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Abstract A recent series of papers has examined the extension of disjunctive-

programming techniques to mixed-integer second-order-cone programming. For exam-

ple, it has been shown—by several authors using different techniques—that the convex

hull of the intersection of an ellipsoid, E , and a split disjunction, (l − xj)(xj − u) ≤ 0

with l < u, equals the intersection of E with an additional second-order-cone repre-

sentable (SOCr) set. In this paper, we study more general intersections of the form

K ∩ Q and K ∩ Q ∩H, where K is a SOCr cone, Q is a nonconvex cone defined by a

single homogeneous quadratic, and H is an affine hyperplane. Under several easy-to-

verify conditions, we derive simple, computable convex relaxations K∩S and K∩S∩H,

where S is a SOCr cone. Under further conditions, we prove that these two sets cap-

ture precisely the corresponding conic/convex hulls. Our approach unifies and extends

previous results, and we illustrate its applicability and generality with many examples.

Keywords: convex hull, disjunctive programming, mixed-integer linear programming,

mixed-integer nonlinear programming, mixed-integer quadratic programming, noncon-

vex quadratic programming, second-order-cone programming, trust-region subproblem.
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1 Introduction

In this paper, we study nonconvex intersections of the form K ∩ Q and K ∩ Q ∩ H,

where the cone K is second-order-cone representable (SOCr), Q is a nonconvex cone

defined by a single homogeneous quadratic, and H is an affine hyperplane. Our goal is

to develop tight convex relaxations of these sets and to characterize the conic/convex

hulls whenever possible. We are motivated by recent research on Mixed Integer Conic
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Programs (MICPs), though our results here enjoy wider applicability to nonconvex

quadratic programs.

Prior to the study of MICPs in recent years, cutting plane theory has been funda-

mental in the development of efficient and powerful solvers for Mixed Integer Linear

Programs (MILPs). In this theory, one considers a convex relaxation of the problem,

e.g., its continuous relaxation, and then enforces integrality restrictions to eliminate

regions containing no integer feasible points—so-called lattice-free sets. The comple-

ment of a valid two-term linear disjunction, say xj ≤ l ∨ xj ≥ u, is a simple form

of a lattice-free set. The additional inequalities required to describe the convex hull

of such a disjunction are known as disjunctive cuts. Such a disjunctive point of view

was introduced by Balas [6] in the context of MILPs, and it has since been studied

extensively in mixed integer linear and nonlinear optimization [7,8,17,18,20,22,33,48,

49], complementarity [29,31,43,51] and other nonconvex optimization problems [11,

17]. In the case of MILPs, several well-known classes of cuts such as Chvátal-Gomory,

lift-and-project, mixed-integer rounding (MIR), split, and intersection cuts are known

to be special types of disjunctive cuts. Stubbs and Mehrotra [50] and Ceria and Soares

[20] extended cutting plane theory from MILP to convex mixed integer problems. These

works were followed by several papers [15,24,25,33,53] that investigated linear-outer-

approximation based approaches, as well as others that extended specific classes of

inequalities, such as Chvátal-Gomory cuts [19] for MICPs and MIR cuts [5] for SOC-

based MICPs.

Recently there has been growing interest in developing closed-form expressions for

convex inequalities that fully describe the convex hull of a disjunctive set involving an

SOC. In this vein, Günlük and Linderoth [27] studied a simple set involving an SOC

in R3 and a single binary variable and showed that the resulting convex hull is charac-

terized by adding a single SOCr constraint. For general SOCs in Rn, this line of work

was furthered by Dadush et al. [23], who derived cuts for ellipsoids based on parallel

two-term disjunctions, that is, split disjunctions. Modaresi et al. [40] extended this by

studying intersection cuts for SOC and all of its cross-sections (i.e., all conic sections),

based on split disjunctions as well as a number of other lattice-free sets such as ellip-

soids and paraboloids. A theoretical and computational comparison of intersection cuts

from [40] with extended formulations and conic MIR inequalities from [5] is given in

[39]. Taking a different approach, Andersen and Jensen [2] derived an SOC constraint

describing the convex hull of a split disjunction applied to an SOC. Belotti et al. [12]

studied families of quadratic surfaces having fixed intersections with two given hyper-

planes, and in [13], they identified a procedure for constructing two-term disjunctive

cuts when the sets defined by the disjunctions are bounded and disjoint. Kılınç-Karzan

[34] introduced and examined minimal valid linear inequalities for general conic sets

with a disjunctive structure, and under a mild technical assumption, established that

they are sufficient to describe the resulting closed convex hulls. For general two-term

disjunctions on regular (closed, convex, pointed with nonempty interior) cones, Kılınç-

Karzan and Yıldız [36] studied the structure of tight minimal valid linear inequalities.

In the particular case of SOCs, based on conic duality, a class of convex valid inequal-

ities that is sufficient to describe the convex hull were derived in [36] along with the

conditions for SOCr representability of these inequalities as well as for the sufficiency

of a single inequality from this class. This work was recently extended in Yıldız and

Cornuéjols [55] to all cross-sections of SOC that can be covered by the same assump-

tions of [36]. Bienstock and Michalka [14] studied the characterization and separation

of valid linear inequalities that convexify the epigraph of a convex, differentiable func-
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tion whose domain is restricted to the complement of a convex set defined by linear or

convex quadratic inequalities. Although all of these authors take different approaches,

their results are comparable, for example, in the case of analyzing split disjunctions

of the SOC or its cross-sections. We remark also that these methods convexify in the

space of the original variables, i.e., they do not involve lifting. For additional convexifi-

cation approaches for nonconvex quadratic programming, which convexify in the lifted

space of products xixj of variables, we refer the reader to [4,9,16,17,52], for example.

In this paper, our main contributions can be summarized as follows (see Section 3

and Theorem 1 in particular). First, we derive a simple, computable convex relaxation

K ∩ S of K ∩ Q, where S is an additional SOCr cone. This also provides the convex

relaxation K∩S∩H ⊇ K∩Q∩H. The derivation relies on several easy-to-verify condi-

tions (see Section 3.2). Second, we identify stronger conditions guaranteeing moreover

that K ∩ S = cl. conic. hull(K ∩ Q) and K ∩ S ∩H = cl. conv. hull(K ∩ Q ∩H), where

cl indicates the closure, conic.hull indicates the conic hull, and conv.hull indicates the

convex hull. Our approach unifies and significantly extends previous results. In partic-

ular, in contrast to the existing literature on cuts based on lattice-free sets, here we

allow a general Q without making an assumption that Rn \ Q is convex. We illustrate

the applicability and generality of our approach with many examples and explicitly

contrast our work with the existing literature.

Our approach can be seen as a variation of the following basic, yet general, idea

of conic aggregation to generate valid inequalities. Suppose that f0 = f0(x) is convex,

while f1 = f1(x) is nonconvex, and suppose we are interested in the closed convex hull

of the set Q := {x : f0 ≤ 0, f1 ≤ 0}. For any 0 ≤ t ≤ 1, the inequality ft := (1− t)f0 +

tf1 ≤ 0 is valid for Q, but ft is generally nonconvex. Hence, it is natural to seek values

of t such that the function ft is convex for all x. One might even conjecture that some

particular convex fs with 0 ≤ s ≤ 1 guarantees cl. conv. hull(Q) = {x : f0 ≤ 0, fs ≤ 0}.
However, it is known that this approach cannot generally achieve the convex hull even

when f0, f1 are quadratic functions; see [40]. Such aggregation techniques to obtain

convex under-estimators have also been explored in the global-optimization literature,

albeit without explicit results on the resulting convex hull descriptions (see [1] for

example).

In this paper, we follow a similar approach in spirit, but instead of determining

0 ≤ t ≤ 1 guaranteeing the convexity of ft for all x, we only require “almost” convexity,

that is, the function ft is required to be convex on {x : f0 ≤ 0}. This weakened

requirement is crucial. In particular, it allows us to obtain convex hulls for many cases

where {x : f0 ≤ 0} is SOCr and f1 is a nonconvex quadratic, and we recover all of the

known results regarding two-term disjunctions cited above (see Section 5). We note

that using quite different techniques and under completely different assumptions, a

similar idea of aggregation for quadratic functions has been explored in [13,40] as well.

Specifically, our weakened requirement is in contrast to the developments in [40], which

explicitly requires the function ft to be convex everywhere. Also, our general Q allows

us to study general nonconvex quadratics f1 as opposed to the specific ones arising from

two-term disjunctions studied in [13]. As a practical and technical matter, instead of

working directly with convex functions in this paper, we work in the equivalent realm

of convex sets, in particular SOCr cones. Section 2 discusses in detail the features of

SOCr cones required for our analysis.

Compared to the previous literature on MICPs, our work here is broader in that

we study a general nonconvex cone Q defined by a single homogeneous quadratic func-

tion. As a result, we assume neither the underlying matrix defining the homogeneous
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quadratic Q to be of rank at most 2 nor Rn\Q to be convex. This is in contrast to a key

underlying assumption used in the literature. Specifically, the majority of the earlier

literature on MICPs focus on specific lattice-free sets, e.g., all of the works [2,5,13,23,

36,55] focus on either split or two-term disjunctions on SOCs or its cross-sections. In

the case of two-term disjunctions, the matrix defining the homogeneous quadratic for

Q is of rank at most 2; and moreover, the complement of any two-term disjunction

is a convex set. Even though, nonconvex quadratics Q with rank higher than 2 are

considered in [40], unlike our general, Q this is done under the assumption that the

complement of the nonconvex quadratic defines a convex set. Our general Q allows

for a unified framework and works under weaker assumptions. In Sections 3.3 and 5

and the Online Supplement, we illustrate and highlight these features of our approach

and contrast it with the existing literature through a series of examples. Bienstock and

Michalka [14] also consider more general Q under the assumption that Rn\Q is convex,

but their approach is quite different than ours. Whereas [14] relies on polynomial time

procedures for separating and tilting valid linear inequalities, we directly give the con-

vex hull description. In contrast, our study of the general, nonconvex quadratic cone

Q allows its complement Rn \ Q to be nonconvex as well.

We remark that our convexification tools for general nonconvex quadratics have

potential applications beyond MICPs, for example in the nonconvex quadratic pro-

gramming domain. We also can, for example, characterize: the convex hull of the dele-

tion of an arbitrary ball from another ball; and the convex hull of the deletion of an

arbitrary ellipsoid from another ellipsoid sharing the same center. In addition, we can

use our results to solve the classical trust region subproblem [21] using SOC optimiza-

tion, complementing previous approaches relying on nonlinear [26,42] or semidefinite

programming [47]. Section 6 discusses these examples.

Another useful feature of our approach is that we clearly distinguish the conditions

guaranteeing validity of our relaxation from those ensuring sufficiency. In [2,13,23,

40], validity and sufficiency are intertwined making it difficult to construct convex

relaxations when their conditions are only partly satisfied. Furthermore, our derivation

of the convex relaxation is efficiently computable and relies on conditions that are easily

verifiable. Finally, our conditions regarding the cross-sections (that is, intersection with

the affine hyperplane H) are applicable for general cones other than SOCs.

We would like to stress that the inequality describing the SOCr set S is efficiently

computable. In other words, given the sets K ∩ Q and K ∩ Q ∩ H, one can verify in

polynomial time the required conditions and then calculate in polynomial time the

inequality for S to form the relaxations K ∩ S and K ∩ S ∩ H. The core operations

include calculating eigenvalues/eigenvectors for several symmetric and non-symmetric

matrices and solving a two-constraint semidefinite program. The computation can also

be streamlined in cases when any special structure of K and Q is known ahead of time.

The paper is structured as follows. Section 2 discusses the details of SOCr cones,

and Section 3 states our conditions and main theorem. In Section 3.2, we provide

a detailed discussion and pseudocode for verifying our conditions and computing the

resulting SOC based relaxation S. Section 3.3 then provides a low-dimensional example

with figures and comparisons with existing literature. We provide more examples with

corresponding figures and comparisons in the Online Supplement accompanying this

article. In Section 4, we prove the main theorem, and then in Sections 5 and 6, we

discuss and prove many interesting general examples covered by our theory. Section

7 concludes the paper with a few final remarks. Our notation is mostly standard. We

will define any particular notation upon its first use.
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2 Second-Order-Cone Representable Sets

Our analysis in this paper is based on the concept of SOCr (second-order-cone repre-

sentable) cones. In this section, we define and introduce the basic properties of such

sets.

A cone F+ ⊆ Rn is said to be second-order-cone representable (or SOCr) if there

exists a matrix 0 6= B ∈ Rn×(n−1) and a vector b ∈ Rn such that the nonzero columns

of B are linearly independent, b 6∈ Range(B), and

F+ = {x : ‖BT x‖ ≤ bT x}, (1)

where ‖ · ‖ denotes the usual Euclidean norm. The negative of F+ is also SOCr:

F− := −F+ = {x : ‖BT x‖ ≤ −bT x}. (2)

Defining A := BBT − bbT , the union F+ ∪ F− corresponds to the homogeneous

quadratic inequality xTAx ≤ 0:

F := F+ ∪ F− = {x : ‖BT x‖2 ≤ (bT x)2} = {x : xTAx ≤ 0}. (3)

We also define

int(F+) := {x : ‖BT x‖ < bT x}

bd(F+) := {x : ‖BT x‖ = bT x}

apex(F+) := {x : BT x = 0, bT x = 0}.

We next study properties of F ,F+,F− such as their representations and unique-

ness thereof. On a related note, Mahajan and Munson [38] have also studied sets as-

sociated with nonconvex quadratics with a single negative eigenvalue but from a more

computational point of view. The following proposition establishes some important

features of SOCr cones:

Proposition 1 Let F+ be SOCr as in (1), and define A := BBT − bbT . Then

apex(F+) = null(A), A has at least one positive eigenvalue, and A has exactly one

negative eigenvalue. As a consequence, int(F+) 6= ∅.

Proof For any x, we have the equation

Ax = (BBT − bbT )x = B(BT x)− b(bT x). (4)

So x ∈ apex(F+) implies x ∈ null(A). The converse also holds by (4) because, by

definition, the nonzero columns of B are independent and b 6∈ Range(B). Hence,

apex(F+) = null(A).

The equation A = BBT − bbT , with 0 6= BBT � 0 and bbT � 0 rank-1 and b 6∈
Range(B), implies that A has at least one positive eigenvalue and at most one negative

eigenvalue. Because b 6∈ Range(B), we can write b = x + y such that x ∈ Range(B),

0 6= y ∈ null(BT ), and xT y = 0. Then

yTAy = yT (BBT − bbT )y = 0− (bT y)2 = −‖y‖2 < 0,

showing that A has exactly one negative eigenvalue, and so int(F+) contains either y

or −y. ut
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We define analogous sets int(F−), bd(F−), and apex(F−) for F−. In addition:

int(F) := {x : xTAx < 0} = int(F+) ∪ int(F−)

bd(F) := {x : xTAx = 0} = bd(F+) ∪ bd(F−).

Similarly, we have apex(F−) = null(A) = apex(F+), and if A has exactly one negative

eigenvalue, then int(F−) 6= ∅ and int(F) 6= ∅.
When considered as a pair of sets {F+,F−}, it is possible that another choice

(B̄, b̄) in place of (B, b) leads to the same pair and hence to the same F . For example,

(B̄, b̄) = (−B,−b) simply switches the roles of F+ and F−, but F does not change.

However, we prove next that F is essentially invariant up to positive scaling. As a

corollary, any alternative (B̄, b̄) yields A = ρ(B̄B̄T − b̄b̄T ) for some ρ > 0, i.e., A is

essentially invariant with respect to its (B, b) representation.

Proposition 2 Let A, Ā be two n×n symmetric matrices such that {x ∈ Rn : xTAx ≤
0} = {x ∈ Rn : xT Āx ≤ 0}. Suppose that A satisfies λmin(A) < 0 < λmax(A). Then

there exists ρ > 0 such that Ā = ρA.

Proof Since λmin(A) < 0, there exists x̄ ∈ Rn such that x̄TAx̄ < 0. Because xTAx ≤
0 ⇔ xT Āx ≤ 0, there exists no x such that xTAx ≤ 0 and xT (−Ā)x < 0. Then,

by the S-lemma (see Theorem 2.2 in [45], for example), there exists λ1 ≥ 0 such

that −Ā + λ1A � 0. Switching the roles of A and Ā, a similar argument implies the

existence of λ2 ≥ 0 such that −A + λ2Ā � 0. Note λ2 > 0; otherwise, A would be

negative semidefinite, contradicting λmax(A) > 0. Likewise, λ1 > 0. Hence,

A � 1

λ1
Ā � 1

λ1λ2
A ⇐⇒ (1− λ1λ2)A � 0.

Since λmin(A) < 0 < λmax(A), we conclude λ1λ2 = 1, which in turn implies A = 1
λ1
Ā,

as claimed. ut

Corollary 1 Let {F+,F−} be SOCr sets as in (1) and (2), and define A := BBT −
bbT . Let (B̄, b̄) be another choice in place of (B, b) leading to the same pair {F+,F−}.
Then A = ρ(B̄B̄T − b̄b̄T ) for some ρ > 0.

We can reverse the discussion thus far to start from a symmetric matrix A with

at least one positive eigenvalue and a single negative eigenvalue and define associated

SOCr cones F+ and F−. Indeed, given such an A, let QDiag(λ)QT be a spectral

decomposition of A such that λ1 < 0. Let qj be the j-th column of Q, and define

B :=
(
λ
1/2
2 q2 · · · λ

1/2
n qn

)
∈ Rn×(n−1), b := (−λ1)1/2q1 ∈ Rn. (5)

Note that the nonzero columns of B are linearly independent and b 6∈ Range(B). Then

A = BBT − bbT , and F = F+ ∪ F− can be defined as in (1)–(3). An important

observation is that, as a collection of sets, {F+,F−} is independent of the choice of

spectral decomposition.

Proposition 3 Let A be a given symmetric matrix with at least one positive eigenvalue

and a single negative eigenvalue, and let A = QDiag(λ)QT be a spectral decomposition

such that λ1 < 0. Define the SOCr sets {F+,F−} according to (1) and (2), where

(B, b) is given by (5). Similarly, let {F̄+, F̄−} be defined by an alternative spectral

decomposition A = Q̄Diag(λ̄)Q̄T . Then {F̄+, F̄−} = {F+,F−}.
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Proof Let (B̄, b̄) be given by the alternative spectral decomposition. Because A has a

single negative eigenvalue, b̄ = b or b̄ = −b. In addition, we claim ‖B̄T x‖ = ‖BT x‖
for all x. This holds because B̄B̄T = BBT is the positive semidefinite part of A. This

proves the result. ut

To resolve the ambiguity inherent in Proposition 3, one could choose a specific x̄ ∈
int(F), which exists by Proposition 1, and enforce the convention that, for any spectral

decomposition, F+ is chosen to contain x̄. This simply amounts to flipping the sign of

b so that bT x̄ > 0.

3 The Result and Its Computability

In Section 3.1, we state our main theorem (Theorem 1) and the conditions upon which

it is based. The proof of Theorem 1 is delayed until Section 4. In Section 3.2, we discuss

computational details related to our conditions and Theorem 1.

3.1 The result

To begin, let A0 be a symmetric matrix satisfying the following:

Condition 1 A0 has at least one positive eigenvalue and exactly one negative eigen-

value.

As described in Section 2, we may define SOCr cones F0 = F+
0 ∪ F

−
0 based on A0.

We also introduce a symmetric matrix A1 and define the cone F1 := {x : xTA1x ≤ 0}
in analogy with F0. However, we do not assume that A1 has exactly one negative

eigenvalue, so F1 does not necessarily decompose into two SOCr cones.

We investigate the set F+
0 ∩F1, which has been expressed as K∩Q in the Introduc-

tion. In particular, we would like to develop strong convex relaxations of F+
0 ∩F1 and,

whenever possible, characterize its closed conic hull. We focus on the full-dimensional

case, and so we assume:

Condition 2 There exists x̄ ∈ int(F+
0 ∩ F1).

Note that int(F+
0 ∩ F1) = int(F+

0 ) ∩ int(F1), and so Condition 2 is equivalent to

x̄TA0x̄ < 0 and x̄TA1x̄ < 0. (6)

In particular, this implies A1 has at least one negative eigenvalue.

The first part of Theorem 1 below establishes that cl. conic. hull(F+
0 ∩ F1) is con-

tained within the convex intersection of F+
0 with a second set of the same type, i.e.,

one that is SOCr. In addition to Conditions 1 and 2, we require the following condition,

which handles the singularity of A0 carefully via several cases:

Condition 3 Either (i) A0 is nonsingular, (ii) A0 is singular and A1 is positive def-

inite on null(A0), or (iii) A0 is singular and A1 is negative definite on null(A0).
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Conditions 1–3 will ensure (see Proposition 4 in Section 4.1) the existence of a

maximal s ∈ [0, 1] such that

At := (1− t)A0 + tA1

has a single negative eigenvalue for all t ∈ [0, s], At is invertible for all t ∈ (0, s),

and As is singular—that is, null(As) is non-trivial. (Actually, As may be nonsingular

when s equals 1, but this is a small detail.) Indeed, we define s formally as follows. Let

T := {t ∈ R : At is singular}. Then

s :=

{
min(T ∩ (0, 1]) under Condition 3(i) or 3(ii)

0 under Condition 3(iii).
(7)

Sections 3.2 and 4 will clarify the role of Condition 3 in this definition.

With s given by (7), we can then define, for all At with t ∈ [0, s], SOCr sets

Ft = F+
t ∪F

−
t as described in Section 2. Furthermore, for x̄ of Condition 2, noting that

x̄TAtx̄ = (1− t) x̄A0x̄+ t x̄TA1x̄ < 0 by (6), we can choose without loss of generality

that x̄ ∈ F+
t for all such t. Then Theorem 1 asserts that cl. conic. hull(F+

0 ∩ F1) is

contained in F+
0 ∩F

+
s . We remark that while F+

0 ∩F1 ⊆ F
+
0 ∩Fs (no “+” superscript on

Fs) follows trivially from the definition of Fs, strengthening the inclusion to F+
0 ∩F1 ⊆

F+
0 ∩ F

+
s (with the “+” superscript) is nontrivial.

The second part of Theorem 1 provides an additional condition under which F+
0 ∩

F+
s actually equals the closed conic hull. The required condition is:

Condition 4 When s < 1, apex(F+
s ) ∩ int(F1) 6= ∅.

While Condition 4 may appear quite strong, we will actually show (see Lemma 3 in

Section 4) that Conditions 1–3 and the definition of s already ensure apex(F+
s ) ⊆ F1.

So Condition 4 is a type of regularity condition guaranteeing that the set apex(F+
s ) =

null(As) is not restricted to the boundary of F1.

We also include in Theorem 1 a specialization for the case when F+
0 ∩ F1 is inter-

sected with an affine hyperplane H1, which has been expressed as K ∩ Q ∩ H in the

Introduction. For this, let h ∈ Rn be given, and define the hyperplanes

H1 := {x : hT x = 1}, (8)

H0 := {x : hT x = 0}. (9)

We introduce an additional condition related to H0:

Condition 5 When s < 1, apex(F+
s ) ∩ int(F1) ∩H0 6= ∅ or F+

0 ∩ F
+
s ∩H0 ⊆ F1.

We now state the main theorem of the paper. See Section 4 for its proof.

Theorem 1 Suppose Conditions 1–3 are satisfied, and let s be defined by (7). Then

cl. conic. hull(F+
0 ∩ F1) ⊆ F+

0 ∩ F
+
s , and equality holds under Condition 4. Moreover,

Conditions 1–5 imply F+
0 ∩ F

+
s ∩H1 = cl. conv. hull(F+

0 ∩ F1 ∩H
1).
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3.2 Computational details

In practice, Theorem 1 can be used to generate a valid convex relaxation F+
0 ∩ F

+
s

of the nonconvex cone F+
0 ∩ F1. For the purposes of computation, we assume that

F+
0 ∩ F1 is described as

F+
0 ∩ F1 = {x ∈ Rn : ‖BT0 x‖ ≤ bT0 x, xTA1x ≤ 0},

where B0 is nonzero, 0 6= b0 6∈ Range(B0), and A0 = B0B
T
0 − b0bT0 in accordance with

(5). In particular, F+
0 is given in its direct SOC form. Our goal is to calculate F+

s in

terms of its SOC form ‖BTs x‖ ≤ bTs x, to which we will refer as the SOC cut.

Before one can apply Theorem 1 to generate the cut, Conditions 1–3 must be

verified. By construction, Condition 1 is satisfied, and verifying Condition 3(i) is easy.

Conditions 3(ii) and 3(iii) are also easy to verify by computing the eigenvalues of

ZT0 A1Z0, where Z0 is a matrix whose columns span null(A0). Due to (6) and the fact

that F0 and F1 are cones, verifying Condition 2 is equivalent to checking the feasibility

of the following quadratic equations in the original variables x ∈ Rn and the auxiliary

“squared slack” variables s, t ∈ R:

xTA0x+ s2 = −1, xTA1x+ t2 = −1.

Let us define the underlying symmetric (n+ 2)× (n+ 2) matrices for these quadratics

as Â0 and Â1. Since there are only two quadratic equations with symmetric matrices,

by [10, Corollary 13.2], checking Condition 2 is equivalent to checking the feasibility of

the following linear semidefinite system, which can be done easily in practice:

Y � 0, trace(Â0Y ) = −1, trace(Â1Y ) = −1. (10)

See also [44] for a similar result.

This equivalence of Condition 2 and the feasibility of system (10) relies on the

fact that every extreme point of (10) is a rank-1 matrix, and such extreme points can

be calculated in polynomial time [44]. Extreme points can also be generated reliably

(albeit heuristically) in practice to calculate an interior point x̄ ∈ int(F+
0 ∩ F1). One

can simply minimize over (10) the objective trace((I + R)Y ), where I is the identity

matrix and R is a random matrix, small enough so that I+R remains positive definite.

The objective trace((I + R)Y ) is bounded over (10), and hence an optimal solution

occurs at an extreme point. The random nature of the objective also makes it highly

likely that the optimal solution is unique, in which case the optimal Y ∗ must be rank-

1. Then x̄ can easily be extracted from the rank-1 factorization of Y ∗. Note that in

certain specific cases x̄ might be known ahead of time or could be computed right away

by some other means.

Once Conditions 1–3 have been verified, we are then ready to calculate s according

to its definition (7). If Condition 3(iii) holds, we simply set s = 0. For Conditions 3(i)

and 3(ii), we need to calculate T , the set of scalars t such that At := (1− t)A0 + tA1 is

singular. Let us first consider Condition 3(i), which is the simpler case. The following

calculation with t 6= 0 shows that the elements of T are in bijective correspondence

with the real eigenvalues of A−10 A1:

At is singular ⇐⇒ ∃ x 6= 0 s. t. Atx = 0

⇐⇒ ∃ x 6= 0 s. t. A−10 A1x = −
(
1−t
t

)
x

⇐⇒ −
(
1−t
t

)
is an eigenvalue of A−10 A1.
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So to calculate T , we calculate the real eigenvalues E of A−10 A1, and then calculate

T = {(1− e)−1 : e ∈ E}, where by convention 0−1 =∞. In particular, |T | is finite.

When Condition 3(ii) holds, we calculate T in a slightly different manner. We

will show in Section 4 (see Lemma 1 in particular) that, even though A0 is singular,

Aε is nonsingular for all ε > 0 sufficiently small. Such an Aε could be calculated by

systematically testing values of ε near 0, for example. Then we can apply the procedure

of the previous paragraph to calculate the set T of all t̄ such that (1 − t̄)Aε + t̄A1 is

singular. Then one can check that T is calculated by the following affine transformation:

T = {(1− ε)t̄+ ε : t̄ ∈ T }.
Once T is computed, we can easily calculate s = min(T ∩ (0, 1]) according to (7),

and then we construct As := (1− s)A0 + sA1 and calculate (Bs, bs) according to (5).

Then our cut is ‖BTs x‖ ≤ bTs x with only one final provision. We must check the sign

of bTs x̄, where x̄ ∈ int(F+
0 ∩ F1) has been calculated previously. If bTs x̄ ≥ 0, then the

cut is as stated; if bTs x̄ < 0, then the cut is as stated but bs is first replaced by −bs.
We summarize the preceding discussion by the pseudocode in Algorithm 1. While

this algorithm is quite general, it is also important to point out that it can be stream-

lined if one already knows the structure of ‖BT0 x‖ ≤ bT0 x and xTA1x ≤ 0. For example,

one may already know that A0 is invertible, in which case it would be unnecessary to

calculate the spectral decomposition of A0 in Algorithm 1. In addition, for many of

the specific cases that we consider in Sections 5 and 6, we can explicitly point out the

corresponding value of s without even relying on the computation of the set T . Because

of space considerations, we do not include these closed-form expressions for s and the

corresponding computations.

Finally, we mention briefly the computability of Conditions 4 and 5, which are

not necessary for the validity of the cut but can establish its sufficiency. Given s < 1,

Condition 4 can be checked by computing ZTs A1Zs, where Zs has columns spanning

null(As). We know ZTs A1Zs � 0 because apex(F+
s ) ⊆ F1 (see Lemma 3 in Section

4), and then Condition 4 holds as long as ZTs A1Zs 6= 0. On the other hand, it seems

challenging to verify Condition 5 in general. However, in Sections 5 and 6, we will show

that it can be verified in many examples of interest.

3.3 An ellipsoid and a nonconvex quadratic

In R3, consider the intersection of the unit ball defined by y21 + y22 + y23 ≤ 1 and the

nonconvex set defined by the quadratic −y21 − y22 + 1
2y

2
3 ≤ y1 + 1

2y2. By homogenizing

via x =
(
y
x4

)
with x4 = 1, we can represent the intersection as F+

0 ∩ F1 ∩H
1 with

A0 :=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , A1 :=


−1 0 0 − 1

2
0 −1 0 − 1

4
0 0 1

2 0

− 1
2 −

1
4 0 0

 , H1 := {x : x4 = 1}.

Conditions 1 and 3(i) are straightforward to verify, and Condition 2 is satisfied with

x̄ = ( 12 ; 0; 0; 1), for example. We can also calculate s = 1
2 from (7). Then

As = 1
8


0 0 0 −2

0 0 0 −1

0 0 6 0

−2 −1 0 −4

 , Fs =
{
x : 3x23 ≤ 2x1x4 + x2x4 + 2x24

}
.
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Algorithm 1 Calculate Cut (see also Section 3.2)

Input: Inequalities ‖BT0 x‖ ≤ bT0 x and xTA1x ≤ 0.

Output: Valid cut ‖BTs x‖ ≤ bTs x.

1: Calculate A0 = B0B
T
0 − b0bT0 and a spectral decomposition Q0 Diag(λ0)QT0 . Let

Z0 be the submatrix of Q0 of zero eigenvectors (possibly empty).

2: Minimize trace((I + R)Y over (10). If infeasible, then STOP. Otherwise, extract

x̄ ∈ int(F+
0 ∩ F

1) from Y ∗.
3: if Z0 is empty then

4: Calculate the set E of real eigenvalues of A−10 A1.

5: Set T = {(1− e)−1 : e ∈ E}.
6: Set s = min(T ∩ (0, 1]).

7: else if ZT0 A1Z0 � 0 then

8: Determine ε > 0 small such that Aε = (1− ε)A0 + εA1 is invertible.

9: Calculate the set E of real eigenvalues of A−1ε A1.

10: Set T = {(1− ē)−1 : ē ∈ E}.
11: Set T = {(1− ε)t̄+ ε : t̄ ∈ T }.
12: Set s = min(T ∩ (0, 1]).

13: else if ZT0 A1Z0 ≺ 0 then

14: Set s = 0.

15: else

16: STOP.

17: end if

18: Calculate As = BsB
T
s − bsbTs and a spectral decomposition Qs Diag(λs)Q

T
s . Let

(Bs, bs) be given by (5).

19: If bTs x̄ < 0, replace bs by −bs.

The negative eigenvalue of As is λs1 := − 5
8 with corresponding eigenvector qs1 :=

(2; 1; 0; 5), and so, in accordance with the Section 2, we have that F+
s equals all x ∈ Fs

satisfying bTs x ≥ 0, where

bs := (−λs1)1/2qs1 =
√

5/8


2

1

0

5

 .

In other words,

F+
s :=

{
x :

3x23 ≤ 2x1x4 + x2x4 + 2x24
2x1 + x2 + 5x4 ≥ 0

}
.

Note that x̄ ∈ F+
s . In addition, apex(F+

s ) = null(As) = span{d}, where d = (1;−2; 0; 0).

Clearly, d ∈ H0 and dTA1d < 0, which verifies Conditions 4 and 5 simultaneously. Set-

ting x4 = 1 and returning to the original variables y, we see{
y :

y21 + y22 + y23 ≤ 1

3y23 ≤ 2y1 + y2 + 2

}
= cl. conv. hull

{
y :

y21 + y22 + y23 ≤ 1

−y21 − y22 + 1
2y

2
3 ≤ y1 + 1

2y2

}
,

where the now redundant constraint 2y1 +y2 ≥ −5 has been dropped. Figure 1 depicts

the original set, F+
s ∩H1, and the closed convex hull.

Of the earlier, related approaches, this example can be handled by [40] only. In

particular, [2,13,23,35,36,55] cannot handle this example because they deal with only
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(a) F+
0 ∩ F1 ∩H1 (b) F+

s ∩H1 (c) F+
0 ∩ F+

s ∩H1

Fig. 1 An ellipsoid and a nonconvex quadratic

split or two-term disjunctions but cannot cover general nonconvex quadratics. The

approach of [14] is based on eliminating a convex region from a convex epigraphical

set, but this example removes a nonconvex region (specifically, Rn \F1). So [14] cannot

handle this example either.

In actuality, the results of [40] do not handle this example explicitly since the

authors only state results for: the removal of a paraboloid or an ellipsoid from a

paraboloid; or the removal of an ellipsoid (or an ellipsoidal cylinder) from another ellip-

soid with a common center. However, in this particular example, the function obtained

from the aggregation technique described in [40] is convex on all of R3. Therefore, their

global convexity requirement on the aggregated function is satisfied for this example.

4 The Proof

In this section, we build the proof of Theorem 1, and we provide important insights

along the way. The key results are Propositions 5–7, which state

F+
0 ∩ F1 ⊆ F

+
0 ∩ F

+
s ⊆ conic. hull(F+

0 ∩ F1)

F+
0 ∩ F1 ∩H

1 ⊆ F+
0 ∩ F

+
s ∩H1 ⊆ conv. hull(F+

0 ∩ F1 ∩H
1),

where s is given by (7). In each line here, the first containment depends only on

Conditions 1–3, which proves the first part of Theorem 1. On the other hand, the

second containments require Condition 4 and Conditions 4–5, respectively. Then the

second part of Theorem 1 follows by simply taking the closed conic hull and the closed

convex hull, respectively, and noting that F+
0 ∩ F

+
s and F+

0 ∩ F
+
s ∩ H1 are already

closed and convex.

4.1 The interval [0, s]

Our next result, Lemma 1, is quite technical but critically important. For example, it

establishes that the line of matrices {At} contains at least one invertible matrix not

equal to A1. As discussed in Section 3, this proves that the set T used in the definition
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(7) of s is finite and easily computable. The lemma also provides additional insight

into the definition of s. Specifically, the lemma clarifies the role of Condition 3 in (7).

Lemma 1 For ε > 0 small, consider Aε and A−ε. Relative to Condition 3:

– if (i) holds, then Aε and A−ε are each invertible with one negative eigenvalue;

– if (ii) holds, then only Aε is invertible with one negative eigenvalue;

– if (iii) holds, then only A−ε is invertible with one negative eigenvalue.

Since the proof of Lemma 1 is involved, we delay it until the end of this subsection.

If Condition 3(i) or 3(ii) holds, then Lemma 1 shows that the interval (0, ε) contains

invertible At, each with exactly one negative eigenvalue, and (7) takes s to be the largest

ε with this property. By continuity, As is singular (when s < 1) but still retains exactly

one negative eigenvalue, a necessary condition for defining F+
s in Theorem 1. On the

other hand, if Condition 3(iii) holds, then A0 is singular and no ε > 0 has the property

just mentioned. Yet, s = 0 is still the natural “right-hand limit” of invertible A−ε, each

with exactly one negative eigenvalue. This will be all that is required for Theorem 1.

With Lemma 1 in hand, we can prove the following key result, which sets up the

remainder of this section. The proof of Lemma 1 follows afterwards.

Proposition 4 Suppose Conditions 1–3 hold. For all t ∈ [0, s], At has exactly one

negative eigenvalue. In addition, At is nonsingular for all t ∈ (0, s), and if s < 1, then

As is singular.

Proof Condition 2 implies (6), and so x̄TAtx̄ = (1− t) x̄TA0x̄+ t x̄TA1x̄ < 0 for every

t. So each At has at least one negative eigenvalue. Also, the definition of s ensures that

all At for t ∈ (0, s) are nonsingular and that As is singular when s < 1.

Suppose that some At with t ∈ [0, s] has two negative eigenvalues. Then by Con-

dition 1 and the facts that the entries of At are affine functions of t and the eigen-

values depend continuously on the matrix entries [28, Section 2.4.9], there exists some

0 ≤ r < t ≤ s with at least one zero eigenvalue, i.e., with Ar singular. From the defi-

nition of s, we deduce that r = 0 and Aε has two negative eigenvalues for ε > 0 small.

Then Condition 3(ii) holds since s > 0. However, we then encounter a contradiction

with Lemma 1, which states that Aε has exactly one negative eigenvalue. ut

Proof (of Lemma 1) The lemma holds under Condition 3(i) since A0 is invertible with

exactly one negative eigenvalue and the eigenvalues are continuous in ε.

Suppose Condition 3(ii) holds. Let V be the subspace spanned by the zero and

positive eigenvectors of A0, and consider

θ := inf{xTA0x : xT (A0 −A1)x = 1, x ∈ V }.

Clearly θ ≥ 0, and we claim θ > 0. If θ = 0, then there exists {xk} ⊆ V with

(xk)TA0x
k → 0 and (xk)T (A0−A1)xk = 1 for all k. If {xk} is bounded, then passing to

a subsequence if necessary, we have xk → x̂ such that x̂TA0x̂ = 0 and x̂T (A0−A1)x̂ =

1, which implies x̂TA1x̂ = −1, a contradiction of Condition 3(ii). On the other hand,

if {xk} is unbounded, then the sequence dk := xk/‖xk‖ is bounded, and passing

to a subsequence if necessary, we see that dk → d̂ with ‖d̂‖ = 1, d̂TA0d̂ = 0 and

d̂T (A0 −A1)d̂ = 0. This implies d̂TA1d̂ = 0, violating Condition 3(ii). So θ > 0.

Now choose any 0 < ε ≤ θ/2, and take any nonzero x ∈ V . Note that

xTAεx = (1− ε)xTA0x+ εxTA1x = xTA0x− εxT (A0 −A1)x. (11)
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We wish to show xTAεx > 0, and so we consider three subcases. First, if xT (A0 −
A1)x = 0, then it must hold that xTA0x > 0. If not, then xTA1x = 0 also, violating

Condition 3(ii). So xTAεx = xTA0x > 0. Second, if xT (A0 − A1)x < 0, then because

x ∈ V we have xTAεx > 0. Third, if xT (A0 −A1)x > 0, then we may assume without

loss of generality by scaling that xT (A0 −A1)x = 1 in which case xTAεx ≥ θ − ε > 0.

So we have shown that Aε is positive definite on a subspace of dimension n − 1,

which implies that Aε has at least n−1 positive eigenvalues. In addition, we know that

Aε has at least one negative eigenvalue because x̄TAεx̄ < 0 according to Condition 2

and (6). Hence, Aε is invertible with exactly one negative eigenvalue, as claimed.

By repeating a very similar argument for vectors x ∈ W , the subspace spanned

by the negative and zero eigenvectors of A0 (note that W is at least two-dimensional

because Condition 3(ii) holds), and once again using the relation (11), we can show

that A−ε has at least two negative eigenvalues, as claimed.

Finally, suppose Condition 3(iii) holds and define

Āε :=
(

1
1+2ε

)
A−ε =

(
1

1+2ε

)
((1 + ε)A0 − εA1) =

(
1+ε
1+2ε

)
A0 +

(
ε

1+2ε

)
(−A1)

Ā−ε :=
(

1
1−2ε

)
Aε =

(
1

1−2ε
)

((1− ε)A0 + εA1) =
(

1−ε
1−2ε

)
A0 +

( −ε
1−2ε

)
(−A1).

Then Āε and Ā−ε are on the line generated by A0 and −A1 such that −A1 is positive

definite on the null space of A0. Applying the previous case for Condition 3(ii), we see

that only Āε is invertible with a single negative eigenvalue. This proves the result. ut

4.2 The containment F+
0 ∩ F1 ⊆ F

+
0 ∩ F

+
s

For each t ∈ [0, s], Proposition 4 allows us to define analogs Ft = F+
t ∪F

−
t as described

in Section 2 based on any spectral decomposition At = Qt Diag(λt)Q
T
t .

It is an important technical point, however, that in this paper we require λt and Qt
to be defined continuously in t. While it is well known that the vector of eigenvalues λt
can be defined continuously, it is also known that—if the eigenvalues are ordered, say,

such that [λt]1 ≤ · · · ≤ [λt]n for all t—then the corresponding eigenvectors, i.e., the

ordered columns of Qt, cannot be defined continuously in general. On the other hand,

if one drops the requirement that the eigenvalues in λt stay ordered, then the following

result of Rellich [46] (see also [32]) guarantees that λt and Qt can be constructed

continuously—in fact, analytically—in t:

Theorem 2 (Rellich [46]) Because At is analytic in the single parameter t, there

exist spectral decompositions At = Qt Diag(λt)Q
T
t such that λt and Qt are analytic in

t.

So we define F+
t and F−t using continuous spectral decompositions provided by

Theorem 2:

F+
t := {x : ‖BTt x‖ ≤ bTt x}

F−t := {x : ‖BTt x‖ ≤ −bTt x},

where Bt and bt such that At = BtB
T
t − btbTt are derived from the spectral decompo-

sition as described in Section 2. Recall from Proposition 3 that, for each t, a different

spectral decomposition could flip the roles of F+
t and F−t , but we now observe that
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Theorem 2 and Condition 2 together guarantee that each F+
t contains x̄ from Condi-

tion 2. In this sense, every F+
t has the same “orientation.” Our observation is enabled

by a lemma that will be independently helpful in subsequent analysis.

Lemma 2 Suppose Conditions 1–3 hold. Given t ∈ [0, s], suppose some x ∈ F+
t sat-

isfies bTt x = 0. Then t = 0 or t = s.

Proof Since xTAtx ≤ 0 with bTt x = 0, we have 0 = (bTt x)2 ≥ ‖BTt x‖2 which implies

Atx = (BtB
T
t − btbTt )x = Bt(B

T
t x) − bt(bTt x) = 0. So At is singular. By Proposition

4, this implies t = 0 or t = s. ut

Observation 1 Suppose Conditions 1–3 hold. Let x̄ ∈ int(F+
0 ∩ F1). Then for all

t ∈ [0, s], x̄ ∈ F+
t .

Proof Condition 2 implies bT0 x̄ > 0. Let t ∈ (0, s] be fixed. Since x̄TAtx̄ < 0 by (6),

either x̄ ∈ F+
t or x̄ ∈ F−t . Suppose for contradiction that x̄ ∈ F−t , i.e., bTt x̄ < 0. Then

the continuity of bt by Theorem 2 implies the existence of r ∈ (0, t) such that bTr x̄ = 0.

Because x̄TArx̄ < 0 as well, x̄ ∈ F+
r . By Lemma 2, this implies r = 0 or r = s, a

contradiction. ut

In particular, Observation 1 implies that our discussion in Section 3 on choosing x̄ ∈ F+
t

to facilitate the statement of Theorem 1 is indeed consistent with the discussion here.

The primary result of this subsection, F+
0 ∩ F

+
s is a valid convex relaxation of

F+
0 ∩ F1, is given below.

Proposition 5 Suppose Conditions 1–3 hold. Then F+
0 ∩ F1 ⊆ F

+
0 ∩ F

+
s .

Proof If s = 0, the result is trivial. So assume s > 0. In particular, Condition 3(i) or

3(ii) holds. Let x ∈ F+
0 ∩F1, that is, xTA0x ≤ 0, bT0 x ≥ 0, and xTA1x ≤ 0. We would

like to show x ∈ F+
0 ∩ F

+
s . So we need xTAsx ≤ 0 and bTs x ≥ 0. The first inequality

holds because xTAsx = (1− s)xTA0x+ s xTA1x ≤ 0. Now suppose for contradiction

that bTs x < 0. In particular, x 6= 0. Then by the continuity of bt via Theorem 2, there

exists 0 ≤ r < s such that bTr x = 0. Since xTArx ≤ 0 also, x ∈ F+
r , and Lemma 2

implies r = 0. So Condition 3(ii) holds. However, x ∈ F1 also, contradicting that A1 is

positive definite on null(A0). ut

4.3 The containment F+
0 ∩ F

+
s ⊆ conic. hull(F+

0 ∩ F1)

Proposition 5 in the preceding subsection establishes that F+
0 ∩ F

+
s is a valid convex

relaxation of F+
0 ∩F1 under Conditions 1–3. We now show that, in essence, the reverse

inclusion holds under Condition 4 (see Proposition 6). Indeed, when s = 1, we clearly

have F+
0 ∩F

+
1 ⊆ F

+
0 ∩F1 ⊆ conic. hull(F+

0 ∩F1). So the true case of interest is s < 1,

for which Condition 4 is the key ingredient. (However, results are stated to cover the

cases s < 1 and s = 1 simultaneously.)

As mentioned in Section 3, Condition 4 is a type of regularity condition in light of

Lemma 3 next. The proof of Proposition 6 also relies on Lemma 3.

Lemma 3 Suppose Conditions 1–3 hold. Then apex(F+
s ) ⊆ F1.
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Proof By Proposition 1, the claimed result is equivalent to null(As) ⊆ F1. Let d ∈
null(As). If s = 1, then dTA1d = 0, i.e., d ∈ bd(F1) ⊆ F1, as desired. If s = 0, then

Condition 3(iii) holds, that is, A0 is singular and A1 is negative definite on null(A0).

Then d ∈ null(A0) implies dTA1d ≤ 0, as desired.

So assume s ∈ (0, 1). If d 6∈ int(F0), that is, dTA0d ≥ 0, then the equation 0 =

(1− s) dTA0d+ s dTA1d implies dTA1d ≤ 0, as desired.

We have thus reduced to the case s ∈ (0, 1) and d ∈ int(F0), and we proceed

to derive a contradiction. Without loss of generality, assume that d ∈ int(F+
0 ) and

−d ∈ int(F−0 ). We know −d ∈ null(As) = apex(F+
s ) ⊆ F+

s . In total, we have −d ∈
F+
s ∩ int(F−0 ). We claim that, in fact, F+

t ∩ int(F−0 ) 6= ∅ as t→ s.

Note that F+
t is a full-dimensional set because x̄TAtx̄ < 0 by (6). Also, F+

t is

defined by the intersection of a homogeneous quadratic xTAtx ≤ 0 and a linear con-

straint bTt x ≥ 0 and (At, bt)→ (As, bs) as t→ s. Then the boundary of F+
t converges

to the boundary of F+
s as t → s. Since F+

t is a full-dimensional, convex set (in fact

SOC), F+
t then converges as a set to F+

s as t→ s. So there exists a sequence yt ∈ F+
t

converging to −d. In particular, F+
t ∩ int(F−0 ) 6= ∅ for t→ s.

We can now achieve the desired contradiction. For t < s, let x ∈ F+
t ∩int(F−0 ). Then

xTA0x ≤ 0, bT0 x < 0 and xTAtx ≤ 0, bTt x ≥ 0. It follows that xTArx ≤ 0, bTr x = 0

for some 0 < r ≤ t < s. Hence, Lemma 2 implies r = 0 or r = s, a contradiction. ut

Proposition 6 Suppose Conditions 1–4 hold. Then F+
0 ∩F

+
s ⊆ conic.hull(F+

0 ∩F1).

Proof First, suppose s = 1. Then the result follows because F+
0 ∩ F

+
1 ⊆ F

+
0 ∩ F1 ⊆

conic.hull(F+
0 ∩ F1). So assume s ∈ [0, 1).

Let x ∈ F+
0 ∩ F

+
s , that is, xTA0x ≤ 0, bT0 x ≥ 0 and xTAsx ≤ 0, bTs x ≥ 0. If

xTA1x ≤ 0, we are done. So assume xTA1x > 0.

By Condition 4, there exists d ∈ null(As) such that dTA1d < 0. In addition, d is

necessarily perpendicular to the negative eigenvector bs. For all ε ∈ R, consider the

affine line of points given by xε := x+ ε d. We have

xTε Asxε = (x+ ε d)TAs(x+ ε d) = xTAsx ≤ 0

bTs xε = bTs (x+ ε d) = bTs x ≥ 0

}
=⇒ xε ∈ F+

s .

Note that xTε A1xε = xTA1x+2 ε dTA1x+ε2 dTA1d. Then xTε A1xε defines a quadratic

function of ε and its roots are given by ε± =
−dTA1x±

√
(dTA1x)2−(xTA1x)(dTA1d)

dTA1d
.

Since xTA1x > 0 and dTA1d < 0, the discriminant is greater than |dTA1x|. Hence,

one of the roots will be positive and the other one will be negative. Then there exist

l := ε− < 0 < ε+ =: u such that xTl A1x
T
l = xTuA1xu = 0, i.e., xl, xu ∈ F1. Then

s < 1 and xTl Asxl ≤ 0 imply xTl A0xl ≤ 0, and hence xl ∈ F0. Similarly, xTuA0xu ≤ 0

leading to xu ∈ F0. We will prove in the next paragraph that both xl and xu are in

F+
0 , which will establish the result because then xl, xu ∈ F+

0 ∩ F
1 and x is a convex

combination of xl and xu.

Suppose that at least one of the two points xl or xu is not a member of F+
0 . Without

loss of generality, say xl 6∈ F+
0 . Then xl ∈ F−0 with −bT0 xl > 0. Similar to Proposition

5, we can prove F−0 ∩F1 ⊆ F
−
0 ∩F

−
s , and so xl ∈ F−0 ∩F

−
s . Then xl ∈ F+

s ∩F−s , which

implies bTs xl = 0 and BTs xl = 0, which in turn implies Asxl = 0, i.e., xl ∈ null(As).

Then x+ l d = xl ∈ null(As) implies x ∈ null(As) also. Then x ∈ F1 by Lemma 3, but

this contradicts the earlier assumption that xTA1x > 0. ut
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4.4 Intersection with an affine hyperplane

As discussed at the beginning of this section, Propositions 5-6 allow us to prove the

first two statements of Theorem 1. In this subsection, we prove the last statement of

the theorem via Proposition 7 below. Recall that H1 and H0 are defined according to

(8) and (9), where h ∈ Rn. Also define

H+ := {x : hT x ≥ 0}.

Our first task is to prove the analog of Propositions 5–6 under intersection with

H+. Specifically, we wish to show that the inclusions

F+
0 ∩ F1 ∩H

+ ⊆ F+
0 ∩ F

+
s ∩H+ ⊆ conic. hull(F+

0 ∩ F1 ∩H
+) (12)

hold under Conditions 1–5. As Condition 5 consists of two parts, we break the proof

into two corresponding parts (Lemma 4 and Corollary 2). Note that Condition 5 only

applies when s < 1, although results are stated covering both s < 1 and s = 1

simultaneously.

Lemma 4 Suppose Conditions 1–4 and the first part of Condition 5 hold. Then (12)

holds.

Proof Proposition 5 implies that F+
0 ∩ F1 ∩H

+ ⊆ F+
0 ∩ F

+
s ∩H+. Moreover, we can

repeat the proof of Proposition 6, intersecting with H+ along the way. However, we

require one key modification in the proof of Proposition 6.

Let x ∈ F+
0 ∩F

+
s ∩H+ with xTA1x > 0. Then, mimicking the proof of Proposition

6 for s ∈ [0, 1) and d ∈ apex(F+
s ) ∩ int(F1) from Condition 4, x ∈ {xε := x+ ε d : ε ∈

R} ⊆ F+
s . Moreover, x is a strict convex combination of points xl, xu ∈ F+

0 ∩F1 where

xl, xu are as defined in the proof of Proposition 6. Hence, the entire closed interval

from xl to xu is contained in F+
0 ∩ F

+
s .

Under the first part of Condition 5, if there exists d ∈ apex(F+
s ) ∩ int(F1) ∩H0,

then hT d = 0 and this particular d can be used to show that xl, xu identified in the

proof of Proposition 6 also satisfy hT xl = hT (x+ l d) = hT x ≥ 0 (recall that x ∈ H+)

and hT xu = hT (x + u d) = hT x ≥ 0, i.e., xl, xu ∈ F+
0 ∩ F1 ∩H

+. Then this implies

x ∈ F+
0 ∩ F1 ∩H

+, as desired. ut

Regarding the second part of Condition 5, we prove Corollary 2 using the following

more general lemma involving cones that are not necessarily SOCr:

Lemma 5 Let G0, G1, and Gs be cones such that G0,Gs are convex, G0∩G1 ⊆ G0∩Gs ⊆
conic.hull(G0 ∩ G1) and G0 ∩ Gs ∩H0 ⊆ G1. Then

G0 ∩ G1 ∩H+ ⊆ G0 ∩ Gs ∩H+ ⊆ conic. hull(G0 ∩ G1 ∩H+).

Proof For notational convenience, define G01 := G0∩G1 and G0s := G0∩Gs. We clearly

have G01 ∩ H+ ⊆ G0s ∩ H+ ⊆ conic. hull(G01) ∩ H+. We will show G0s ∩ H+ ⊆
conic.hull(G01 ∩H+). Consider x ∈ G0s ∩H+. Either hT x = 0 or hT x > 0.

If hT x = 0, then x ∈ G0s ∩ H0 ⊆ G1 by the premise of the lemma. Thus x ∈
G0s ∩H+ ∩ G1 ⊆ conic. hull(G01 ∩H+), as desired.

When hT x > 0, because G0s ⊆ conic. hull(G01), we know that x can be expressed

as a finite sum x =
∑
k λkx

k, where each xk ∈ G01 ⊆ G0s and λi > 0. Define I := {k :

hT xk ≥ 0} and J := {k : hT xk < 0}. If J = ∅, then we are done as we have shown
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x ∈ conic. hull(G01∩H+). If not, then for all j ∈ J , let yj be a strict conic combination

of x and xj such that yj ∈ H0. In particular, there exists αj ≥ 0 and βj > 0 such that

yj = αjx+ βjx
j . Note also that yj ∈ G0s because G0s is convex and x, xj ∈ G0s. Then

yj ∈ G0s ∩H0 ⊆ G1. As a result, for all j ∈ J , we have yj ∈ G01 ∩H+. Rewriting x as

x =
∑
i∈I

λix
i+
∑
j∈J

λj
βj

(
yj − αjx

)
⇐⇒

1 +
∑
j∈J

λjαj
βj

x =
∑
i∈I

λix
i+
∑
j∈J

λj
βj
yj ,

we conclude that x is a conic combination of points in G01 ∩H+, as desired. ut

Corollary 2 Suppose Conditions 1–4 and the second part of Condition 5 hold. Then

(12) holds.

Proof Apply Lemma 5 with G0 := F+
0 , G1 := F1, and Gs := F+

s . Propositions 5–6 and

the second part of Condition 5 ensure that the hypotheses of Lemma 5 are met. Then

the result follows. ut

Even though our goal in this subsection is Proposition 7, which involves inter-

section with the hyperplane H1, we remark that Lemmas 4–5 can help us investigate

intersections with homogeneous halfspaces H+ for SOCr cones (Lemma 4) or more gen-

eral cones (Lemma 5). Further, by iteratively applying Lemmas 4–5, we can consider

intersections with multiple halfspaces, say, H+
1 , . . . , H

+
m.

Given Lemma 4 and Corollary 2, we are now ready to prove our main result for this

subsection, Proposition 7, which establishes the second part of Theorem 1. It requires

the following simple lemmas which are applicable to general sets and cones:

Lemma 6 Let S be any set, and let rec. cone(S) be its recession cone. Then conv.hull(S)+

conic.hull(rec. cone(S)) = conv. hull(S).

Proof The containment ⊇ is clear. Now let x+ y be in the left-hand side such that

x =
∑
k

λkxk, xk ∈ S, λk > 0,
∑
k

λk = 1,

and y =
∑
j

ρjyj , yj ∈ rec. cone(S), ρj > 0.

Without loss of generality, we may assume the number of xk’s equals the number of

yj ’s by splitting some λkxk or some ρjyj as necessary. Then

x+ y =
∑
k

(λkxk + ρkyk) =
∑
k

λk(xk + λ−1k ρkyk) ∈ conv.hull(S). ut

Lemma 7 Let G01 and G0s be cones (not necessarily convex) such that G01 ∩ H+ ⊆
G0s ∩H+ ⊆ conic. hull(G01 ∩H+). Then G01 ∩H1 ⊆ G0s ∩H1 ⊆ conv. hull(G01 ∩H1).

Proof We have G01 ∩H1 ⊆ G0s ∩H1 ⊆ conic.hull(G01 ∩H+) ∩H1. We claim further

that

conic. hull(G01 ∩H+) ∩H1 ⊆ conic. hull(G01 ∩H0) + conv. hull(G01 ∩H1). (13)

Then applying Lemma 6 with S := G01 ∩H1 and rec. cone(S) = G01 ∩H0, we see that

conic.hull(G01 ∩H+) ∩H1 ⊆ conv. hull(G01 ∩H1), which proves the lemma.
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To prove the claim (13), let x ∈ conic.hull(G01 ∩H+) ∩H1. Then

hT x = 1 and x =
∑
k

λkxk, xk ∈ G01 ∩H+, λk > 0,

which may further be separated as

x =
∑

k :hT xk>0

λkxk︸ ︷︷ ︸
:=y

+
∑

k :hT xk=0

λkxk︸ ︷︷ ︸
:=r

= y + r.

Note that r ∈ conic. hull(G01∩H0), and so it sufficies to show y ∈ conv.hull(G01∩H1).

Rewrite y as

y =
∑

k :hT xk>0

λkxk =
∑

k :hT xk>0

(λk · hT xk)︸ ︷︷ ︸
:=λ̃k

(xk/h
T xk)︸ ︷︷ ︸

:=x̃k

=:
∑

k :hT xk>0

λ̃kx̃k.

By construction, each x̃k ∈ G01 ∩H1. Moreover, each λ̃k is positive and∑
k :hT xk>0

λ̃k =
∑

k :hT xk>0

λk · hT xk = hT y = hT (x− r) = 1− 0 = 1,

since x ∈ H1. So y ∈ conv.hull(G01 ∩H1). ut

Proposition 7 Suppose Conditions 1–5 hold. Then F+
0 ∩F1∩H

1 ⊆ F+
0 ∩F

+
s ∩H1 ⊆

conv. hull(F+
0 ∩ F1 ∩H

1).

Proof Define G01 := F+
0 ∩ F1 and G0s := F+

0 ∩ F
+
s . Lemma 4 and Corollary 2 imply

G01 ∩H+ ⊂ G0s ∩H+ ⊆ conic. hull(G01) ∩H+. Then Lemma 7 implies the result. ut

As with Lemma 5, we have stated Lemma 7 in terms of general cones, extending

beyond just SOCr cones. In particular, in future research, these results may allow the

derivation of conic and convex hulls for the intersects with more general cones.

5 Two-term disjunctions on the second-order cone

In this section (specifically Sections 5.1–5.4), we consider the intersection of the canon-

ical second-order cone

K := {x : ‖x̃‖ ≤ xn}, where x̃ = (x1; . . . ;xn−1),

and a two-term linear disjunction defined by cT1 x ≥ d1 ∨ cT2 x ≥ d2. Without loss of

generality, we take d1, d2 ∈ {0,±1} with d1 ≥ d2, and we work with the following

condition:

Condition 6 The disjunctive sets K1 := K∩{x : cT1 x ≥ d1} and K2 := K∩{x : cT2 x ≥
d2} are non-intersecting except possibly on their boundaries, e.g.,

K1 ∩ K2 ⊆
{
x ∈ K :

cT1 x = d1
cT2 x = d2

}
.
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This condition ensures that, on K, the disjunction cT1 x ≥ d1 ∨ cT2 x ≥ d2 is equivalent to

the quadratic inequality (cT1 x−d1)(cT2 x−d2) ≤ 0. Condition 6 is satisfied, for example,

when the disjunction is a proper split, i.e., c1 ‖ c2 with cT1 c2 < 0, K1 ∪ K2 6= K, and

d1 = d2. (In this case of a split disjunction, if d1 6= d2, then it can be shown that the

closed conic hull of K1 ∪ K2 is just K.)

Because d1, d2 ∈ {0,±1} with d1 ≥ d2, we can break our analysis into the following

three cases with a total of six subcases:

(a) d1 = d2 = 0, covering subcase (d1, d2) = (0, 0);

(b) d1 = d2 nonzero, covering subcases (d1, d2) ∈ {(−1,−1), (1, 1)};
(c) d1 > d2, covering subcases (d1, d2) ∈ {(0,−1), (1,−1), (1, 0)}.

Case (a) is the homogeneous case, in which we take A0 = J := Diag(1, . . . , 1,−1) and

A1 = c1c
T
2 + c2c

T
1 to match our set of interest K∩F1. Note that K = F+

0 in this case.

For the non-homogeneous cases (b) and (c), we can homogenize via y =
(

x
xn+1

)
with

hT y = xn+1 = 1. Defining

A0 :=

(
J 0

0 0

)
, A1 :=

(
c1c

T
2 + c2c

T
1 −d2c1 − d1c2

−d2cT1 − d1cT2 2d1d2

)
,

we then wish to examine F+
0 ∩ F1 ∩H

1.

In fact, by the results in [36, Section 5.2], case (c) implies that cl. conic. hull(F+
0 ∩

F1) cannot in general be captured by two conic inequalities, making it unlikely that

our desired equality cl. conv.hull(F+
0 ∩F1 ∩H

1) = F+
0 ∩F

+
s ∩H1 will hold in general.

So we will focus on cases (a) and (b). Nevertheless, we include some comments on case

(c) in Section 5.4.

Later on, in Section 5.3, we will also revisit Condition 6 to show that it is unnec-

essary in some sense. Precisely, even when Condition 6 does not hold, we can derive

a related convex valid inequality, which, together with F+
0 , gives the complete convex

hull description. This inequality precisely matches the one already described in [36],

but it does not have an SOC form.

In contrast to Sections 5.1–5.4, Section 5.5 examines two-term disjunctions on conic

sections of K, i.e., intersections of K with a hyperplane.

5.1 The case (a) of d1 = d2 = 0

As discussed above, we have A0 := J and A1 := c1c
T
2 + c2c

T
1 . If either ci ∈ K, then

the corresponding side of the disjunction Ki simply equals K, so the conic hull is K.

In addition, if either ci ∈ int(−K), then Ki = {0}, so the conic hull equals the other

Kj . Hence, we assume both ci 6∈ K ∪ int(−K), i.e., ‖c̃i‖ ≥ |ci,n|, where ci =
(
c̃i
ci,n

)
.

Since the example in Section 4 of the Online Supplement violates Condition 4 with

‖c̃2‖ = |c2,n|, we further assume that both ‖c̃i‖ > |ci,n|.
Conditions 1 and 3(i) are easily verified. In particular, s > 0. Condition 2 describes

the full-dimensional case of interest. It remains to verify Condition 4. (Note that Con-

dition 4 is only relevant when s < 1 and that Condition 5 is not of interest in this

homogeneous case.) So suppose s < 1, and given nonzero z ∈ null(As), we will show

zTA1z = 2(cT1 z)(c
T
2 z) < 0,
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verifying Condition 4. We already know from Lemma 3 that zTA1z ≤ 0. So it remains

to show that both cT1 z and cT2 z are nonzero.

Since z ∈ null(As), we know
(
1−s
s

)
A0z = −A1z, i.e.,

(
1−s
s

)( z̃

−zn

)
= −c1(cT2 z)− c2(cT1 z). (14)

Note that cT1 z =
(

c̃1
−c1,n

)T ( z̃
−zn
)
, so multiplying both sides of equation (14) with(

c̃1
−c1,n

)T
and rearranging terms, we obtain[

1−s
s + c̃T1 c̃2 − c1,nc2,n

]
(cT1 z) =

(
c21,n − ‖c̃1‖22

)
(cT2 z).

Similarly, using
(

c̃2
−c2,n

)T
, we obtain:[

1−s
s + c̃T1 c̃2 − c1,nc2,n

]
(cT2 z) =

(
c22,n − ‖c̃2‖22

)
(cT1 z).

The inequalities ‖c̃1‖ > |c1,n| and ‖c̃2‖ > |c2,n| thus imply cT1 z 6= 0 ⇔ cT2 z 6= 0.

Moreover, cT1 z and cT2 z cannot both be 0; otherwise, z would be 0 by (14).

Note that [35,36] give an infinite family of valid inequalities in this setup but do not

prove the sufficiency of a single inequality from this family. In this case, the sufficiency

proof for a single inequality from this family is given recently in [55]. None of the other

papers [2,23,40] are relevant here because they consider only split disjunctions, not

general two-term disjunctions. Because of the boundedness assumption used in [13],

[13] is not applicable here either. Similar to the example in Section 1 of the Online

Supplement, as long as the disjunction can be viewed as removing a convex set, we

can try to apply [14] to this case by considering the SOC as the epigraph of the norm

‖x̃‖. However, the authors’ special conditions for polynomial-time separability such as

differentiability or growth rate are not satisfied; see Theorem IV therein.

5.2 The case (b) of nonzero d1 = d2

In [36], it was shown that c1−c2 ∈ ±K implies one of the sets Ki defining the disjunction

is contained in the other Kj , and thus the desired closed convex hull trivially equals

Kj . So we assume c1 − c2 6∈ ±K, i.e., ‖c̃1 − c̃2‖2 > (c1,n − c2,n)2, where ci =
(
c̃i
ci,n

)
.

Defining σ = d1 = d2, we have

A0 :=

(
J 0

0 0

)
, A1 :=

(
c1c

T
2 + c2c

T
1 −σ(c1 + c2)

−σ(c1 + c2)T 2

)
.

Conditions 1 and 3(ii) are easily verified, and Condition 2 describes the full-dimensional

case of interest. It remains to verify Conditions 4 and 5. So assume s < 1, and note

s > 0 due to Condition 3(ii).

For any z+ ∈ Rn+1, write z+ =
(

z
zn+1

)
and z =

(
z̃
zn

)
∈ Rn. Suppose z+ 6= 0. Then

z+ ∈ null(As) ⇐⇒
(
1−s
s

)
A0z

+ = −A1z
+

⇐⇒
(
1−s
s

)
A0z

+ = −
(
c1
−σ
)(
c2
−σ
)T
z+ −

(
c2
−σ
)(
c1
−σ
)T
z+

=: α
(
c1
−σ
)

+ β
(
c2
−σ
)
.
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Since the last component of A0z
+ is zero, we must have β = −α. We claim α 6= 0.

Assume for contradiction that α = 0. Then z = 0, but zn+1 6= 0 as z+ is nonzero. On

the other hand, because z+ ∈ null(As), Lemma 3 implies 0 ≥ (z+)TA1z
+ = 2z2n+1, a

contradiction. So indeed α 6= 0.

Because z+ ∈ null(As) and s ∈ (0, 1), the equation

0 = (z+)TAsz
+ = (1− s)(z+)TA0z

+ + s(z+)TA1z
+,

implies Condition 4 holds if and only if (z+)TA0z
+ > 0. From the previous paragraph,

we have
(
1−s
s

)
A0z

+ = α
(
c1−c2

0

)
with α 6= 0. Then

(
1−s
s

)
(z+)TA0z

+ =

 α(c̃1 − c̃2)

−α(c1,n − c2,n)

zn+1

T  α(c̃1 − c̃2)

α(c1,n − c2,n)

0


= α2

(
‖c̃1 − c̃2‖2 − (c1,n − c2,n)2

)
> 0,

as desired.

However, it seems difficult to verify Condition 5 generally. For example, consider its

second part F+
0 ∩F

+
s ∩H0 ⊆ F1. In the current context, we have F+

0 ∩H
0 = K×{0},

and it is unclear if its intersection with F+
s would be contained in F1. Letting

(
ĥ
0

)
∈ F+

s

with ĥ ∈ K, we would have to check the following:

0 ≥

(
ĥ

0

)T
As

(
ĥ

0

)
= (1− s) ĥT Jĥ+ 2s (cT1 ĥ)(cT2 ĥ) =⇒

(
ĥ

0

)
∈ F1.

If ĥ were in the interior of K, then ĥT Jĥ < 0 could still allow (cT1 ĥ)(cT2 ĥ) > 0, so that(
ĥ
0

)
∈ F1 would not be achieved. So it seems Condition 5 will hold under additional

conditions only.

One such set of conditions ensuring Condition 5 is as follows: there exists β1, β2 ≥ 0

such that β1c1 + c2 ∈ −K and β2c1 + c2 ∈ K. These hold, for example, for split

disjunctions, i.e., when c2 is a negative multiple of c1. To prove Condition 5, take

ĥ ∈ K. Then cT1 ĥ ≥ 0 implies

cT2 ĥ = −β1cT1 ĥ+ (β1c1 + c2)T ĥ ≤ 0 + 0 = 0,

and similarly cT1 ĥ ≤ 0 implies cT2 ĥ ≥ 0. Then overall ĥ ∈ K implies (cT1 ĥ)(cT2 ĥ) ≤ 0. In

the context of the previous paragraph, this ensures F+
0 ∩ F

+
s ∩H0 ⊆ F+

0 ∩H
0 ⊆ F1,

thus verifying Condition 5.

Note that [35,36] cover this case. In the case of split disjunctions with d1 = d2 = 1,

these results are also presented in [2,40]. Whenever the boundedness assumption of

[13] is satisfied, one can use their result as well, but the papers [23,55] are not relevant

here. Similar to the previous subsection, [14] is limited in its application to this case.

5.3 Revisiting Condition 6

For the cases d1 = d2 of Sections 5.1 and 5.2, we know that F+
0 ∩F

+
s is a valid convex

relaxation of F+
0 ∩ F1 under Conditions 1–3 and 6. The same holds for the cross-

sections: F+
0 ∩ F

+
s ∩ H1 is a relaxation of F+

0 ∩ F1 ∩ H
1. Because Condition 3(i) is
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verified in the case of d1 = d2 = 0 and Condition 3(ii) is verified in the case of nonzero

d1 = d2, we have s > 0. However, when Condition 6 is violated, it may be possible

that F+
s is invalid for points simultaneously satisfying both sides of the disjunction,

i.e., points x with cT1 x ≥ d1 and cT2 x ≥ d2. This is because such points can violate the

quadratic (cT1 x − d1)(cT2 x − d2) ≤ 0 from which F+
s is derived. In such cases, the set

F+
s should be relaxed somehow.

Recall that, by definition, F+
s = {x : xTAsx ≤ 0, bTs x ≥ 0}. Let us examine the

inequality xTAsx ≤ 0, which can be rewritten as

0 ≥ (1− s)xT Jx+ 2s (cT1 x− d1)(cT2 x− d2)

⇐⇒ 0 ≥ 2(1− s)xT Jx+ s
(

[(cT1 x− d1) + (cT2 x− d2)]2 − [(cT1 x− d1)− (cT2 x− d2)]2
)

⇐⇒ s [(c1 − c2)T x− (d1 − d2)]2 − 2(1− s)xT Jx ≥ s [(c1 + c2)T x− (d1 + d2)]2.

Note that the left hand-side of the third inequality is nonnegative for any x ∈ K since

xT Jx ≤ 0. Therefore, x ∈ K implies xTAsx ≤ 0 is equivalent to√[
(c1 − c2)T x− (d1 − d2)

]2 − 2
(
1−s
s

)
xT Jx ≥ |(c1 + c2)T x− (d1 + d2)|. (15)

An immediate relaxation of (15) is√[
(c1 − c2)T x− (d1 − d2)

]2 − 2
(
1−s
s

)
xT Jx ≥ (d1 + d2)− (c1 + c2)T x (16)

since |(c1 + c2)T x− (d1 + d2)| ≥ (d1 + d2)− (c1 + c2)T x. Note also that (16) is clearly

valid for any x satisfying cT1 x ≥ d1 and cT2 x ≥ d2 since the two sides of the inequality

have different signs in this case. In total, the set

G+s := {x : (16) holds, bTs x ≥ 0}

is a valid relaxation when Condition 6 does not hold. Although not obvious, it follows

from [36] that (16) is a convex inequality. In that paper, (16) was encountered from a

different viewpoint, and its convexity was established directly, even though it does not

admit an SOC representation. So in fact G+s is convex.

Now let us assume that Condition 4 holds as well so that F+
s captures the conic

hull of the intersection of F+
0 and (cT1 x− d1)(cT2 x− d2) ≤ 0. We claim that F+

0 ∩ G
+
s

captures the conic hull when Condition 6 does not hold. (A similar claim will also hold

when Condition 5 holds for the further intersection with H1.) So let x̂ ∈ F+
0 ∩ G

+
s be

given. If (15) happens to hold also, then x̂TAsx̂ ≤ 0 ⇒ x̂ ∈ F+
s . Then x̂ is already

in the closed convex hull given by (cT1 x − d1)(cT2 x − d2) ≤ 0 by assumption. On the

other hand, if (15) does not hold, then it must be that (c1 + c2)T x̂ > d1 +d2. So either

cT1 x̂ > d1 or cT2 x̂ > d2. Whichever the case, x̂ satisfies the disjunction. Therefore x̂ is

in the closed convex hull, which gives the desired conclusion.

We remark that, despite their different forms, (16) and the inequality defining F+
s

both originate from xTAsx ≤ 0 and match precisely on the boundary of conic. hull(F+
0 ∩

F1)\(F+
0 ∩F1), e.g., the points added due to the convexification process. Moreover, (16)

can be interpreted as adding all of the recessive directions {d ∈ K : cT1 d ≥ 0, cT2 d ≥ 0}
of the disjunction to the set F+

0 ∩ F
+
s . Finally, the analysis in [36] shows in addition

that the linear inequality bTs x ≥ 0 is in fact redundant for G+s .

Note that [35,36] cover this case. Because the resulting convex hull is not conic

representable [13] is not applicable in this case. The papers [23,55] are not relevant

here and none of the other papers [2,40] cover this case because they focus on split

disjunctions only. As in the previous two subsections, [14] is limited in its application.
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5.4 The case (c) of d1 > d2

As mentioned above, the results of [36] ensure that cl. conic. hull(F+
0 ∩ F1) requires

more than two conic inequalities, making it highly likely that the closed convex hull

of F+
0 ∩ F1 ∩ H

1 requires more than two also. In other words, our theory would not

apply in this case in general. So we ask: which conditions are violated in this case?

Let us first consider when d1d2 = 0, which covers two subcases. Then

A0 :=

(
J 0

0 0

)
, A1 :=

(
c1c

T
2 + c2c

T
1 −d2c1 − d1c2

−d2cT1 − d1cT2 0

)
,

and it is clear that Condition 3 is not satisfied.

Now consider the remaining subcase when (d1, d2) = (1,−1). Then

A0 :=

(
J 0

0 0

)
, A1 :=

(
c1c

T
2 + c2c

T
1 c1 − c2

cT1 − cT2 −2

)
.

Condition 1 holds, and Condition 2 is the full-dimensional case of interest. Condition

3(iii) holds as well, so s = 0. Then Condition 4 requires vTA1v < 0, where v =

(0; . . . ; 0; 1), which is true. On the other hand, Condition 5 might fail. In fact, the

example in Section 5 of the Online Supplement provides just such an instance. This

being said, the same stronger condition discussed in Section 5.2 can be seen to imply

Condition 5, that is, when there exists β1, β2 ≥ 0 such that β1c1 + c2 ∈ −K and

β2c1 + c2 ∈ K. This covers the case of split disjunctions, for example.

Of course, even when all conditions do not hold, just Conditions 1-3, which hold

when d1d2 = −1, are enough to ensure the valid relaxations F+
0 ∩F

+
s and F+

0 ∩F
+
s ∩H1.

However, these relaxations may not be sufficient to describe the conic and convex hulls.

If necessary, another way to generate valid conic inequalities when d1 > d2 is as

follows. Instead of the original disjunction, consider the weakened disjunction cT1 x ≥
d2 ∨ cT2 x ≥ d2, where d2 replaces d1 in the first term. Clearly any point satisfying the

original disjunction will also satisfy the new disjunction. Therefore any valid inequality

for the new disjunction will also be valid for the original one. In Sections 5.1 and 5.2, we

have discussed the conditions under which Conditions 1-5 are satisfied when d1 = d2.

Even if the new disjunction violates Condition 6, as long as the original disjunction

satisfies Condition 6, the resulting inequalities from this approach will be valid.

Regarding the existing literature, the conclusions at the end of Section 5.3 also

apply here.

5.5 Conic sections

Let ρT1 x ≥ d1 ∨ ρT2 x ≥ d2 be a disjunction on a cross-section K∩H1 of the second-order

cone, where H1 = {x : hT x = 1}. We work with an analogous of Condition 6:

Condition 7 The disjunctive sets K1 := K ∩ H1 ∩ {x : ρT1 x ≥ d1} and K2 := K ∩
H1 ∩ {x : ρT2 x ≥ d2} are non-intersecting except possibly on their boundaries, e.g.,

K1 ∩ K2 ⊆
{
x ∈ K ∩H1 :

ρT1 x = d1
ρT2 x = d2

}
.
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We would like to characterize the convex hull of the disjunction, which is the same as

the convex hull of the disjunction (ρ1 − d1h)T x ≥ 0 ∨ (ρ2 − d2h)T x ≥ 0 on K ∩H1.

Defining c1 := ρ1−d1h, c2 := ρ2−d2h, A0 := J , and A1 := c1c
T
2 + c2c

T
1 , our goal is to

characterize cl. conv.hull(K∩F1 ∩H1). This is quite similar to the analysis in Section

5.1 except that here we also must verify Condition 5.

Conditions 1 and 3(i) are easily verified, and Condition 2 describes the full-dimensional

case of interest. Following the development in Section 5.1, we can verify Condition 4

when ‖ρ̃1− d1h̃‖2 > |ρ1,n− d1hn| and ‖ρ̃2− d2h̃‖2 > |ρ2,n− d2hn|, and otherwise the

convex hull is easy to determine. For Condition 5, we consider the cases of ellipsoids,

paraboloids, and hyperboloids separately.

Ellipsoids are characterized by h ∈ int(K), and soK∩H0 = {0}. ThusK∩F+
s ∩H0 =

{0} ⊆ F1 easily verifying Condition 5. On the other hand, paraboloids are characterized

by 0 6= h ∈ bd(K), and in this case, K∩H0 = cone{ĥ}, where ĥ := −Jh =
(−h̃
hn

)
. Thus,

to verify Condition 5, it suffices to show ĥ ∈ F+
s ⇒ ĥ ∈ F1. Indeed ĥ ∈ F+

s implies

0 ≥ ĥTAsĥ = (1− s) ĥT Jĥ+ s ĥTA1ĥ = s ĥTA1ĥ

because h ∈ bd(K) ensures ĥT Jĥ = 0. So ĥ ∈ F1.

It remains only to verify Condition 5 for hyperboloids, which are characterized

by h /∈ ±K, i.e., h =
(
h̃
hn

)
satisfies ‖h̃‖ > |hn|. However, it seems difficult to verify

Condition 5 generally. Still, we note that ĥ ∈ H0 implies

ĥTA1ĥ = 2(cT1 ĥ)(cT2 ĥ) = 2(ρT1 ĥ− d1hT ĥ)(ρT2 ĥ− d2hT ĥ) = 2(ρT1 ĥ)(ρT2 ĥ).

Then Condition 5 would hold, for example, when ρ1 and ρ2 satisfy the following, which

is identical to conditions discussed in Sections 5.2 and 5.4: there exists β1, β2 ≥ 0 such

that β1ρ1 + ρ2 ∈ −K and β2ρ1 + ρ2 ∈ K. This covers the case of split disjunctions, for

example.

We remark that our analysis in this subsection covers all of the various cases of split

disjunctions found in [40] and more. In particular, we handle ellipsoids and paraboloids

for all possible general two-term disjunctions (including the non-disjoint ones). On the

other hand, the cases we can cover for hyperboloids is a subset of those recently given

in [55]. Note that [23] covers only split disjunctions on ellipsoids. [13] covers two-term

disjunctions on ellipsoids and certain specific two-term disjunctions on paraboloids

and hyperboloids satisfying their disjointness and boundedness assumptions. None of

the papers [2,35,36] are relevant here. Finally, when the disjunction correspond to the

deletion of a convex set, the paper [14] applies to the cases for ellipsoids and paraboloids

because those sets can be viewed as epigraphs of strictly convex quadratics.

6 General Quadratics with Conic Sections

In this section, we examine the case of (nearly) general quadratics intersected with

conic sections of the SOC. For simplicity of presentation, we will employ affine trans-

formations of the sets F+
0 ∩F1∩H

1 of interest. It is clear that our theory is not affected

by affine transformations.
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6.1 Ellipsoids

Consider the set {
y ∈ Rn :

yT y ≤ 1

yTQy + 2 gT y + f ≤ 0

}
,

where λmin[Q] < 0. Note that if λmin[Q] ≥ 0, then the set is already convex. Allowing

an affine transformation, this set models the intersection of any ellipsoid with a general

quadratic inequality. We can model this set in our framework by homogenizing x =(
y

xn+1

)
and taking

A0 :=

(
I 0

0T −1

)
, A1 :=

(
Q g

gT f

)
, H1 := {x : xn+1 = 1}.

We would like to compute cl. conv.hull(F+
0 ∩ F1 ∩H

1).

Conditions 1 and 3(i) are clear, and Condition 2 describes the full-dimensional case

of interest. When s < 1, Condition 5 is satisfied because, in this case, F+
0 ∩H

0 = {0}
making the containment F+

0 ∩F
+
s ∩H0 ⊆ F1 trivial. In Sections 6.1.1 and 6.1.2 below,

we break the analysis of verifying Condition 4 into two subcases that we are able to

handle: (i) when λmin[Q] has multiplicity k ≥ 2; and (ii) when λmin[Q] ≤ f and g = 0.

Subcase (i) covers, for example, the situation of deleting the interior of an arbitrary

ball from the unit ball. Indeed, consider{
x ∈ Rn :

xT x ≤ 1

(x− c)T (x− c) ≥ r2

}
,

where c ∈ Rn and r > 0 are the center and radius of the ball to be deleted. Then case (i)

holds with (Q, g, f) = (−I, c, r2− cT c). On the other hand, subcase (ii) can handle, for

example, the deletion of the interior of an arbitrary ellipsoid from the unit ball—as long

as that ellipsoid shares the origin as its center. In other words, the portion to delete is

defined by xTEx < r2, for some E � 0 and r > 0, and we take (Q, g, f) = (−E, 0, r2).

Note that λmin[Q] ≤ −f ⇔ λmax[E] ≥ r2, which occurs if and only if the deleted

ellipsoid contains a point on the boundary of the unit ball. This is the most interesting

case because, if the deleted ellipsoid were either completely inside or outside the unit

ball, then the convex hull would simply be the unit ball itself. The subcase (ii) was

also studied in Corollary 9 of [40] and in [14]. Moreover, none of the other papers [2,

13,23,35,36,55] can handle this case.

6.1.1 When λmin[Q] has multiplicity k ≥ 2

Define Bt := (1 − t)I + tQ to be the top-left n × n corner of At. Since λmin[B1] < 0

with multiplicity k ≥ 2, there exists r ∈ (0, 1) such that: (i) Br � 0; (ii) λmin[Br] = 0

with multiplicity k; (ii) Bt � 0 for all t < r. We claim that s = r as a consequence of

the interlacing of eigenvalues with respect to At and Bt. Indeed, let λtn+1 := λmin[At]

and λtn denote the two smallest eigenvalues of At, and let ρtn and ρtn−1 denote the

analogous eigenvalues of Bt. It is well known that

λtn+1 ≤ ρtn ≤ λtn ≤ ρtn−1.

When t < r, we have λtn+1 < 0 < ρtn ≤ λtn, and when t = r, we have λrn+1 < 0 ≤ λrn ≤
0, which proves s = r.
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Since dim(null(Bs)) = k ≥ 2 and dim(span{g}⊥) = n − 1, there exists 0 6= z ∈
null(Bs) such that gT z = 0. We can show that

(
z
0

)
∈ null(As):

As

(
z

0

)
=

(
Bs s g

s gT (1− s)(−1) + sf

)(
z

0

)
=

(
Bsz

s gT z

)
=

(
0

0

)
.

Moreover,
(
z
0

)T
A1

(
z
0

)
= zTB1z = zTQz < 0 because z ∈ null(Bs) if and only if z is a

eigenvector of B1 = Q corresponding to λmin[Q]. This verifies Condition 4.

6.1.2 When λmin[Q] ≤ −f and g = 0

The argument is similar to the preceding subcase in Section 6.1.1. Note that

At =

(
(1− t)I + tQ 0

0 (1− t)(−1) + tf

)
=:

(
Bt 0

0 βt

)
is block diagonal, so that the singularity of At is determined by the singularity of Bt
and βt. Bt is first singular when t = 1/(1 − λmin[Q]), while βt is first singular when

t = 1/(1 + f) (assuming f > 0; if not, then βt is never singular). Then

1

1− λmin[Q]
≤ 1

1 + f
⇐⇒ λmin[Q] ≤ −f,

which holds by assumption. So Bt is singular before βt, leading to s = 1/(1−λmin[Q]).

Let 0 6= z ∈ null(Bs). Then, we have Qz = − 1−s
s z, and thus,

(
z
0

)
∈ null(As) with(

z
0

)T
A1

(
z
0

)
= zTB1z = zTQz < 0. Condition 4 is hence verified.

6.2 The trust-region subproblem

We show in this subsection that our methodology can be used to solve the trust-region

subproblem (TRS)

min
ỹ∈Rn−1

{
ỹT Q̃ỹ + 2 g̃T ỹ : ỹT ỹ ≤ 1

}
, (17)

where λmin[Q̃] < 0. Without loss of generality, we assume that Q̃ is diagonal with

Q̃(n−1)(n−1) = λmin[Q̃] after applying an orthogonal transformation that does not

change the feasible set.

Our intention is not necessarily to argue that the TRS should be solved numerically

with our approach, although this is an interesting question left as future work. Our

goal is to illustrate that the well-known problem (17) can be handled by our machinery.

We also believe that the corresponding SOCP formulation for the TRS as opposed to

its usual SDP formulation is independently interesting. Our transformations to follow

require simply two eigenvalue decompositions and the resulting SOCP can be solved

by interior point solvers very efficiently. We note that none of the previous papers,

in particular, [2,13,23,35,36,40,55] have given a transformation of the TRS into an

SOC optimization problem before. We recently became aware that an SOC based

reformulation of TRS was also given in Jeyakumar and Li [30]; our approach parallels

their developments from a different, convexification based, perspective.
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We first argue that (17) is equivalent to a trust-region subproblem

min
y∈Rn

{
yTQy + 2 gT y : yT y ≤ 1

}
(18)

in the n-dimensional variable y :=
(
ỹ
yn

)
. Indeed, define

Q :=

(
Q̃ 0

0T λmin[Q̃]

)
, g :=

(
g̃

0

)
,

and note that λmin[Q] has multiplicity at least 2. The following proposition shows that

(18) is equivalent to (17).

Proposition 8 There exists an optimal solution of (18) with yn = 0. In particular,

the optimal values of (17) and (18) are equal.

Proof Let ȳ be an optimal solution of (18). Then (ȳn−1; ȳn) is an optimal solution of

the two-dimensional trust-region subproblem

min
yn−1,yn

{
|λmin[Q̃]|(−y2n−1 − y2n) + 2g̃n−1yn−1 : y2n−1 + y2n ≤ ε

}
.

where ε := 1 − (ȳ21 + · · · ȳ2n−2). Since we are minimizing a concave function over the

ellipsoid, at least one optimal solution will be on the boundary of this set. In particular,

whenever g̃n−1 > 0, the solution
(
yn−1
yn

)
=
(−√ε

0

)
is optimal, and when g̃n−1 ≤ 0, the

solution
(
yn−1
yn

)
=
(√ε

0

)
is optimal. Thus, this problem has at least one optimal solution

with yn = 0. Hence, ȳn can be taken as 0. ut

With the proposition in hand, we now focus on the solution of (18).

A typical approach to solve (18) is to introduce an auxiliary variable xn+2 (where

we reserve the variable xn+1 for later homogenization) and to recast the problem as

min

{
xn+2 :

yT y ≤ 1

yTQy + 2 gT y ≤ xn+2

}
.

If one can compute the closed convex hull of this feasible set, then (18) is solvable by

simply minimizing xn+2 over the convex hull. We can represent this approach in our

framework by taking x = (y;xn+1;xn+2), homogenizing via xn+1 = 1, and defining

A0 :=

 I 0 0

0T −1 0

0T 0 0

 , A1 :=

Q g 0

gT 0 − 1
2

0T − 1
2 0

 , H1 := {x ∈ Rn+2 : xn+1 = 1}.

Clearly, Conditions 1 and 2 are satisfied. However, no part of Condition 3 is satisfied.

So we require a different approach.

Since x = 0 is feasible for (18), its optimal value is nonpositive. (In fact, it is

negative since Q has a negative eigenvector, so that x = 0 is not a local minimizer).

Hence, (18) is equivalent to

v := min

{
x2n+2 :

yT y ≤ 1

yTQy + 2 gT y ≤ −x2n+2

}
, (19)
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which can be solved in stages: first, minimize xn+2 over the feasible set of (19) (let l

be the minimal value); second, separately maximize xn+2 over the same (let u be the

maximal value); and finally take v = min{−l2,−u2}. If one can compute the closed

convex hull of (19), then l and u can be computed easily.

To represent the feasible set of (19) in our framework, we define x = (y;xn+1;xn+2)

and take

A0 :=

 I 0 0

0T −1 0

0T 0 0

 , A1 :=

Q g 0

gT 0 0

0T 0 1

 , H1 := {x ∈ Rn+2 : xn+1 = 1}.

Clearly, Conditions 1 and 2 are satisfied, and Condition 3(ii) is now satisfied. For

Conditions 4 and 5, we note that At has a block structure such that s equals the

smallest positive t such that

Bt := (1− t)
(
I 0

0 −1

)
+ t

(
Q g

gT 0

)
is singular. Using an argument similar to Section 6.1.1 and exploiting the fact that

λmin[Q] has multiplicity at least 2, we can compute s such that there exists 0 6= z ∈
null(Bs) ⊆ Rn+1 with zTB1z < 0 and zn+1 = 0. By appending an extra 0 entry, this z

can be easily extended to z ∈ Rn+2 with zTA1z < 0 and z ∈ H0. This simultaneously

verifies Conditions 4 and 5.

6.3 Paraboloids

Consider the set {
y =

(
ỹ

yn

)
∈ Rn :

ỹT ỹ ≤ yn
ỹT Q̃ỹ + 2 gT y + f ≤ 0

}
,

where λ := λmin[Q̃] < 0 and 2gn ≤ −λ. After an affine transformation, this models the

intersection of a paraboloid with any quadratic inequality that is strictly linear in yn,

i.e., no quadratic terms involve yn. Note that if λmin[Q] ≥ 0, then the set is already

convex. The reason for the upper bound on 2gn will become evident shortly.

Writing g :=
(
g̃
gn

)
, we can model this situation with x =

(
y

xn+1

)
and

A0 :=

 I 0 0

0T 0 − 1
2

0T − 1
2 0

 , A1 :=

 Q̃ 0 g̃

0T 0 gn
g̃T gn f

 , H1 := {x : xn+1 = 1},

and we would like to compute cl. conv. hull(F+
0 ∩ F1 ∩H

1). Conditions 1 and 3(i) are

clear, and Condition 2 describes the full-dimensional case of interest. So it remains to

verify Conditions 4 and 5.

Define

Bt :=

(
(1− t)I + tQ̃ 0

0 0

)
to be the top-left n × n corner of At, and define r := 1/(1 − λ). Due to its structure,

Bt is positive semidefinite for all t ≤ r. Moreover, Bt has exactly one zero eigenvalue
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for t < r, and Br has at least two zero eigenvalues. Those two zero eigenvalues ensure

that Ar is singular by the interlacing of eigenvalues of At and Bt (similar to Section

6.1.1). So s ≤ r.
We claim that in fact s = r. Let t < r; and consider the following system for

null(At):(1− t)I + tQ̃ 0 t g̃

0T 0 (1− t)(− 1
2 ) + t gn

t g̃T (1− t)(− 1
2 ) + t gn tf

 z̃

zn
zn+1

 =

0

0

0

 .

Note that 2gn ≤ −λ and 0 ≤ t < r imply

2
[
(1− t)(− 1

2 ) + t gn
]

= t(1 + 2 gn)− 1 ≤ t(1− λ)− 1 < r(1− λ)− 1 = 0, (20)

which implies zn+1 = 0. This in turn implies z̃ = 0 because (1−t)I+tQ̃ � 0 when t < r.

Finally, zn = 0 again due to (20). So we conclude that t < r implies null(At) = {0}.
Hence, s = r. We next write

As =

(
Bs gs
gs sf

)
.

Since dim(null(Bs)) ≥ 2 and dim(span{gs}⊥) = n − 1, there exists 0 6= z ∈ null(Bs)

such that gTs z = 0. From the structure of Bs, we have z =
(
z̃
zn

)
, where z̃ is a negative

eigenvector of Q̃. We claim that
(
z
0

)
∈ null(As). Indeed:

As

(
z

0

)
=

(
Bs gs
gTs sf

)(
z

0

)
=

(
Bsz

gTs z

)
=

(
0

0

)
.

Moreover,
(
z
0

)T
A1

(
z
0

)
= zTB1z = z̃T Q̃z̃ < 0. This verifies Conditions 4 and 5.

We remark that Corollary 8 in [40] studies the closed convex hull of the set{
y =

(
ỹ

yn

)
∈ Rn : ‖Ã(ỹ − c̃)‖2 ≤ yn, ‖D̃(ỹ − d̃)‖2 ≥ −γ yn + q

}
,

where Ã ∈ R(n−1)×(n−1) is an invertible matrix, c̃, d̃ ∈ Rn−1 and γ ≥ 0. This situation

is covered by our theory here. The paper [14] also applies to this case, but none of the

other papers [2,13,23,35,36,55] are relevant here.

7 Conclusion

This paper provides basic convexity results regarding the intersection of a second-

order-cone representable set and a nonconvex quadratic. Although several results have

appeared in the prior literature, we unify and extend these by introducing a simple,

computable technique for aggregating (with nonnegative weights) the inequalities defin-

ing the two intersected sets. The underlying conditions of our theory can be checked

easily in many cases of interest.

Beyond the examples detailed in this paper, our technique can be used in other

ways. Consider for example, a general quadratically constrained quadratic program,

whose objective has been linearized without loss of generality. If the constraints include
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an ellipsoid constraint, then our techniques can be used to generate valid SOC inequal-

ities for the convex hull of the feasible region by pairing each nonconvex quadratic con-

straint with the ellipsoid constraint one by one. The theoretical and practical strength

of this technique is of interest for future research, and the techniques in [3,37] could

provide a good point of comparison.

In addition, it would be interesting to investigate whether our techniques could be

extended to produce valid inequalities or explicit convex hull descriptions for intersec-

tions involving multiple second-order cones or multiple nonconvex quadratics. After

our initial June 2014 submission of this paper, a similar aggregation idea has been

recently explored in [41] in November 2014 by using the results from [54]. We note that

as opposed to our emphasis on the computability of SOCr relaxations, these recent re-

sults rely on numerical algorithms to compute such relaxations and further topological

conditions for verifying their sufficiency.
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22. G. Cornuéjols and C. Lemaréchal. A convex-analysis perspective on disjunctive cuts.
Mathematical Programming, 106(3):567–586, 2006.

23. D. Dadush, S. S. Dey, and J. P. Vielma. The split closure of a strictly convex body.
Operations Research Letters, 39:121–126, 2011.

24. S. Drewes. Mixed Integer Second Order Cone Programming. PhD thesis, Technische
Universität Darmstadt, 2009.

25. S. Drewes and S. Pokutta. Cutting-planes for weakly-coupled 0/1 second order cone
programs. Electronic Notes in Discrete Mathematics, 36:735–742, 2010.

26. N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint. Solving the trust-region subproblem
using the Lanczos method. SIAM Journal on Optimization, 9(2):504–525, 1999.
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complementarity constraints. In O. Günlük and G. J. Woeginger, editors, IPCO, volume
6655 of Lecture Notes in Computer Science, pages 336–348. Springer, 2011.

44. G. Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity
of optimal eigenvalues. Mathematics of Operations Research, 23(2):339–358, 1998.
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In this Online Supplement, we illustrate Theorem 1 of the main article with several

low-dimensional examples and discuss which of the earlier approaches [2,13,14,23,35,

36,40,55] cannot replicate these examples. Section 5 of the main article is devoted to

the important case for which the dimension n is arbitrary, F+
0 is the second-order cone,

and F1 represents a two-term linear disjunction cT1 x ≥ d1 ∨ cT2 x ≥ d2. Section 6 of

the main article investigates cases in which F1 is given by a (nearly) general quadratic

inequality.

1 A proper split of the second-order cone

In R3, consider the intersection of the canonical second-order cone, defined by

‖(y1; y2)‖ ≤ y3, and a specific linear disjunction, defined by y1 ≤ −1 ∨ y1 ≥ 1, which

is a proper split. By homogenizing via x =
(
y
x4

)
with x4 = 1 and noting that the

disjunction is equivalent to y21 ≥ 1 ⇔ y21 ≥ x24, we can represent the intersection as

F+
0 ∩ F1 ∩H

1 with

A0 := Diag(1, 1,−1, 0), A1 := Diag(−1, 0, 0, 1), H1 := {x : x4 = 1}.

Note that At = Diag(1− 2t, 1− t,−1 + t, t). Conditions 1 and 3(ii) are easily verified,

and Condition 2 holds with x̄ := (2; 0; 3; 1), for example.

In this case, s = 1
2 , As = 1

2 Diag(0, 1,−1, 1), Fs = {x : x22 + x24 ≤ x23}, and

F+
s = {x : ‖(x2;x4)‖ ≤ x3}, which contains x̄. Note that apex(F+

s ) = null(As) =

span{d}, where d := (1; 0; 0; 0). It is easy to check that d ∈ H0 with dTA1d < 0, and

so Conditions 4 and 5 are simultaneously verified.

So, in the original variable y, the explicit convex hull is given by{
y :
‖(y1; y2)‖ ≤ y3
‖(y2; 1)‖ ≤ y3

}
= cl. conv.hull

{
y :
‖(y1; y2)‖ ≤ y3
y1 ≤ −1 ∨ y1 ≥ 1

}
.

Figure 1 depicts the original intersection, F+
s ∩H1, and the closed convex hull.

Papers [2,35,36,40] can handle this example, and in fact they can handle all split

disjunctions on SOCs. On the other hand, [13] cannot handle this example because of

their boundedness assumption on the sides of the disjunction. Because this example

concerns a disjunction on SOC itself—not a disjunction on a cross-section of SOC—the

papers [23,55] are not relevant here. In order to apply the results from [14], we need

to consider the SOC ‖(y1; y2)‖ ≤ y3 as the epigraph of the convex norm ‖(y1; y2)‖.
However, this viewpoint does not satisfy the special conditions for polynomial-time

separability, such as differentiability or growth rate, in that paper; see Theorem IV

therein.
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(a) F+
0 ∩ F1 ∩H1 (b) F+

s ∩H1 (c) F+
0 ∩ F+

s ∩H1

Fig. 1 A proper split of the second-order cone

2 A paraboloid and a second-order-cone disjunction

In R3, consider the intersection of the paraboloid defined by y21 +y22 ≤ y3 and the “two-

sided” second-order cone disjunction defined by y21 + y23 ≤ y22 . One side has y2 ≥ 0,

while the other has y2 ≤ 0. By homogenizing via x =
(
y
x4

)
with x4 = 1, we can

represent the intersection as F+
0 ∩ F1 ∩H

1 with

A0 :=


1 0 0 0

0 1 0 0

0 0 0 − 1
2

0 0 − 1
2 0

 , A1 :=


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 0

 , H1 := {x : x4 = 1}.

Conditions 1 and 3(i) are straightforward to verify, and Condition 2 is satisfied with

x̄ = (0; 1√
2

; 1√
3

; 1), for example. We can also calculate s = 1
2 from (7). Then

As =


1 0 0 0

0 0 0 0

0 0 1
2 −

1
4

0 0 − 1
4 0

 , Fs =
{
x : x21 + 1

2 x
2
3 ≤ 1

2 x3x4

}
.

The negative eigenvalue of As is λs1 := (1 −
√

2)/4 with corresponding eigenvector

qs1 := (0; 0;
√

2 − 1; 1), and so, in accordance with the Section 2, we have that F+
s

equals all x ∈ Fs satisfying bTs x ≥ 0, where

bs := (−λs1)1/2qs1 =

√√
2− 1

2


0

0√
2− 1

1

 .

Scaling bs by a positive constant, we thus have

F+
s :=

{
x :

x21 + 1
2 x

2
3 ≤ 1

2 x3x4
(
√

2− 1)x3 + x4 ≥ 0

}
.

Note that x̄ ∈ F+
s . In addition, apex(F+

s ) = null(As) = span{d}, where d = (0; 1; 0; 0).

Clearly, d ∈ H0 and dTA1d < 0, which verifies Conditions 4 and 5 simultaneously.

Setting x4 = 1 and returning to the original variable y, we see{
y :

y21 + y22 ≤ y3
y21 + 1

2 y
2
3 ≤ 1

2 y3

}
= cl. conv.hull

{
y :

y21 + y22 ≤ y3
y21 + y23 ≤ y22

}
,
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where the now redundant constraint (
√

2 − 1)y3 + 1 ≥ 0 has been dropped. Figure 2

depicts the original intersection, F+
s ∩H1, and the closed convex hull.

(a) F+
0 ∩ F1 ∩H1 (b) F+

s ∩H1 (c) F+
0 ∩ F+

s ∩H1

Fig. 2 A paraboloid and a second-order-cone disjunction

Of the earlier, related approaches, this example can be handled by [40] only. In

particular, [2,13,23,35,36,55] cannot handle this example because they deal with only

split or two-term disjunctions but cannot cover general nonconvex quadratics. The

approach of [14] is based on eliminating a convex region from a convex epigraphical

set, but this example removes a nonconvex region (specifically, Rn \F1). So [14] cannot

handle this example either.

In actuality, the results of [40] do not handle this example explicitly since the

authors only state results for: the removal of a paraboloid or an ellipsoid from a

paraboloid; or the removal of an ellipsoid (or an ellipsoidal cylinder) from another ellip-

soid with a common center. However, in this particular example, the function obtained

from the aggregation technique described in [40] is convex on all of R3. Therefore, their

global convexity requirement on the aggregated function is satisfied for this example.

3 An example violating Condition 3

In R2, consider the intersection of the canonical second-order cone defined by |y1| ≤ y2
and the set defined by the quadratic y1(y2 − 1) ≤ 0. By homogenizing via x =

(
y
x3

)
with x3 = 1, we can represent the set as F+

0 ∩ F1 ∩H
1 with

A0 :=

1 0 0

0 −1 0

0 0 0

 , A1 :=

 0 1 −1

1 0 0

−1 0 0

 , H1 := {x : x3 = 1}.

While Conditions 1 and 2 hold, Condition 3 does not hold because A0 is singular and

A1 is zero on the null space span{(0; 0; 1)} of A0. Figure 3 depicts F+
0 ∩ F1 ∩H

1 and

F+
0 ∩ F1.

In this example, even though Condition 3 is violated, we still have the trivial convex

relaxation given by cl. conv. hull(F+
0 ∩ F1 ∩ H

1) ⊆ F+
0 ∩ H

1. Of course, this trivial

convex relaxation is not sufficient.
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(a) F+
0 ∩ F1 ∩H1 (b) F+

0 ∩ F1

Fig. 3 An example violating Condition 3

The papers [2,13,23,35,36,55] also cannot handle this example because they deal

with only split or two-term disjunctions that are not general enough to cover general

nonconvex quadratics. Moreover, R2 \F1 defines a nonconvex region, so neither of the

approaches from [14,40] related to excluding convex sets is applicable in this case.

4 An example violating Condition 4

In R2, consider the intersection of the second-order cone defined by |x1| ≤ x2 and the

two-term linear disjunction defined by x1 ≤ 0 ∨ x2 ≤ x1. Note that, in the second-

order cone, x2 ≤ x1 implies x1 = x2. So one side of the disjunction is contained in the

boundary of the second-order cone. We also note that—in the second-order cone—the

disjunction is equivalent to the quadratic x1(x2−x1) ≤ 0. Thus, to compute the closed

conic hull of the intersection of cone and the disjunction, we define

A0 :=

(
1 0

0 −1

)
, A1 :=

(
−2 1

1 0

)
,

and we wish to calculate cl. conic. hull(F+
0 ∩ F1).

Conditions 1, 2, and 3(i) are easily verified, and the eigenvalues of A−10 A1 are −1

(with multiplicity 2). This implies s = 1
2 by (7), and so

As =
1

2

(
−1 1

1 −1

)
.

Also, null(As) is spanned by d = (1; 1), and yet dTA1d = 0, which violates Condition

4.

Note that As = − 1
2

(
1
−1
)(

1
−1
)T

, and so F+
s = {x : x2 ≥ x1}. Figure 4 de-

picts F+
0 ∩ F1, F+

s , and F+
0 ∩ F

+
s . Since Conditions 1–3 are satisfied, we know that

cl. conic. hull(F+
0 ∩ F1) ⊆ F+

0 ∩ F
+
s , and it is evident from the figures that—in this

particular example—equality holds. This simply indicates that the results of Theorem

1 may still hold even when Condition 4 is violated.

The approach [2] can only handle split disjunctions on SOCs and thus is not appli-

cable here. This is also the case for that portion of the approach from [40] associated
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(a) F+
0 ∩ F1 (b) F+

s (c) F+
0 ∩ F+

s

Fig. 4 An example violating Condition 4

with split disjunctions. Moreover, [35,36] cannot handle this two-term disjunction be-

cause of their strict feasibility assumption on both sides of the sets defined by the

disjunction. Also, [13] cannot handle this example because of their boundedness as-

sumption on both of the sets defined by the disjunction. In addition, R2 \F1 defines a

nonconvex region, therefore neither of the approaches from [14,40] related to excluding

convex sets is applicable in this case. Since this example concerns a disjunction on SOC

itself but not on the cross-section of an SOC, [23,55] are not relevant here.

5 An example violating Condition 5

In R2, consider the intersection of the second-order cone defined by |y1| ≤ y2 and the

two-term linear disjunction defined by y1 ≥ 2 ∨ y2 ≤ 1. Note that, in the second-order

cone, the disjunction is equivalent to the quadratic (y1 − 2)(1 − y2) ≤ 0. Thus, to

compute the closed conic hull of the intersection of cone and the disjunction, we define

x =
(
y
x3

)
and

A0 :=

1 0 0

0 −1 0

0 0 0

 , A1 :=
1

2

 0 −1 1

−1 0 2

1 2 −4

 , H1 := {x : x3 = 1}

and we wish to calculate cl. conic. hull(F+
0 ∩ F1 ∩H

1).

Conditions 1, 2, and 3(iii) are easily verified, and so s = 0 with null(As) spanned

by d = (0; 0; 1). Then Condition 4 is clearly satisfied. However, d3 6= 0, and so the

first option for Condition 5 is not satisfied. The second option is the containment

F+
0 ∩ F

+
s ∩H0 ⊆ F1, which simplifies to F+

0 ∩H
0 ⊆ F1 in this case. This is also not

true because the point x = (1; 2; 0) ∈ F+
0 ∩H

0 but x 6∈ F1.

Figure 5 depicts this example. Note that the inequality y1 ≥ −1 is valid for the

convex hull of F+
0 ∩F1 ∩H

1. In addition, F+
0 ∩F

+
s = cl. conic. hull(F+

0 ∩F1) because

Conditions 1–4 are satisfied. However, the projection F+
0 ∩F

+
s ∩H1 is not the desired

convex hull since, for example, it violates y1 ≥ −1.

Similar to the previous example in Section 4, the papers [2,13,14,23,40,55] cannot

handle this example. On the other hand, [35,36] provide the infinite family of convex

inequalities describing the closed convex hull of this set, but they do not specifically

identify the corresponding finite collection that is necessary and sufficient.
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(a) F+
0 ∩ F1 ∩H1 (b) F+

0 ∩ F1

(c) F+
s = F+

0 ∩ F+
s (d) F+

0 ∩ F+
s ∩H1

Fig. 5 An example violating Condition 5. Note that s = 0 in this case.
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