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1. Introduction

Switching machines on and off is an important aspect of unit commitment and production

planning problems, among others. For unit commitment problems four of the most commonly

cited features are (i) nonlinear production costs, (ii) start-up costs that are a function of the

machine down time, (iii) minimum up/down times and (iv) ramp rates; whereas in production

planning minimum run times may be necessary because it takes time for the product to stabilize

or for other economic reasons, and maximum run times may be imposed because of machine dete-

rioration, etc. Both these classes of problems are often formulated as mixed integer programs. As

the successful solution of such problems often depends on the quality of the formulation, provid-

ing stronger formulations of different aspects of the problem may help significantly in obtaining

good or optimal solutions. In particular a best possible (tight) formulation of a mixed integer set

X ⊂ Z
n ×R

p is provided by an explicit or implicit (with additional variables) description of the

convex hull of X.

Here we describe briefly some earlier work. There is a significant literature on MIP formula-

tions of different aspects of unit commitment problems, see in particular articles in the journal,

IEEE Transactions on Power Systems, and on MIP formulations of production planning prob-

lems, see Pochet and Wolsey [9]. Among others Frangioni et al. [3] and Wu [15] discuss strong

formulations of nonlinear production costs (i), and Damcı-Kurt et al. [1] formulations of ramping

constraints (iv).

Here we consider the two other aspects: minimum/maximum up-down times (iii) and time-

varying (hot/warm/cold) start-ups (ii). For lower bounds on the length of on- and off-intervals,

necessary inequalities can be found in Wolsey [14]. Malkin [5] showed that these inequalities

describe the convex hull of solutions in the space of machine-on/set-up and start-up variables,

and Lee et al. [4] describe the convex hull in the space of the machine-on/set-up variables. Van

den Bergh et al. [12] present a very general formulation. Hedman et al. [2] discuss different

formulations for minimum up/down times and show how their strength can be compared. For

time independent start-ups Morales-España et al. [7, 8] and Viana and Pedroso [13] present basic

MIP formulations.

In Section 2 we consider first the joint problem with both lower and upper bounds on the

length of the on-intervals and interval-dependent switch-ons. We present a simple shortest path

network formulation that provides a tight extended formulation with O(n2) constraints and

variables and an O(n2) optimisation algorithm for an n-period instance. Then in the following

sections we examine cases in which it is possible to obtain a tight formulation with only O(n)

variables. In Section 3 we present a new tight network dual formulation for the problem with both

lower and upper bounds on the length of the on- and off-intervals. This allows us to generalize

and simplify earlier results (treating just lower bounds) of Malkin [5] and Lee et al. [4]. In

Section 4 we turn to the problem of interval-dependent start-ups. Based on a different path

formulation, we obtain via projection a description of the convex hull of solutions in the space

of the machine-on and start-up variables. In Section 5 we discuss possible extensions.

It is perhaps of interest that three different proof techniques are used in Sections 3 and 4

to obtain the various polyhedral descriptions: integer "event count" variables in Section 3.1;

dynamic programming functionals providing feasible solutions for an extended formulation in

3.2 as in [10] and Hoffman cuts for node flows in Section 4.

Notation.
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[p, q] denotes the set of elements lying in the interval from p to q, i.e. the set {p, p+ 1, · · · , q}.

For a set S, x(S) ≡
∑

u∈S xu.

2. The Two Subproblems

2.1 The Problem with On/Off Interval Bounds

First we consider the problem with interval bounds. Given a discrete time horizon of n pe-

riods, the state of the system consists first of a number of periods (possibly zero) in which the

machine is off, followed by intervals in which it is then on, then off, then on, etc. The first period

of an on-interval is called a switch-on period and the first period of an off-interval (apart from the

initial off-interval) is called a switch-off period. Various constraints are considered. In particular

one can have bounds on the lengths of the on- and off-intervals. Thus one has parameters :

αt ≥ 1 is a lower bound on the length of an on-interval starting in period t;

βt ≥ αt is an upper bound on the length of an on-interval starting in period t;

γt ≥ 1 is a lower bound on the length of an off-interval starting in period t;

δt ≥ γt is an upper bound on the length of an off-interval starting in period t.

We define the following decision variables:

yt = 1 if period t is an on-period and yt = 0 otherwise;

zt = 1 if period t is a switch-on period (yt−1 = 0 and yt = 1);

wt = 1 if period t is a switch off period3 (yt−1 = 1 and yt = 0).

Note that the equation yt−yt−1 = zt−wt always links the on and switch-on, switch-off variables.

This allows us to eliminate either the wt or the zt variables.

A simple formulation is as follows:

zt ≤ yt ∀ t (1)

zt ≥ yt − yt−1 ∀ t (2)

zt ≤ 1− yt−1 ∀ t (3)

yt+k ≥ zt for k = 0, . . . , αt − 1, ∀ t (4)

zt ≤

t+βt
∑

j=t+1

(1− yj) ∀ t ≤ n− βt (5)

1− yt+k ≥ wt for k = 0, . . . , γt − 1, ∀ t (6)

wt ≤
t+δt
∑

j=t+1

yj ∀ t ≤ n− δt (7)

yt − yt−1 = zt − wt ∀ t (8)

y, z, w ∈ {0, 1}T . (9)

Here (1)–(3) and (9) model the link between start-ups and on-periods; (4) ensures that the

machine is on for αt periods after a start-up in t; (5) that the machine cannot remain on for

βt + 1 periods after a start-up in t; etc. Note that (1), (3) and (8) imply zt + wt ≤ 1 for all t.

3Note that this definition of wt differs by one period from that used in [9].
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Let Z(α, β, γ, δ) denote the set of vectors (y, z) for which there exists (y, z, w) satisfying

(1)–(9). Similarly define Z(α, γ) and Z(β, δ) as the sets of (y, z)-vectors arising from (1)–(4),

(6), (8)–(9) and (1)–(3), (5), (7)–(9) respectively. Denote the corresponding projections onto the

y variables by Y (α, β, γ, δ), Y (α, γ), and Y (β, δ) respectively. Our goal in Section 3 will be to

describe the convex hulls: conv(Z(α, β, γ, δ)), conv(Y (α, γ)), etc.

2.2 The Problem with Interval-Dependent Start-Ups

The costs of a start-up may depend on the time that the machine has been idle – in particular

one talks of hot, warm and cold start-ups [7, 8, 13]. Assuming γt = γ and δt = δ for all t, a

type p start-up occurs if the machine has been idle for between θp−1 + 1 and θp periods where

p = 1, . . . , P , and the given parameters θ = (θ1, . . . , θP ) satisfy 0 ≤ γ−1 = θ0 ≤ θ1 < θ2 < · · · <

θP = δ. The variable z
p
t = 1 if there is a type p start-up in t and z

p
t = 0 otherwise. Obviously

zt =
∑P

p=1 z
p
t . We assume for simplicity that the machine is on in period 0 (i.e., y0 = 1). The

general case will be discussed later.

A basic formulation H(θ) is:

P
∑

p=1

z
p
t ≤ yt ∀ t (10)

P
∑

p=1

z
p
t ≥ yt − yt−1 ∀ t (11)

z
p
t ≤ 1− yt−1−j ∀ j = 0, . . . , θp−1, ∀ t, p (12)

z
p
t ≤

θp
∑

j=θp−1+1

yt−1−j ∀ t, p (13)

y ∈ {0, 1}n; z
p
t ∈ {0, 1} ∀ t ≥ θp−1 + 2, ∀ p. (14)

Here (12) implies that if there is a type p switch-on in t, the machine was not on in the previous

θp−1 periods, whereas (13) implies that it was on sometime in the previous θp periods. In

Section 4 we will describe conv(H(θ)).

2.3 A Tight Extended Formulation and Optimization over Y (α, β, γ, δ)∩H(θ)

Here we consider the problem with bounds α, β, γ, δ (constant over time for simplicity) as well

as time dependent start-ups. Feasible solutions are represented by paths in an acyclic digraph

D = (V,A) that we now describe. The nodes are V = {0} ∪ {1, . . . , n} ∪ {1′, . . . , n′} ∪ {n + 1}

and the arcs are of two types, A =A1 ∪ A2: an arc (i′, j) ∈ A1 represents a switch-off in i

followed by a start-up in j, and an arc (i, j′) ∈ A2 represents a start-up in i followed by a

switch-off in j. More precisely, because of the bounds, {(i′, j) : γ ≤ j − i ≤ δ} ⊆ A1 and

{(i, j′) : α ≤ j− i ≤ β} ⊆ A2. The initial and end conditions define some additional arcs leaving

node 0 and arriving at node n+ 1 respectively. If the machine is off in 0 and was last on in −ρ

where 1 ≤ ρ ≤ δ, one includes the arcs (0, t) ∈ A1 for t ∈ [max(1, ρ+ γ +1),−ρ+ δ+1], while if

the machine is on in 0 and was last on in −σ where 1 ≤ σ ≤ β, one includes the arcs (0, t′) ∈ A2

for t ∈ [max(1,−σ+α+1), σ+β+1]. If j+β > n, there is an arc (j, n+1) ∈ A1 and if j+δ > n

there is an arc (j′, n + 1) ∈ A2.
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It is well-known that the corresponding flow polyhedron in which 1 unit enters at node 0 and

leaves at node n + 1 has integral extreme points corresponding to the paths P from 0 to n + 1.

To describe this flow polyhedron, set xij = 1 if (i′, j) ∈ A1 ∩ P with xij = 0 otherwise, and

wij = 1 if (i′, j) ∈ A2 ∩ P with wij = 0 otherwise.

Theorem 1 i) The polyhedron Q:

∑

(0,j)∈A1

x0j +
∑

(0,j)∈A2

w0j = 1 (15)

∑

(i,t)∈A1

xit −
∑

(t,j)∈A2

wtj = 0 for t = 1, . . . , n (16)

∑

(i,t)∈A2

wit −
∑

(t,j)∈A1

xtj = 0 for t = 1, . . . , n (17)

∑

i≤t,j>t

wij = yt for t = 1, . . . , n (18)

∑

t−θp≤i<t−θp−1

xit = z
p
t for t = 1, . . . , n, ∀ p (19)

x, w ∈ R
A
+ (20)

is integral.

ii) projy,z(Q) = conv(Z(α, β, γ, δ) ∩H(θ)).

iii) For any objective (f, c1, . . . , cP ), the linear program max{fy −
∑

p,t c
p
t z

p
t : (y, z, x, w) ∈ Q}

solves the optimization problem max{fy −
∑

p,t c
p
t z

p
t : (y, z, x, w) ∈ Z(α, β, γ, δ) ∩H(θ)}.

Proof. Constraints (15), (16), and (17) are flow conservation constraints at nodes 0, {1, . . . , n}

and {1′, . . . , n′} respectively. (18) and (19) express yt and z
p
t as linear functions of the x,w

variables. Thus one can rewrite the objective function as a linear function in the x,w variables

leaving a linear program over the path polytope (15)-(17), (20). 2

Corollary 2 The optimization problem over Z(α, β, γ, δ) ∩H(θ) can be solved as a longest path

problem in an acyclic digraph with O(n2) arcs in O(n2) time.

3. Polyhedral Results for On/Off Interval Bounds

3.1 Convex Hull in the (y, z)-Space

In this section we add the fairly natural assumption that each bound ǫt ∈ {αt, βt, γt, δt},

satisfies |ǫt − ǫt+1| ≤ 1 for all t. Essentially this means that by waiting one period, one cannot

be forced to switch on or off earlier.

We first present a valid formulation PZ for the set Z(α, β, γ, δ), namely a polytope such that

Z(α, β, γ, δ) = PZ ∩ (Zn × Z
n). We then show that PZ is integral by showing that there is a

one-to-one unimodular transformation between PZ and a polytope QUV that is integral.
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Proposition 1 The polytope PZ

0 ≤ yt ≤ 1 ∀ t (21)

0 ≤ zt ≤ 1 ∀ t (22)

yt ≤ yt−1 + zt ∀ t (23)

zt + · · ·+ zt+αt−1 ≤ yt+αt−1 ∀ t (24)

zt+1 + · · ·+ zt+βt
≥ yt+βt

∀ t (25)

yt + zt+1 + · · · + zt+γt ≤ 1 ∀ t (26)

yt + zt+1 + · · · + zt+δt ≥ 1 ∀ t ≤ n− δt (27)

is a valid IP formulation for Z(α, β, γ, δ).

Note that the constraints (24) imply the inequality (1) zt ≤ yt and the constraints (26) imply

the constraints (3) zt ≤ 1− yt−1 used in defining switch-on variables.

Proof. Consider first the inequalities (24). If a point does not satisfy the definition of αt,

namely zt = 1 and
∑t+αt−1

j=t wj ≥ 1. Using wt = zt + yt−1 − yt, the latter can be rewritten as
∑t+αt−1

j=t zj + yt−1 − yt+αt−1 ≥ 1. As yt−1 = 0, the point is cut off. To see that the inequality is

valid, observe that by definition zt ≤ yt+αt−1. Also from the condition αt+j ≥ αt − j, it follows

that zt+j ≤ yt+αt−1. Finally as
∑t+αt−1

j=t zj ≤ 1, the inequality is valid.

Now consider inequality (25). Again using the equality wt = zt+ yt−1− yt = 0,
∑t+βt

j=t+1wj =
∑t+βt

j=t+1 zj − yt−1 + yt+βt
and thus the inequality can be rewritten as yt ≤

∑t+βt

j=t+1wj . Clearly

a point that does not satisfy the definition of βt satisfies zt = 1 and
∑t+βt

j=t+1wj = 0. As this

implies yt = 1, such points are cut off. To see that the inequality is valid, suppose that yt = 1,

and the corresponding on-interval starts in t − j for some j ≥ 0. Thus wt−j = · · · = wt = 0.

Also by definition of β, zt−j = 1 implies
∑t−j+βt−j

i=t−j+1 wi ≥ 1. However t− j + βt−j ≤ t + β, and

thus the inequality is again valid.

The cases (26) and (27) are similar. 2

We now introduce integer (not binary) variables:

vt ∈ Z
1
+ denotes the number of switch-ons in the interval [1, t], i.e., vt =

∑t
j=1 zj

ut ∈ Z
1
+ denotes the number of switch-offs in the interval [1, t], i.e., ut =

∑t
j=1wj.

Since on and off intervals alternate, vt and ut differ by at most one unit. More precisely:

Observation 1 There is a one-to-one unimodular transformation between the variables (u, v)

and (y, z) given by:

zt = vt − vt−1 ∀ t (28)

yt = vt − ut ∀ t. (29)

In addition one has the link to the switch-off variable given by:

wt = ut − ut−1 = zt + yt−1 − yt ∀ t.

Proposition 2 Let QUV ⊂ R
n × R

n be the polytope:

6



0 ≤ vt − ut ≤ 1 ∀ t (30)

0 ≤ vt − vt−1 ≤ 1 ∀ t (31)

0 ≤ ut − ut−1 ≤ 1 ∀ t (32)

vt−1 − ut+αt−1 ≥ 0 ∀ t (33)

vt − ut+βt
≤ 0 ∀ t+ βt ≤ n (34)

vt+γt−1 − ut−1 ≤ 1 ∀ t (35)

vt+δt − ut ≥ 1 ∀ t ≤ n− δt. (36)

QUV with the linking equations (28)–(29) defines an extended formulation for conv(Z(α, β, γ, δ))

under the unimodular transformation of Observation 1.

Proof. The constraints (30)–(36) are obtained from (21)–(27) by substitution.

Theorem 3 PZ and QUV are integral polytopes and PZ = conv(Z(α, β, γ, δ)).

Proof. To see that the polyhedron QUV is integral, we observe that each constraint in (30)–

(36) has one +1 and one -1 coefficient. Thus the corresponding matrix is the dual of a network

matrix and is totally unimodular. As the right hand-side is integer, the extreme point solutions

are integer. (28) and (29) are just equations defining z and y respectively. Combined with

Proposition 2, the claim follows. 2

Note that Malkin [5] proved the integrality of the polytope PZ(α,γ), namely the case with lower

bounds on the interval lengths. The corresponding formulation was tested computationally by

Rajan and Takriti [11].

3.2 Convex Hull in the y-Space

We now consider the question of describing the convex hulls of Y (α, β, γ, δ), Y (α, γ) and

Y (β, δ), i.e., of the projections of the corresponding Z sets in the original y-space. Lee et al. [4]

describe conv(Y (α, γ)) when α and γ are constant over time.

To describe the most important family of valid inequalities, we introduce some notation.

Definition 1 Let S = {j1, · · · , jp} with 1 ≤ j1 < · · · < jp ≤ T .

If p = |S| is odd, Odd(S, y) ≡ yj1 − yj2 + · · · − yjp−1
+ yjp and

if p = |S| is even, Even(S, y) ≡ yj1 − yj2 + · · · − yjp.

Length(S) ≡ jp − j1.

An inequality of the form

Odd(S, y) ≤≥ µ

is called an alternating inequality.

Observation 2 Let S = {j1, . . . , jk} ⊆ [t, τ ]. With k even, there exists T ⊆ [t, τ − 1] such that

Even(S, y) =
∑

j∈T

(yj − yj+1),
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and conversely; and with k odd there exists U ⊆ [t, τ − 1] such that

Odd(S, y) =
∑

j∈U

(yj − yj+1) + yτ ,

and conversely.

Proof. With k even, it suffices to take T = [j1, j2 − 1] ∪ · · · ∪ [jk−1, jk − 1]. For the converse,

if T consist of intervals with T = [p1, q1] ∪ · · · ∪ [pr, qr], then it suffices to take S = {p1, q1 +

1, . . . , pr, qr + 1}. The case with k odd follows. 2.

Proposition 3 The following inequalities are valid for Y :

All alternating inequalities Odd(S, y) ≥ 0 with S ⊆ [t− 1, t− 1 + αt].

All alternating inequalities Odd(S, y) ≤ 1 with S ⊆ [t− 1, t+ γt − 1].

The inequalities
∑t+βt

j=t yj ≤ βt for all t.

The inequalities
∑t+δt

j=t yj ≥ 1 for all t ≤ n− δt.

Proof. The validity of the alternating inequalities is simple. Namely, replacing each zt variable

by either lower bound 0 or yt − yt−1 in (24) and (26) respectively gives the first two sets of

inequalities. The validity of the last two inequalities is immediate from the definitions of βt

and δt.2

We now examine the polytope described by the alternating inequalities as well as considering

the separation problem for these inequalities. Given y∗ ∈ [0, 1]T , define

F (t) = max
S⊆[1,t]

Odd(S, y∗) and G(t) = max
S⊆[1,t]

Even(S, y∗).

F and G are easy to compute and have interesting properties. To compute them in linear time,

one has the recursions:

F (t) = max{F (t− 1), G(t − 1) + y∗t } and G(t) = max{F (t− 1)− y∗t , G(t− 1)}

with F (1) = y∗1 and G(1) = 0.

Lemma 1 i) 0 ≤ F (t)− F (t− 1) ≤ 1 ∀ t;

ii) 0 ≤ G(t)−G(t− 1) ≤ 1 ∀ t;

iii) 0 ≤ F (t)−G(t) = y∗t ≤ 1 ∀ t;

iv) F (t)−G(τ) = maxS⊆[τ,t]Odd(S, y∗) ∀ τ ≤ t;

v) F (τ)−G(t) = minS⊆[τ,t]Odd(S, y∗) ∀ τ ≤ t.

Proof. The first two range inequalities follow directly from the recursion and y∗ ∈ [0, 1]T .

F (t) − G(t) = y∗t is immediate from the definitions of F (t) and G(t). To establish iv), note

that G(k + 1) − G(k) = max({G(k), F (k) − y∗k+1} − G(k) = max{0, y∗k − y∗k+1}. Therefore for

τ ≤ t, F (τ) −G(t) =
∑t−1

j=τ (G(j + 1) −G(j)) + F (t) −G(t) =
∑t−1

j=τ max{0, y∗j − y∗j+1} + y∗t =

maxS⊆[τ,t]Odd(S, y∗), where the last equation follows from Observation 2. The proof of v) is

similar. 2

This leads to a simple proof of the structure of conv(Y (α, γ)).
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Theorem 4 [4]. conv(Y (α, γ)) is given by the two families of alternating inequalities in Propo-

sition 3.

Proof. Let P be the polytope obtained as the intersection of the two families of alternating

inequalities with [0, 1]T and PZ(α, γ) the polytope PZ without constraints (25) and (27) . From

Proposition 3 and Theorem 3, projy(PZ(α, γ)) ⊆ P . To show the converse, suppose that y∗ ∈

P ⊆ [0, 1]T . We will show that y∗ ∈ projy(PZ(α, γ)). Calculate F and G with respect to y∗.

Set vt = F (t), ut = G(t) for all t. Lemma 1 already shows that u, v satisfy (30)–(32). As

y∗ ∈ P , it follows that all the alternating inequalities are satisfied and thus vt−1 − ut+αt−1 =

F (t − 1) − G(t + αt − 1) = minS⊆[t−1,t+αt−1]Odd(S, y∗) ≥ 0 satisfying (33). Similarly the fact

that maxS⊆[t−1,t+γt−1]Odd(S, y∗) ≤ 1 implies that (35) is satisfied. So (u, v) ∈ QUV and the

claim follows. 2

Corollary 5 There is a linear time separation algorithm for conv(Y (α, γ)). Given a point y∗,

it suffices to calculate F and G, set v = F, u = G and verify if the point (u, v) lies in QUV .

Proposition 4 conv(Y (β, γ)) is given by:

t+βt
∑

j=t

yt ≤ βt ∀ t

t+δt
∑

j=t

yt ≥ 1 ∀ t

y ∈ [0, 1]n.

Proof. The formulation guarantees that the machine is not on for βt + 1 consecutive periods

and not off for δt+1 consecutive periods. So it provides a valid formulation for Y . The resulting

constraint matrix has the consecutive 1’s property. Thus it is totally unimodular. As the right-

hand side vector is integer, the claim follows. 2

To terminate this section, we provide an example showing that the facets of conv(Y ) are more

complex in the presence of both lower (α, γ) and upper bounds (β, δ):

Example 1 For an instance of Y (α, β) with α = 2 and β = 3, one obtains facet-defining

inequalities of the form:

−yt + yt+1 + yt+4 − yt+5 ≤ 1

yt + yt+1 + yt+3 − yt+4 ≤ 2

−yt + yt+1 + yt+3 + yt+4 ≤ 2

yt + yt+1 + yt+3 + yt+5 + yt+6 ≤ 4

as well as alternating inequalities and on-interval upper bound (Prop. 3 (iii)) inequalities

yt − yt+1 + yt+2 ≥ 0

yt + yt+1 + yt+2 + yt+3 ≤ 3.
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4. Interval-Dependent Start-Ups

Here we consider the problem in which the start-up costs depend on the number of periods

during which the machine has been off. We suppose without loss of generality that y0 = 1. The

case in which y0 = y−1 = · · · = y−τ+1 = 0, y−τ = 1 for some τ > 0 can be treated by adding

τ periods at the beginning of the n-period horizon and then setting y0 = 1 and y1 = · · · = yτ = 0

in the augmented problem. One obtains the following:

Theorem 6 conv(H(θ)) is described by the polytope

∑

p

z
p
t ≤ yt ∀ t (37)

yt +
∑

p:θp=θp−1+1,t+θp≤n

z
p
t+θp ≤ yt−1 +

∑

p

z
p
t+1 ∀ t ≥ 2 (38)

yt +
∑

p

min[n,t+θp−1+1]
∑

u=t+1

zpu ≤ 1 ∀ t (39)

yk +
∑

p

k+θp
∑

u=k+1

zpu ≥ 1 ∀ k ≤ n− δ (40)

yt +
∑

p

min[n,t+θp−1+1]
∑

u=max[t+1,k+θp+1]

zpu ≤ yk +
∑

p

min[k+θp,t]
∑

u=k+1

zpu

∀ k, t with n− δ < k ≤ t− 2, t < n (41)

y ∈ R
n
+; z

p
t ∈ R

1
+ ∀t ≥ θp−1 + 2, ∀ p. (42)

Observe that when P = 1, constraints (37)–(40), (42) are precisely the constraints of conv(Z(γ, δ)).

When k = t− 1, (41) reduces to (38).

Lemma 7 i) Inequality (41) can be rewritten as

yt +
∑

p

min{n,t+θp−1+1}
∑

u=k+θp+1

zpu ≤ yk +
∑

p

t
∑

u=k+1

zpu. (43)

ii) If k+ δ ≤ n, t ≥ k+2 and t < k+θp ≤ t+θp−1 for all p ∈ P , inequality (41) can be rewritten

as

yt +
∑

p

min{n,t+θp−1+1}
∑

u=t+1

zpu ≤ yk +
∑

p

k+θp
∑

u=k+1

zpu. (44)

It is then the sum of the inequalities (39) and (40).

Proof.

i) For p with k + θp ≥ t, the zp terms in (41) and (43) are identical. If k + θp < t, it suffices to

add the term
∑t

u=k+θp+1 z
p
u to both sides.

ii) Add
∑

p

∑t+θp

u=t+1 z
p
u to both sides. 2

10
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Figure 1: n = 6, P = 2, θ = (0, 2, 4) and y0 = 1. Type-5 arcs (t′, 7) with t = 2 . . . , 5 not drawn.

To prove Theorem 6 we show how the set conv(H(θ)) can be viewed as the solution set of a

network flow (path) model and then use the projection of this network onto the arcs corresponding

to the yt and z
p
t variables to obtain conv(H(θ)).

First we describe the flow model. The digraph D = (V,A) has nodes t for all t = 1, . . . , n+1;

t′ for all t = 0, . . . , n; and t · p for all p = 1, . . . , P and t = 1 . . . , n. The arcs are of the following

types, with specified lower and upper bounds la and ua on the flow on each arc a:

1. Arcs (t, t′) for t = 1, . . . , n with flow bounds lt,t′ = ut,t′ = yt. Flow on this arc indicates

whether the machine is on in period t.

2. Arcs (t′, t + 1) for t = 1, . . . , n with flow bounds lt′,t+1 = 0 and ut′,t+1 = ∞. This arc is

used if the machine stays on from period t to t+ 1.

3. Start-up Arcs (t ·p, t) with flow bounds lt·p,t = ut·p,t = z
p
t for t = 1, . . . , n and p = 1, . . . , P ,

used if a type-p start-up occurs in period t.

4. Arcs (t′, (t+ k) · p) with k ∈ [θp−1 + 2, θp + 1], for t = 1, . . . , n and p = 1, . . . , P , with flow

bounds lt′,(t+k)·p = 0 and ut′,(t+k)·p = ∞. Such an arc is used if a switch-off in t + 1 is

followed by a type-p start-up in period t+ k.

5. Arcs (t′, n + 1) for t ≥ n − δ with flow bounds lt′,n+1 = 0, ut′,n+1 = ∞, used if there is a

switch-off in t+ 1 and the machine then remains off.

6. Return Arc (n+ 1, 0′) with flow bounds ln+1,0′ = un+1,0′ = 1.

7. Initial Arcs (0′, t · p) for t ∈ [θp−1 + 2), θp + 1] with flow bounds l0′,t·p = 0 and u0′,t·p = ∞.

Terminal Arc (0′, n+ 1) with flow bounds l0′,n+1 = 0 and u0′,n+1 = ∞ if δ ≥ n.

An instance of the digraph with n = 6, P = 2, (θ0, θ1, θ2) = (0, 2, 4) (hence γ = 0 and δ = 4)

and y0 = 1 is shown in Figure 1.

Given X ⊂ V , let X̄ = V \X,

l(X, X̄) =
∑

(i,j)∈A : i∈X, j∈X̄

lij and u(X̄,X) =
∑

(i,j)∈A : i∈X̄, j∈X

uij.
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Observation 3 To describe conv(H(θ)), it is necessary and sufficient to consider valid inequal-

ities of the form

(X, X̄)− u(X̄,X) ≤ 0 (45)

where u(X̄,X) < +∞.

This follows from the Hoffman circulation theorem, see in particular Martens et al. [6]. We shall

call inequalities of the above form “cut-inequalities”. Note that such inequalities in the variables

yt and z
p
t have coefficients 0,+1 or −1.

Using this Observation, we now show that the five families of inequalities (37)–(41) are valid.

Proposition 5 The inequalities (37)-(41) are valid for H(θ).

Proof. In each case we specify the set X that is used in Observation 5 to obtain the inequality.

Taking X = V \ {t} gives the valid inequality (37).

Taking X = {(t− 1)′, t} gives the valid inequality (38).

Taking X = [1, t] ∪ [0′, (t− 1)′] ∪
⋃P

p=1[1 · p, (t+ θp−1 + 1) · p] gives the valid inequality (39).

Taking X = [t+ 1, n + 1] ∪ [t′, n′] ∪
⋃

p[(t+ θp + 1) · p, n · p] gives the valid inequality (40).

Taking X = [k+1, t]∪ [k′, (t−1)′]∪
⋃

p[k+ θp−1+1) ·p, (t+1) ·p] gives the valid inequality (41).

2

The proof of Theorem 6 is given in a series of Observations and Propositions below.

Observation 4 Finiteness of u(X̄,X) implies:

(a) if t′ ∈ X̄, then t+ 1 ∈ X̄ from arc type 2;

(b) if t′ ∈ X̄, then (t+ k) · p ∈ X̄ for k ∈ [θp−1 + 2, θp + 1] from arc type 4;

(c) if t′ ∈ X̄, then n+ 1 ∈ X̄ if t ≥ n− θp from arc type 5;

(d) if 0′ ∈ X̄, then t · p ∈ X̄ for t ∈ [max(1, τ + θp−1 + 2), τ + θp + 1] from arc type 7. Also if

0′ ∈ X̄ and δ > n, then n+ 1 ∈ X̄.

Our approach will be to consider all possible X-assignments of the path PA = {0′, 1, 1′, . . . , n,

n′, n+ 1}, i.e. assignments of its nodes to X or X̄. The following Proposition shows that facet-

defining inequalities (45) are uniquely defined by the X-assignment of the path PA.

Proposition 6 Consider an X-assignment of the path PA. If any node t · p, other than those

assigned to X̄ by the cases in Observation 4 (a), is assigned to X̄, then any resulting inequality

is not facet-defining.

Proof. If t · p is assigned to X, the contribution to the violation l(X, X̄)− u(X̄,X) of the arcs

incident to node t · p is 0 if t ∈ X, and z
p
t if t ∈ X̄ . If t · p is assigned to X̄ , the contribution is

−z
p
t if t ∈ X, and 0 if t ∈ X̄ . Therefore an inequality with t · p ∈ X̄ is the sum of the inequality

with t · p moved to X and the inequality z
p
t ≥ 0. 2

Proposition 7 For any valid inequality (45) other than (37) with an X-assignment of the path

PA, the inequality is not facet-defining if (t− 1)′ and t are on opposite sides of the cut, i.e., are

assigned differently to X and X̄.

12



Proof. The case in which (t − 1)′ ∈ X̄ and t ∈ X is excluded by Observation 4. Thus assume

that (t− 1)′ ∈ X. Here there are two possibilities.

i) t′ ∈ X. We consider the contribution to the violation of the arcs incident to node t. If t ∈ X̄,

the contribution is −yt +
∑

p:t·p∈X z
p
t , while if t ∈ X, the contribution is −

∑

p:t·p∈X̄ z
p
t .

ii) t′ ∈ X̄. If t ∈ X̄ the contribution is
∑

p:t·p∈X z
p
t , while if t ∈ X, the contribution is yt −

∑

p:t·p∈X̄ z
p
t .

Thus an inequality (45) with (t − 1)′ ∈ X and t ∈ X̄ is the sum of the inequality with (t − 1)′

and t ∈ X and the inequality
∑

p z
p
t ≤ yt. 2

It follows that the remaining candidates to provide facet-defining inequalities are determined

by the flip periods σ(1) < . . . < σ(K) (where 1 ≤ σ(1) and σ(K) ≤ n) in which nodes σ(i) and

σ(i)′ on the path PA lie on opposite sides of the cut (X, X̄).

We now complete the proof of Theorem 5. There are four different possible X-assignments

of nodes 0′ and n+ 1.

Case 1. 0′, n + 1 ∈ X. Then K is even, say K = 2I. The flips σ(i) on the path PA lead

to a partition S0, S1, · · · , SI of the nodes X ∩ {1, . . . , n} with Si = [σ(2i) + 1, σ(2i + 1)] where

σ(0) = 0 and σ(2I +1) = n. The complement is a partition S̃0, · · · , S̃I−1 of X̃ ∩ {1, . . . , n} with

S̃i = [σ(2i + 1) + 1, σ(2i + 2)].

For each p, Proposition 6 then gives a collection of possibly overlapping sets (T̃ p
0 , · · · , T̃

p
I−1)

such that
(

∪I−1
j=0 T̃

p
j

)

·p = [1 ·p, n ·p]∩ X̄ where T̃
p
j = [σ(2j+1)+ θp−1+2, σ(2j+2)+ θp]∩ [1, n].

Now the complement is a collection of disjoint sets (T p
0 , · · · , T

p
I ) such that

(

∪I
j=0 T

p
j

)

· p =

[1 · p, n · p]∩X with T
p
j = [σ(2j) + θp + 1, σ(2j + 1) + θp−1 + 1] ∩ [1, n]. Some of the T

p
j may be

empty. The resulting cut inequality is

I−1
∑

i=0

(

yσ(2i+1) +

P
∑

p=1

I
∑

j=0

zp(T p
j ∩ S̃i)

)

≤
I

∑

i=1

(

yσ(2i) +

P
∑

p=1

I−1
∑

j=0

zp(Si ∩ T̃
p
j )
)

.

Adding
P
∑

p=1

zp(T p
j ∩ Si)

to each side for all pairs (i, j) except (0, 0) and (I, I), and using the following identities,

S̃0 ∪ S1 · · · ∪ S̃I−1 ∪ SI = [σ(1) + 1, n];

S0 ∪ S̃0 ∪ S1 · · · ∩ S̃I−1 ∪ SI = [1, n];

T
p
I ∩ (S0 ∪ S̃0 ∪ S1 · · · ∩ S̃I−1) = ∅;

S0 ∩ (T̃ p
0 ∪ T

p
1 ∪ · · · T̃ p

I−1 ∪ T
p
I ) = ∅;

T
p
0 ∪ T̃

p
0 ∪ T

p
1 ∪ · · · T̃ p

I−1 ∪ T
p
I = [1, n]; and

T
p
0 ∪ T̃

p
0 ∪ T

p
1 ∪ · · · T̃ p

I−1 = [1, σ(2I) + θp],
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this simplifies to:

I−1
∑

i=0

yσ(2i+1) +

P
∑

p=0

zp(T p
0 ∩ [σ(1) + 1, n]) +

P
∑

p=1

I−1
∑

j=1

zp(T p
j ) + 0

≤
I

∑

i=1

yσ(2i) + 0 +

P
∑

p=1

I−1
∑

i=1

zp(Si) +

P
∑

p=1

zp(SI ∩ [1, σ(2I) + θp]).

This is the sum of the inequalities:

yσ(1) +
∑

p

zp([σ(1) + 1, σ(1) + θp−1 + 1]) ≤ 1;

yσ(2i+1) +
∑

p

zp(T p
i ) ≤ yσ(2i) +

∑

p

zp(Si) for i = 1, . . . I − 1; and

−yσ(2I) −
∑

p

zp([σ(2I) + 1, σ(2I) + θp]) ≤ −1,

namely: inequality (39); I − 1 inequalities (43) (equivalent to (41)); and inequality (40) (since

n+ 1 ∈ X implies σ(2I) + θP ≤ n).

Thus we have shown that every valid inequality with 0′ and n+ 1 ∈ X, other than (37), is a

nonnegative combination of the inequalities (38)–(41).

Case 2, 0′ ∈ X,n+1 ∈ X̄. Here the flips occur at σ(1), . . . , σ(2I+1). The sets Si, S̃i, T̃
p
i and T

p
i

are unchanged, and sets S̃I and T̃
p
I are added for all p. The resulting cut inequality is

I
∑

i=0

(

yσ(2i+1) +
∑

p

I
∑

j=0

zp(T p
j ∩ S̃i)

)

≤
I

∑

i=1

(

yσ(2i) +
∑

p

I
∑

j=0

zp(Si ∩ T̃
p
j )
)

+ 1

where the 1 appears because of the arc (n+ 1, 0′) with n+ 1 ∈ X̄ and 0′ ∈ X. After adding the

terms
∑

p z
p(Si ∩ T

p
j ) as before, the resulting inequality is the sum of

yσ(1) +
∑

p

zp([σ(1) + 1, σ(1) + θp−1 + 1]) ≤ 1

and the I inequalities

yσ(2i+1) +
∑

p

zp(T p
i ) ≤ yσ(2i) +

∑

p

zp(Si)

of the form (43).

Case 3, 0′, n+ 1 ∈ X̄ can be treated as Case 2 by omitting sets S0 and T
p
0 .

Case 4, 0 ∈ X̄ and n+ 1 ∈ X is then similar. 2
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Example 2 n = 7, P = 3, θ = (0, 2, 4, 5).

(37)

z11 + z21 + z31 ≤ y1

z12 + z22 + z32 ≤ y2
...

z17 + z27 + z37 ≤ y7

(38)

y2 ≤ y1 + z12 + z22 + z32

y3 ≤ y2 + z13 + z23 + z33
...

y7 ≤ y6 + z17 + z27 + z37

(39)

y1 + z12 + z22,4 + z32,6 ≤ 1

y2 + z13 + z23,5 + z33,7 ≤ 1

...

y6 + z17 + z27 + z37 ≤ 1

(40)

y1 + z12,3 + z22,5 + z32,6 ≥ 1

y2 + z13,4 + z23,6 + z33,7 ≥ 1

(41)

y5 + z16 ≤ y3 + z14,5 + z24,5 + z34,5

y6 + z17 ≤ y3 + z14,5 + z24,6 + z34,6

y6 + z17 ≤ y4 + z15,6 + z25,6 + z35,6

y ∈ R
7
+, z ∈ R

3×7
+ , z11 = z21 = z22 = z23 = z31 = z32 = z33 = z34 = z35 = 0.

5. Extensions

The results of Section 3 can be extended in different ways. One possibility is to include

lower and/or upper bounds on the number of set-ups in a given interval. Bounds on
∑τ2

t=τ1
zt =

vτ2 − vτ1−1 can be added to the QUV formulation without losing integrality. For Y (α, γ) with

an upper bound on the number of setups, the constraint
∑τ2

t=τ1
zt ≤ Ωτ1,τ2 projects into another

set of alternating inequalities maxS⊆[τ1,τ2]Odd(S, y) ≤ Ωτ1,τ2 . These can be separated in linear

time using the functions F and G and now the three sets of alternating inequalities give the

convex hull. Another possibility is that the behaviour of the machine depends on the number of

start-ups that have occurred. Thus z
q
t = 1 if the qth start-up is in period t. Here the network

dual formulation can be generalized based on the binary variables v
q
t and u

q
t taking the value

1 if the qth start-up, respectively switch-off, occurs in or before t. Finally we note that one

can generate inequalities for interval-dependent switch-offs, using a similar approach to that of

Section 4.
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