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Corrigendum: On the complexity of

finding first-order critical points in

constrained nonlinear optimization

Coralia Cartis1,2, Nicholas I. M. Gould3,4 and Philippe L. Toint5

ABSTRACT

In a recent paper (Cartis Gould and Toint, Math. Prog. A 144(1-2) 93–106, 2014), the

evaluation complexity of an algorithm to find an approximate first-order critical point for

the general smooth constrained optimization problem was examined. Unfortunately, the

proof of Lemma 3.5 in that paper uses a result from an earlier paper in an incorrect way,

and indeed the result of the lemma is false. The purpose of this corrigendum is to provide

a modification of the previous analysis that allows us to restore the complexity bound for

a different, scaled measure of first-order criticality.
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1 Introduction

In a recent paper [3], we aimed to show that the complexity of finding ǫ-approximate first-

order critical points for the general smooth constrained optimization problem requires no

more than O(ǫ−2) function and constraint evaluations. The analysis involved examin-

ing the worst-case behaviour of a short-step homotopy algorithm in which a sequence of

approximately feasible points are tracked downhill. The entire framework relies on the

O(ǫ−2) iteration complexity bound of a general first-order method for non-smooth com-

posite minimization [1]. Unfortunately, the given proof of [3, Lem. 3.5] invokes [1, Thm.

3.1] incorrectly, and indeed the result of the lemma is false. Furthermore, the claimed gen-

eralization to inequality constraints [3, §4] fails to account for complementary slackness,

and is thus incomplete.

Our aim here is to correct our previous analysis. To do so, we need first to re-examine

what we believe it means to be approximately first-order critical, and this leads to an

alternative stopping rule for our homotopy method. Armed with that, we then use a

different merit function for the second phase of our homotopy method compared to that

we considered in [3] to establish a variant of [3, Lem. 3.5], and this reveals a worst-case

evaluation complexity bound of O(ǫ−2) for the revised ǫ-criticality measure.

2 Corrigendum

2.1 Stopping criteria for constrained optimization

In [3], we consider the general nonlinearly constrained optimization problem

minimize f(x) such that cE(x) = 0, and cI(x) ≥ 0, (2.1)

where cE and cI are continuously differentiable functions from IRn to IRm and IRp, respec-

tively, having Lipschitz continuous Jacobians. Ideally, we would like to find a point x∗, and

corresponding Lagrange multiplier estimates y∗, that satisfy the first-order criticality—or

Karush–Kuhn–Tucker (KKT)—conditions [7, 8]

g(x∗) + JT (x∗)y∗ = 0, (2.2a)

ci(x∗) = 0 for all i ∈ E , (2.2b)

ci(x∗) ≥ 0 and [y∗]i ≤ 0 for all i ∈ I, (2.2c)

and ci(x∗)[y∗]i = 0 for all i ∈ I, (2.2d)

where g(x) := ∇f(x), J(x) := ∇c(x) and c(x) := (cTE(x), c
T
I (x))

T . Of course, there might

be no feasible point for the problem, or in the absence of a suitable constraint qualification,

it might be that we may have to be satisfied, instead (cf.(2.2a)), with the John condition

[6]

ν∗g(x∗) + JT (x∗)y∗ = 0, (2.3)
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for which there is an extra, possibly zero, multiplier ν∗ associated with the objective

function and at least one multiplier is nonzero. The last of the KKT conditions, (2.2d), is

known as the complementarity condition and in conjunction with (2.2b) is often written

as

〈c(x∗), y∗〉 = 0, (2.4)

while the first, (2.2a), requires that the gradient of the Lagrangian

ℓ(x, y) = f(x) + 〈c(x), y〉,

taken with respect to the variables x, vanish at a KKT point; here and elsewhere 〈·, ·〉 is

the Euclidean inner product. Since it is very unlikely that we can find (x∗, y∗) exactly,

our goal is to find suitable approximations that satisfy a perturbation of these criticality

conditions.

While proper scaling of the objective and constraint functions is to a large extent the

responsibility of the problem formulator—and ideally they should be scaled so that unit

changes in x in regions of interest result in similar changes in f and c—the values of

the optimal Lagrange multipliers y∗ are essentially controlled by (2.2a), and should be

taken into account when deriving stopping criteria. Consider perturbations x = x∗ + δx

and y = y∗ + δy to some KKT point x∗ and to a corresponding multiplier y∗. Then

supposing for argument’s sake that f and c ∈ C2, a Taylor expansion and the KKT

condition g(x∗) + JT (x∗)y∗ = 0 give that the perturbed dual feasibility residual

g(x) + JT (x)y ∼=

[

H(x∗) +
∑

i∈E∪I

[y∗]iHi(x∗)

]

δx+ JT (x∗)δy

to first order, where H(x)
def
= ∇xxf(x) and Hi(x)

def
= ∇xxci(x). The presence of the multi-

plier y∗ here illustrates that the size of the multiplier should not be ignored when measuring

KKT equation residuals. Similarly, the complementary slackness condition (2.4) is

〈y, c(x)〉 ∼= 〈δx, JT (x∗)y∗〉+ 〈δy, c(x∗)〉

to first order, and the value of y∗ is once again relevant.

Thus when trying to solve (2.1), we pick primal and dual feasibility and complemen-

tarity tolerances ǫp, ǫd, ǫc > 0, and aim to find xǫ along with Lagrange multiplier estimates

yǫ such that
∥

∥

∥

∥

(

cE(xǫ)

min[ 0, cI(xǫ)]

)∥

∥

∥

∥

≤ ǫp,

∥

∥g(xǫ) + JT (xǫ)yǫ
∥

∥

‖(yǫ, 1)‖D

≤ ǫd,
〈c(xǫ), yǫ〉

‖(yǫ, 1)‖D

≤ ǫc and [yǫ]I ≤ 0 (2.5)

as a reasonable goal when trying to satisfy (2.2); here ‖ · ‖D is the dual norm to the

chosen norm ‖ · ‖ induced by the given inner product 〈·, ·〉. We have previously used this

scaled dual-feasibility rule for equality-constrained problems [2], while the requirement on

approximate complementarity is an obvious generalization.
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2.2 Composite-nonsmooth optimization

The analysis of [3, Alg. 1] centres on basic properties of critical points of the composite,

nonsmooth function

Φ(x) := h(r(x)), (2.6)

in which r : IRn → IRm is smooth and h : IRm → IR is convex and continuous but may be

nonsmooth. We say that x∗ is a first-order critical point of Φ if

JT
r (x∗)y = 0 for some y ∈ ∂h(r(x∗)) (2.7)

holds, where ∂h denotes the subdifferential of h and Jr(x) := ∇r(x). It is well known [9]

that x∗ is a first-order critical point of Φ if and only if

χΦ(x∗) = 0 (2.8)

where

χΦ(x) := lΦ(x, 0)− min
‖d‖≤1

lΦ(x, d) (2.9)

and

lΦ(x, d) := h (r(x) + Jr(x)d) , d ∈ IRn, (2.10)

and that χΦ(x) is a continuous criticality measure for Φ [9]. Our updated analysis hinges

on what can be deduced when χΦ(x) is small. Theorem 2.1 next is a generalization of [1,

Thm. 3.1].

Theorem 2.1. Suppose that r ∈ C1, and that h ∈ C0 is convex. Given ǫ > 0,

suppose that

χΦ(xǫ) ≤ ǫ, (2.11)

for some xǫ. Then

‖JT
r (xǫ)yǫ‖ ≤ ǫ, (2.12)

where yǫ ∈ ∂h(r(xǫ) + Jr(xǫ)dǫ) and

dǫ = argmin
‖d‖≤1

lΦ(xǫ, d). (2.13)

Proof. Let dǫ satisfy (2.13). Suppose that ‖dǫ‖ < 1. Then since (2.13) is uncon-

strained and lΦ(xǫ, d) is convex, applying [5, (14.2.16)] to lΦ(xǫ, d) shows that there is a

yǫ ∈ ∂h(r(xǫ) + Jr(xǫ)dǫ) for which J
T
r (xǫ)yǫ = 0, and thus (2.12) holds trivially. So it

remains to consider ‖dǫ‖ = 1. In this case, first-order conditions for (2.13) imply that

there exists yǫ ∈ ∂h(r(xǫ) + Jr(xǫ)dǫ) and λ∗ ≥ 0 such that

JT
r (xǫ)yǫ + λ∗zǫ = 0, (2.14)
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where zǫ ∈ ∂‖dǫ‖ = {z | ‖z‖D = 1 and 〈z, dǫ〉 = ‖dǫ‖}. It follows from the definition

(2.9) of χΦ(x), (2.14), the definition of ∂‖dǫ‖ and ‖dǫ‖ = 1 that

χΦ(xǫ) = [h(r(xǫ)− h(Jr(xǫ)dǫ + r(xǫ))]

=
[

h(r(xǫ))− h(r(xǫ) + Jr(xǫ)dǫ) + 〈dǫ, J
T
r (xǫ)yǫ〉

]

+ λ∗〈dǫ, zǫ〉

=
[

h(r(xǫ))− h(r(xǫ) + Jr(xǫ)dǫ) + 〈dǫ, J
T
r (xǫ)yǫ〉

]

+ λ∗.

(2.15)

Since lΦ(xǫ, d) is convex, the subgradient inequality implies that lΦ(xǫ, 0)− lΦ(xǫ, dǫ) ≥

〈y,−Jr(xǫ)dǫ〉 = −〈dǫ, J
T
r (xǫ)y〉, for any y ∈ ∂h(r(xǫ) + Jr(xǫ)dǫ). Letting y = yǫ, we

deduce

h(r(xǫ))− h(r(xǫ) + Jr(xǫ)dǫ) + 〈dǫ, J
T
r (xǫ)yǫ〉 ≥ 0,

and so, from (2.11) and (2.15), it follows that

ǫ ≥ χΦ(xǫ) ≥ λ∗. (2.16)

From (2.14) and the definition of ∂‖dǫ‖, we deduce

λ∗ = λ∗‖zǫ‖ = ‖JT
r (xǫ)yǫ‖. (2.17)

and this together with (2.16) yields (2.12). ✷

2.3 Corrected results

We recall that Algorithm 2.1 [3] (see Appendix A for full details) works in two phases.

The first aims to reduce the infeasibility

‖c−(x)‖, where c−(x) =

(

cE(x)

min(cI(x), 0)

)

, (2.18)

to an acceptable level using [1, Alg. 2.1], and terminates when the criticality measure,

ψ(x) := lc(x, 0)− min
‖d‖≤1

lc(x, d) where lc(x, d) := ‖[c(x) + J(x)d]−‖, (2.19)

for the infeasibility at the terminating point x1 is smaller than ǫd. If the infeasibility is

itself smaller than a fraction δ ∈ (0, 1) of ǫp, a second phase is performed in which the

penalty function

φ(x, t) = max(f(x)− t, 0) + ‖c−(x)‖ (2.20)

is reduced for a sequence of decreasing parameters t = tj , j ≥ 1. This second phase

terminates when the criticality measure for the penalty function,

χ(x, t) := lφ(x, 0; t)− min
‖d‖≤1

lφ(x, d; t). where lφ(x, d; t) := lc(x, d) + max(f(x) + 〈g(x), d〉 − t, 0),

(2.21)
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at xk is smaller that ǫd.

The introductory results [3, Lem. 2.1–2.2 & 3.1–3.4] were established for the equality-

constrained problem,

minimize f(x) such that cE(x) = 0,

measuring constraint violation by ‖cE(x)‖, and used the penalty function |f(x) − t| +

‖cE(x)‖ rather than1 (2.20), but generalize without difficulty for the inequality problem

(2.1) and the infeasibility measures (2.18) and (2.20) needed here. For completeness, we

repeat [3, Alg.2.1] and reprove the modified versions of [3, Lem. 2.1–2.2 & 3.1–3.4] in

Appendix A for the new merit functions (2.18) and (2.20); the only significant difference

is that [3, Lem. 2.2 eq.(2.17)] becomes f(xk)− tk ≤ ǫp, which combines with [3, Lem. 2.2

eq.(2.15)] to give

0 < f(xk)− tk ≤ ǫp. (2.22)

Our flawed version of [3, Lem. 3.5] aimed to connect approximate critical points of the

merit functions of Phases 1 and 2 of [3, Alg. 2.1] to those in (2.5) for our original problem

(2.1). Here is our correction.

Lemma 2.2. [Correction to [3, Lem. 3.5]] Given ǫp, ǫd, ǫc > 0 for which ǫd < ǫp and

ǫp + ǫd ≤ ǫc, suppose that ‖c−(xk)‖ ≤ ǫp and χ(xk, tk) ≤ ǫd. Then either xk is an

approximate critical point of (2.1) in the sense that xǫ = xk and yǫ = yk satisfy (2.5)

for some vector of Lagrange multiplier estimates yk ∈ IRm, or xk is an almost-feasible

approximate critical point of ‖c−(x)‖ in the sense that xk and zk satisfy

‖JT (xk)zk‖ ≤ ǫd, [zk]I ≤ 0 and ‖zk‖D = 1 (2.23)

as well as ‖c−(xk)‖ ≤ ǫp for another vector of Lagrange multiplier estimates zk ∈ IRm.

Similarly, suppose that ψ(x1) ≤ ǫd and ‖c−(x1)‖ > δǫp, where δǫp ≤ ǫd and δ ∈ (0, 1).

Then (2.23) holds with k = 1 for some vector of multipliers z1 ∈ IRm.

Proof. Applying Theorem 2.1 to φ when χ(xk, tk) ≤ ǫd, we have that

‖νkg(xk) + JT (xk)zk‖ ≤ ǫd, (2.24)

where (νk, zk) ∈ ∂lφ(xk, dk; tk) for some dk with ‖dk‖ ≤ 1. Now suppose that lφ(xk, dk; tk) =

0. In this case

χ(xk, tk) = lφ(xk, 0; tk) = φ(xk, tk). (2.25)

1We may derive similar complexity results for the equality problem with the original penalty function

|f(x)− t|+ ‖cE(x)‖ .
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But [3, (2.16)] ensures that φ(xk; tk) = ǫp, in which case (2.25) contradicts the require-

ment χ(xk, tk) ≤ ǫd < ǫp. Thus

lφ(xk, dk; tk) > 0. (2.26)

Standard convex analysis (see for example, [4, Thm. 11.4.1 & Cor. 11.4.2], and use

(2.26) to ensure that ‖(ν, zT )T )‖D = 1) gives that

∂lφ(xk, dk; tk) =










(

ν

z

)

=





ν

zE
zI





∣

∣

∣

∣

∣

∣

ν[f(xk)− tk + 〈g(xk), dk〉] + 〈z, c(xk) + J(xk)dk〉

= lφ(xk, dk; tk), ν ≥ 0, zI ≤ 0 and

∥

∥

∥

∥

(

ν

z

)∥

∥

∥

∥

D

= 1











.

(2.27)

But since (νk, zk) ∈ ∂lφ(xk, dk; tk), we deduce

lφ(xk, dk; tk)

= νk[f(xk)− tk + 〈g(xk), dk〉] + 〈zk, c(xk) + J(xk)dk〉

= νk[f(xk)− tk] + 〈zk, c(xk)〉+ 〈dk, νkg(xk) + JT (xk)zk〉,

(2.28)

and the definition of lφ, together with the fact that dk minimizes lφ(xk, d; tk) when

‖d‖ ≤ 1, gives

0 ≤ lφ(xk, dk; tk) ≤ lφ(xk, 0; tk) = φ(xk; tk). (2.29)

It follows from the definition of the subgradient, (2.29), (2.28), the Cauchy-Schwarz

inequality, 0 < νk ≤ 1, (2.22), [3, Lem. 2.2], ‖dk‖ ≤ 1 and (2.24) that

〈zk, c(xk)〉 ≤ −νk(f(xk)− tk)− 〈dk, νkg(xk) + JT (xk)zk〉+ φ(xk; tk)

≤ ‖dk‖‖νkg(xk) + JT (xk)zk‖+ φ(xk; tk)

≤ ǫp + ǫd.

Similarly
〈zk, c(xk)〉 ≥ −νk|f(xk)− tk| − 〈dk, νkg(xk) + JT (xk)zk〉

≥ −|f(xk)− tk| − ‖dk‖‖νkg(xk) + JT (xk)zk‖

≥ −ǫp − ǫd.

Thus since ǫp + ǫd ≤ ǫc, we have

|〈zk, c(xk)〉| ≤ ǫc. (2.30)

Now suppose that νk 6= 0, so that νk > 0. In this case, define yk = zk/νk. Then (2.24)

and (2.30) become

νk‖g(xk) + JT (xk)yk‖ ≤ ǫd and νk|〈yk, c(xk)〉| ≤ ǫc,

while ‖(νk, zk)‖D = 1 gives νk = 1/‖(1, yk)‖D. Combining these, and using the assump-

tion ‖c−(xk)‖ ≤ ǫp and the deduction [yk]I ≤ 0 from (2.27), it follows that xǫ = xk and
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yǫ = yk satisfy (2.5). If by contrast νk = 0, then (2.24), (2.27) and (2.30) directly give

(2.23).

The proof of (2.23) when ψ(x1) ≤ ǫd follows in essentially the same way. Applying

Theorem 2.1 to ‖c−(x)‖ when ψ(x1) ≤ ǫd, we have that

‖JT (x1)z1‖ ≤ ǫd, (2.31)

where z1 ∈ ∂lc(x1, d1) for some d1 with ‖d1‖ ≤ 1. Now suppose that lc(x1, d1) = 0. In

this case

ψ(x1) = lc(x1, 0) = ‖c−(x1)‖. (2.32)

But this contradicts ψ(x1) ≤ ǫd and ‖c−(x1)‖ > δǫp since δǫp ≤ ǫd. Thus

lc(x1, d1) > 0, (2.33)

and thus standard convex analysis (see for example, [4, Cor. 11.4.2] , and using (2.33)

to ensure that the dual norm of z is one) gives that

∂lc(x1, d1) =

{

z =

(

zE
zI

) ∣

∣

∣

∣

〈z, c(x1) + J(x1)d1〉 = lc(x1, d1),

zI ≤ 0 and ‖z‖D = 1

}

,

Hence, as z1 ∈ ∂lc(x1, d1), it follows immediately that [z1]I ≤ 0 and ‖z1‖D = 1, and

thus (2.31) gives (2.23). ✷

In passing, we note that the requirement ǫd < ǫp in Lemma 2.2 may be removed provided

we change [3, Alg. 2.1] to allow it to take the step sk = dk = arg min||d||≤1lφ(xk, d, tk) that

results from calculating the optimality measure χ(xk, tk) whenever lφ(xk, dk, tk) = 0.

This leads directly to our desired complexity result; the assumptions [3, A1–A3] require

that (A1–A2) c(x) and its Jacobian is Lipschitz continuous (with constant LJ), the same

is true for f(x) and its gradient (with Lipschitz constant Lg) in some slightly extended

neighbourhood C∆ := C1 + B(0, β∆) where C1 := {x : ‖c−(x)‖ ≤ κC1}, κC1 > ǫp and

B(0, β∆) is a unit ball of radius β∆ for some β slightly larger than 1, of the feasible

region, (if there is one), and (A3) that flow ≤ f(x) ≤ flup for all x in C1, where without

loss of generality flup ≥ flow + 1. A1 and A2 ensure that Taylor approximations hold at

points required in the analysis in [3, Lem. 2.1–2.2 & 3.1–3.4] that are used to establish our

main result, and are simply extensions of those in [3] to allow for inequality constraints.
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Theorem 2.3. [Correction to [3, Thm. 3.6]] Suppose that [3, A1–A3] hold. Then

there are positive constants κa

TR1GC
, κb

TR1GC
and κc

TR1GC
such that, for any ǫp ∈ (0, κC1 ],

ǫd ∈ (0,min(1, ǫp)) and ǫp + ǫd ≤ ǫc, [3, Alg. 2.1] applied to problem (2.1) requires at

most
⌊

κa

TR1GC

‖c−(x0)‖+ flup − flow

ǫ2d
+ κb

TR1GC
| log ǫd|+ κc

TR1GC

⌋

(2.34)

evaluations of c and f and their derivatives before an iterate xk is computed for which

either

(i)
∥

∥

∥

∥

(

cE(xk)

min[ 0, cI(xk)]

)∥

∥

∥

∥

≤ ǫp,

∥

∥g(xk) + JT (xk)yk
∥

∥

‖(yk, 1)‖D

≤ ǫd, ;
〈c(xk), yk〉

‖(yk, 1)‖D

≤ ǫc and [yk]I ≤ 0

for some vector yk ∈ IRm, or

(ii)
∥

∥

∥

∥

(

cE(xk)

min[ 0, cI(xk)]

)∥

∥

∥

∥

≥ δǫp, ‖JT (xk)zk‖ ≤ ǫd, [zk]I ≤ 0 and ‖zk‖D = 1

for some vector zk ∈ IRm.

Proof. We have from [3, Lem. 3.1] that the number of evaluations required to find

x1 is bounded above by

κ1‖c
−(x0)‖ǫ

−2

d (2.35)

for some constant κ1 > 0. Thus, as ψ(x1) ≤ ǫd, Lemma 2.2 ensures that (2.23) holds. If

the algorithm terminates at this stage, then both (2.23) and ‖c−(xk)‖ > δǫp hold, and

thus Lemma 2.2 and ǫd ≤ 1 ≤ flup − flow yield alternative (ii) provided κa

TR1GC
≥ κ1. So

now suppose that Phase 2 of the algorithm is entered. We then observe that [3, Lem.

3.2] implies that successful iterations must happen as long as χ(xk, tk) ≥ ǫd. Moreover,

we have that

flow ≤ f(xk) ≤ tk + ǫp ≤ t1 − ikκCǫ
2
d + ǫp = f(x1) + ‖c−(x1)‖ − ikκCǫ

2
d

≤ f(x1) + ‖c−(x0)‖ − ikκCǫ
2
d,

(2.36)

where ik is the number of these successful iterations from iterations 1 to k of Phase 2,

and where we use successively A3, (2.22), the fact that tj ≤ tj−1 − ikκCǫ
2
d on each

successful iteration j − 1 [3, Lem. 3.4, eq.(3.7), cf. (A.19)] the definition of t1 in the

algorithm, and the fact that Phase 1 decreases ‖c−(x)‖. Hence, we obtain from the

inequality f(x1) ≤ flup (itself implied by A3 again) that

ik ≤

⌊

flup − flow + ‖c−(x0)‖

κCǫ
2
d

⌋

. (2.37)
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The number of Phase 2 iterations satisfying χ(xk, tk) ≥ ǫd is therefore bounded above,

and the algorithm must terminate after (2.37) such iterations at most, yielding, because

of Lemma 2.2, an ǫ-first-order critical point satisfying one of the alternatives (i) or (ii).

Remembering that only one evaluation of c and f (and their derivatives, if successful)

occurs per iteration, we therefore conclude from (2.37) and [3, Lem. 3.3] that the total

number of such evaluations in Phase 2 is bounded above by

⌊

flup − flow + ‖c−(x0)‖

κCǫ2d

⌋

+ κ2| log ǫ|+ κ3

for some positive constants κ2 and κ3.

Summing this upper bound with that for the number of iterations in Phase 1 given by

(2.35) and using also that ǫd ≤ 1 ≤ flup − flow, then yields (2.34) with

κa

TR1GC
= κ1 +

1

κC

, κb

TR1GC
= κ2 and κc

TR1GC
= κ3.

✷
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Appendix A: The algorithm and subsidiary lemmas

We first present our idealised short-step algorithm. This is simply a restatement of [3, Alg.2.1],

with the obvious extensions to cope with inequality constraints, the modified merit functions

(2.18) and (2.20) and the replacement criticality measures (2.19) and (2.21) that lie at the heart

of the algorithm.

Algorithm A.2.1: The short-step steepest-descent algorithm, cf. [3, Alg.2.1].

Let δ ∈ (0, 1), ǫp, ǫd ∈ (0, 1] and ∆1 > 0 be given, together with a starting point x0.

Phase 1:

Starting from x0, minimize ‖c−(x)‖ using the trust-region method of [1] until a

point x1 is found such that

ψ(x1) ≤ ǫd.

If ‖c−(x1)‖ > δǫp, terminate [locally infeasible].

Phase 2:

1. Set t1 = ‖c−(x1)‖+ f(x1)− ǫp and k = 1.
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While χ(xk, tk) ≥ ǫd,

2a Compute a first-order step sk by solving

minimize
s∈IRn

lφ(xk, s; tk) such that ‖s‖ ≤ ∆k. (A.1)

2b. Compute φ(xk + sk; tk) and define

ρk =
φ(xk; tk)− φ(xk + sk; tk)

lφ(xk, 0; tk)− lφ(xk, sk; tk)
. (A.2)

If ρk ≥ η, then xk+1 = xk + sk; else xk+1 = xk. Set

∆k+1 =

{

∆k if ρk ≥ η [k successful]

γ∆k if ρk < η [k unsuccessful]
(A.3)

2c. If ρk ≥ η, set

tk+1 =

{

tk − φ(xk; tk) + φ(xk+1; tk) if f(xk+1) ≥ tk,

2f(xk+1)− tk − φ(xk; tk) + φ(xk+1; tk) if f(xk+1) < tk.
(A.4)

Otherwise, set tk+1 = tk.

2d. Increment k by one and return to Step 2.

3. Terminate [(approximately) first-order critical]

The iteration-complexity analysis is based on the assumptions [3, A1–A3] outlined before Theo-

rem 2.3. To show that Phase 2 of Algorithm A.2.1, most especially (A.2), is well-defined, we use

the following result.

Lemma A.1. (cf. [3, Lem. 2.1]) Suppose that [3, A1] holds. If xk ∈ C1, then the model

decrease satisfies

lφ(xk, 0; tk)− lφ(xk, sk; tk) ≥ min (∆k, 1)χ(xk, tk). (A.5)

Proof. Apply [1, Lem.2.1] with h
def
= ‖ · ‖+ max(·, 0) and Φh(x)

def
= χ(x, tk) considered as

a function of x only. ✷

Our next result shows that xk not only belongs to C1 so that Phase 2 is well-defined, but it

remains approximately feasible for all Phase 2 iterations, and additionally successive objective

function values stay close to their targets.
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Lemma A.2. (cf. [3, Lem. 2.2]) Suppose that [3, A1] holds. On each Phase 2 iteration

k ≥ 1 of Algorithm A.2.1, we have

φ(xk; tk) = ǫp, (A.6)

f(xk) > tk, (A.7)

f(xk)− tk ≤ ǫp, (A.8)

‖c−(xk)‖ ≤ ǫp, (A.9)

and xk ∈ C1, for φ defined in (2.20)

Proof. Firstly, note that (2.20) and (A.6) imply (A.8) and (A.9); the latter implies xk ∈ C1
since ǫp < κC1 . Thus it remains to prove (A.6) and (A.7). The proof of these relations

is by induction on k. For k = 1, recall that we only enter Phase 2 of the algorithm if

‖c−(x1)‖ ≤ δǫp < ǫp, which gives (A.7) and (A.6) for k = 1, due to the particular choice of

t1. Also, (A.5) holds at k = 1 and ρ1 in (A.2) is well-defined.

Now let k > 1 and assume that (A.6) and (A.7) are satisfied, and so

φ(xk; tk) = ǫp. (A.10)

If k is an unsuccessful iteration, xk+1 = xk and tk+1 = tk and so (A.7) and (A.6) continue to

hold at xk+1. It remains to consider the case when k is successful. Recall that (A.10) implies

‖c−(xk)‖ ≤ ǫp and xk ∈ C1 since ǫp < κC1 , and so (A.5) holds. Thus, since we have not

terminated, Lemma A.1 shows that (A.2) has a positive denominator, which together with k

being successful so that ρk ≥ η, implies

φ(xk; tk) > φ(xk+1; tk).

This and (A.4) immediately give that f(xk+1)− tk+1 > 0 so that (A.7) holds at k+1. Using

the latter and (2.20), we deduce

φ(xk+1; tk+1) = ‖c−(xk+1)‖+ f(xk+1)− tk + (tk − tk+1). (A.11)

Consider first the case when f(xk+1) ≥ tk. Then, using (A.11) and (A.4), we obtain that

φ(xk+1; tk+1) = φ(xk+1; tk) + φ(xk; tk)− φ(xk+1; tk) = φ(xk; tk).

If f(xk+1) < tk, we have that

φ(xk+1; tk+1) = ‖c−(xk+1)‖ − f(xk+1) + tk + φ(xk; tk)− φ(xk+1; tk)

= φ(xk+1; tk) + φ(xk; tk)− φ(xk+1; tk)

= φ(xk; tk),
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where we again use (A.11) and (A.4). Combining the two cases and using (A.10), we then

deduce that

φ(xk+1; tk+1) = φ(xk; tk) = ǫp,

and thus (A.6) holds at k + 1. This concludes the inductive step. ✷

Our evaluation-complexity analysis requires that we bound the number of Phase 1 evaluations.

Lemma A.3. (cf. [3, Lem. 3.1]) Suppose that [3, A1-A2] hold. Then at most

⌊

κa

TRNS1

‖c−(x0)‖

ǫ2
d

+ κb

TRNS1
| log ǫd|+ κc

TRNS1

⌋

(A.12)

evaluations of c(x) and its derivatives are needed to complete Phase 1 of Algorithm A.2.1,

for some κa
TRNS1

, κb
TRNS1

and κc
TRNS1

> 0 independent of ǫd and x0.

Proof. This is a direct application of [1, Th,.2.4] with h
def
= ‖ · ‖, Φh(x)

def
= ‖c−(x)‖, Lh = 1,

η1 = η2
def
= η and γ1 = γ2

def
= γ. ✷

We next use Lemma A.1 to provide a lower bound on the trust-region radius computed during

Phase 2.

Lemma A.4. (cf. [3, Lem. 3.2]) Suppose that [3, A1-A2] hold. Then any Phase 2 iteration

k ≥ 1 of Algorithm A.2.1 satisfying χ(xk, tk) ≥ ǫd and

∆k ≤
(1− η)ǫd
Lg + 1

2
LJ

(A.13)

is successful in the sense of (A.3). Furthermore, while χ(xk, tk) ≥ ǫd, we have

∆k ≥ κ∆ǫd, for all Phase 2 iterations k ≥ 1, (A.14)

where

κ∆
def
= min

(

∆1,
(1− η)γ

Lg + 1
2
LJ

)

. (A.15)
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Proof. From (A.2) and (2.20), and using the fact that |max(a, 0) −max(b, 0)| ≤ |a− b| for

all a, b ∈ IR, we have

|ρk − 1| =
|φ(xk + sk; tk)− lφ(xk; tk, sk)|

lφ(xk, 0; tk)− lφ(xk, sk; tk)

=

∣

∣

∣

∣

∣

‖c−(xk + sk)‖ − ‖[c(xk) + J(xk)sk]
−‖+

max(f(xk + sk)− tk, 0) −max(f(xk) + 〈g(xk), sk〉 − tk, 0)

∣

∣

∣

∣

∣

lφ(xk, 0; tk)− lφ(xk, sk; tk)

≤
|‖c−(xk + sk)‖ − ‖[c(xk) + J(xk)sk]

−‖|+ |f(xk + sk)− f(xk)− 〈g(xk), sk〉|

lφ(xk, 0; tk)− lφ(xk, sk; tk)
.

(A.16)

Standard Taylor expansions give that

f(xk + sk) = f(xk) + g(ξk)
T sk for some ξk ∈ [xk, xk + sk],

and

c(xk + sk) = c(xk) +

∫ 1

0

J(xk + tsk)sk dt.

Observe that xk ∈ C1 because of Lemma A.2, and ‖ξk−xk‖ ≤ ‖sk‖ ≤ ∆k ≤ ∆1 (as the radius

is never increased in Phase 2) then implies that ξk, xk + sk ∈ C∆. Thus [3, A1] applies at

these points, and together with the Taylor expansions, gives that

|f(xk + sk)− f(xk)− 〈g(xk), sk〉| ≤ Lg‖sk‖
2

and
∣

∣‖c−(xk + sk)‖ − ‖[c(xk) + J(xk)sk]
−‖

∣

∣ ≤ 1
2
LJ‖sk‖

2.

Thus, from (A.5), (A.16) and ‖sk‖ ≤ ∆k, we deduce

|ρk − 1| ≤
(Lg + 1

2
LJ)∆

2
k

min (∆k, 1)χ(xk, tk)
≤

(Lg + 1
2
LJ)

ǫd
∆k,

where to obtain the second inequality, we use χ(xk, tk) ≥ ǫd and ∆k ≤ 1, where the latter

follows from (A.13), Lg ≥ 1 and ǫd ∈ (0, 1]. Finally, (A.13) implies |ρk − 1| ≤ 1 − η, which

gives that k is successful due to (A.3).

Now whenever (A.13) holds, (A.3) sets ∆k+1 = ∆k. This implies that when ∆1 ≥ γ(1 −

η)ǫd/(Lg + 1
2
LJ), we have ∆k ≥ γ(1 − η)ǫd/(Lg + 1

2
LJ) for all k, where the factor γ is

introduced for the case when ∆k is greater than (1 − η)ǫd/(Lg + 1
2
LJ) and iteration k is

unsuccessful. Applying again the implication resulting from (A.13) and (A.3) for k = 1, we

deduce (A.14) when ∆1 < γ(1− η)ǫd/(Lg + 1
2
LJ) since γ ∈ (0, 1) and ǫ ∈ (0, 1]. ✷

We now bound the total number of unsuccessful iterations in the course of Phase 2.
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Lemma A.5. (cf. [3, Lem. 3.3]) There are at most

⌊

1

| log γ|

∣

∣

∣

∣

log ǫd + log

(

(1− η)

∆1(Lg + 1
2
LJ)

)∣

∣

∣

∣

⌋

(A.17)

unsuccessful iterations in Phase 2 of Algorithm A.2.1.

Proof. Note that (A.3) implies that the trust-region radius is never increased, and therefore

Lemma A.4 guarantees that all iterations must be successful once ∆1 has been reduced (by

a factor γ) enough times to ensure (A.13). Hence there are at most (A.17) unsuccessful

iterations during the complete execution of the Phase 2. ✷

The final auxiliary lemma establishes that the targets tk decrease by a quantity bounded below

by a multiple of ǫ2d at every successful iteration.

Lemma A.6. (cf. [3, Lem. 3.4]) Suppose that [3, A1-A2] hold. Then on each successful

Phase 2 iteration k ≥ 1 of Algorithm A.2.1, we have

φ(xk + sk; tk) ≤ φ(xk; tk)− κCǫ
2
d (A.18)

and

tk − tk+1 ≥ κCǫ
2
d (A.19)

where

κC

def
= ηκ∆ (A.20)

and κ∆ is defined in (A.15), independently of ǫd.

Proof. From (A.2) and k being successful, we deduce

φ(xk; tk)− φ(xk + sk; tk) ≥ η [lφ(xk, 0; tk)− lφ(xk, sk; tk)] ≥ ηmin (∆k, 1) ǫd,

where to obtain the second inequality, we use (A.5) and χ(xk, tk) ≥ ǫd. Further, we employ

the bound (A.14) and obtain

φ(xk; tk)− φ(xk + sk; tk) ≥ ηmin (κ∆ǫd, 1) ǫd = ηκ∆ǫ
2
d,

where we also use ǫd ∈ (0, 1] and κ∆ ≤ 1 due to Lg ≥ 1, η, γ ∈ (0, 1); this gives (A.18).

Finally, (A.19) results from (A.4) and (A.18). ✷
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