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Abstract In this paper we show how to solve the Mazimum Weight Stable Set
Problem in a claw-free graph G(V, E) with a(G) < 3 in time O(|E|log|V|]). More
precisely, in time O(|E|) we check whether o(G) < 3 or produce a stable set with
cardinality at least 4; moreover, if a(G) < 3 we produce in time O(|E|log|V|) a
maximum stable set of G. This improves the bound of O(|F||V]) due to Faenza et
alii ([2]).

Keywords claw-free graphs - stable set

1 Introduction

The Mazimum Weight Stable Set (MWSS) Problem in a graph G(V, E) with node-
weight function w : V' — R asks for a maximum weight subset of pairwise non-
adjacent nodes. For each graph G(V, E) and subset W C V we denote by N (W)
(neighborhood of W) the set of nodes in V' \ W adjacent to some node in W. If
W = {w} we simply write N(w). A clique is a complete subgraph of G induced
by some set of nodes K C V. With a little abuse of notation we also regard the
set K as a clique. A claw is a graph with four nodes w, x,y, z with w adjacent to
x,y, z and z,y, z mutually non-adjacent. To highlight its structure, it is denoted as
(w:x,y,z). A graph G with no induced claws is said to be claw-free and has the
property ([1]) that the symmetric difference of two stable sets induces a subgraph
of G whose connected components are either (alternating) paths or (alternating)
cycles. A subset T € V is null (universal) to a subset W C V \ T if and only if
NT)NW =0 (N(T)NW = W). If T = {u} with a little abuse of notation we
say that u is null (universal) to W.
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Let G(V,E) be a claw-free graph. A subset X of V is said to be local if there
exists a node u € V such that X C N[u]. Observe that, by [3], a local set contains

O(y/|E|) nodes.

Lemma 11 Let G(V, E) be a claw-free graph and X, Y, Z,W C V four disjoint
local sets (with W possibly empty) such that Z induces a clique in G and W is null
to Z. In O(|E|) time we can either find a stable set {z,y,z} withx € X,y €Y,
z € Z or conclude that no such stable set exists. Moreover, if X is null to' Y and
W is non-empty, in O(|E|) time we can either find a stable set {x,y,z,w} with
reX,yeY,ze Z, weW or conclude that no such stable set exists.

Proof. For any node u € X UY let h(u) denote the cardinality of N(u) N Z. It is
easy to see that we can compute h(u) for all the nodes u € X UY in overall time
O(|XUY]|Z|) = O(JE]) (recall that X, Y, and Z are local sets, so their cardinality
is O(\/E)) Now let Z € X and § € Y be any two non-adjacent nodes.

Claim (i). There exists a node zZ € Z such that {Z,y,z} is a stable set if and only
if h(z) + h(y) < |Z].

Proof. In fact, if h(Z)+h(y) < |Z| then the neighborhoods of nodes Z and 3 do not
cover Z, so there exists some node z € Z which is non-adjacent to both z and ¥.
On the other hand, assume by contradiction that h(Z) 4+ h(y) > |Z| and still there
exists some node z € Z which is non-adjacent to both  and §. Let Z' = Z \ {z}.
Since we have [N(Z)NZ'| +|N(§)NZ'| = h(Z) + h(y) > |Z'| + 1 there exists some
node 2z’ € Z’ which is adjacent to both Z and . But then (2’ : Z, ¥, 2) is a claw in
G, a contradiction. The claim follows.

End of Claim (i).

Now, in O(|E|) time, we can check if there exists some pair of nodes z € X and
y € Y such that z,y are non-adjacent and h(x)+h(y) < |Z|. If no such pair exists,
by Claim (i) we can conclude that no stable set {z,y,z} withz € X,y €Y, z€ Z
exists. If, on the other hand, there exist two non-adjacent nodes x € X andy € Y
satisfying h(z) + h(y) < |Z| then, in O(y/|E]|) time, we can find a node z € Z
which is non-adjacent to both.

Assume now that X is null to Y. Let @ be any node in W, let X = X \ N(w) and
let Y =Y \ N(w). Since by assumption W is null to Z, we have that there exists
a stable set {x,y,z,w} with z € X, y € Y, z € Z, if and only if there exists a
stable set {z,y,2} withz € X,y€Y,2€ Z. Let € X and § € Y be two nodes
such that h(Z) and h(g) are minimized. We can find such nodes in (’)(\/E) time
and, by assumption, Z and § are non-adjacent. By Claim (%) and the minimality
of h(Z) and h(y) there exists a stable set {z,y,2} withz € X,y €Y, z € Z if
and only if h(Z) + h(g) < |Z|; moreover, if such a set exists we may assume x = &
and y = y. Hence, in O(\/E) time we can check whether there exists a stable
set {x,y,z,w} with x € X, y € Y, z € Z. Moreover, if the check is positive in
O(\/E) time we can find a node Z € Z which is non-adjacent to z, § and @ so
that {Z, g, z,@w} is the sought-after stable set. It follows that in O(|F|) time we
can check all the nodes in W and either find a stable set {z,y, z,w} with € X,
yeY,ze Z we W or conclude that no such stable set exists. This concludes
the proof of the lemma. a

Theorem 11 Let G(V, E) be a claw-free graph. In O(|E|) time we can construct
a stable set S of G with |S| = min{a(G),4}.
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Proof. First, observe that in O(|E|) time we can check whether G is a clique (in
which case any singleton S C V would satisfy |S| = «(G) = 1) or construct a
stable set of cardinality 2. In the first case we are done, so assume that {s,t} CV
is a stable set of cardinality 2.

We now claim that, In O(|E|) time, we can construct a stable set of cardinality
3 or conclude that a(G) = 2. In fact, in O(|V]) time we can classify the nodes in
V\ {s,t} in four sets: (i) the set F(s) of nodes adjacent to s and non-adjacent
to t; (i) the set F(t) of nodes adjacent to ¢ and non-adjacent to s; (iii) the
set W (s,t) of nodes adjacent both to s and to ¢; and (iv) the set SF of nodes
(super-free) non-adjacent both to s and to ¢. If SF # 0 then let u be any node
in SF; in this case {s,t,u} is a stable set of cardinality 3. Otherwise, in O(|E|)
time we can check whether F(s) is a clique or find a pair of non-adjacent nodes
u,v € F(s). If F(s) is not a clique, then {u,v,t} is a stable set of cardinality
3. Analogously, in O(|E|) time we can check whether F(t) is a clique or find
a stable set of cardinality 3. Finally, if SF = ( and both F(s) and F(t) are
cliques then, by claw-freeness, a stable set S of cardinality 3 (if any) satisfies
[SNF(s)| = |SNF({)] = |SNW(s,t) = 1. Letting X = W(s,t), Y = F(s),
Z = F(t) and observing that X, Y, Z are local sets, by Lemma 11 we can,
in O(|E|) time, either conclude that a(G) = 2 or find a stable set {x,y,z} with
x € X,y €Y,z € Z.In the first case we are done, so assume that T' = {s,t,u} CV
is a stable set of cardinality 3.

We now claim that, In O(]E|) time, we can construct a stable set of cardinality
4 or conclude that a(G) = 3. In fact, in O(]V]) time we can classify the nodes in
V' \ T in seven sets: (i) the set F'(s) of nodes adjacent to s and non-adjacent to ¢
and to wu; (%) the set F(t) of nodes adjacent to ¢ and non-adjacent to s and to u;
(i%i) the set F(u) of nodes adjacent to u and non-adjacent to s and to ¢; (iv) the
set W (s,t) of nodes adjacent both to s and to ¢ and non-adjacent to u; (v) the
set W(s,u) of nodes adjacent both to s and to u and non-adjacent to ¢; (vi) the
set W (t,u) of nodes adjacent both to ¢t and to v and non-adjacent to s; (vii) the
set SF of nodes (super-free) non-adjacent to s, to ¢t and to u. Observe that, by
claw-freeness, no node can be simultaneously adjacent to s, ¢t and u, so the above
classification is complete. If SF # () then let w be any node in SF’; in this case
S = TU{w} is a stable set of cardinality 4. Otherwise, in O(|E|) time we can check
whether F'(s) is a clique or find a pair of non-adjacent nodes v, w € F(s). If F(s)
is not a clique, then {v,w} UT \ {s} is a stable set of cardinality 4. Analogously,
in O(|E|) time we can check whether F(t) or F(u) are cliques or find a stable set
of cardinality 4.

Finally, assume that SF is empty and that F'(s), F(t), F'(u) are all cliques. Observe
that, by claw-freeness, the symmetric difference of T' and any stable set S of
cardinality 4 induces a subgraph of G whose connected components are either
paths or cycles where the nodes in S and T alternates. Since |S| > |T|, at least
one component is a path P with |[PN S| =|PNT|+ 1. Since SF = @, the path
P contains at least one node of T. If it contains a single node of T, say s, the two
nodes in P NS belong to F(s), contradicting the assumption that F'(s) is a clique.
It follows that either (i) P contains two nodes of T and |P| = 5 or (i) T C P
and |P| = 7. Hence, to check whether G contains a stable set S of cardinality 4 it
is sufficient to verify that there exists a path P of type (i) or (ii). We shall prove
that such check can be done in O(|E|) time.
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Case (i).

We have three different choices for the pair of nodes in P N'T. Consider, without
loss of generality, PNT = {s,t} and let P = (x,s,y,t, 2). Such a path exists if and
only if there exists a stable set {z,y, 2z} with x € F(s), y € W(s,t), z € F(t). Let
X =F(s), Y =W(s,t), Z = F(t). Observe that Z is a clique and X, Y are local
sets, so X,Y, Z satisfy the hypothesis of Lemma 11. Hence we can, in O(|E|) time,
either find the stable set {z,y, 2z} or conclude that there exists no such stable set.
In the first case, observe that u is non-adjacent to z, y and z, so {z,y, z,u} is the
sought-after stable set of cardinality 4.

Case (ii).

We have three different choices for the order in which the three nodes s, t, u appear
in the path P. Consider, without loss of generality, P = (z, s, w,t,y,u, z). Such
a path exists if and only if there exists a stable set {z,y,z,w} with x € F(s),
y € W(t,u), z € F(u), w € W(s,t). Let X = F(s), Y = W(t,u), Z = F(u),
W = W(s,t). Observe that, by claw-freeness, X is null to Y and W is null to
Z; moreover Z is a clique and X, Y, W are local sets. So X,Y, Z, W satisfy the
hypothesis of Lemma 11 and we can, in O(|E|) time, either find the stable set
{z,y,z,w} or conclude that there exists no such stable set.

It follows that in O(|E|) time we can either construct a stable set of cardinality 4
or conclude that a(G) = 3. This concludes the proof of the theorem. O

Lemma 12 Let G(V,E) be a claw-free graph, w € RV a weighting of V and
X,Y,Z CV disjoint local sets such that Z induces a clique in G. In O(|E|log|V)
time we can either find a mazimum-weight stable set {x,y,z} withx € X, y €Y,
z € Z or conclude that no such stable set exists.

Proof. Let z1, 22, . . ., zp be an ordering of the nodes in Z such that w(z1) > w(z2) >
... > w(zp). Let Z; (i = 1,...,p) denote the set {z1,...,2i} C Z. For any node
u € XUY and index i € {1,...,p} let h(u,i) denote the cardinality of N(u)N Z;.
It is easy to see that we can compute h(u,i) for all the nodes u € X UY and all
the indices in {1, ..., p} in overall time O(|X UY||Z|) = O(|E]) (recall that X, Y,
and Z are local sets, so their cardinality is O(\/E)) Nowlet z € X and g €Y
be any two non-adjacent nodes and let 7 be an index in {1,...,p}.

Claim (i). There ezists a node zZ € Z; such that {Z,y, z} is a stable set if and only
if h(Z,1) + h(g, i) < 1.

Proof. This is a special case of Claim (%) in Lemma 11.

End of Claim (i).

Now, assume h(Z,p) + h(g,p) < p and let k be the smallest index in {1,...,p}
such that h(z, k) + h(g, k) < k.

Claim (i1). The set {Z, 9y, 2} is the heaviest stable set containing T, § and some
node in Z.

Proof. Trivial consequence of Claim (i) and the ordering of Z.

End of Claim (i).

Claim (i3). If h(Z,1) + h(y,1) < i for some i € {1,...,p} then h(Z,5)+h(g,j) < j
for any j > i.
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Proof. If h(Z,i) + h(y,i) < i, by Claim (i) there exists a node Z € Z; which is
non-adjacent to both Z and §. If Z and § had a common neighbor 2’ in Z; then
(' : Z,9, Z) would be a claw in G, a contradiction. It follows that h(z, j)+h(7,j) =
IN(Z) N Z;|+ |N(y) N Z;| < |Z;| = j and the claim follows.

End of Claim (iii).

By Claim (iii) We can find k in [logp] = O(log |V|) constant time computations,
by binary search. As a consequence, by checking all the pairs of non-adjacent nodes
x € X and y € Y, in O(|E|log|V]) time we can either find a maximum-weight
stable set {z,y,2} withz € X, y € Y, z € Z or conclude that no such stable set
exists. The lemma follows. O

Theorem 12 Let G(V,E) be a claw-free graph and let w € RV be a weighting
of V. In O(|E|log |V|) time we can either conclude that a(G) > 4 or construct a
mazimum-weight stable set S of G.

Proof. By Theorem 11 in O(|E|) time we can construct a stable set S of G with
|S| = min(a(G),4). If |S| = 4 we are done. Otherwise, a(G) < 3 and, as observed
in [2], V| = O(/|E]). If |S| = a(G) < 2 then in O(|E|) time we can find a
maximum-weight stable set. In fact, since S is maximal, every node in V' belongs
to N[S], |V| = O(y/|E]) and the theorem follows. Hence, we can assume that
a(G) = 3 and that we have a stable set T' = {s, t,u}. Moreover, since a maximum-
weight stable set intersecting 7' can be found in O(|E|) time, we are left with
the task of finding a maximum-weight stable set in V' \ T'. In O(|V]) time we can
classify the nodes in V' \ T in six sets: (i) the set F(s) of nodes adjacent to s and
non-adjacent to ¢t and to u; (i1) the set F'(t) of nodes adjacent to ¢ and non-adjacent
to s and to wu; (1) the set F'(u) of nodes adjacent to u and non-adjacent to s and
to t; (iv) the set W (s, t) of nodes adjacent both to s and to t and non-adjacent to
u; (v) the set W (s, u) of nodes adjacent both to s and to u and non-adjacent to ¢;
(vi) the set W(t,u) of nodes adjacent both to ¢ and to u and non-adjacent to s.
Observe that, by claw-freeness, no node can be simultaneously adjacent to s, ¢ and
u; moreover, since a(G) = 3, no node can be simultaneously non-adjacent to s, t
and u, so the above classification is complete. If F'(s) is not a clique, let v, w be
two non-adjacent nodes in F(s). The set {v,w,t,u} is a stable set of cardinality 4,
contradicting the assumption that «(G) = 3. It follows that F'(s) and, analogously,
F(t) and F(u) are cliques.

Observe that, by claw-freeness, the symmetric difference of T" and any stable set
S of cardinality 3 induces a subgraph H of G whose connected components are
either paths or cycles whose nodes alternate between S and T'. It follows that we
can classify the stable sets non-intersecting T according to the structure of the
connected components of H. Since a(G) = 3, no connected component of H can
have an odd number of nodes. We say that S is of type (i) if H is a path of length
6; of type (i1) if H is a cycle of length 6; of type (743) if H contains a path of length
2. Hence, to find a maximum-weight stable set S non-intersecting 7' it is sufficient
to construct (if it exists) a maximum-weight stable set of each one of the above
three types. We now prove that this construction can be done in O(|E|) time.

Case (i).

If a maximum-weight stable set S of type (i) exists, then there exists a path P
of length 6 containing S and T. We have six different choices for the order of the
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nodes s,t,u in P. Consider, without loss of generality, P = (s, z,t,y,u,2). The
set S = {z,y,z} with x € W(s,t), y € W(t,u), z € F(u) is the sought-after
maximum-weight stable set. Let X = W(s,t), Y = W(t,u), Z = F(u). Observe
that Z is a clique and X, Y are local sets. So X,Y, Z satisfy the hypothesis of
Lemma 12 and we can, in O(|E|log |V|) time, either find a maximum-weight stable
set {z,y,z} withz € X, y € Y, 2 € Z or conclude that no such stable set exists.

Case (ii). If a maximum-weight stable set S of type (ii) exists, then there exists a
cycle C of length 6 containing S and T'. Let C = (s, a, t, b, u, c). The set S = {a, b, c}
with a € W(s,t), b € W(t,u), c € W(s,u) is the sought-after maximum-weight
stable set.

Assume first that W (t,u) is a clique (we can check this in O(|E|) time). Let
X =W(s,t), Y =W(s,u), Z=W(t,u). By Lemma 12 we can, in O(|E|log|V])
time, either conclude that there exists no stable set of type (73) or find a maximum-
weight stable set of this type.

Assume now that W (¢, u) is not a clique and let v,v" be two non-adjacent nodes
in W(t,u). Let Z1 = W(s,u) N N(v) and Zo = W(s,u) N N(v'). Since u is a
common neighbor to v, v’ and any node in W (s,u), by claw-freeness we have
W(s,u) C Z1 U Zs. Moreover, since s is adjacent to any node in Z; U Z2 and
non-adjacent to v and v, again by claw-freeness we have Z1 N Z2 = ), so Z; is null
to v, Zz is null to v and W (s, u) is the disjoint union of Z; and Zs. It follows that
7 is a clique for, otherwise, (u : p,q,v") would be a claw, with p and ¢ any two
non-adjacent nodes in Z;. Analogously, also Z> is a clique. Now let X = W (s, t),
Y = W(t,u) and Z = Z1 or Z = Z. By applying Lemma 12 twice we can, in
O(|E|log|V|) time, either conclude that there exists no stable set of type (iz) or
find a maximum stable set {a,b,c} with a € W (s,t), b € W(t,u), c € W(s,u).

Case (iii). If a maximum-weight stable set S of type (iit) exists, then there exists a
path P of length 2 containing a node in S and a node in T'. We have three different
choices for the node in P NT. Consider, without loss of generality, P = (s, z); let
Z = F(s). The connected components of the symmetric difference of S and T
containing the nodes ¢ and u are either (iii-a) two paths P; and P» of length 2;
(#ii-b) a path Py of length 4; or (4ii-c) a cycle C of length 4. In the first case let
Py = (t,x), P> = (u,y) and let X = F(¢), Y = F(u). In the second case we have
two possibilities: either t or u is an extremum of P;. Without loss of generality,
assume P, = (t,z,u,y) and let X = W(t,u), Y = F(u). In either case, the set
S = {z,y,z} with z € X,y € Y, z € Z is the sought-after maximum-weight
stable set. By applying Lemma 12 we can, in O(|F|log|V]) time, either conclude
that there exists no stable set of types (ii4-a) and (ii-b) or find a maximum stable
set {z,y,2} withz € X,y € Y, z € Z. In case (iii-c) let C = (t,z,u,y). The
nodes z, y belong to W (t, u) and the node z to F(s). Moreover, by claw-freeness,
F(s) is null to W(¢,u). Recall that W(¢t,u) is a local sets, so its cardinality is
O(\/E) It follows that the maximum-weight stable set S = {z,y,2} can be
obtained by choosing the node z having maximum weight in F(s) and finding
in O(|E|) time the pair of non-adjacent nodes z,y € W (¢, u) having maximum
weight. This concludes the proof of the theorem. a
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