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Abstract We propose a general feasible method for nonsmooth, nonconvex
constrained optimization problems. The algorithm is based on the (inexact)
solution of a sequence of strongly convex optimization subproblems, followed
by a step-size procedure. Key features of the scheme are: (i) it preserves fea-
sibility of the iterates for nonconvex problems with nonconvex constraints,
(ii) it can handle nonsmooth problems, and (iii) it naturally leads to paral-
lel/distributed implementations. We illustrate the application of the method
to an open problem in green communications whereby the energy consumption
in MIMO multiuser interference networks is minimized, subject to nonconvex
Quality-of-Service constraints.

Keywords Feasible method · Nonconvex problem · Nonsmooth optimization ·
Parallel and distributed implementation · Green communications.

1 Introduction

We consider the solution of the problem

minimize
x

U(x)

s.t. x ∈ X ,
(P)

where X ⊆ Rn is a nonempty closed set and U : O → R is locally Lipschitz on
O, an open set containing X . We are interested in a method for finding sta-
tionary points of the nonconvex problem (P) with the following properties: (i)
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feasibility is maintained throughout iterates, (ii) nonsmooth (objective or con-
straint) functions can be handled, and (iii) the algorithm is possibly amenable
to parallel/distributed implementations.

Properties (i) and (iii) are of well-recognized interest and have been exten-
sively studied in the literature, somewhat independently, both by optimizers
and different engineering communities. Among these results, we list below the
main approaches, paying attention to the ability to handle nonsmooth prob-
lems and with an emphasis on those methods that can be applied to nonconvex
problems and, in particular, to problems with nonconvex constraints. Standard
feasible approaches include the classical logarithmic barrier Interior-Point (IP)
method by Fiacco and Mc Cormick [17], see also [9, 12, 20] for modern devel-
opments that try to overcome the numerical pitfalls of the original algorithm,
and the Feasible Sequential Quadratic Programming (FSQP) method of Tits,
see e.g. [27,35–37] and [10,13,25,38,50] for further developments. Both IP and
FSQP methods require smoothness and are not suited to parallel/distributed
implementations. Parallel Variable Distribution (PVD) schemes, proposed in
[16, 40, 46] for smooth problems, are suitable for implementation over paral-
lel architectures. However, PVD methods require an amount of information
exchange/knowledge that is often not compatible with a distributed architec-
ture and they call for the solution of possibly difficult nonconvex subproblems;
moreover, convergence has been established only for convex constraints [16,46]
or nonconvex constraints with a Cartesian product structure [40]. In [34] meth-
ods for DC programs are discussed. Among them, Algorithm II generates fea-
sible iterates; parallel/distributed schemes are also considered, but only for
problems with a convex feasible set. While the methods proposed in [34] en-
joy very strong convergence properties, in that they converge to B-stationary
points, they are potentially computationally very intensive and only apply to
a specific subclass of DC programs. In [7] new results are proved on a proxi-
mal alternating linearized minimization method for nonconvex and nonsmooth
problems. This method maintains feasibility but requires at each iteration the
solution of (generally) nontrivial nonsmooth and nonconvex subproblems. The
paper [48] is the rigorous culmination of a series of works in the structural en-
gineering community such as the CONvex LINearization (CONLIN) method
[18, 19] and the Method of Moving Asymptotes (MMA) [47]. It introduces
a large class of feasible schemes for smooth problems, potentially suited to
parallel/distributed implementations, called Conservative Convex Separable
Approximation (CCSA). A serious drawback of CCSA is that, besides re-
quiring the difficult tuning of some unknown parameters, it finds stationary
points of a reformulation that are not necessarily stationary also for the orig-
inal problem. To some extent similar to CCSA methods is the INner Convex
Approximation (INCA) algorithm, which was first proposed in 1978 by Marks
and Wright [30] for problems with a smooth convex objective function and
smooth nonconvex constraints. In the INCA approach a sequence of convex
subproblems is solved where the original nonconvex constraints are replaced
by upper convex approximations so that the algorithms generate only feasible
iterates. INCA has been recently more rigorously studied in [2], in the case of
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a strongly convex objective function. In [1], the authors, unaware of [30], use
a specific inner convex approximation for the feasible set and, in the spirit of
majorization/minimization techniques, also approximate the possibly noncon-
vex objective function with an upper convex quadratic, so as to solve at each
iteration a surrogate problem with a convex quadratic objective function and
convex quadratic constraints. The resulting algorithm, which is potentially
suited to parallel/distributed implementations, cannot deal with nonsmooth
problems and the proposed approximation for the objective function, based on
the global Lipschitz property of its gradient, is possibly hard to obtain and,
more importantly, can lead to poor numerical performances (see Section 6).

As a major departure from the above approaches, in this work we consider
general nonconvex problems and quite an ample class of nonsmooth functions
and provide easily implementable solutions methods for (P) that, in many
cases, with no difficulty can also lead to parallel and distributed implementa-
tions. Building on the INCA paradigm, along the lines put forward in [43,44],
our method is based on the (inexact) solution of a sequence of strongly convex
optimization subproblems, followed by a step-size procedure. At each iteration
xν , a subproblem is formed of the type

minimize
x

Ũ(x; xν)

s.t. x ∈ X̃ (xν),
(Pxν )

where Ũ(•; xν) is a strongly convex “approximation” of U and X̃ (xν) is a

closed, convex, inner approximation of X , meaning that X̃ (xν) ⊆ X . Let
x̂(xν) be the unique solution of problem (Pxν ); the underlying idea of the
approach is that (the subproblems (Pxν ) are chosen so that) one is able to
compute efficiently x̂(xν). The new iteration xν+1 is then given by moving
from xν towards (an approximation of) x̂(xν) according to a step-size γν . We
prove that, under appropriate assumptions, every limit point of the sequence
xν+1 is stationary for the original problem (P).

Our main contributions are: (a) the definition and analysis of a general al-
gorithmic framework enjoying properties (i), (ii), and (iii) and vastly improving
over all the approaches described above; (b) the first practical feasible method
for ample classes of nonsmooth, nonconvex problems requiring at each itera-
tion only the solution of strongly convex subproblems (as opposite to [7, 34]);
(c) a systematic approach to the development of parallel and distributed so-
lution methods that can be applied to classes of problems for which parallel
and distributed methods were not available; (d) the analysis of several step-
size (Armijo-type, diminishing and fixed step-size) rules, and of corresponding
inexactness criteria for the solution of problem (Pxν ); (e) the first numerically
efficient solution method for an important open problem in green communi-
cations, paving the way to the application of our algorithmic framework to a
host of unsolved resource allocation problems in interference networks. During
the reviewing process, a referee brought to our attention the interesting, recent
paper [6]. Also in [6] a sequence of strongly convex approximating subprob-
lems is solved; in particular, following the INCA approach, the authors resort
to inner convex approximations of the feasible set. The analysis in [6] is very
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elegant and shows full convergence to a single limit point; moreover, conver-
gence rates aspects are investigated. There are however several differences with
our approach: (i) [6] follows the classical majorization/minimization idea, as
in [1], i.e., at each iteration the nonconvex objective function is approximated
by an upper convex estimate; this feature, on the one hand simplifies the con-
vergence analysis but, on the other hand, may be numerically impractical, see
the eloquent numerical results in Section 6; (ii) the analysis is geared towards
smooth problems and the assumptions made are strong, so that only simple
and well-behaved forms of nonsmoothness, under (Clarke’s) regularity, can
actually be treated, see Section 5; (iii) no consideration is given to practical
aspects like inexactness and parallel/distributed implementations.

The paper is organized as follows. In the next section we recall some ba-
sic background material on nonsmooth analysis and optimality conditions. In
Section 3 we give an overall description of our approach and present some
preliminary results, while in Section 4 we provide an in-depth convergence
analysis. Section 5 is devoted to a detailed presentation of approximations
that can be used in our framework and to their use in the development of
parallel/distributed versions of our algorithm. Section 6 is dedicated to the
application of our results to an open problem in green communications and
shows how the flexibility of our approach easily permits to tailor the method
to specific problems and obtain some impressive numerical results.

2 Background material

In this section we briefly recall some basic nonsmooth analysis notions, but we
refer the reader to [31] and [39] for more details and other results that, in some
cases, will be freely invoked. We assume that all sets C and functions f con-
sidered in this section are closed and locally Lipschitz continuous, respectively.

2.1 Continuity properties of set-valued mappings

Let M : Rn ⇒ Rm be a set-valued mapping and C a subset of Rn.

Definition 1 [39, Definition 5.4] The set-valued mapping M is outer semi-
continuous relative to C at x̄ ∈ C if lim supx→

C
x̄M(x) ⊆ M(x̄), and inner

semicontinuous at x̄ if lim infx→
C
x̄M(x) ⊇M(x̄). M is called continuous (rel-

ative to C) at x̄ if both conditions hold.

The following definition extends to set-valued mappings the notion of locally
bounded function.

Definition 2 [39, Definition 5.14] The set-valued mappingM is locally bounded
at x̄ ∈ Rn if, for some neighborhood Vx̄ of x̄, the set M(Vx̄) ⊆ Rm is bounded.

Finally, we recall the Aubin property, which is a Lipschitz-type condition that
makes reference to specific points in the graph of M .
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Definition 3 [39, Definition 9.36] The set-valued mapping M has the Aubin
property relative to C at x̄ ∈ C for ū ∈ M(x̄), if the graph of M is locally
closed at (x̄, ū) and there are neighborhoods Vx̄ of x̄,Wū of ū, and a constant
κ ∈ R+ , {t ∈ R : t ≥ 0} such that, denoting by B the closed unit ball,

M(y) ∩Wū ⊆M(x) + κ ‖y − x‖B for all x, y ∈ C ∩ Vx̄.

2.2 Normal cones and subgradients

Definition 4 [39, Definition 6.3, 6(19)] Let a closed set C ⊆ Rn and a point
x̄ ∈ C be given. A vector v is a regular normal to C at x̄ if vT (y − x̄) ≤
o(‖y−x̄‖), for y ∈ C. The set of regular normals to C at x̄ is denoted by N̂C(x̄).
Moreover, v is a normal to C at x̄ if there are sequences xν −→C x̄ and vν → v
with vν ∈ N̂C(xν). The set of of normals to C at x̄ is denoted byNC(x̄). Lastly,
the convexified normal cone to C at x̄ is defined by NC(x̄) = cl coNC(x̄),
where cl and co denote the closure and the convex hull of a set.

The set C is termed regular at x̄ ∈ C if N̂C(x̄) = NC(x̄); convex sets are
regular at each of their points. With the aid of normal cones we can give the
following definition of subgradients, see [31, Definition 1.77, 1.83 and (2.73)]
or [39, Theorem 8.9 and 8(32)].

Definition 5 The set of regular subgradients of f at x̄ ∈ C is ∂̂f(x̄) ,
{v|(v,−1) ∈ N̂epi f (x̄, f(x̄))}. The set of subgradients of f at x̄ ∈ C is

∂f(x̄) , {v|(v,−1) ∈ Nepi f (x̄, f(x̄))}. The set of Clarke subgradients of f

at x̄ ∈ C is ∂̄f(x̄) , {v|(v,−1) ∈ N epi f (x̄, f(x̄))}.

We recall [39, Theorems 8.6, 8.49] that, if x̄ ∈ C, ∂̂f(x̄), ∂f(x̄) and ∂̄f(x̄)

are closed with ∂̂f(x̄) convex, ∂̂f(x̄) ⊆ ∂f(x̄) and, by [39, Theorems 8.49 and
9.13], ∂̄f(x̄) = co ∂f(x̄). Letting x̄ be a point in C, by [39, Theorem 8.7],

• ∂f is outer semicontinuous relative to C,

and the following properties of the subgradient set characterizes locally Lips-
chitz continuous functions, see [39, Theorem 9.13]:

• ∂f(x̄) is nonempty and compact;

• both ∂̂f and ∂f are locally bounded as set-valued mappings.

The locally Lipschitz function f is said to be regular at x̄ ∈ C if epi f is regular
at (x̄, f(x̄)). Furthermore, f is regular at x̄ ∈ C if and only if ∂̂f(x̄) = ∂f(x̄)
and, thus, the three subgradient sets coincide. In particular, if f is convex on
C or continuously differentiable on an open set containing C, then it is regular
at each point of C. Besides, in the former case, the set of subgradients ∂f(x̄)
coincides with the classical subdifferential from convex analysis while, in the
latter, the set of subgradients collapses to the gradient.
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2.3 Optimality conditions and constraint qualifications

Consider the constrained optimization problem

minimize
x

f(x)

s.t. x ∈ C,
(1)

where C ⊆ Rn is a nonempty, closed set and f is locally Lipschitz on an open
set containing C. The basic necessary optimality condition for a point x̄ ∈ C
to be (locally) optimal for this problem is, see [39, Theorems 8.15 and 9.13],

0 ∈ ∂f(x̄) +NC(x̄). (2)

When f and C are convex, the previous condition is also sufficient for x̄ to
be globally optimal. A key issue in applying this condition is the capability
to estimate the normal cone NC(x̄). To this end, as usual, we suppose that
C , {x ∈ S : hj(x) ≤ 0, j = 1, . . . ,m}, with S ⊆ Rn closed and, for every j,
hj locally Lipschitz continuous on an open set containing S. In this setting,
if we suppose that a standard constraint qualification holds, we can obtain a
“dual” description of normal vectors.

Definition 6 The (nonsmooth) Mangasarian-Fromovitz Constraint Qualifi-
cation (MFCQ) holds at x̄ ∈ C if

0 ∈
m∑
j=1

µj∂hj(x̄) +NS(x̄), µ ∈ NRm− (h(x̄)) ⇒ µ = 0, (3)

where h(x) , (h1(x), . . . , hm(x))T and Rm− , {µ ∈ Rm|µ ≤ 0}.

A somewhat weaker condition can be obtained by replacing
∑m
j=1 µj∂hj(x̄)

by ∂(
∑m
j=1 µjhj(x̄)); we refrain from doing this, since, for our purpose, the

MFCQ (3) is what we can really expect to check and use in practice. The
condition µ ∈ NRm− (h(x̄)) can be rewritten, taking into account x̄ ∈ C, as

µj ≥ 0, µjhj(x̄) = 0 for all j. It is worth pointing out that, if S = Rn and all
functions involved are smooth, (3) reduces to the classical MFCQ.

In view of the description of normal vectors for Lipschitzian constraints
given in [39, Corollary 10.50], if (3) holds at x̄ ∈ C, thanks to [39, Theorem
9.13, Corollary 10.9] and by [39, Theorem 6.42], we have

NC(x̄) ⊆
⋃{ m∑

j=1

µj∂hj(x̄)|µ ∈ NRm− (h(x̄))
}

+NS(x̄), (4)

with equality holding if all functions hjs and the set S are regular at x̄. A
particularly important case is the convex one: whenever all functions hjs and
the set S are convex, and hence regular, equality holds in (4) and we get an
exact representation of the normal cone. Combining relations (2) and (4), it is
straightforward to obtain KKT-like optimality conditions. Consider problem
(1), with C having the constraint structure just discussed. Let x̄ ∈ C be a
minimum point at which the MFCQ holds, then
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0 ∈ ∂f(x̄) +
⋃{ m∑

j=1

µj∂hj(x̄)|µ ∈ NRm− (h(x̄))
}

+NS(x̄). (5)

The KKT-like conditions (5), although less stringent than the necessary con-
dition for local optimality (2) (but the two are equivalent for regular data),
are the stationarity conditions generally used when studying algorithms.

Remark 1 In this paper we express all optimality conditions and constraint
qualifications by resorting to subgradients, not to Clarke subgradients. This
choice allows us to get sharper optimality conditions and weaker constraint
qualifications. The price we pay is a more complex technical analysis for some
of our results. Nevertheless, all the conclusions in this paper still hold if Clarke
subgradients are employed.

3 Outline of the Method

Our aim is to compute stationary solutions of (P) while preserving feasibility
of the iterates, by solving a sequence of “easier” convex subproblems. In this
section we give a description of the overall method and present some prelimi-
nary technical results; the complete convergence properties are investigated in
the next section.

Given the current feasible iterate xν , we consider a strongly convex “ap-
proximation” to the original nonconvex problem (P). The convex feasible set

X̃ (xν) of this subproblem is contained in the feasible region X of (P) and is

such that xν ∈ X̃ (xν). We then compute an (approximate) solution vν of the
subproblem and generate the new iteration xν+1 as a suitably chosen point on
the segment [xν ,vν ]. By construction, xν+1 still belongs to X since the whole

segment [xν ,vν ] is contained in X̃ (xν) ⊆ X . Clearly, in order to prove con-
vergence we need to make proper assumptions: these conditions are discussed
in this and in the next section, while in Section 5 we present many examples
of approximations that satisfy the required assumptions. In this section we
only make minimal assumptions and, accordingly, prove a weak convergence
result, see Proposition 1. Although Proposition 1 is of little interest per se, it
constitutes the basis for the developments in the next section.

We introduce the following approximation of (P) at a feasible point y ∈ X :

minimize
x

Ũ(x; y)

s.t. x ∈ X̃ (y)
(Py)

where Ũ(x; y) and X̃ (y) are convex approximations at y of U and X , respec-

tively. The basic requirement on Ũ is that it capture the first-order behavior of
U at y while being strongly convex. In order to make subproblem (Py) convex,

we also need X̃ (y) to be convex; in addition, we also impose X̃ (y) to contain
y and to be an inner approximation of X . In what follows Ox and Oy are an
open, convex set and an open set containing X , respectively.

Assumption U Let Ũ : Ox ×Oy → R satisfy the following properties:
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U1) Ũ(•; y) is a finite strongly convex function on Ox for every y ∈ X with
modulus of strong convexity independent of y;

U2) ∂1Ũ(•; •) is locally bounded relative to X ×X at every (y,y) with y ∈ X ;

U3) lim sup(u,w) −→
X×X

(y,y) ∂1Ũ(u; w) ⊆ ∂U(y) for every y ∈ X ;

where ∂1Ũ(u; w) denotes the set of subgradients of Ũ(•; w) evaluated at u.

Assumption X

X1) X̃ (y) is closed and convex for every y ∈ X ;

X2) y ∈ X̃ (y) and X̃ (y) ⊆ X for every y ∈ X .

U1 and X1, together with X2, which ensures that the feasible set X̃ (y) is
nonempty, guarantee that all subproblems (Py) are strongly convex and have
a unique solution, which we denote by x̂(y):

x̂(y) , argmin
x∈X̃ (y)

Ũ(x; y).

Our Algorithmic Framework is based on the successive (approximate) solution
of subproblems (Py) followed by some kind of line-search procedure.

Algorithmic Framework (AF) 1

Data: εν ≥ 0, x0 ∈ X ; set ν = 0.

(S.1) If xν satisfies a stationarity condition for (P): STOP.

(S.2) Solve problem (Pxν ) with accuracy εν :

find vν ∈ X̃ (xν) s.t. ‖vν − x̂(xν)‖ ≤ εν .

(S.3) Set xν+1 = xν + γν(vν − xν) for some γν ∈ (0, 1].

(S.4) ν ← ν + 1 and go to step (S.1).

Assumptions U and X alone are not enough to establish the convergence of
AF 1 to stationary points of problem (P), and yet some instructive aspects
of AF 1 can be investigated under Assumptions U and X alone. U2 and U3
establish a link between the first-order properties of U and those of Ũ . To
illustrate their meaning, let us consider first the simple case of continuously
differentiable U and Ũ : U2 is then automatically satisfied, while U3 simply
postulates that ∇1Ũ(y; y) = ∇U(y) for all y ∈ X , i.e. that Ũ(•; y) and U
have the same first-order behavior at the “base point” y. Assume now that
Ũ is locally Lipschitz continuous: Lemma 1, in view of the local Lipschitz
continuity of U , shows that, whenever Ũ is (jointly) locally Lipschitz in both

its variables and Ũ(•; y) is convex for every y ∈ X (as it must be by U1), U2
is automatically satisfied and, by virtue of the outer semicontinuity property
of the partial subgradient set-valued mapping, U3 boils down to the simple
condition ∂1Ũ(y; y) ⊆ ∂U(y) for all y ∈ X .

Lemma 1 Let Ũ : Ox×Oy → R be locally Lipschitz at (y,y) ∈ X×X and such

that Ũ(•; w) is convex on Ox for every w ∈ X in a neighborhood of y. Then,

the set-valued mapping ∂1Ũ(•; •) is locally bounded and outer semicontinuous
(relative to X × X ) at (y,y).
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Proof Without loss of generality, suppose (uν ,wν) −−−−→X×X (y,y) and let {ξν},
with ξν ∈ ∂1Ũ(uν ; wν), be a sequence of partial subgradients of Ũ(•; wν)

evaluated at uν . By [39, Corollary 10.11], we have ξν ∈ πx∂Ũ(uν ; wν), where
πx denotes the projection on the subspace of the first argument: therefore,
there exists a sequence {ζν} such that {(ξν , ζν)} ∈ ∂Ũ(uν ; wν). By the local
boundedness and outer semicontinuity (relative to X ×X ) of the subgradient

set of the locally Lipschitz function Ũ , renumbering if necessary, we have
{(ξν , ζν)} → (ξ, ζ) ∈ ∂Ũ(y; y). Since ∂Ũ(y; y) ⊆ ∂̄Ũ(y; y), where ∂̄Ũ(y; y)

is the set of Clarke subgradients of Ũ at (y,y), by [11, Proposition 2.5.3] and

thanks to the regularity of Ũ(•; y), we have ξ ∈ ∂̄1Ũ(y; y) = ∂1Ũ(y; y); then,
in view of [39, Proposition 5.15] and by Definition 1, the thesis follows. �

In the general case, U2 and U3 suitably extend the previous considerations by
requiring some consistency property between the subgradient set of U and the
partial subgradient set of Ũ at the “base point”.

Proposition 1 below essentially states that, if the sequence {xν} produced
by AF 1 is such that ‖x̂(xν) − xν‖ → 0, then every limit point of {xν}
satisfies the “stationarity-looking” condition (7), which is formally similar to
(2) applied to problem (P), but with the normal cone NX (x̄) replaced by the

cone Ñ(x̄), where the set Ñ(x̄) is defined as

Ñ(y) , lim supu→y
w→
X
y
NX̃ (w)(u)

=
{
η | ∃ην → η,uν → y,X 3 wν → y : ην ∈ NX̃ (wν)(u

ν)
}
.

Notice that, if y ∈ X , since y ∈ X̃ (y), then ∅ 6= NX̃(y)(y) ⊆ Ñ(y).

Proposition 1 Let {xν} be the sequence generated by AF 1 under Assump-
tions U and X.

(i) All the iterates xν are feasible, i.e. they belong to X .
(ii) Suppose that {xν} is bounded and such that

lim inf
ν→∞

‖x̂(xν)− xν‖ = 0. (6)

Then, at least one limit point x̄ of {xν} satisfies the condition

0 ∈ ∂U(x̄) + Ñ(x̄). (7)

(iii) Suppose that {xν} is bounded and such that

lim
ν→∞
‖x̂(xν)− xν‖ = 0. (8)

Then, every limit point of {xν} satisfies condition (7).
(iv) Whenever x̂(xν) = xν , the point xν satisfies condition (7).

Proof (i) The thesis follows from Assumption X by induction and considering

that xν+1 is a convex combination of vν ∈ X̃ (xν) and xν ∈ X̃ (xν), which is
a convex set. We now prove (ii); (iii) follows applying (ii) to every convergent
subsequence of {xν}. If (6) holds, by passing to subsequences, we have (x̂(xν)−
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xν)→ 0 and xν−→X x̄. By U1 and X1, x̂(xν) is the unique global optimal solution
of the strongly convex optimization problem (Pxν ) for every ν; this fact, in
turn, is equivalent to the following condition:

0 ∈ ∂1Ũ(x̂(xν); xν) +NX̃ (xν)(x̂(xν)). (9)

Thus, we can write 0 = ξν + ην , for some ξν ∈ ∂1Ũ(x̂(xν); xν) and ην ∈
NX̃ (xν)(x̂(xν)). By this and U2, we deduce that the sequence {ην} is bounded

and we can assume, without loss of generality, that it converges to an element
η̄ belonging, by definition, to Ñ(x̄). Thanks to U3, the thesis follows passing
to the limit in 0 = ξν +ην . (iv) By (9) and U3, considering that NX̃ (xν)(x

ν) ⊆
Ñ(xν), we have 0 ∈ ∂1Ũ(xν ; xν) +NX̃ (xν)(x

ν) ⊆ ∂U(xν) + Ñ(xν). �

Proposition 1 sets the following agenda for the further study of AF 1.
1. What is the exact meaning of inclusion (7) and how does this condition

relate to the classical “stationarity” condition (2)? The answer to this question

revolves around the nature of cone Ñ(x̄). As things stand now, since, except for

X2, we made no assumptions linking X and X̃(x̄), (7) is not very informative.
It is thus important to study concrete realizations of the inner approximation
X̃ that make (7) meaningful.

2. We will see that the validity of key conditions (6) and (8) depend crit-

ically on the choice of γν (as well as on the characteristics of Ũ and X̃ ). We
will consider fixed and diminishing step-size rules, and step-size determined
by an Armijo-type condition.

3. In the subsequent analysis of the first two issues we will resort to addi-
tional conditions, beyond Assumptions U and X, on Ũ and X̃ (see Subsection
4.1). It is then essential to show that, in relevant cases, one can easily define

suitable approximations Ũ and X̃ satisfying these assumptions, thus leading
to practical solution methods.

Points 1 and 2 above will be discussed in the next section, while point 3
will be dealt with in Section 5.

4 The Method in Detail

In this section we present an in-depth analysis aimed at answering the ques-
tions of points 1-2 listed at the end of the previous section. In order to perform
our analysis, we consider a more concrete realization of problem (P), that is,

minimize
x

F (x) +H(x)

s.t. gj(x) ≤ 0, j = 1, . . . ,m

x ∈ K,
(P1)

where X , {x ∈ K : gj(x) ≤ 0, j = 1, . . . ,m} is nonempty, with K ⊆ Rn
closed and convex and, letting O ⊇ X be open, gj : O → R locally Lipschitz

continuous on O for every j; moreover, U , F + H is coercive on X , with F
continuously differentiable on O, its gradient Lipschitz continuous on O with
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constant L∇F and H locally Lipschitz continuous on O. We note that the
above conditions guarantee the existence of a solution of problem (P1).

In this formulation the feasible set X is described by the convex, closed set
K and m inequality constraints. The set K is intended to represent the “easy”
part of the constraints and is possibly defined by further convex inequali-
ties. On the other hand, the explicit and “difficult” inequality constraints gjs,
which are possibly nonsmooth and nonconvex, need to be suitably approxi-
mated/simplified in order to build, starting from (P1) and at a generic feasible
point y, the better behaved subproblem (P1y) below.

The objective function U is given by the sum F +H, with F smooth and
H locally Lipschitz. Of course, this description of U is somewhat redundant
since we could simply take U = H; however, it is useful to highlight, if present,
a smooth component F , because, on this term, we can relax the assumptions
that we need, instead, for the more general nonsmooth part H.

Taking into account that the general abstract problem (P) is actually rep-
resented by (P1), we are naturally led to consider the following approximation
of (P1) at a feasible point y:

minimize
x

F̃ (x; y) + H̃(x; y)

s.t. g̃j(x; y) ≤ 0, j = 1, . . . ,m

x ∈ K,

(P1y)

where Ũ = F̃ + H̃ and X̃ (y) , {x ∈ K : g̃j(x; y) ≤ 0, j = 1, . . . ,m}.
In the next subsection we provide a detailed description of the assumptions

that we make on problem (P1y), while in the remaining part of the section we
analyze the convergence properties of AF 1.

4.1 Assumptions

In order to strengthen the results of Proposition 1 and to take into account the
specific structure of problems (P1) and (P1y), below we state three assump-

tions about the approximations F̃ , H̃, and g̃j that complement Assumptions
U and X. These conditions are somewhat technical, but in Section 5 we give
many examples of approximations satisfying the assumptions, thus showing
the breadth and wide practical applicability of our approach. The first two
assumptions concern the objective function.

Assumption F F̃ : Ox ×Oy → R satisfies the following properties:

F1) F̃ (•; y) is a finite strongly convex function on Ox for every y ∈ X with
modulus of strong convexity cF̃>0 independent of y;

F2) ∇1F̃ (•; •) exists and is continuous on Ox ×Oy;

F3) ∇1F̃ (y; y) = ∇F (y), for every y ∈ X ;

where ∇1F̃ (u; w) denotes the partial gradient of F̃ (•; w) evaluated at u.

Assumption H H̃ : Ox ×Oy → R satisfies the following properties:
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H1) H̃(•; y) is a finite convex function on Ox for every y ∈ X ;

H2) H̃(y; y) = H(y), for every y ∈ X ;

H3) H(x) ≤ H̃(x; y) for every x ∈ X and y ∈ X ;

H4) ∂1H̃(•; •) is locally bounded relative to X ×X at every (y,y) with y ∈ X ;

H5) lim sup(u,w) −→
X×X

(y,y) ∂1H̃(u; w) ⊆ ∂H(y) for every y ∈ X .

Assumption F on the smooth part of the objective function is just a verbatim
repetition of Assumption U, see the discussion just before Lemma 1. Assump-
tions H1, H4 and H5 are again a plain restatement of Assumption U, the only
difference being that condition H1 only requires convexity: indeed, in view of
F1, it is enough to have H̃ convex in order to make the overall approximation
Ũ = F̃ + H̃ strongly convex for fixed y. Conditions H2 and H3 are instead
new. H2 is only made for convenience and can always be satisfied by a trans-
lation. The key assumption H3 requires H̃(x,y) to be an upper approximation
of H(x) making up, in some sense, for the lack of differentiability of H. Note
that this condition is typical of majorization/minimizations schemes as, for
example, [1, 6]. An important feature of AF 1 is that we do not require this

majorization condition of F̃ and therefore on Ũ . This is very important from
the practical point of view, since majorization schemes can be very slow, see
for example Section 6, and also because, in general, it is easier to build an
approximations which is not un upper estimate, see Section 5.

When considering the constraints, we assume that, at each given point
y ∈ X and for each function gj , we can define a suitable approximation g̃j
that satisfies the following conditions.

Assumption G Each g̃j : Ox ×Oy → R satisfies the following properties:

G1) g̃j(•; y) is a finite convex function on Ox for every y ∈ X ;
G2) g̃j(y; y) = gj(y), for every y ∈ X ;
G3) gj(x) ≤ g̃j(x; y) for every x ∈ X and y ∈ X ;
G4) g̃j(•; •) is continuous relative to X × X at every (y,y) with y ∈ X ;
G5) ∂1g̃j(•; •) is locally bounded relative to X×X at every (y,y) with y ∈ X ;
G6) lim sup(u,w) −→

X×X
(y,y) ∂1g̃j(u; w) ⊆ ∂gj(y) for every y ∈ X .

Conditions G1-G3 are just the translation of Assumption X in the setting of
problems (P1) and (P1y). While G4 is a fairly mild continuity assumption, the
consistency condition G6, along with G5, is instrumental for building a bridge
between the sets Ñ and NX at y ∈ X . In any case, G5 and G6 are identical
to H4 and H5 and, if we are able to define suitable assumptions for the gjs we
can do the same for H.

For future reference, it may be useful to explicitly state the following fact
that, in the light of the discussion so fare, does not need any proof.

Proposition 2 Assumptions F, H, and G on problem (P1) imply that problem
(P1y) satisfies Assumptions U and X.
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4.2 Main Convergence Result

In this subsection we study the main convergence properties of AF 1. We still
have to specify how to choose the step-size γν at each iteration. We consider
three options: (i) a sufficiently small fixed step-size; (ii) a diminishing step-
size rule; (iii) a step-size that is chosen according to an Armijo-type line-
search procedure. Each of these options has its pros and cons. Indeed, (i) is
conceptually the simplest (provided that some Lipschitz and strong convexity
constants are known), however it is expected to perform poorly in practice;
(ii) is the easiest-to-implement rule and does not require any prior knowledge
of any possibly-hard-to-know constant; (iii) is the most complex option and is
expected to lead to a better practical behavior, since, in this case, the step-
size is chosen taking into account the problem structure; rule (iii) is less suited
to distributed environments, since performing a line-search is inherently a
centralized task. The following theorem shows that, by choosing γν according
to these three methods, we can ensure that (6) or (8) hold.

Proposition 3 Given the nonconvex problem (P1) under F1-F3, H1-H3 and
G1-G3, let {xν} be the sequence generated by AF 1. The following hold:

(i) if the step-size γν and the error term εν are chosen so that

0 < inf
ν
γν ≤ sup

ν
γν ≤ γmax ≤ min{1, cF̃ /L∇F } (10)

εν ≤ a1 min{bν/[‖∇F (xν) + ξν‖], cν}, (11)

for some ξν ∈ ∂1H̃(vν ; xν) and for some non negative a1, bν and cν with∑
ν b

ν < +∞,
∑
ν(cν)2 < +∞, then {xν} is a bounded sequence such that

lim
ν→∞

‖x̂(xν)− xν‖ = 0; (12)

(ii) if the step-size γν and the error term εν are chosen so that

γν ∈ (0, 1], lim
ν→∞

γν = 0,
∑
ν

γν = +∞, and
∑
ν

(γν)2 < +∞,

εν ≤ γνa1 min{a2, 1/[‖∇F (xν) + ξν‖]}, (13)

for some ξν ∈ ∂1H̃(vν ; xν) and for some non negative a1 and a2, then
{xν} is a bounded sequence such that

lim inf
ν→∞

‖x̂(xν)− xν‖ = 0; (14)

(iii) if the step-size γν ∈ (0, 1] is chosen by means of a backtracking rule so
that γν = 0.5i

ν

, where iν is the smallest number in 0, 1, 2, . . . such that
x(iν) , xν + 0.5i

ν

(vν − xν) satisfies the Armijo-type condition

F (x(iν)) +H(x(iν)) ≤ F (xν) +H(xν) + αγν [∇F (xν)T (vν − xν)

+H̃(vν ; xν)− H̃(xν ; xν)],
(15)



14 Francisco Facchinei et al.

for some α ∈ (0, 1), the error εν is such that limν→∞ εν = 0, and

F̃ (vν ; xν) + H̃(vν ; xν) ≤ F̃ (xν ; xν) + H̃(xν ; xν), (16)

then {xν} is well-defined, bounded and condition (12) holds.

As stated above, according to AF 1, we consider the possibility of an inaccu-
rate computation of x̂(xν). The error must obey rather standard rules, with
possibly the exception of (16), which, however, is a natural and easily enforced
condition: indeed, (16) states that the approximation vν of the optimal solu-
tion x̂(xν) of problem (P1xν ) has to at least improve on the current iteration
xν . Rules (11) and (13) would require us to estimate ‖vν−x̂(xν)‖. In principle,
this is possible by resorting to appropriate error bounds, which are available
for the strongly convex problem (P1xν ) [14]. However, from a practical point
of view, taking into account that constants a1, a2 and sequences bν and cν are
arbitrary, the meaning of (11) and (13) is simply that the error εν should go
to zero, i.e. the same condition needed for the line-search option (iii).

To prove Proposition 3 we need two preliminary lemmas.

Lemma 2 Under Assumption F1-F3, H1 and G1-G3, for every xν ,

∇F (xν)T (x̂(xν)−xν)+H̃(x̂(xν); xν)−H̃(xν ; xν) ≤ −cF̃ ‖x̂(xν)−xν‖2. (17)

Proof For any given xν ∈ X , by referring to problem (P1y) with y = xν ,
thanks to F2, G1, and H1 we have

(z− x̂(xν))T∇1F̃ (x̂(xν); xν) + H̃(z; xν)− H̃(x̂(xν); xν) ≥ 0, ∀z ∈ X̃ (xν).
(18)

By adding and subtracting ∇1F̃ (xν ; xν) in the LHS of (18), and choosing

z = xν ∈ X̃ (xν), we get

0 ≤ (xν − x̂(xν))
T
(
∇1F̃ (x̂(xν); xν)−∇1F̃ (xν ; xν) +∇1F̃ (xν ; xν)

)
+H̃(xν ; xν)− H̃(x̂(xν); xν),

which, using F1 and F3, gives (17). �

Lemma 3 [4, Lemma 3.4] Let {aν}, {bν}, and {cν} be three sequences of
numbers such that {bν} ≥ 0 for all ν. Suppose that aν+1 ≤ aν − bν + cν , ∀ν =
0, 1, . . . and

∑∞
ν=0 c

ν < ∞. Then, either aν → −∞ or else {aν} converges to
a finite value and

∑∞
ν=0 b

ν <∞.

Proof of Proposition 3 First of all, we note that, by the descent lemma [3,
Proposition A.24] and step (S.3) of AF 1, we get

F (xν+1) ≤ F (xν) + γν∇F (xν)T (vν − xν) +
(γν)2L∇F

2
‖vν − xν‖2. (19)
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Furthermore,

H(xν+1)
(a)

≤ H̃(xν+1; xν)
(b)

≤ H̃(xν ; xν) + γν(H̃(vν ; xν)− H̃(xν ; xν))

= H̃(xν ; xν) + γν
(
H̃(vν ; xν)− H̃(x̂(xν); xν) + H̃(x̂(xν); xν)− H̃(xν ; xν)

)
(c)

≤ H(xν) + γν(ξν)T (vν − x̂(xν)) + γν(H̃(x̂(xν); xν)− H̃(xν ; xν)), (20)

where the last relation holds for any ξν ∈ ∂1H̃(vν ; xν). The inequality (a)
follows from H3, while (b) and (c) are due to H2 and to the convexity of

H̃(•; y). Using

∇F (xν)T (vν − x̂(xν) + x̂(xν)− xν) ≤ ∇F (xν)T (vν − x̂(xν))

− cF̃ ‖x̂(xν)− xν‖2 + H̃(xν ; xν)− H̃(x̂(xν); xν),

which follows from Lemma 2, and combining (19) and (20), we have

F (xν+1) +H(xν+1) ≤ F (xν) +H(xν)− γνcF̃ ‖x̂(xν)− xν‖2

+γνεν‖∇F (xν) + ξν‖+ (γν)2L∇F
2 ‖vν − xν‖2.

(21)

Since ‖vν−xν‖2 ≤ 2‖x̂(xν)−xν‖2+2‖vν−x̂(xν)‖2 ≤ 2‖x̂(xν)−xν‖2+2(εν)2,
from (21) we obtain

F (xν+1)+H(xν+1) ≤ F (xν)+H(xν)−γν
(
cF̃ − γ

νL∇F
)
‖x̂(xν)−xν‖2 + T ν ,

(22)

where T ν , γνεν [‖∇F (xν) + ξν‖] + L∇F (γνεν)2. Note that in cases (i) and
(ii), under the assumptions of the theorem, we have

∑∞
ν=0 T

ν <∞.
We now prove the thesis for cases (i), (ii) and (iii) separately.

(i) In view of relation (22), since F + H is coercive, Lemma 3 implies that
the sequence {F (xν) +H(xν)} is convergent and, thus, that {xν} is bounded.
Furthermore, again by Lemma 3, lim

ν→∞

∑ν
t=ν̄ γ

t‖x̂(xt) − xt‖2 < +∞, which,

taking into account that γν is bounded away from zero, readily entails (12).
(ii) Since lim

ν→∞
γν = 0, there exists a positive constant ω such that by (22) we

have, for ν ≥ ν̄ sufficiently large,

F (xν+1) +H(xν+1) ≤ F (xν) +H(xν)− γνω‖x̂(xν)− xν‖2 + T ν . (23)

Since F +H is coercive, Lemma 3 implies that the sequence {F (xν) +H(xν)}
is convergent and, thus, that {xν} is bounded. Furthermore, again by Lemma
3, we have lim

ν→∞

∑ν
t=ν̄ γ

t‖x̂(xt)−xt‖2 < +∞, from which, taking into account∑∞
ν=0 γ

ν = +∞, (14) follows.
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(iii) By (19) and relation (b) in (20), we have

F (xν+1) +H(xν+1)− [F (xν) +H(xν)] ≤ γν
[
∇F (xν)T (vν − xν) (24)

+ H̃(vν ; xν)− H̃(xν ; xν)
]

+
(γν)2L∇F

2
‖vν − xν‖2.

We also observe that, by F1, F3 and (16),

∇F (xν)T (vν − xν) + H̃(vν ; xν)− H̃(xν ; xν) ≤ −
cF̃
2
‖vν − xν‖2. (25)

Now, we are able to prove that there exist suitable values of the step-size
γν such that (15) holds. Indeed, by (24), the sufficient decrease condition is
satisfied if

γν [∇F (xν)T (vν − xν) + H̃(vν ; xν)− H̃(xν ; xν)] +
(γν)2L∇F

2
‖vν − xν‖2

≤ αγν [∇F (xν)T (vν − xν) + H̃(vν ; xν)− H̃(xν ; xν)], (26)

and thus, thanks to (25) and easy reasonings, for any γν such that γν ≤
min{1, (1 − α)

cF̃
L∇F
}. Therefore, we can always find a finite iν for which the

Armijo condition (15) holds. By the same token, the step-size γν is bounded
away from zero and, more precisely, such that, for all ν,

γν ≥ min

{
1,

1− α
2

cF̃
L∇F

}
. (27)

Besides, (15) and (25) also imply

F (xν+1) +H(xν+1)− [F (xν)−H(xν)] ≤ −αγν
cF̃
2
‖vν − xν‖2

and in turn, thanks to (27) and the coercivity of F + H, we deduce that
{F (xν) +H(xν)} is convergent, {xν} is bounded, and lim

ν→∞
‖vν − xν‖ = 0. By

observing that ‖x̂(xν)− xν‖ ≤ ‖x̂(xν)− vν‖+ ‖vν − xν‖, we get (12). �

Point (iii) in Proposition 3 and, in particular, (27) show that if we choose cF̃
large enough (see the next section to appreciate how this is easily possible)
we could always take γν = 1 and get (12). However, if the original objective
function U = F + H is itself strongly convex, then, without any additional
requirement, a unit step-size leads to condition (12). The following proposition
is a generalization of a similar result in [2] (see the first part of the proof
of Proposition 3.2 therein) valid for smooth problems only and only when
the exact solution x̂(xν) is used at each iteration (i.e. when εν = 0 at each
iteration).

Proposition 4 Given the nonconvex problem (P1) under G1-G3, suppose

that U = F +H is strongly convex with constant cU and that we set Ũ(x; y) =
U(x). Letting {xν} be the sequence generated by AF 1,
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(iv) if the step-size γν and the error term εν are chosen so that

γν = 1, lim
ν→∞

εν = 0, U(vν) ≤ U(xν),

then {xν} is a bounded sequence such that (12) holds.

Proof Preliminarily, we observe that, by choosing γν = 1, we have xν+1 = vν .
Then, by U(vν) ≤ U(xν), since U = F +H is coercive, the sequence {U(xν)}
converges and {xν} is bounded. Thus, by ‖vν − x̂(xν)‖ ≤ εν , we have

lim
ν→∞

‖U(x̂(xν))− U(xν)‖ = 0. (28)

On the other hand, by the strong convexity of U , for every ξν ∈ ∂U(x̂(xν)),

U(xν)− U(x̂(xν)) ≥ (ξν)T (xν − x̂(xν)) +
cU
2
‖x̂(xν)− xν‖2. (29)

Furthermore, since x̂(xν) is the solution of problem (P1xν ) and xν ∈ X̃ (xν),

(ξ̂
ν
)T (xν − x̂(xν)) ≥ 0 (30)

for some ξ̂
ν
∈ ∂U(x̂(xν)). Thus, by (29) and (30), we get U(x̂(xν))−U(xν) ≤

− cU2 ‖x̂(xν)− xν‖2 for every ν and, in turn, by (28), lim
ν→∞
‖x̂(xν)− xν‖ = 0. �

Combining Propositions 1, 3, and 4, we easily get convergence to points satis-
fying (7). By showing that, under the MFCQ, this condition is actually equiva-
lent to the stationarity condition (5), the following theorem provides the main
convergence properties of AF 1.

Theorem 1 Let {xν} be the sequence generated by AF 1. Under Assumptions
F, H, and G, {xν} is bounded and

(a) if the step-size rules in (i) or (iii) of Proposition 3, or if U is strongly
convex and the step-size in (iv) of Proposition 4 is adopted, every limit
point of {xν} satisfies (7);

(b) if the step-size rule in (ii) of Proposition 3 is employed, at least one limit
point of {xν} satisfies (7).

Furthermore, any limit point of {xν} which satisfies (7) and the MFCQ with
respect to the set X , is also stationary for problem (P1) according to (5).

Proof In view of the previous comments and taking into account Proposition
2, (a) and (b) need no further proof. Then, we show that a limit point x̄ that
satisfies (7) and the MFCQ also satisfies (5). It is enough to prove that if (3)
holds at x̄ ∈ X , then

Ñ(x̄) ⊆
⋃{ m∑

j=1

µj∂gj(x̄)|µ ∈ NRm− (g(x̄))
}

+NK(x̄) , S(x̄). (31)
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We claim that (3) must hold for X̃ (y) for all y ∈ X and u ∈ X̃ (y) sufficiently

close to x̄. If this were not true, sequences yk−→X x̄ and uk → x̄ with uk ∈ X̃ (yk)
would exist such that

0 ∈
m∑
j=1

µkj ∂1g̃j(u
k; yk) +NK(uk), µk ∈ NRm− (g̃(uk; yk)),

with ‖µk‖ = 1. Note that we use the iteration index k instead of ν not
to create confusion with the algorithm iterates. Thus, we must have, for
every k, −

∑m
j=1 µ

k
j ξ
k
j ∈ NK

(
uk
)
, for some ξkj ∈ ∂1g̃j(u

k; yk) and µk ∈
NRm− (g̃(uk; yk)). Taking the limit and renumbering if necessary, by G5 and the

outer semicontinuity (relative to K) of the mapping NK (•) (see e.g. [39, Propo-
sition 6.6]), we get −

∑m
j=1 µ̄j ξ̄j ∈ NK (x̄) , where ξ̄j ∈ ∂gj(x̄) in view of G6,

and µ̄ ∈ NRm− (g(x̄)) with ‖µ̄‖ = 1, by G4, G2 and the outer semicontinuity

(relative to Rm− ) of the mapping NRm− (•). This contradicts the assumed MFCQ

at x̄ ∈ X . Therefore, for all y ∈ X and u ∈ X̃ (y) sufficiently close to x̄,

0 ∈
m∑
j=1

µj∂1g̃j(u; y) +NK(u), µ ∈ NRm− (g̃(u; y))⇒ µ = 0. (32)

In order to prove relation (31), take any η̄ in Ñ(x̄); we show that η̄ belongs to

S(x̄). By definition of Ñ(x̄), there exist sequences X 3 yk → x̄ and uk → x̄
such that NX̃(yk)(u

k) 3 ηk → η̄. We also have

NX̃ (yk)(u
k)=

⋃{ m∑
j=1

µkj ∂1g̃j(u
k; yk)|µk ∈ NRm− (g̃(uk; yk))

}
+NK(uk), (33)

where (33) comes from G1, the constraint qualification (32), and rather stan-
dard facts in convex analysis (alternatively, see [39, Corollary 10.50] and [39,
Theorem 9.13 along with Corollary 10.9 and Theorem 6.42]). Therefore

ηk =

m∑
j=1

µkj ξ
k
j + ϑk, (34)

for some ξνj ∈ ∂1g̃j(u
k; yk), µk ∈ NRm− (g̃(uk; yk)) and ϑk ∈ NK(uk). By pass-

ing to subsequences, we can distinguish two cases: either (µk, ϑk)→ (µ̄, ϑ̄) or
λk(µk, ϑk)→ (µ̄, ϑ̄) 6= (0, 0) for some sequence λk ↓ 0. The latter case cannot
actually occur; in fact, one would obtain λkηk =

∑m
j=1 λ

kµkj ξ
k
j + λkϑk, which

would entail 0 =
∑m
j=1 µ̄j ξ̄j + ϑ̄, with ξ̄j ∈ ∂gj(x̄) (by G6), µ̄ ∈ NRm− (g(x̄))

(by G4, G2, and the outer semicontinuity relative to Rm− of NRm− (•)), and

ϑ̄ ∈ NK(x̄) (by the outer semicontinuity relative to K of NK(•)). This contra-
dicts the assumed MFCQ (3) at x̄. Hence, we are left with (µk, ϑk)→ (µ̄, ϑ̄).
Recalling G5 and taking the limit in (34), we have, without loss of general-
ity, η̄ =

∑m
j=1 µ̄j ξ̄j + ϑ̄, where, as before, ξ̄j ∈ ∂gj(x̄), µ̄ ∈ NRm− (g(x̄)), and

ϑ̄ ∈ NK(x̄), thus concluding the proof. �
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4.3 From lim inf to lim when a diminishing step-size is adopted

When a diminishing step-size (case (ii) in Proposition 3) is employed, in view
of Theorem 1, it appears that one can establish weaker convergence proper-
ties, compared to the result for cases (i), (iii), and (iv) in Proposition 4: indeed
we were only able to show (14) instead of (12). Taking into account that the
diminishing step-size rule is arguably the best option in case of nonconvex par-
allel/distributed implementations, see subsection 5.3, it is desirable to inquire
whether we can improve the results for case (ii). It turns out that the Hölder
behavior of the best-response mapping x̂(•) plays a key role.

Proposition 5 Under the assumptions of Proposition 3, if, in addition,

‖x̂(y)− x̂(z)‖ ≤ θ‖y − z‖β , (35)

for every y, z ∈ X and for positive scalars β and θ, then, also in case (ii) of
Proposition 3, (12) holds, i.e. limν→∞ ‖x̂(xν)− xν‖ = 0.

Proof Denoting ∆x̂(xν) , x̂(xν) − xν , by the statement (ii) of Proposi-
tion 3, we have lim infν→∞ ‖∆x̂(xν)‖ = 0. Suppose by contradiction that
lim supν→∞ ‖∆x̂(xν)‖ > 0. Then, there exists δ > 0 such that ‖∆x̂(xν)‖ > δ
and ‖∆x̂(xν)‖ < δ/2 for infinitely many νs. Therefore, there is an infinite
subset of indices N such that, for each ν ∈ N , and some iν > ν, the following
relations hold:

‖∆x̂(xν)‖ < δ/2, ‖∆x̂(xiν )‖ > δ (36)

and, if iν > ν + 1,

δ/2 ≤ ‖∆x̂(xj)‖ ≤ δ, ν < j < iν . (37)

Hence, for all ν ∈ N , we can write

δ/2 < ‖∆x̂(xiν )‖ − ‖∆x̂(xν)‖ ≤ ‖x̂(xiν )− x̂(xν)‖+ ‖xiν − xν‖
(a)

≤ ‖xiν − xν‖+ θ‖xiν − xν‖β

(b)

≤
∑iν−1
t=ν γt (‖∆x̂(xt)‖+ ‖vt − x̂(xt)‖)

+ θ
[∑iν−1

t=ν γt (‖∆x̂(xt)‖+ ‖vt − x̂(xt)‖)
]β

(38)

(c)

≤ (δ + εmax)
∑iν−1
t=ν γt + θ (δ + εmax)

β
(∑iν−1

t=ν γt
)β

,

where (a) is due to (35), (b) comes from the triangle inequality and the up-
dating rule of the algorithm and in (c) we used (37), ‖vt − x̂(xt)‖ ≤ εt and
set εmax , maxν ε

ν , which is well-defined because by (13), εν → 0. By (38)
we have

lim inf
ν→∞

[
(δ + εmax)

iν−1∑
t=ν

γt + θ (δ + εmax)
β

(
iν−1∑
t=ν

γt

)β ]
> 0. (39)
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We prove next that (39) is in contradiction with the convergence of {F (xν) +
H(xν)}, which is established in Proposition 3. To this end, we first show that
‖∆x̂(xν)‖ ≥ δ/4, for sufficiently large ν ∈ N . Reasoning as in (38), we have

‖∆x̂(xν+1)‖ − ‖∆x̂(xν)‖ ≤ ‖xν+1 − xν‖+ θ‖xν+1 − xν‖β

≤ γν(‖∆x̂(xν)‖+ εmax) + θ(γν)β(‖∆x̂(xν)‖+ εmax)β ,

for any given ν. For ν ∈ N large enough so that γν(δ/4+εmax)+θ(γν)β(δ/4+
εmax)β < δ/4, suppose by contradiction that ‖∆x̂(xν)‖ < δ/4; this would
give ‖∆x̂(xν+1)‖ < δ/2 and, thus, condition (37) (or (36)) would be violated.
Then, it must be ‖∆x̂(xν)‖ ≥ δ/4. From this, and using (23) we have, for
sufficiently large ν ∈ N ,

F (xiν ) +H(xiν ) ≤ F (xν) +H(xν)− ω
∑iν−1
t=ν γt‖∆x̂(xt)‖2 +

∑iν−1
t=ν T t

≤ F (xν) +H(xν)− ω δ
2

16

∑iν−1
t=ν γt +

∑iν−1
t=ν T t.

(40)
Since

∑∞
ν=0 T

ν <∞ and T ν ≥ 0 for every ν, the series
∑∞
ν=0 T

ν is convergent,

so that the Cauchy convergence criterion implies
∑iν−1
t=ν T t → 0. Therefore, re-

calling that {F (xν)+H(xν)} converges, renumbering if necessary, (40) implies∑iν−1
t=ν γt → 0, in contradiction with (39). �

In view of Proposition 5, we aim at deriving suitable sufficient conditions for
(35) to hold. Of course, one can draw on the vast literature on stability in
optimization (see e.g. [8, 28], the recent [32, 33] and references therein). In
particular, in [33] a second-order subdifferential characterization of Hölderian
full stability (via the regular coderivative of the subdifferential) is established.
However, these conditions are hard to verify in practice and, hence, below we
prove the desired Hölderian behavior (35) under assumptions that, while not
minimal, are easy to check and, in our context, not difficult to satisfy. We
therefore require the following additional conditions; in the next section we
show that they are easily met in many practical cases.

Assumption B

F4) ∇1F̃ (x; •) is Lipschitz continuous on Oy for every x ∈ X with modulus
of Lipschitz continuity independent of x;

F5) ∇1F̃ (•; y) is Lipschitz continuous on Ox for every y ∈ X with modulus
of Lipschitz continuity independent of y;

G7) each g̃j(•; •) is locally Lipschitz continuous on Ox ×Oy.

The following proposition, which builds on the results in [51], allows us to
provide suitable sufficient conditions that guarantee the Hölder behavior (35)
of x̂(•) in the case of a smooth objective function.

Proposition 6 Assume that F1, F2, F4, F5, G1 and G7 hold and that H ≡ 0.
Suppose further that X is compact and the MFCQ holds at x̂(x̄) ∈ X̃ (x̄) for
every x̄ ∈ X . Then, there exists θ > 0 such that for every y, z ∈ X :

‖x̂(y)− x̂(z)‖ ≤ θ‖y − z‖ 1
2 . (41)
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Proof Observing that, in view of G1 and G7, by [11, Propositions 2.3.16 and
2.5.3], we have ∂1gj(x̂(x̄); x̄) = ∂̄1gj(x̂(x̄); x̄) = πx∂̄gj(x̂(x̄); x̄), the MFCQ at

x̂(x̄) ∈ X̃ (x̄), for every x̄ ∈ X , implies by [51, Lemma 3.1] that the set-valued

mapping X̃ has the Aubin property relative to X at x̄ for x̂(x̄) for every x̄ ∈ X .
Therefore, in view of [51, Theorem 2.1], for every x̄ ∈ X , there exist ηx̄ > 0,
θx̄ > 0 and a neighborhood Vx̄ of x̄ such that, for every y, z ∈ Vx̄ ∩ X

‖x̂(y)− x̂(z)‖ ≤ ηx̄‖y − z‖+ θx̄‖y − z‖ 1
2 .

By the previous relation and the compactness of set X , (41) holds. �

5 Approximations and Distributed Implementation

In this Section we show the wide applicability of our approach by defining func-
tions F̃ , H̃, and g̃ satisfying Assumptions F, H, and G in an array of cases of
practical interest. We also briefly discuss how a suitable selection of F̃ , H̃, and
g̃ can lead to parallel and distributed versions of our scheme. We remark that,
given a specific application, it is often possible to find ad hoc approximations
that exploit the structure of the problem at hand; Section 6 provides exam-
ples in this sense. While the functions we consider are “common” and reflect
what can be encountered in applications, the fact that these approximations,
even if natural-looking, satisfy our assumptions is by no means obvious; on
the contrary, it is evidence of the heed given to the choice of Assumptions
F, H, and G. It is precisely because of these technical, but carefully selected
assumptions that we are able to deal, for the first time in INCA-type methods,
with non subdifferentially regular nonsmooth functions as those considered in
Examples 2, 3, 4 and 7 in subsection 5.2 below, which, for example, cannot
be dealt with the method proposed in [6]. We believe that our treatment of
problems involving this kind of functions probably provides in this context the
most efficient solution method currently available.

5.1 Approximating F

Finding suitable approximations for F is in general easy, since F is differen-
tiable and we do not need to impose any majorization property. Below we list
a few possible choices for F̃ . The verification of the validity of Assumption F,
and F4 and F5 in Assumption B is straightforward and, therefore, omitted.
For the sake of simplicity, in all this sections we do not detail every time the
sets Ox and Oy, as they are easily determinable by the reader.

1. If F is convex, as assumed in [2, 30], we can set

F̃ (x; y) , F (x) +
τ

2
‖x− y‖2 ,

where τ is a positive constant that can be taken to be 0 in case F is already
strongly convex. This F̃ is just a regularization of the original F .
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2. In general, one can always resort to the first order approximation of F ,

F̃ (x; y) , ∇F (y)T (x− y) +
τ

2
‖x− y‖2 ,

where τ is a positive constant. Classical (proximal) gradient methods [5] use
this approximation but they are not applicable to (P1) because of the non-
convexity of the feasible set. Note that if F ≡ 0, the above approximation
boils down to F̃ (x; y) , τ

2‖x − y‖2. This means that even if U = H we still
have a “contribution” from F . Approximating F ≡ 0 with a proximal term is
simply a way of requiring the overall U , F̃+H̃ to be strongly convex without
making this assumption also on H̃.

3. In some cases, a certain degree of convexity may be present in F and it
is useful to preserve this feature as much as possible. Suppose that the vector
of variables x is partitioned in blocks x = (xi)

I
i=1 and the function F is convex

in each xi but not jointly in x. A natural approximation is then

F̃ (x; y) =

I∑
i=1

F̃i(xi; y), with F̃i(xi; y) , F (xi,y−i) +
τi
2
‖xi − yi‖2, (42)

where y , (yi)
I
i=1, y−i , (yj)j 6=i and τi > 0. If F (•,y−i) is already uniformly

strongly convex for all feasible y−i, the quadratic term in (42) can be dropped.
4. In some practical problems, for example in multi-agent scenarios, the ob-

jective function F is given by the sum of the utilities fi(x1, . . . ,xI) of I agents,

each of them controlling the variable block xi: thus, F (x) ,
∑I
i=1 fi(x1, . . . ,

xI). Typically, it may happen that some of the fis are convex in some agents’
variables: our purpose, following [15, 45], is to employ an approximation such
that, for each agent i, the convex part of F w.r.t. xi is kept unaltered, while
the nonconvex part is linearized. Let

Si , {j = 1, . . . , I : fj(•,x−i) is convex, ∀(xi,x−i) ∈ K}

be the set of indices of all the functions fj(xi,x−i) that are convex in xi, for
any feasible x−i, and Ci be any subset of Si; one can set

F̃ (x; y) =

I∑
i=1

F̃Ci(xi; y),

with

F̃Ci(xi; y) ,
∑
j∈Ci

fj(xi,y−i) +
∑
k/∈Ci

[fk(y) +∇ifk(y)T (xi − yi)] +
τi
2
‖xi − yi‖2,

where τi is a positive constant.
5. Assume that F is a saddle function, i.e., F depends on two groups of

variables, x1 and x2, with F (•,x2) convex for every fixed x2 and F (x1, •)
concave for every fixed x1. It is easy to check that

F̃ (x1,x2; y1,y2) , F (x1,y2)+∇2F (y1,y2)T (x2−y2)+
τ

2
‖(x1,x2)−(y1,y2)‖2

satisfies Assumption F for any positive τ . Needless to say, if F (•,x2) is strongly
convex in x1, uniformly relative to x2, we can employ ‖x2 − y2‖2 instead of
‖(x1,x2)− (y1,y2)‖2.
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6. If the set K is contained in Rn++ , {x ∈ Rn : xi > 0,∀i}, we can set

F̃ (x; y) , F (y) +
∑
i:∇iF (y)≥0∇iF (y)(xi − yi)

−
∑
i:∇iF (y)<0∇iF (y)

(
y2i
xi
− yi

)
+ τ

2 ‖x− y‖2 ,

where τ is a positive constant. This kind of approximation is used in structural
optimization problems [18,47,48] for which it proves to be extremely effective.

5.2 Approximating H or gj

The approximations of the nondifferentiable component H of the objective
function and of the constraint gj must obey almost the same assumptions. In
fact, Assumptions H and G differ only in the additional condition G4. Since
all our examples do satisfy G4, we deal with the approximations for H and gj
together, referring to a generic locally Lipschitz function h. In Assumption B
we have also condition G7, which is slightly harder to satisfy. We do not require
the approximations of H or gj to be differentiable; in fact, what matters is
that the resulting subproblem (P1y) can be efficiently solved, and this does not

necessarily imply that H̃ or g̃j should be differentiable, see e.g. the discussion
after (46). Below we provide several examples, discussing only those properties
(among G1-G6 and G7) that are not immediately obvious.

1. If h is convex, we can simply set h̃(x; y) , h(x). In particular, if h is
a constraint function, this means that such constraint can be incorporated in
the convex set K.

2. If h is concave, the linear approximation

h̃(x; y) , h(y) + ξT (x− y),

for any ξ ∈ ∂h(y), satisfies G4-G6 thanks to the local boundedness and outer
semicontinuity of the subgradient set of the locally Lipschitz function h. In
order for G7 to hold, we must assume h to be continuously differentiable with
locally Lipschitz gradient.

3. Consider h(x) = mini{hi(x)}, with hi smooth and convex for every
i = 1, . . . , p. The constraint mini{hi(x)} ≤ 0 is a difficult disjunctive-type con-
straint requiring at least one of the hi(x) ≤ 0 to be satisfied. In order to define a
suitable approximation, we derive first an exact formula for the subdifferential
of the min function. To this end, let I(y) , {i ∈ {1, . . . , p}|h(y) = hi(y)} be
the set of active indices at y and Ie(y) , {i ∈ {1, . . . , p}|y ∈ cl int {x|h(x) =
hi(x)} ⊆ I(y) be the set of essentially active indices at y (cl and int indicate
the closure and the interior of a set).

Proposition 7 Let all hi be continuously differentiable (not necessarily con-
vex). Then,

∂h(y) =
⋃

i∈Ie(y)

{∇hi(y)}. (43)
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Proof By [31, Proposition 1.113] and [41, Proposition 4.1.1], we have:

∂h(y) ⊆
⋃

i∈Ie(y)

{∇hi(y)}.

We prove now that ∇hi(y) ∈ ∂h(y) for every i ∈ Ie(y). Indeed, for any
i ∈ Ie(y), we have y ∈ cl int {x|h(x) = hi(x)}. Thus, there exists a sequence
wν converging to y such that wν ∈ int {x|h(x) = hi(x)} and ∂h(wν) =
{∇h(wν)} = {∇hi(wν)} for every ν. Therefore, thanks to [39, Theorem 9.61],
∇hi(y) ∈ ∂h(y) for every i ∈ Ie(y) and the thesis follows. �

In view of the previous considerations, we propose the approximation

h̃(x; y) , hiy(x), for any iy ∈ Ie(y).

As regards G4, it is enough to recall that I(w) ⊆ I(y) for every w in some
neighborhood of y. Observing that ∂1h̃(x; y) = {∇hiy(x)} with iy ∈ Ie(y), G5
holds trivially. Turning to G6, we preliminarily check that Ie(w) ⊆ Ie(y) for
every w sufficiently close to y. We show that if i 6∈ Ie(y), then, for every w in
some neighborhood of y, we have i 6∈ Ie(w). Let i 6∈ Ie(y). Then, there exists a
neighborhood V of y with V∩int {x|h(x) = hi(x)} = ∅. If there were w ∈ intV
such that i ∈ Ie(w), we would also have w ∈ cl int {x|h(x) = hi(x)}. Hence,
there would be a sequence {vν} converging to w with vν ∈ int {x|h(x) =
hi(x)} and we would get vν 6∈ V for every ν, a contradiction. Therefore,
Ie(w) ⊆ Ie(y) and this fact, together with Proposition 7, shows that also G6
holds. G7 does not hold for this approximation.
More in general, if each hi is only smooth (i.e., not necessarily convex) and,
for every hi, there exists a differentiable convex approximation h̃i such that
Assumption G holds, the convex function given by

h̃(x; y) , h̃iy(x; y), for any iy ∈ Ie(y),

satisfies Assumption G.
We conclude the analysis of this case by providing a very simple procedure
that, in most practical cases, provides an index in Ie(y). Given y, we can
easily compute I(y). Now, generate a random nonzero direction d and set
iy , argmini∈I(y){∇hi(y)Td}. By using standard continuity arguments on
Taylor expansions, it is easy to see that if the minimum in the definition of iy
is reached for a single index, then iy ∈ Ie(y). If the minimum is not unique,
we can simply generate a different direction or use a second order expansion
if the his are twice continuously differentiable; we omit the details.

4. Suppose that h is the difference of a smooth convex function h+ and a
possibly nonsmooth, convex function h−, having thus the following nonsmooth
DC structure: h(x) = h+(x) − h−(x). By linearizing the concave part −h−
and keeping the convex (smooth) part h+ unchanged, we obtain the following
convex upper approximation of h:

h̃(x; y) , h+(x)− h−(y) + ξT (x− y),

for any ξ ∈ ∂(−h−(y)). Note that, by [39, Exercise 10.10], we have ∂h(y) =
∇h+(y) + ∂(−h−(y)) and ∂1h̃(x; y) = ∇h+(x) + ξ, with ξ ∈ ∂(−h−(y)). In
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view of the local boundedness and outer semicontinuity of the subgradient set
of the locally Lipschitz function −h−, G4-G6 are valid. In order for G7 to hold,
we must assume h− to be continuously differentiable with locally Lipschitz
gradient. To make a concrete example, suppose that h−(x) , maxi{h−i (x)},
with h−i (x) convex and smooth for every i = 1, . . . , p. We can then write
h(x) = h+(x) + mini{−h−i (x)}, and thus we can resort to Proposition 3 to
compute ∂mini{−h−i (x)}.

5. On the other hand, when h is the difference of a convex nonsmooth
function h+ and a convex smooth function h−, by linearizing the concave part
h− and keeping the convex (nonsmooth) part h+ unchanged, we obtain

h̃(x; y) , h+(x)− h−(y)−∇h−(y)T (x− y).

We remark, again by [39, Exercise 10.10], that ∂h(y) = ∂h+(y)−∇h−(y) and
∂1h̃(x; y) = ∂h+(x)−∇h−(y). Therefore, G4-G6 hold. In this case G7 holds
if the gradient of h− is locally Lipschitz.

6. Let h(x) = s(f(x)), where s : Rm → R is a finite convex function such
that s(u1, . . . , um) is nondecreasing in each uj , and f : Rn → Rm is a smooth
mapping, with f(x) = (f1(x), . . . , fm(x))T and fi concave for every i. Consider
the convex approximation

h̃(x; y) , s(f(y) +∇f(y)(x− y)), (44)

where ∇f(y) is the Jacobian of f at y. G1 holds by, e.g., [39, Exercise 2.20],
and so obviously do G2-G4. Furthermore, since, in view of [39, Theorem 10.6],
∂h(y) = ∇f(y)T∂s(f(y)) and ∂1h̃(x; y) = ∇f(y)T∂s(f(y) + ∇f(y)(x − y)),
also G5 and G6 are valid. Finally, G7 is clearly satisfied. This example can be
expanded assuming that the fi are smooth mappings, not necessarily concave,
for which approximations f̃i(x; y) satisfying Assumption G exist and such
that each f̃i(•,y) is C1. In this case, following the same steps above, it is
easy to see that the approximation h̃(x; y) , s(f̃1(x; y), . . . , f̃m(x; y)) satisfies
Assumption G. If in addition all f̃i satisfy G7, also h̃(x; y) satisfies G7.

7. Consider the widely used soft thresholding function h(x) = min{x +
a, max{0, x− a}} with a > 0. We can resort to the following approximation

h̃(x; y) ,

{
max{0, x− a}, y ≥ −a
x+ a, y < −a.

Conditions G4-G6 trivially hold at any point different from (−a,−a). The same
happens also in this “problematic” point: indeed, lim supx,y→−a ∂1h̃(x; y) =
{0, 1} = ∂h(−a). Also G7 holds quite clearly. Note that, as in the previous
case, we can easily extend this approximation to the composition of the soft
thresholding function with a smooth function f for which a suitable approxi-
mation f̃ is available; we leave the details to the reader.

8. In the case of a nonconvex function h with a Lipschitz continuous (with
constant L∇h) gradient, the following convex approximation is such that con-
ditions G1-G7 hold:

h̃(x; y) , h(y) +∇h(y)T (x− y) +
L∇h

2
‖x− y‖2.
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9. Whenever h : R→ R is polynomial, thus,

h(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0,

relying on its Taylor series expansion around y, the approximation

h̃(x; y) , h(y) +h′(y)(x− y) + (n− 1) max
i=2,...,n

{
|h(i)(y)|

i!

}
[(x− y)2 + (x− y)n̄],

where n̄ = n if n is even and n̄ = n + 1 otherwise, satisfies G1-G7. The
procedure adopted here for unidimensional polynomials can easily be extended
to the multidimensional case, but the required computations can become very
expensive for dimensions greater than two.

5.3 Parallel/distributed implementations

AF 1 can be viewed as a double loop iterative scheme. Given an outer iteration
xν , to generate xν+1 one needs to (a) (approximatively) solve problem (P1xν )
and (b) choose a suitable γν . In this subsection, we make some high-level
considerations on how to perform in a parallel/distributed fashion operations
(a) and (b) mentioned above, leading to a parallel/distributed instance of AF
1; more detailed discussions could only be made with reference to specific
problems.

As far as task (b) is concerned, one can choose any of the rules (i)-
(iii) in Proposition 3 or (iv) in Proposition 4. Options (i), (ii) and (iv) are
more suitable for a fully parallel/distributed implementation than the line-
search procedure (iii), which instead requires a high degree of coordination
among cores/nodes in a parallel/distributed environment. Also, experience
shows that, although theoretically attractive, option (i) could perform poorly,
since practical estimates of cF̃ /L∇F are usually very small, leading at each
iteration to little progress towards stationarity. On the other hand, option
(iv) can be used only in the presence of strongly convex objective functions.
Therefore, the diminishing step-size rule (ii) seems to be the more appropriate
choice for parallel/distributed environments. This is the main reason why in
Section 4 special attention was devoted to the study of (ii).

Referring to task (a), the design of parallel/distributed solution methods
for (P1xν ) depends on the specific structure of the original problem (P1)

as well as on the choice of the approximations F̃ , H̃, and g̃. The flexibility
offered by our approach in the definition of (P1xν ) is of great help to ob-
tain alternative distributed solution methods. Suppose that the feasible set of
(P1) is block-separable, i.e., K , K1 × · · · × Kp, with each Ki ⊆ Rni , and

X , {x , (xi)
p
i=1, xi ∈ Ki, i = 1, . . . , p :

∑p
i=1 g

i
j(xi) ≤ 0, j = 1, . . . ,m}.

Then, problem (P1) becomes

minimize
x

F (x) +H(x)

s.t.
∑p
i=1 g

i
j(xi) ≤ 0, j = 1, . . . ,m

xi ∈ Ki, i = 1, . . . , p,

(45)
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The structure of (45) naturally suggests approximations F̃ , H̃, and g̃ij that
are additively block-separable, like the examples given in case 2 and 3 in
Subsection 5.1 and in case 2 and 8 in Subsection 5.2. This results in convex
subproblems of the form

minimize
x

∑p
i=1 F̃i(xi; x

ν) +
∑p
i=1 H̃i(xi; x

ν)

s.t.
∑p
i=1 g̃

i
j(xi; x

ν) ≤ 0, j = 1, . . . ,m

xi ∈ Ki, i = 1, . . . , p,

(46)

that can be solved in a parallel/distributed way by standard techniques, see,
e.g., [5]. It is worth mentioning a special instance of (45), where the feasible
set has a Cartesian structure, i.e.,

minimize
x

F (x) +H(x)

s.t. gi(xi) ≤ 0, i = 1, . . . , p

xi ∈ Ki, i = 1, . . . , p.

(47)

Choosing separable approximations for F and H, in the form F̃ (x; xν) ,∑p
i=1 F̃i(xi; x

ν) and H̃(x; xν) ,
∑p
i=1 H̃i(xi; x

ν), lends itself to totally sepa-
rable convex subproblems that can be solved by tackling in parallel p strongly
convex problems. We point out that, even though the constraint functions gjs
in (P1) are not additively block-separable as in (45), it might still be possi-
ble to choose appropriate approximations so that the resulting subproblems
(P1xν ) can be solved in a parallel/distributed fashion, see for example cases
2 and 8 in Subsection 5.2. It is also interesting to observe that, when (P1)
involves nondifferentiable functions, our approach provides a systematic way
to possibly develop parallel and distributed solution methods for classes of
problems for which such option is not currently available.

6 Green communications: Energy minimization in wireless systems

In this section we present an application of our algorithmic framework to an
important open problem in green communications, resulting in an efficient ad-
hoc solution method for this class of problems. Our numerical results show
superior performance with respect to recent proposals.

Energy efficiency and Quality-of-Service (QoS) have been two key aspects
in the design of modern multiuser communication systems. Energy efficiency
is a growing concern due to energy costs and associated environmental issues.
It has been reported that ICT infrastructures account for more than 3% of
the world energy consumptions [22].

Moreover, given the rate at which wireless connected devices are increasing,
as well as the mass deployment of 5G systems, mobile communications are ex-
pected to consume significantly more energy, if no countermeasures are taken.
On the other hand, the explosive growth of data and multimedia services in
wireless networks (video conferencing, streaming, mobile TV, 3D services) en-
tails strict guarantees on QoS, such as delay and data rates, which contrast
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with the need of energy saving. These issues have motivated in the past few
years a growing interest in energy-aware optimization design of wireless com-
munication networks, under general QoS constraints [24,29,53]. This emerging
research area is called green communications; see [52] for a recent overview of
the state of the art. Although there are substantial differences between the
many, often specialized, formulations of problems in this field, all approaches
share the definition of the energy efficiency as fractional functions and leverage
fractional programming as a key tool for the analysis and design of solution
methods.

In this section, we consider a very general and challenging energy-efficient
design in green communications, namely: the minimization of the sum-energy
in MIMO multiuser interference networks, subject to rate profile constraints.
The resulting optimization problem is nonconvex, with nonconvexities occur-
ring both in the objective function and in the constraints. The multiuser nature
of the system, along with concurrent interfering communications, prevent one
to apply fractional programming-based methods, leaving the design of efficient
solution methods an open problem [52]. Furthermore, the proposed formula-
tion uses complex variables and calls for a solution method that preserves
feasibility of the iterates, thus ruling out off-the-shelf solvers.

We remark that, although in this section we focus on a specific setup
(MIMO ad-hoc interference networks) and formulation (the energy minimiza-
tion subject to QoS constraints), the proposed methodology and framework
open the way to the solution of a variety of currently open resource allocation
problems in (green) communications [52]. Examples include (i) energy efficient
designs in relay MIMO interference networks, multi-cell cellular systems, or
densely deployed small cells; (ii) max-min multicast (capacity) multi-stream
beamforming-like problems; and (iii) joint optimization of precoders, receive
filters, and power allocation in the scenarios described in (i)-(ii).

6.1 Problem formulation

In this subsection, we freely use standard facts in communications (see, e.g.,
[49]). The reader interested mainly in the mathematical formulation of the
problem can take (50) as starting point of the subsequent discussion.

Consider a wireless ad-hoc network composed of I multiple antenna pairs
transmitter-receiver, communicating over MIMO channels; we denote by I ,
{1, . . . , I} the set of active pairs (also termed users) in the system. Each trans-
mitter and receiver i is equipped with Ti and Ri antennas, respectively. The op-
timization variables of each transceiver i are given by the transmit covariance
matrix Qi ∈ CTi×Ti , which is a positive semi-definite matrix. Each transmitter
i is subject to the power constraint tr(Qi) ≤ Pi, where Pi is the maximum
average transmit power, and tr(Qi) denotes the trace of Qi. Since no a-priori
multiple access scheme is assumed for the users (like, e.g., OFDMA, TDMA,
or CDMA), multiuser interference is experienced at each receiver. Under stan-
dard information theoretical assumptions, the maximum achievable rate ri on
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each MIMO link i (measured in bit/s/Hz) can be written as follows [49]: given
Q , (Q1, . . . ,QI), with each Qi � 0,

ri(Q) , log2 det
(
I + HiiQiH

H
iiRi (Q−i)

−1
)
, (48)

where Hij ∈ CRi×Tj is the channel matrix between the transmitter of user

j and the receiver of link i; Ri (Q−i) , σ2
i · I +

∑
j 6=i HijQjH

H
ij is the co-

variance matrix of the Gaussian noise σ2
i · I (assumed to be proportional to

the identity matrix, without loss of generality, otherwise one can always pre-
whiten the channel matrices) plus the interference at the receiver i due to the
other transmitters; and Q−i , (Q1, . . . ,Qi−1,Qi+1, . . . QI) is the tuple of the
covariance matrices of all the transmitters except the i-th one. If the trans-
mission of each user i takes Ti seconds to complete (implying thus ri(Q) > 0),
the energy consumed by user i per bit that can be reliably transmitted is

Ei(Q) ,
Ti (µitr(Qi) + Pc,i)

TiWi ri(Q)
=

(µitr(Qi) + Pc,i)

Wi ri(Q)
[Joule/bit], (49)

where Wi is the communication bandwidth of user i, 1/µi is the efficiency of
the power amplifier at transmitter i, while Pc,i includes the power dissipated
in all other circuit blocks of the transmitter and receiver i to operate the
terminals (assumed to be constant [21]). The QoS of each communication is
measured in terms of a given minimum achievable rate r̄i > 0, leading to
constraints of the type ri(Q) ≥ r̄i. The energy-efficient design of the wireless
system consists then in minimizing the sum of the users’ energy consumption
while guaranteeing the rate QoS:

minimize
Q

E(Q) ,
∑I
i=1Ei(Q)

s.t. gi(Q) , r̄i − ri(Q) ≤ 0, ∀i = 1, . . . , I, (50)

Qi � 0, tr(Qi) ≤ Pi, ∀i = 1, . . . , I.

Note that in the above formulation, the gis define the noncovex constraints
whereas Qi � 0 and tr(Qi) ≤ Pi are convex constrains and define the set K
in (P1). Hereafter, we denote by Q the feasible set of problem (50). We also
assume that Pis and r̄is are set so that Q is nonempty.

Remark 2 Problem (50) contains complex variables. One could reformulate
the problem into the real domain by using separate variables for the real
and imaginary parts of the complex variables, but this would lead to awkward
reformulations wherein all the desirable structure of the original functions gets
lost. Following a well-established path in the signal processing community, we
work directly with complex variables by means of “Wirtinger derivatives”. The
main advantage of this approach is that we can use “Wirtinger calculus” to
easily compute in practice derivatives of the rate (and energy) functions in
(50) directly in the complex domain. It can be shown that all results in this
paper extend to the complex domain when using Wirtinger derivatives instead
of classical gradients. In what follows we freely use the Wirtinger calculus and
refer the reader to [23,26,42] for more information on this topic.
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Problem (50) represents an open problem in the wireless communication com-
munity, see [52]. Furthermore, the constraints Qi � 0 and gi(Q) ≤ 0 cannot
be violated, since the objective function could be not defined outside the fea-
sible set Q, calling thus for the use of a feasible method. Since (50) is a special
case of (P1), one can readily resort to our approach to efficiently compute sta-
tionary solutions. We propose next a novel nontrivial ad-hoc approximation of
the objective function, opening the way to an efficient INCA-based solution
method, which exhibits very good numerical performances.

6.2 Ad-hoc approximations

In this section we define suitable approximations Ẽ and g̃i for (50). We remark
that, while the proposed approximations satisfy Assumptions F, G and B, the
one of the objective function is substantially different from those in Section 5
and exploits the partial convexity of E in each of the users’ variables Qis. Given
Qν , (Qν

i )Ii=1 such that each ri(Q
ν) > 0, observe that: (i) setting Q−i = Qν

−i,
each term Ei(Qi,Q

ν
−i) of the sum in E(Q) is the product of a linear and

a convex function in Qi, namely µitr(Qi) + Pc,i and 1/Wi ri(Qi,Q
ν
−i); and

(ii) the other summands,
∑
j 6=iEj(Qi,Q

ν
−j), are nonconvex in Qi. Exploiting

such a structure, a convex approximation of E can be obtained for each user i
by convexifying (µitr(Qi) + Pc,i) /(Wi ri(Qi,Q

ν
−i)), while retaining the partial

convexity in Qi and linearizing the nonconvex part
∑
j 6=iEj(Qi,Q

ν
−j). More

formally, let us define

Ẽi(Qi; Q
ν) ,

µitr(Qi) + Pc,i
Wi ri(Qν)

+
µitr(Q

ν
i ) + Pc,i

Wi ri(Qi,Qν
−i)

+
∑
j 6=i

〈
∇Q∗i

Ej(Q
ν),Qi −Qν

i

〉
+ τi‖Qi −Qν

i ‖2F ,
(51)

where the first two terms on the right-hand-side are the convexification of
(µitr(Qi) + Pc,i) /(Wi ri(Qi,Q

ν
−i)); the third one comes from the linearization

of
∑
j 6=iEj(Qi,Q

ν
−j), with 〈A,B〉 , Re{tr(AHB)} and ∇Q∗i

Ej(Q
ν) denoting

the conjugate gradient of Ej w.r.t. Qi evaluated at Qν (see [42]), given by

(µjtr(Qj) + Pc,j)

Wj r2
j (Q

ν)
HH
ji

(
Rj(Q

ν
−j)
−1 −

(
Rj(Q

ν
−j) + HjjQ

ν
jH

H
jj

)−1
)

Hji;

and the fourth term is added to make Ẽi(Qi; Q
ν) uniformly strongly convex

in Qi. Thus, the sum-energy surrogate function Ẽ(Q; Qν) is defined as:

Ẽ(Q; Qν) =

I∑
i=1

Ẽi(Qi; Q
ν). (52)

In order to build an upper convex approximation of each (nonconvex) gi, one
can readily exploit the DC structure of the rate function ri(Q), that is,

ri(Q) = r+
i (Q)− r−i (Q−i), (53)

r+
i (Q) , log2 det

(
Ri (Q−i) + HiiQiH

H
ii

)
and r−i (Q−i) , log2 det(Ri (Q−i)).
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Following Example 4 in Sec. 5.2 and adapting it to the complex case, a tight
lower bound of ri(Q) [and thus upper bound of gi(Q)] can be obtained by
retaining the concave part in (53) and linearizing the convex function −r−i ,
which leads to the following rate approximation function:

ri(Q) ≥ r̃i(Q; Qν) , r+
i (Q)− r̃−i (Q−i; Q

ν), (54)

r̃−i (Q−i; Q
ν),r−i (Qν

−i) +
∑
j 6=i

〈
∇Q∗j

r−i (Qν
−i),Qj −Qν

j

〉
, (55)

where∇Q∗j
r−i (Qν

−i) = HH
ijRi(Q

ν
−i)
−1Hij is the conjugate gradient of r−i w.r.t.

Qj . Using (52) and (54), the convex approximation of the nonconvex problem
(50) reads: given the feasible point Qν , let

minimize
Q

Ẽ(Q; Qν)

s.t. g̃i(Q; Qν) , r̄i − r̃i(Q; Qν) ≤ 0, ∀i = 1, . . . , I,

Qi � 0, tr(Qi) ≤ Pi, ∀i = 1, . . . , I.

(56)

The following proposition, whose proof is omitted because of space limitations,
summarize the main properties of problems (50) and (56).

Proposition 8 Given problems (50) and (56), the following hold:

(i) any feasible point of (50) satisfies the MFCQ;
(ii) convex surrogates Ẽ and g̃is in (56) satisfy Assumptions F, G and B.

Hence, (56) is an instance of problem (P1y) and AF 1 can be readily applied.

6.3 Numerical results

In this section we present numerical results to assess the effectiveness of our
solution method, which we term Partial Linearization INCA (PL-INCA). We
implemented PL-INCA, based on AF 1 and convex subproblems (56), in MAT-
LAB. We used the diminishing step-size rule γν+1 = γν(1−αγν), for all ν ≥ 0,
with γ0 = 1 and α = 1e−3. The proximal coefficients τi in (51) are set equal
to 10−2. As we mentioned earlier, standard methods cannot be used to solve
problem (50), since feasibility is to be maintained throughout the iterations.
This fact restricts drastically the possible choices for a comparison; we decided
to settle for the very recent approach proposed in [1, 6], which we adapted to
deal with complex variables. The method in [6] is based on the solution of
a sequence of convex subproblems wherein the nonconvex objective function
and constraints are replaced by convex global upper approximations. While the
nonconvex constraints gi(Q) ≤ 0 can be approximated as in our method [see
g̃i in (56)], obtaining a convex upper bound of E is less immediate. The only
available option seems to set

Ẽup(Q; Qν) ,
I∑
i=1

I∑
j=1

〈
∇Q∗j

Ei(Q
ν),Qj −Qν

j

〉
+

I∑
i=1

Li‖Qi −Qν
i ‖2F , (57)

where Li is the Lipschitz constant of ∇Q∗Ei(•) on Q. An exact expression of
Li is not easy to compute. The following is an upper bound of Li over Q (the
proof is quite tedious and is omitted):
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Lup
i =

(
I∑
i=1

µi Pi + Pc,i
Wir̄i

)
·λmax

 I∑
j=1

(
4

r̄2
j

+
1

r̄j

)
HH
jiHji⊗HH

jiHji

 , (58)

where λ(A) is the maximum eigenvalue of matrix A, and ⊗ denotes the Kro-
necker product. We refer to the scheme in [6] tailored to the complex prob-
lem (56) and based on (57)-(58), as Linearized Upper INCA (L-Up-INCA).
In L-Up-INCA, given an iteration Qν , the new iteration is the solution of
subproblem

minimize
Q

Ẽup(Q; Qν)

s.t. g̃i(Q; Qν) ≤ 0, ∀i = 1, . . . , I,

Qi � 0, tr(Qi) ≤ Pi, ∀i = 1, . . . , I,

(59)

where g̃i(Q; Qν) is defined as in (56).
Both methods solve a convex optimization problem at each iteration: PL-

INCA solves (56) and then takes a step-size γν in the direction given by
the solution of the subproblem, while L-Up-INCA solves (59) and takes its
solution as the new iteration (or, equivalently, takes a step-size of 1). In our
implementations, the two algorithms differ in (i) the choice of the objective
function in the subproblems and (ii) the step-size. While Li = Lup

i guarantees
theoretical convergence of L-Up-INCA, in principle it might not be a tight
bound of Li, a fact that could hamper progresses of L-Up-INCA; and indeed
L-Up-INCA with Li = Lup

i performed very poorly in all problem instances we
tested, as we discuss shortly. Therefore, we also considered other instances of
L-Up-INCA, obtained by progressively reducing the value of Li. Note that if
Li falls below the Lipschitz constant of ∇Q∗Ei(•), theoretical convergence of
L-Up-INCA is no longer guaranteed.

We simulated a network composed of I = 10 randomly deployed users
(pairs), whose transceivers are equipped with Ti = Ri = 2 antennas for each i.
The MIMO channels are simulated according to the Rayleigh channel model
[49]; the transmit powers Pis and the rate thresholds r̄is are chosen to guaran-
tee that the feasible set of (50) is nonempty. Both algorithms, PL-INCA and
L-Up-INCA, are initialized from the same randomly chosen feasible point.
In this setting we generated 10 independent channel realizations and initial
feasible points Q0 and run both algorithms on the resulting 10 problems1.
We used cvx in MATLAB to solve, at each iteration, the strongly convex
subproblems. Since the original problem is nonconvex, we measured the pro-
gresses of the algorithms toward convergence using the “stationarity measure”
‖Q̂(Qν)−Qν‖∞, where Q̂(Qν) is the unique solution of subproblem (56) and

‖ • ‖∞ denotes the infinity norm. Note that ‖Q̂(Qν)−Qν‖∞ is a continuous
function, which is zero if and only if Qν is a stationary point.

The results of our experiments are summarized in Figure 1. In Figure 1(a)
and Figure 1(b) we plot the average (over the 10 realizations) of the normalized

1 The data of the problems are available from the authors on request.
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Fig. 1: PL-INCA and two instances of L-Up-INCA (the x-axis is in log scale).

stationarity measure ‖Q̂(Qν)−Qν‖∞/Smax and of the normalized sum-energy
E(Qν)/Emax, respectively, achieved by PL-INCA and L-Up-INCA versus the
number of iterations (note that we use the log-scale for the x-axis), where Smax

and Emax are the maximum of the stationarity measure and of E over all the
randomly chosen initial points, respectively. The normalizations are done just
for the purpose of a simpler graphical representation. We did not terminate
the algorithms but let them run for 5000 iterations. The figures clearly show
that the performance of PL-INCA is vastly superior to that of L-Up-INCA:
the stationarity measure (as well as the objective function) associated with
L-Up-INCA does not decrease significantly over 5000 iterations, remaining
thus much higher than that of PL-INCA. Finally, note the behavior of L-Up-
INCA when Li is set to Lmin

i , the largest value empirically found to make the
algorithm divergent on all 10 instances: for this value of Li, the stationarity
measure and the objective function progressively increase, see Figure 1. We
also tested L-Up-INCA for intermediate values of Li, between Lup

i and Lmin
i ,

but in all cases where clear divergence did not occur, the resulting behavior is
still very poor and is described by lines very close to the ones of L-Up-INCA
(L1 = Lup

i ) (in Figures 1(a) and 1(b)), with a slightly better diminishing
slope. While we reported only averages, we remark that the average curves
are representative of the behavior of the single realizations and in no case
we observed large deviations from the average behavior. With regard to the
cpu times, the main computational burden per iteration is given, for both
algorithms, by the solution of the respective convex subproblems, (56) for
PL-INCA and (59) for L-Up-INCA. Although (59) is marginally a simpler
problem than (56), we found that, on average, the time needed by cvx to solve
an instance of (56) is less than twice the time to solve one of (59). In practice,
this means that the huge gap between PL-INCA over L-Up-INCA in terms of
iterations translates in a similar superiority in terms of computational times.
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