
the player’s graph plus one unit if the last internal edge before u; € Viis
in E~%. Observe that o(y) is greater or equal to the number of times that
the path y from up41 to uy switches the player’s graph plus one unit if
the last internal edge before uy € Viisin E~% In order to get equal, the
part of y from wug to ug,; must have the edges in EZ U E! and ug € EB.
However, this contradicts the fact that M is a Nash equilibrium: one of
the vertices uy, or ug,1 has to be in V4, otherwise y is not in player A’s
graph. If up 1 € V4, then ug o € VB, which means that the part of = from
Vom t0 (Upy1,Uri2) is an M-alternating path of type . in GA(M N EB).
Otherwise, if ur € VA4, then ux_; € VE and the part of y from ug to
uy, is an M-alternating path of type #i. in GB(M N E#). In conclusion,
o(y) = o(z).

Case 2: The first internal edge in y after uj1 is in E4. Then, o(z) is equal to
the number of times that the path y from us1 to uy switches the player’s
graph plus one unit if the last internal edge before us € Viisin E~%. Note
that o(y) is greater or equal to the number of times that the path y from
ug41 to uy switches the player’s graph plus one unit if the last internal
edge before uy € V' is in E~*. In conclusion, o(y) > o(z).

|
An immediate consequence it the following corollary.

Corollary 2 If o(y) > o(z) holds in iteration t, then z will never evolve
during the rest of the algorithm to be equal to y.
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Proof Assume that o(y) > o(z) in iteration ¢. By Lemmal[f] if 2 is selected in
a forthcoming iteration then the resulting (modified) path has a o-value less
or equal to o(z) and, in particular, less than o(y). Therefore, it is impossible

that from iteration z this path evolves to y, since that contradicts Lemma
O

Whenever Algorithm at iteration ¢ modifies y such that o(y) > o(2),
we get that the maximum matching M? will never be computed again in later
iterations.

Corollary 3 Algorithm can only cycle after iteration t if o(y) = o(z).

Now, we will prove that when a modification of an augmenting path y to z
has o(y) = o(2), then the algorithm finds an M**!-alternating path of type ii.
in step This particular search for such a path is the important ingredient
for the algorithm to stop after a finite number of iterations. If we remove this
step from Algorithm f.1.T] and we simply arbitrarily search for the elimination
of paths of type ii. then the algorithm can cycle. For instance, in Example
when we are in iteration 2 and we do not perform the search as stated in step
then we can compute the M2-alternating path (1,2,11,10,7,6,5,24,25)
that would lead us to M3 = M', making the algorithm to cycle.

Lemma 6 If o(y) = o(z) at the end of step of Algorithm then a
path of type . is found in step [T

Proof Suppose that the algorithm is in the end of step Without loss of
generality, the proof concentrates only on the case for which z is in GA(M*~1n
EP), since for z in GB(M*~1 N E4) the proof is analogous.

We will make use of Lemma [b| proof in order to conclude that under the
lemma hypothesis, o(y) = o(2), the edges of y from ug to uy, are in E4 U E'.
Case 1 of that proof implies that in order to get o(y) = o(z), the edges of
the path y from ug to u; should be in E4 U E! and ug € V4. In order to get
o(y) = o(z) in case 2, we also get that the edges of the path y from ug to ug
should be in E4 U ET and uy € VA.

Next, we will show that there is an M®-alternating path of type ii. from
(vo,v1) to up that only uses the edges of z from vy to v; and y from ug
to ug. Therefore, for sake of clarity, consider y' = (ug,u1,...,ux) and o’ =
(vo,v1,v2,...,v;). Recall that uy = v;.

In step the new M*-alternating path of type 4. £ can be built as follows.
Start to follow 2’ from vy until it intersects a vertex u;, in y' (note that y’
intersects z’ at least in uj, = v;). Consider the following possibilities.

Case 1: If (uj,,uj,—1) € M, then z = (vo,v1,..., U, Uj;—1,-..,Up) IS an
Mt-alternating path of type ii..

Case 2: If (uj,,uj,41) € M?, then (uj,,uj,—1) € M*! and (uj,,uj,—1) € 2/,
which implies uj,+1 ¢ 2’. Follow 3’ by index increasing order starting in
uj,+1 until it is reached a vertex u;, = v;; of 2’ (note that such ver-
tex exists since at least up, = v; € 2/, with £ > j; + 1). The vertex
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uj,—1 ¢ x', otherwise, we would have stopped in u;,_1. Thus, (uj,, uj,—1) ¢
M1, Otherwise, ' would not be an M*~!-alternating path. In conclusion,
(ujy, uj,—1) € M*.

Next, we follow 2’ by index decreasing order starting in u;, = v;, until
we intersect a vertex wj, of ¥’ (which has to occur, since we noted before
that at least w;, 1 is in @'). If (uj,,uj,—1) € M, then the rest of the
M'-alternating is found as in case 1. Otherwise, (u;,,uj,+1) € M* and we
proceed as in the beginning of case 2. This process will terminate in wug
since we are always adding new vertices to our M?*-alternating path and
the number of vertices is finite.

O
Corollary 4 The algorithm can only cycle if it remains in steps[15] to [T

Theorem 7 After a finite number of executions of steps[13 to the algo-
rithm fails to find such a path in step [T

Proof The length of the path (vo,v1,vs,...,v;) considered in step [17| strictly
decreases in each consecutive executation of steps [15] to O

As a corollary of the above Theorem we can now state the desired result.

Corollary 5 After a finite number of iterations, the Algorithm stops
and finds a SWE that dominates the NE given in the input.

5 Refinement of SWE

Although Algorithm [3.2.1] computes a SWE, the results obtained in Section
(see Theorem @ allow the definition of a simpler polynomial time algorithm
returning a SWE. Furthermore, the algorithm will solve another aspect left
open in the previous sections where we discussed the advantage of SWE among
the set of NE for 2-KEG. This refinement to select a NE is still not sufficient
to get uniqueness, i.e., there are 2-KEG instances for which there is more than
one SWE. The algorithm presented in this section will solve this issue.

Ezample 2 Consider the 2-KEG instance represented in Figure[5.1] There are
four maximum matchings M! to M*, of which matchings M and M? are
NE (SWE). Under M! player A has utility 4 and player B has utility 2; in
contrast, under M? both players have utility 3.

This instance has two distinct SWE, and by repeating the relevant pattern
we can create instances with multiple distinct SWE. For example, the game
of Figure [5.2] has eight SWE.

In this context it seems rational to search for the social welfare equilibrium
that minimizes the number of external exchanges, since that decreases the
dependency of the players on each other; in practice, this seems to be a more
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Fig. 5.1: Example of a 2-KEG instance with four maximum matchings, and
two SWE M! and M?2.
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Fig. 5.2: Example of a 2-KEG instance with eight SWE.

desirable solution. Therefore, in what follows, we will show how to find such
an equilibrium in polynomial time.

Consider Algorithm[5.0.1} This algorithm based on the number of vertices,
[V|, it associates weight 2 + 2|V| for internal edges and weight 1 + 2|V| for
external edges. Then, a maximum weight matching is returned. We will prove
that this algorithm can be executed in polynomial time and that it computes
a social welfare equilibrium that minimizes the number of external exchanges.

Lemma 7 Algorithm[5.0.1] can be executed in polynomial time.

Proof Tt is a well-known result that weighed matching problems can be solved
in polynomial time (see, e.g., [20]). Therefore, step [7| can be executed in poly-
nomial time. Additionally, the attribution of weights for the graph edges is
linear in the number of edges. Therefore, the algorithm can run in polynomial
time. O
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Algorithm 5.0.1 Computation of the social welfare equilibrium that mini-
mizes the number of external exchanges.

Input: a 2-KEG instance G = (V, E)
Output: a SWE that minimizes the number of external exchanges
1: for e in EA U EP do
we +— 2+ 2|V
: end for
for e in ET do
we 14 2|V|
end for
M <+ maximum weight matching in G given edge weights we, Ve € E
: return M

PP TN

In order to prove that Algorithm [5.0.1] outputs a SWE we need to prove
that M is a maximum matching and a NE.

Lemma 8 Algorithm [5.0]] returns a mazimum matching.

Proof In step [7] of the algorithm, the maximum weight on an edge in the
maximum weight matching problem considered is 2+2|V|. Thus, any matching
of size k has a total weight not greater than k(2 + 2|V|). If that is not a
maximum matching, i.e., if k¥ < |S|, where S is a maximum matching for G,
the total weight is bounded above by

k(2+2|V]) = 2k(1+[V]) < 2(]S[=1) (A+|V]) = 2[S|[V[+2(]S[=[V[-1) < 2[S]||]V],

where the last inequality comes from the fact that |S| < |V].

A maximum matching on the graph game has a total weight at least equal
to |S|(1 + 2|V]) = |S| + 2|S||V|. Therefore, a maximum matching has always
a total weight greater than any non maximum matching. In conclusion, a
maximum weight matching with the proposed edge weights is also a matching
with maximum cardinality. [J

Lemma 9 Algorithm returns a NE.

Proof Let M be the output of Algorithm [5.0.1

By Lemma [8| we know that M is a maximum matching. If M is not a NE,
then some player must have incentive to deviate; without loss of generality,
assume that player A has incentive to deviate from M N E4. Then, there
must be an M-alternating path p of type . in GA(M N EP) such that M & p
increases player A’s utility

/(M @®p)NEA| +|(M@®p)nE >2]Mn0EA +|MnE.

On the other hand, the matching |M @ p| must have a total weight not
greater than the one associated with M, i.e.,

24+ 2lVNIMNEA + 2+ 2V)MNEB|+ 1 +2V))|]MnE!>
24+ 2lVNI(M @ p) N EA + (24 2[V])(M @ p) NEB|+ (1 +2[V))|(M @ p)n EL|.
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Since the path p only uses the edges in E4 U E’, the set M N E® is equal to
(M @ p) N EB. Hence, in this inequality, we can remove the second term of
both sides and rewrite as

<0
AMNEA + | MNEY —2(M@p)nEA — |(Mep)nE|+
2V (IM N EA + |MnE' - |(M&p)nEA - |(Map)nE') > 0.

Player A’s utility is bigger with M & p than with M. Thus, in this inequality
the first four terms lead to a negative number. This implies that

M0 EA|+ M B > (M &p) N EA| + (M @p)n B 20,

which is impossible since, M and M @ p have the same cardinality and, in
particular, [M N (EAUED|=|(M ®p)n(EAUED|. O

Finally, it remains to prove that Algorithm returns a matching that
minimizes the number of external edges on it among the set of SWE.

Lemma 10 Algorithm [5.0.1] outputs a matching that minimizes the number
of external edges among the set of social welfare equilibria.

Proof Let M be the matching returned by Algorithm We will prove by
showing that assuming another SWE M’ contains more internal exchanges
than M leads to a contradiction. Since both M and M’ are maximum match-
ings, M’ has a total weight greater than M; but this contradicts the fact that
the algorithm returns a maximum weight matching (where the internal edges
weight more than the external ones). O

The next theorem concludes this section.

Theorem 8 Algorithm[5.0.1] computes a SWE that minimizes the number of
external exchanges in polynomial time.

Unfortunately, for some 2-KEG instances this refinement of the SWE still
does not lead to an unique solution.

Ezample 8 Consider the 2-KEG instance of Figure There are two SWE
that minimize the number of external exchanges, M! and M?. These match-
ings lead both players to an utility of 3.

However, the players utilities under social welfare equilibria that minimize the
number of external exchanges are unique as we will prove next.

Lemma 11 In any SWE that minimizes the number of external exchanges,
for a fized instance, the player’s utilities are always the same.
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Fig. 5.3: Example of a 2-KEG instance with two distinct SWE that lead both
players to same profit.

Proof Consider an instance of 2-KEG for which there are two different SWE
minimizing the number of external exchanges, say M' and M?, of Algorithm
The proof is by contradiction, by assuming that player A’s utilities with
M"' and M? are different. Without loss of generality,

/M N EA + M N ET| > 2|M?* N EA| + |M? N EL|.

Build the subgraph H of G induced by the edges in the set (M! @ M?) N
(EAUET). As player A covers more of her vertices through M than through
M?, there must be at least one vertex a € V4 such that a is M'-matched and
M?-unmatched. Consider each distinct component p of H; p is a path starting
in, say, vertex a. There are three possible cases. Namely,

Case 1: path p terminates in an M?2-matched vertex of V4. Then, it is not
this component that gives advantage to M*.

Case 2: path p terminates in an M?2-matched vertex of VZ. Then, p is an
M?-alternating path of type ii.; by Lemma@, this contradicts the fact that
M? is a NE.

Case 3: path p terminates in an M!-matched vertex. Then, p is an augmenting
path to M?: by Lemma@ this contradicts the fact that M? is a maximum
matching. [J

We finish this section by noting that another desirable SWE is that in
which the difference of players’ utilities is minimized, i.e., the discrepancy of
the players’ utilities is minimized traducing in a more “fair” outcome. It is easy
to show that the social welfare equilibrium introduced in this section, i.e., that
minimizing the number of external matchings achieves simultaneously the goal
of minimizing the difference of players’ utilities.

Theorem 9 If M is the SWE with minimum number of external matchings
then, it also the SWE that minimizes the difference of players’ utilities.

Proof Let M4, MB and MT(M#, MP?) be the social welfare equilibrium that
minimizes the number of external matchings. Let R4, RP and M!(R4, RP)
be the social welfare equilibrium that minimizes the difference in the players
utilities, i.e., the value of [2|RA|+ |MT(RA, RP)| — 2|RB| — |MT(R*, RB)|| =
||[R4| — |RB|| is the minimum among all social welfare equilibria.
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If |IMT(MA, MB)| = |M!(R*, RP)|, then the matching RAURPUM! (R, RB)
is also a SWE that minimizes the number of external matchings. Thus, by
the uniqueness of the players’ utilities under this refinement of the SWE,
MAUMEB UM (MA, MPB) also minimizes the difference of players’ utilities.

If |IMI(MA, MB)| # |MY(RA, RP)| then, |M4| 4+ |MB| > |RA| + |RB|
since, by hypothesis |M! (M4, MP)| < |M!(R*, RP)| and both matchings
have maximum cardinality. Without loss of generality, there must be a path
p that starts and ends in M“-matched vertices and alternates between edges
in M4 and edges in R4. Matching R4 U R® U MT(R#, RP) is a NE which
implies that p cannot be a path as described in Theorem [6] Therefore, the
extreme vertices of p must be M!(RA, RP)-matched which does not show any
advantage of M4 U M (M4, MP) and R4 U M!(RA, RB) over each other in
terms of player A’s utility. In this way, it follows that both matchings lead to
the same profit for both players. O

In conclusion, one may argue that the players will converge to social wel-
fare equilibria since, given any Nash equilibrium, both players can improve
their utilities through a SWE. Additionally, choosing a SWE that minimizes
the number of external exchanges is a desirable propriety for both players,
and we demonstrated that such equilibrium can be found in polynomial time.
Moreover, players are indifferent among such equilibria, because utilities re-
main the same for any of them. Thus, it seems reasonable to consider that the
players will agree in the SWE to be played.

6 Model Extensions

In what follows, we discuss extensions to the results when our assumptions
(exchanges size players’ objectives and number of players) are relaxed.

A common problem of these extensions is that the IA decision may become
undefined (in contrast with Proposition , in the sense that there might exist
more than one optimal solution maximizing the number of external exchanges
that would benefit the players differently. In order to deal with this issue, we
could, for example, impose a public preference on the external exchanges to
the TA, associate a probability for each equivalent optimal solution of the TA
or assume that the players are pessimistic/optimistic about the TA decision.

Relazation of exchanges maximum size to L > 2. In the literature about kid-
ney exchange programs, besides cycles of size two (matchings), typically cycles
of size three (3-way exchanges) are allowed. In the latter case, we conjecture
that (recall the notation introduced to N-KEG in Problem

A B A B 3
VERUID ST S N SEREE D SR
ceC4 ceCB celwfi=wh=1 celwp=2VwE =2

is a (non-exact) potential function and thus, a maximum is a NE. However,
for general values of L the game may fail to have a pure Nash equilibrium,
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? 54 =0, 58 =0, ST(54,85) = {(2,6,5,4,3,2)}

¢Player A has incentive to deviate
A ={(1,2,1)}, S8 =0, S71(S4,58) =0
¢Player B has incentive to deviate Player B has incentive to deviate
A ={(1,2,1)}, SB = {(5,6,5)}, ST(84,88) =0
¢Player A has incentive to deviate
SAfﬂ SB = {(5,6,5)}, ST(S4,57) = {(2,8,9,3,2)}

Fig. 6.1: A game instance with L = 5. Player A can select (1,2, 1) or 0; Player
B can select (5,6,5) or (. Let S¥ be player P internal exchange program, for
P = A, B,and S1(S4, SP) the IA external exchange program. The diagram on
the right hand side of the graph shows that none of the (pure) game outcomes
is a Nash equilibrium (implying that the game cannot be potential).

as shown in Figure [6.1] The main difference when L > 3 is that in this case
external cycles may help strictly more patients of a same player than an in-
ternal exchange, while for L = 3 an external exchange helps at most as many
patients as an internal one.

Besides cyclic exchanges, researchers have also included chains, where,
there is an altruistic donor starting the exchange (see Figure .

altruistic donor patient donor

Fig. 6.2: Example of a chain of size 2.

Allowing exchanges beyond matchings (L = 2) is an extension with positive
impact in the social optimum, and it calls for studying the existence of pure
Nash equilibria with good social properties.

Change in Players’ objective functions. Investigating different players’ utili-
ties is of crucial importance, the literature on the kidney exchange program
being rich of examples analyzing different solution selection criteria (e.g., see
1)),

A simple extension would be to assume that the players prioritize maximum
matchings that maximize “hard-to-match” vertices. In this case, we could still
have a SWE. We first compute a SWE for 2-KEG. If this SWE is not an
equilibrium for this extension, then, w.l.o.g., there is a M-unmatched vertex
a € VA hard-to-match and a M4 U MT(M#, MP)-alternating path p that
terminates in a player A M-matched vertex that is not hard-to-match. Because
the maximum matching M’ = M & p improves player A utility and does not
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create alternating paths of type ii. (see Theorem @, we just need to repeat
this process until no player has incentive to deviate.

However, for more complicated players’ utilities the game may fail to have
pure Nash equilibria. For instance, consider the compatible graph of Figure[6.3
The IA behavior remains as before: maximize the number of external exchanges
among the available vertices; be indifferent between the players’ evaluation of
the different matchings; have a deterministic decision, this is, for any com-
bination of the players’ strategies (internal matchings) the external exchange
selected by the IA is known. In Figure we have all the possible outcomes
for the game. Observe that none of these 4 possible outcomes is a Nash equi-
librium and thus, no pure equilibrium exists.

Fig. 6.3: The players’ utility of each matching is given by the numbers in the
edges: player A value is in red and player B value in

MA =0 M4 =0 M4 ={(1,4)} M4 = {(1,4)}
MB — ¢ MB ={(2,3)} MB = MPB = {(2,3)}
ME(MA, MB) ={(1,3),(2,4)} MI(MA,MB)=0 MI(MA, MPB) ={(3,5)}  MI(MA,MB) =90
U4 =10 UA =0 UA =6 UdA =5

UB =2 UB =5 UB =10 UB =5

Fig. 6.4: U4 and UP are player A and B utilities, respectively.

Another extension in this context is to Bayesian games. In this case, the
players would not know their opponents evaluations/utilities for the exchanges.
Under this incomplete information scenario, it would be interesting to explore
how the players can build believes about the opponents’ objectives by repeat-
edly observing the game outcomes and, thus, use them to compute (Bayesian)
equilibria.

Increase number of players to N > 2. Extending our results about the exis-
tence of a NE and a SWE dominating it is immediate. Let {1,2,..., N} be
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the set of players. Then, (by extending our notation in an obvious way)

N
MY, M2, MN) =M 4 MM M MY
P=1

is a (non-exact) potential function, and a optimum of it is a NE. The function
is potential, since whenever a player increases her utility it is because she
is increasing the number of internal exchanges. An increase in the number
of internal exchanges has a greater impact in the value of @ than external
exchanges. The results in Section [] remain valid in this setting. The ideas
presented analyze each player’s incentives for deviation, which hold for more
than 2 players, because we can think of a player opponents’ as a single one
(reducing the study to 2-KEG).

It remains to investigate, if there is a NE in which the players would agree
to choose.

7 Conclusions

In this paper, we have shown that 2-KEG has always a pure Nash equilib-
rium and that it can be computed in polynomial time. Furthermore, we have
proven the existence of a NE that is also a social optimum. Finally, and more
importantly, we have shown that for any NE there is always a social welfare
Nash equilibrium that is a preferred outcome for both players.

There is no uniqueness result for social welfare equilibria. In order to find
rational guidelines for the players’ strategies, we add to the social welfare equi-
librium the requirement that it must be the one that minimizes the number
of external exchanges. For this type of solution, we were able to prove unique-
ness in terms of the players’ utilities and to show that it can be efficiently
computed, thus strengthening the fact that this is a realistic outcome for the
game.

Although we show that a social welfare equilibrium can be computed in
polynomial time, a full characterization of the Pareto frontier of social welfare
equilibria (with respect to pure Nash equilibria) remains to be done. This is
an interesting subject for future research.

Our work also indicates that studying the players interaction through 2—
KEG turns the exchange program efficient both from the social welfare and
the players’ point of view. These results motivate further research in the gen-
eralization of the game to more than two players, to exchanges including more
than two patient-donor pairs and to different evaluation metrics of the ex-
changes. Some of these generalizations have been preliminarily discussed in
Section [6l

Additional inspiration for future research is given by the recent paper [14],
where a strategyproof mechanism for a multi-period dynamic model was shown
to lead to a global maximum matching that cannot be guaranteed by a mech-
anism for the static case. Therefore, given that 2-KEG already provides such
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solution as a rational outcome in the static case, investigating the 2-KEG by
playing it repeatedly as the players’ pools of patient-donor pairs change over
time would be another line to explore in the future work.
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