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Abstract In this paper we consider an aggregation technique introduced by Yıldıran [45] to study the
convex hull of regions defined by two quadratic inequalities or by a conic quadratic and a quadratic in-
equality. Yıldıran [45] shows how to characterize the convex hull of open sets defined by two strict quadratic
inequalities using Linear Matrix Inequalities (LMI). We show how this aggregation technique can be easily
extended to yield valid conic quadratic inequalities for the convex hull of open sets defined by two strict
quadratic inequalities or by a strict conic quadratic and a strict quadratic inequality. We also show that for
sets defined by a strict conic quadratic and a strict quadratic inequality, under one additional containment
assumption, these valid inequalities characterize the convex hull exactly. We also show that under certain
topological assumptions, the results from the open setting can be extended to characterize the closed convex
hull of sets defined with non-strict conic and quadratic inequalities.

Keywords Quadratic inequality, Conic quadratic inequality, Linear Matrix Inequality

1 Introduction

Development of strong valid inequalities or cutting planes such as Split cuts [19], Gomory Mixed Integer
(GMI) cuts [27, 28], and Mixed Integer Rounding (MIR) cuts [34, 41, 42, 44] is one of the most important
breakthroughs in the area of Mixed Integer Linear Programming (MILP) [17, 18, 20, 24]. Development of
such strong valid inequalities has resulted in highly effective branch-and-cut algorithms [1, 12, 11, 29, 33].

There has recently been significant interest in extending the associated theoretical and computational
results to the realm of Mixed Integer Conic Quadratic Programming (MICQP) [3, 13, 16, 21, 23, 25, 30,
35, 39, 40, 43]. Dadush et al. [22] study the split closure of a strictly convex body and characterize split
cuts for ellipsoids. Atamtürk and Narayanan [4] study the extension of MIR cuts to sets defined by a single
conic quadratic inequality and introduce conic MIR cuts which are linear inequalities derived from an
extended formulation. Modaresi et al. [37] then characterize nonlinear split cuts for similar conic quadratic
sets and also establish the relation between the split cuts and conic MIR cuts from [4]. Andersen and Jensen
[2] also study similar conic quadratic sets as in [4] and derive nonlinear split cuts using the intersection
points of the disjunctions and the conic set. Belotti et al. [6] study the families of quadratic surfaces
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having fixed intersections with two hyperplanes. Following the results in [6], Belotti et al. [5, 7] characterize
disjunctive cuts for conic quadratic sets when the sets defined by the disjunctions are bounded and disjoint,
or when the disjunctions are parallel. Modaresi et al. [36] characterize intersections cuts for several classes
of nonlinear sets with specific structures, including conic quadratic sets. Bienstock and Michalka [9, 10]
derive linear inequalities to characterize the convex hull of convex quadratic functions on the complement
of a convex quadratic or polyhedral set and they also study the associated separation problem. Morán et
al. [40] consider subadditive inequalities for general Mixed Integer Conic Programming and Kılınç-Karzan
[31] studies minimal valid linear inequalities to characterize the convex hull of general conic sets with a
disjunctive structure. Following the results in [31], Kılınç-Karzan and Yıldız [32] study the structure of
the convex hull of a two-term disjunction applied to the second-order cone. Yıldız and Cornuéjols [46]
study disjunctive cuts on cross sections of the second-order cone. Finally, Burer and Kılınç-Karzan [15]
characterize the closed convex hull of sets defined as the intersection of a conic quadratic and a quadratic
inequality that satisfy certain technical assumptions.

In this paper we study the convex hull of regions defined by two quadratic or by a conic quadratic and
a quadratic inequality. The technique we use to characterize the convex hulls is an aggregation technique
introduced by Yıldıran [45]. In particular, Yıldıran characterizes the convex hull of sets defined by two strict
quadratic inequalities (i.e., intersection of two open quadratic sets) and obtains a Semidefinite Programming
(SDP) representation of the convex hull using Linear Matrix Inequalities (LMI). Yıldıran also proposes a
method to calculate the convex hull of two quadratics. In this paper we show that the SDP representation
of the convex hull of two strict quadratics presented in [45] can be described by two strict conic quadratic
inequalities. We also show that the aggregation technique in [45] can be easily extended to derive valid conic
quadratic inequalities for the convex hull of sets defined by a strict conic quadratic and a strict quadratic
inequality. We also show that under an additional containment assumption, the derived strict inequalities
are sufficient to characterize the convex hull.

In addition to open sets defined with strict conic and quadratic inequalities, we also consider conic
and quadratic sets defined with non-strict inequalities (i.e., sets defined as the intersection of two closed
quadratic sets or a closed conic quadratic and a closed quadratic set). We note that the transition from
open to closed setting is not trivial; however, we show that under certain topological assumptions, the
strict inequality results directly imply their non-strict analogs. Note that a lattice-free set is defined as a
set that does not contain any integer point in its interior. Therefore, the aggregation technique proposed
in [45] provides a unified framework for generating lattice-free cuts for quadratic and conic quadratic sets.
Moreover, as long as the lattice-free set can be described by a single quadratic inequality, such a framework
is independent of the geometry of the lattice-free set.

The rest of this paper is organized as follows. In Section 2 we introduce some notation and provide the
existing convex hull results from [45]. In Sections 3 and 4 we introduce the conic quadratic characterization
of the convex hull of quadratic and conic quadratic sets and compare the results in this paper and those
in [15]. We note that [15] contains similar results to those presented here and our main results have been
developed independently. In Section 4.6 we compare and discuss these various results.

2 Notation, preliminaries, and existing convex hull results

We use the following notation. We let ei ∈ R
n denote the i-th unit vector, 0n be the zero vector, [n] :=

{1, . . . , n}, and S
n denote symmetric matrices with n rows and columns. For a matrix P , we let π− (P)

denote the number of negative eigenvalues of P , π+ (P) denote the number of positive eigenvalues of P ,
and null(P) denote its null space. We also let ‖x‖2 :=

√

∑n
i=1 x2

i denote the Euclidean norm of a given
vector x ∈ R

n. For a set S ⊆ R
n, we let int (S) be its interior, S be its closure, conv (S) be its convex

hull, conv (S) be the closure of its convex hull, and S∞ be its recession cone. Finally, for a set S ∈ R
n+1,

Projx (S) is the orthogonal projection of the set to the first n variables.

In Sections 2 and 3 we follow the convention in [45] and define all sets using strict inequalities. However,
in Section 4 all sets are defined by non-strict inequalities. This also allows us to compare our results with
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those in [15]. To simplify the exposition, we use the same notation for sets described by strict and non-strict
inequalities; however, if we need to refer to sets defined by strict inequalities in Section 4, we use the interior
to avoid any ambiguity.

2.1 Preliminaries

In this section we first define the quadratic sets that we study. We then provide some useful definitions
and results from [45] that are relevant to our analysis. To save space, we do not provide the proofs of such
results and we refer the reader to [45].

Our analysis is based on the work in [45] which studies the convex hull of open sets defined by two strict
non-homogeneous quadratic inequalities. In particular, let

S := {x ∈ R
n : qi < 0, i = 0, 1} , (1)

where qi, i = 0, 1 are quadratic polynomials of the form

[

x
1

]T

P
[

x
1

]

= xT Qx + 2bT x + γ, (2)

where P =

[

Q b

bT γ

]

∈ S
n+1, Q ∈ S

n, b ∈ R
n, and γ ∈ R.

Note that [45] does not require the quadratic functions to satisfy any specific property. In particular,
there is no requirement on the convexity or concavity of the quadratic functions defined in (2).

To characterize the convex hull of S, [45] considers the aggregated inequalities derived from the convex
combinations of the two quadratics. More specifically, denote the pencil of quadratics induced by the convex
combination of the two quadratic inequalities as

qλ := (1 − λ)q0 + λq1,

where λ ∈ [0, 1]. Similarly, define the associated symmetric matrix pencil

Pλ := (1 − λ)P0 + λP1,

and

Qλ := (1 − λ)Q0 + λQ1.

For a given quadratic pencil qλ, define

Sλ := {x ∈ R
n : qλ < 0} .

The aggregation technique in [45] chooses λ ∈ [0, 1] such that the aggregated inequalities give conv (S).
The characterization of the sets D and E, which are defined below, are crucial to the aggregation technique.
Define

D := {λ ∈ [0, 1] : (1 − λ)Q0 + λQ1 � 0}
and

E :=
{

λ ∈ [0, 1] : π− (Pλ) = 1
}

.

Note that D is the collection of all λ ∈ [0, 1] such that the associated quadratic set Sλ is convex.
On the other hand, E is the collection of all λ ∈ [0, 1] for which Pλ has exactly one negative eigenvalue.
Therefore, Sλ may be non-convex for some λ ∈ E. However, as shown in Theorem 2, two specific aggregated
inequalities associated with E admit a convex representation and these are enough to characterize conv(S).
Throughout the paper, we use Lemma 2 in [45] which characterizes the structure of the set E as follows.
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Lemma 1 If E 6= ∅, then E is the union of at most two disjoint connected intervals of the form

E = [λ1, λ2] ∪ [λ3, λ4],

where λi, λi+1 ∈ [0, 1] for i ∈ {1, 3} are generalized eigenvalues of the pencil Pλ.

If E is a single connected interval, we denote E = [λ1, λ2], for λ1, λ2 ∈ [0, 1]. Also note that it is possible
that the connected intervals of E are only single points. In such a case, we have λi = λi+1 for i ∈ {1, 3}.
Proposition 1 in [45] characterizes the relation between D and E as follows.

Proposition 1 If S 6= ∅, then D is a closed interval contained in E.

Therefore, if E is composed of two disjoint connected intervals, Lemma 1 implies that D ⊆ [λi, λi+1]
for exactly one i ∈ {1, 3}.

In what follows, we provide the convex hull results from [45]. In Section 2.2 we present the convex hull
characterization of the homogeneous version of the quadratic set S defined in (1). Section 2.3 then presents
the convex hull characterization of S.

2.2 Homogeneous quadratic sets

Consider the homogeneous version of the quadratic function q defined in (2) as

q = yT Py, (3)

where y =

[

x
x0

]

∈ R
n+1. Also consider the homogeneous version of the quadratic set S defined in (1) as

S :=
{

y ∈ R
n+1 : q

i
< 0, i = 0, 1

}

. (4)

Analogously, define the associated quadratic pencil qλ as

qλ := (1 − λ)q0 + λq1,

where λ ∈ [0, 1]. Also denote the homogeneous version of the set Sλ as

Sλ :=
{

y ∈ R
n+1 : qλ < 0

}

.

Throughout the paper, we use the following definitions.

Definition 1 C ⊆ R
n+1 is an open cone if for any y ∈ C and α > 0, we have αy ∈ C.

We note that the above definition of a cone C does not require 0 ∈ C, and it also allows a non-convex set
to be a cone.

Definition 2 The symmetric reflection of C ⊆ R
n+1 with respect to the origin is defined as −C :=

{

−y ∈ R
n+1 : y ∈ C

}

.

Definition 3 C ⊆ R
n+1 is symmetric if −C = C.

Also define a linear hyperplane H ⊆ R
n+1 with the associated normal vector h ∈ R

n+1 \ {0n+1} as

H :=
{

y ∈ R
n+1 : hT y = 0

}

.

One can see that S and Sλ for λ ∈ [0, 1] are open symmetric cones. An important notion that we
frequently use throughout the paper is the separation of an open symmetric cone which is given in the
following definition.
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Definition 4 Consider an open symmetric non-empty cone C ⊆ R
n+1. If there exists a linear hyperplane

H ⊆ R
n+1 such that H∩C = ∅, we say C admits a separation (i.e., H is a separator of C or separates C).

Denote the two halfspaces induced by the hyperplane H as

H
+ :=

{

y ∈ R
n+1 : hT y > 0

}

,

and

H
− :=

{

y ∈ R
n+1 : hT y < 0

}

.

Therefore, a separator H induces two disjoint slices of the set S denoted by

S
+ := H

+ ∩ S and S
− := H

− ∩ S.

One can see that the resulting slices of S satisfy the following properties: (i) S
+ = −S

−, (ii) S
+∩S

− = ∅,
and (iii) S = S

+ ∪ S
−.

Another important definition that we need is the definition of a semi-convex cone.

Definition 5 A semi-convex cone (SCC) is the disjoint union of two convex and open cones which are
symmetric reflections of each other with respect to the origin.

An SCC is symmetric by definition. Moreover, an SCC always admits a unique separation. In other words,
regardless of the separator we use to separate an SCC with, the associated disjoint slices will always be
the same (i.e., after using any one of the valid hyperplanes for separation, the two pieces of the SCC are
uniquely defined). This fact is formalized in Propositions 2 and 3 in [45] as follows.

Proposition 2 Let C ⊆ R
n+1 be an open SCC. Assume that there exists a hyperplane H which separates

C. Then, C admits a unique separation, the slices of which are the convex connected components of C.

We also use the following useful proposition from [45].

Proposition 3 Consider an open symmetric non-empty cone given by

C :=
{

y ∈ R
n+1 : yT Py < 0

}

.

Then the following statements are equivalent:

(i) There exists a linear hyperplane which separates C,
(ii) π− (P) = 1, and
(iii) C is an SCC.

Remark 1 Note that when π− (P) = 1, one can do the spectral decomposition of P as

P = V V T − uuT ,

for u ∈ R
n+1 and V ∈ R

(n+1)×π+(P), where π+ (P) represents the number of positive eigenvalues of P .
One can check that

Hu :=
{

y ∈ R
n+1 : uT y = 0

}

separates C and we call Hu a natural separator of C.

Lemmas 4-7 in [45] imply the following theorem which characterizes the convex hull of any set of the
form S defined by two homogeneous quadratic inequalities.
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Theorem 1 Consider the non-empty open set S defined in (4) and let H be a separator of S. Then E 6= ∅
and exactly one of the connected components [λi, λi+1] of E is such that

H ∩ Sλi
∩ Sλi+1

= ∅.

For such λi and λi+1 we have that Sλi
∩ Sλi+1

is an SCC,

conv
(

H
+ ∩ S

)

= H
+ ∩ Sλi

∩ Sλi+1

and there exists Hs which separates both Sλi
and Sλi+1

such that

conv
(

H
+ ∩ S

)

=
(

H
+
s

∩ Sλi

)

∩
(

H
+
s

∩ Sλi+1

)

.

2.3 Quadratic sets

Using the results from Theorem 1, the following theorem (Theorem 1 in [45]) characterizes the convex hull
of any set of the form S defined by two strict quadratic inequalities.

Theorem 2 Consider the non-empty open set S defined in (1). If D = ∅, then conv (S) = R
n. Otherwise,

let i ∈ {1, 3} be such that [λi, λi+1] is the unique connected component of E such that D ⊆ [λi, λi+1]. For
such λi and λi+1 we have

conv (S) = Sλi
∩ Sλi+1

.

3 Conic quadratic characterization of convex hulls

In this section we first show that the convex hull characterizations presented in Section 2 can be described by
two strict conic quadratic inequalities. Using results from Theorem 1, we then derive strict conic quadratic
inequalities which provide a relaxation for the convex hull of sets defined as the intersection of a strict
conic quadratic and a strict quadratic inequality. We also show that such valid inequalities characterize the
convex hull exactly under an additional containment assumption.

3.1 Conic quadratic representation of convex hulls

In what follows, we show that each side of Sλi
and Sλi+1

can be described by a single conic quadratic
inequality, where [λi, λi+1] for i ∈ {1, 3} is one of the connected components of E.

Proposition 4 Let λ ∈ [0, 1] be such that π− (Pλ) = 1 and let H be a separator of Sλ. Then H
+ ∩ Sλ

can be described by a single strict conic quadratic inequality.

Proof We have

Sλ =
{

y ∈ R
n+1 : yT Pλy < 0

}

.

Since π− (Pλ) = 1, using Proposition 3, one can see that Sλ is an SCC. Thus, using Remark 1, one can
decompose Pλ as Pλ = V V T − uuT for the appropriately chosen matrix and vector V and u. Therefore,
we have

Sλ =

{

y ∈ R
n+1 :

∥

∥

∥
V T y

∥

∥

∥

2

2
<

(

uT y
)2

}

. (5)

Let Hu be the natural separator of Sλ. Using Proposition 2, we have that Sλ admits a unique separation,
that is,

H
+ ∩ Sλ = H

+
u

∩ Sλ or H
− ∩ Sλ = H

−

u
∩ Sλ. (6)
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Therefore, from (5) and (6) we get

H
+ ∩ Sλ =

{

y ∈ R
n+1 :

∥

∥

∥
V T y

∥

∥

∥

2
< s

(

uT y
)}

,

for some s ∈ {−1, 1}. ⊓⊔

A similar argument to the proof of Proposition 4 can be used to show that conv
(

H
+ ∩ S

)

given in

Theorem 1 can be written as

conv
(

H
+ ∩ S

)

= Kλi
∩ Kλi+1

,

where

Kλi
= H

+

i
∩ Sλi

and Kλi+1
= H

+

i+1 ∩ Sλi+1
, (7)

H
+
i

∈
{

H
+
ui

, H−

ui

}

and H
+
i+1 ∈

{

H
+
ui+1

, H−

ui+1

}

, and where Hui
and Hui+1

are natural separators

of Sλi
and Sλi+1

, respectively. In particular, each of the sets Kλi
and Kλi+1

is described by a single
strict conic quadratic inequality.

Similarly, conv (S) given in Theorem 2 can be expressed as

conv (S) = Kλi
∩ Kλi+1

,

where

Kλi
=

{

x ∈ R
n :

[

x
1

]

∈ Kλi

}

and Kλi+1
=

{

x ∈ R
n :

[

x
1

]

∈ Kλi+1

}

, (8)

for Kλi
and Kλi+1

defined in (7). In particular, Kλi
and Kλi+1

can be described by a single strict conic
quadratic inequality. An alternate way of obtaining such conic quadratic inequalities is to apply Schur’s
Lemma to a homogeneous version of the SDP representation of Sλi

and Sλi+1
given in Proposition A1 in

[45].

3.2 Conic quadratic sets

In this section we aim to characterize the convex hull of sets defined by a strict conic quadratic and a strict
quadratic inequality.

Using Theorem 1, we first derive valid conic quadratic inequalities for the convex hull of any set defined
by a strict conic quadratic and a strict quadratic inequality. We then show that such valid inequalities
characterize the convex hull exactly under an additional containment assumption.

We study open sets of the form

C := {x ∈ R
n : L0 < 0, q1 < 0} , (9)

where L0 < 0 is a strict conic quadratic inequality of the form

‖A0x − d0‖2 < a0
T x − g0,

where A0 ∈ R
n×n, d0, a0 ∈ R

n, g0 ∈ R, and q1 < 0 is a strict quadratic inequality of the form

[

x
1

]T

P1

[

x
1

]

= xT Q1x + 2bT
1 x + γ1 < 0,

where P1 =

[

Q1 b1
bT
1 γ1

]

∈ S
n+1, Q1 ∈ S

n, b1 ∈ R
n, and γ1 ∈ R.
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Our goal is to derive strong valid inequalities for conv (C) and characterize the convex hull exactly when
possible. Since we will use results from Theorem 1, we also need to consider the homogeneous version of
the set C. Therefore, we define

C :=
{

y ∈ R
n+1 : L0 < 0, q1 < 0

}

, (10)

where L0 < 0 is a strict homogeneous conic quadratic inequality of the form

‖A0x − d0x0‖2 < a0
T x − g0x0,

and q1 is a quadratic function as defined in (3). By squaring both sides of the strict conic quadratic
inequality L0 < 0, we define

S (C) :=
{

y ∈ R
n+1 : q0 < 0, q1 < 0

}

, (11)

where q0 = yT P0y such that Q0 = AT
0 A0 − a0a0

T , b0 = −AT
0 d0 + g0a0, and γ0 = dT

0 d0 − g0
2. We also

define the hyperplane

H0 :=
{

y ∈ R
n+1 : (a0, −g0)

T y = 0
}

. (12)

One can see that H0 is a separator for S (C),

C = H
+
0 ∩ S (C), (13)

and

C = Projx

(

H
+
0 ∩ S (C) ∩ E

1
)

, (14)

where E
1 :=

{

(x, x0) ∈ R
n+1 : x0 = 1

}

. In Proposition 5, we use (13) and (14) together with Theorem 1
to characterize conv (C). We note that the proof of Proposition 5 is a direct adaptation of the proof of
Theorem 1 in [45].

Proposition 5 Consider the non-empty open set C defined in (9). Then exactly one of the connected
components [λi, λi+1] of E is such that

H0 ∩ Sλi
∩ Sλi+1

= ∅, (15)

where H0 is defined in (12). For such λi and λi+1 we have that

conv (C) ⊆ Kλi
∩ Kλi+1

, (16)

where Kλi
and Kλi+1

are defined in (8). Furthermore, if C ⊆ E
+ for E :=

{

(x, x0) ∈ R
n+1 : x0 = 0

}

, then
(16) holds as equality.

Proof Consider C, S (C), and H0 as defined in (10), (11), and (12), respectively. One can see that (15)
directly follows from Theorem 1. To prove the containment in (16), recall from (13) and (14) that

C = H
+
0 ∩ S (C)

and

C = Projx

(

H
+
0 ∩ S (C) ∩ E

1
)

,
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where E
1 :=

{

(x, x0) ∈ R
n+1 : x0 = 1

}

. Therefore, conv (C) can be expressed as

conv (C) =







x ∈ R
n :

[

x
1

]

=

n+1
∑

j=1

θj

[

zj

1

]

,

n+1
∑

j=1

θj = 1, θj ≥ 0,

[

zj

1

]

∈ C, j ∈ [n + 1]







⊆







x ∈ R
n :

[

x
1

]

=

n+1
∑

j=1

θjzj,

n+1
∑

j=1

θj = 1, θj ≥ 0, zj ∈ C, j ∈ [n + 1]







(17)

=

{

x ∈ R
n :

[

x
1

]

∈ conv (C)

}

,

=

{

x ∈ R
n :

[

x
1

]

∈ Kλi
∩ Kλi+1

}

= Kλi
∩ Kλi+1

, (18)

where the first equality holds by Carathéodory’s Theorem, the first equality in (18) follows from Theorem 1,
and where i ∈ {1, 3} is an appropriate index evident from Theorem 1. The reverse containment in (17)
trivially holds when C ⊆ E

+. ⊓⊔

4 Conic quadratic characterization of closed convex hulls

In this section we study conic and quadratic sets defined by non-strict inequalities instead of strict inequali-
ties. In particular, whenever we refer to a previously defined set, such as E

+, H
+, S, Kλi

, we redefine such
a set by replacing strict inequalities with non-strict inequalities. In other words, unless stated explicitly,
all sets in this section are closed and defined by non-strict inequalities. Working with non-strict inequal-
ities requires the study of closed convex hulls instead of convex hulls. However, under certain topological
assumptions, the strict inequality results directly imply non-strict analogs. One such assumption is (19) in
the following lemma.

Lemma 2 Let A and B be two non-empty closed sets such that

A ⊆ int(A) (19)

and B is convex. If conv(int(A)) ⊆ int(B), then conv(A) ⊆ B and if conv(int(A)) = int(B), then conv(A) =
B.

Proof First note that (19) implies A = int(A) and hence

conv(A) = conv
(

int(A)
)

= conv (int(A)) = conv (conv (int(A))) . (20)

Furthermore,

B = int (B) = conv (int (B)) (21)

because B is closed and convex and int (B) 6= ∅ (because int(A) ⊆ int(B) and because (19) and A 6= ∅
imply int(A) 6= ∅). The result then follows from (20)–(21) by taking the closed convex hull on both sides
of the corresponding containment or equality. ⊓⊔

Note that if the set A is non-empty, then Assumption (19) implies the non-emptiness of int(A). In the
following subsections we show how Lemma 2 can be used to adapt the convex hull results from Sections 2
and 3 to the non-strict setting. We then give several examples that illustrate Assumption (19) and some
characteristics of the closed convex hull results. Finally, considering sets defined by non-strict inequalities
allows us to compare our results with those in [15].
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4.1 Homogeneous quadratic sets

We consider homogeneous quadratic sets of the form

S :=
{

y ∈ R
n+1 : q

i
≤ 0, i = 0, 1

}

.

In this section with a slight abuse of notation, we say that the hyperplane H ⊆ R
n+1 separates S when

H is in fact a separator of int (S) =
{

y ∈ R
n+1 : q

i
< 0, i = 0, 1

}

. The following corollary characterizes
the non-strict inequality version of Theorem 1 and follows directly from that theorem and Lemma 2.

Corollary 1 Let S :=
{

y ∈ R
n+1 : q

i
≤ 0, i = 0, 1

}

be non-empty, H be a separator of S, and i ∈
{1, 3} be such that [λi, λi+1] is the unique connected component of E such that

H ∩ Sλi
∩ Sλi+1

= ∅.

If

H
+ ∩ S ⊆ int

(

H
+ ∩ S

)

, (22)

then

conv
(

H
+ ∩ S

)

= Kλi
∩ Kλi+1

,

where Kλi
and Kλi+1

are as in (7) defined with non-strict inequalities.

Similar as before, if the set S is non-empty, then Assumption (22) implies the non-emptiness of int (S).

4.2 Conic quadratic sets

The following corollary characterizes the non-strict inequality version of Proposition 5 and follows directly
from that proposition and Lemma 2.

Corollary 2 Let C := {x ∈ R
n : L0 ≤ 0, q1 ≤ 0} be non-empty and i ∈ {1, 3} be such that [λi, λi+1] is

the unique connected component of E such that

H0 ∩ Sλi
∩ Sλi+1

= ∅,

where H0 is defined in (12). If

C ⊆ int (C), (23)

then

conv (C) ⊆ Kλi
∩ Kλi+1

, (24)

where Kλi
and Kλi+1

are as in (8) defined with non-strict inequalities. Furthermore, if

C ⊆ E
+

, (25)

for E :=
{

(x, x0) ∈ R
n+1 : x0 = 0

}

, then (24) holds as equality.

Note that C ⊆ E
+ provides a sufficient condition under which (24) trivially holds as equality; however,

equality in (24) may still hold even if C ⊆ E
+ is violated.
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4.3 Quadratic sets

The following corollary characterizes the non-strict inequality version of Theorem 2 and follows directly
from that theorem and Lemma 2.

Corollary 3 Let S := {x ∈ R
n : qi ≤ 0, i = 0, 1} be non-empty. If D = ∅, then conv (S) = R

n. Other-
wise, let i ∈ {1, 3} be such that [λi, λi+1] is the unique connected component of E such that D ⊆ [λi, λi+1].
If

S ⊆ int (S), (26)

then

conv (S) = Kλi
∩ Kλi+1

,

where Kλi
and Kλi+1

are as in (8) defined with non-strict inequalities.

Obtaining λi and λi+1 and checking Assumption (25) is relatively easy. For instance, to obtain λi and
λi+1 we calculate all generalized eigenvalues {λi}r

i=1 of the pencil Pλ and order them such that λi < λi+1

for all i ∈ [r − 1]. We can then construct E by evaluating the number of negative eigenvalues of Pλ for all
λ = (λi + λi+1) /2 for i ∈ [r − 1]. In contrast, checking topological Assumption (19) (or its specializations
(22), (23) and (26)) can be significantly harder. Fortunately, as we show in the following subsection, the
topological assumption can be easily verified for some specific geometric structures.

4.4 Verifying the topological assumption

In this section we give two lemmas that are useful when checking the topological Assumption (19). The first
lemma shows that the Assumption (19) is automatically satisfied for a wide range of sets and the second
lemma gives a sufficient condition that can often be easier to check than the original Assumption (19).

Lemma 3 Let f, g : R
n → R be continuous functions and K be a closed convex set or the complement of an

open convex set. Then (19) holds for A = {(x, x0) : f(x) ≤ x0, g(x) ≤ x0} and A = {(x, x0) : f(x) ≤ x0, x ∈ K}.

Proof The first case follows by noting that for any (x, x0) ∈ A and for every ε > 0, we have that (x, x0 + ε) ∈
int(A). For the second case, note that for any x̄ ∈ bd (K), there exist d ∈ R

n such that x̄ + εd ∈ int (K)
for all sufficiently small ε > 0. Furthermore, (x̄, f (x̄)) = limε→0 (x̄ + εd, f (x̄ + εd)). Hence, it suffices
to show that (x̄ + εd, f (x̄ + εd)) ∈ int (A) for all sufficiently small ε > 0. This follows from noting that
(x̄ + εd, f (x̄ + εd) + δ) ∈ int (A) for all sufficiently small ε > 0 and for any δ > 0. ⊓⊔

Sets of the form considered by Lemma 3 include a wide range of quadratic sets such as the intersection of
a paraboloid with a general quadratic inequality. It also includes trust region problems and hence, together
with Corollary 3, this lemma can be used to show that such problems are equivalent to simple convex
optimization problems (e.g. [8, Corollary 8] and [15, Section 7.2])

Lemma 4 If A =
⋃l

i=1 Ai and Ai satisfies (19) for each i ∈ [l], then A satisfies (19). In particular, if Ai

is convex and int (Ai) 6= ∅ for each i ∈ [l], then A satisfies (19).

Proof The first part follows from A =
⋃l

i=1 Ai ⊆ ⋃l
i=1 int (Ai) ⊆ int (A). The second follows from the fact

that (19) is naturally satisfied by convex sets with non-empty interiors as formalized in Lemma 2.1.6 in
[26]. ⊓⊔

Sets considered by Corollaries 1–3 that are unions of convex sets include those constructed from two-term
disjunctions such as the ones considered in [15, Section 6] and [2, 3, 4, 5, 6, 7, 9, 10, 13, 16, 21, 22, 23,
25, 30, 32, 36, 37, 46]. Such sets are the unions of two convex sets defined by a single quadratic or conic
quadratic inequality and two linear inequalities. In the next sub-section we show that checking that these
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two convex sets have non-empty interior is often easy and that when one of the sets has an empty interior,
the topological Assumption (19) can be violated.

One special case of the sets considered by Lemma 4 are those constructed from split disjunctions. The
only restriction of Lemma 4 compared to the general split disjunctions is that Lemma 4 requires both sides
of the splits to have non-empty interior, while this assumption is not needed for general split disjunctions.
In particular, the works in [3, 4, 16, 21, 22, 23] study cuts from one-sided split disjunctions, and such cuts
cannot be derived using Lemma 4. On the other hand, the works in [5, 6, 7, 32, 46] assume the non-emptiness
of the interiors of both sides of the disjunctions in the derivation of the cuts, and such cuts can in fact be
derived using Lemma 4. Finally, it should be noted that the assumption from [15, Section 6] that seems of
relevance to Lemma 4, i.e., [15, Assumption 2], only assumes that a single set Ai needs to have nonempty
interior.

4.5 Illustrative examples

We now illustrate the results in this section through several examples. In particular, we show how the
two inequalities in the closed convex hull or relaxation characterization may include one of the original
inequalities, one or two new inequalities, or even a redundant inequality.

We begin with three examples for which the description of the closed convex hull only requires one
additional inequality (i.e. one of the inequalities associated to λi, λi+1 is one of the original inequalities).
In the first two examples, Corollaries 2 and 3 are able to prove that adding this additional inequality yields
the closed convex hull. However, in the third example, Corollary 2 cannot prove that adding the additional
inequality yields the closed convex hull even though it actually does.

Example 1 Here we consider Example 3 in [38], which is given by

S1 :=
{

x ∈ R
3 : x2

1 + x2
2 − x3 − 4 ≤ 0, x2

1 + x2
2 − x2

3 + 1 ≤ 0
}

.

To check Assumption (26) of Corollary 3, first note that S1 = S′
1 ∪ S′′

1 for convex sets

S′

1 :=

{

x ∈ R
3 : x2

1 + x2
2 − x3 − 4 ≤ 0,

√

x2
1 + x2

2 + 1 ≤ x3

}

and

S′′

1 :=

{

x ∈ R
3 : x2

1 + x2
2 − x3 − 4 ≤ 0,

√

x2
1 + x2

2 + 1 ≤ −x3

}

.

Furthermore, both sets have non-empty interiors (e.g. (0, 0, 2) ∈ int
(

S′
1

)

and (0, 0,−2) ∈ int
(

S′
1

)

). Hence,
by Lemma 4, Assumption (26) is satisfied. We can also check that

E =

[

0,
1

21

(

9 − 2
√

15
)

]

∪
[

1

21

(

9 + 2
√

15
)

, 1

]

and D = {0} is contained in the first interval. Then, λi = 0 and λi+1 = 1
21

(

9 − 2
√

15
)

and Corollary 3
yields

conv (S1) =







x ∈ R
2 :

x2
1 + x2

2 − x3 − 4 ≤ 0,
√

x2
1 + x2

2 ≤ 1

21

√

9 + 2
√

15
((

9 − 2
√

15
)

x3 +
√

15 + 6
)







.

Because λi = 0 and λi+1 /∈ {0, 1}, the first inequality given by Corollary 3 is one of the original inequalities
and the second one is a new inequality, which we can check is non-redundant for the description of conv (S1).
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Example 2 Here we consider an example proposed by Burer and Kılınç-Karzan [14], which is given by

C2 :=

{

x ∈ R
3 :

√

x2
1 + x2

2 ≤ x3, (x1 + x3 − 3)(x3 − 2) ≤ 0

}

.

The homogeneous version of this set is given by

C2 := H
+
2 ∩ S2 =

{

(x, x0) ∈ R
4 :

√

x2
1 + x2

2 ≤ x3, x2
3 + x1x3 − 2x1x0 − 5x3x0 + 6x2

0 ≤ 0

}

,

for H
+
2 :=

{

(x, x0) ∈ R
4 : x3 ≥ 0

}

and

S2 :=
{

(x, x0) ∈ R
4 : x2

1 + x2
2 − x2

3 ≤ 0, x2
3 + x1x3 − 2x1x0 − 5x3x0 + 6x2

0 ≤ 0
}

.

To check Assumption (23) of Corollary 2, first note that C2 = C ′
2 ∪ C ′′

2 for convex sets

C ′

2 :=

{

x ∈ R
3 :

√

x2
1 + x2

2 ≤ x3, (x1 + x3 − 3) ≤ 0, (x3 − 2) ≥ 0

}

,

and

C ′′

2 :=

{

x ∈ R
3 :

√

x2
1 + x2

2 ≤ x3, (x1 + x3 − 3) ≥ 0, (x3 − 2) ≤ 0

}

.

Furthermore, both C ′
2 and C ′′

2 have non-empty interiors. Hence, by Lemma 4 Assumption (23) is satisfied.
We can also check that E = [0, 8/9] ∪ [1, 1] and H2 only separates the set associated to the first interval.
Then λi = 0 and λi+1 = 8/9 and

conv (C2) ⊆
{

x ∈ R
3 :

√

x2
1 + x2

2 ≤ x2
3,

√

(ax1 + bx3 + c)2 +
x2

2

9
≤ dx1 + ex3 + f

}

, (27)

where

a =
1

132

(

53 + 3
√

97
)

√

1

582

(

53
√

97 − 291
)

,

b =
1

33

(

20 + 3
√

97
)

√

1

582

(

53
√

97 − 291
)

,

c =
1

132

(

−248 − 24
√

97
)

√

1

582

(

53
√

97 − 291
)

,

d =
1

132

√

1

2
+

53

6
√

97

(

3
√

97 − 53
)

,

e =
1

33

√

1

2
+

53

6
√

97

(

3
√

97 − 20
)

,

and

f =
1

132

√

1

2
+

53

6
√

97

(

248 − 24
√

97
)

.

Finally, to check Assumption (25), first note that C2 = C
′

2 ∪ C
′′

2 for convex sets

C
′

2 :=

{

(x, x0) ∈ R
4 :

√

x2
1 + x2

2 ≤ x3, (x1 + x3 − 3x0) ≤ 0, (x3 − 2x0) ≥ 0

}

,
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and

C
′′

2 :=

{

(x, x0) ∈ R
4 :

√

x2
1 + x2

2 ≤ x3, (x1 + x3 − 3x0) ≥ 0, (x3 − 2x0) ≤ 0

}

.

The conic inequality of C
′

2 implies −x1 − x3 ≤ 0, which together with its first linear inequality implies
x0 ≥ 0. Similarly, the conic inequality of C

′′

2 implies −x3 ≤ 0, which together with its second linear
inequality implies x0 ≥ 0. Hence, Assumption (25) holds and Corollary 2 implies that (27) holds as equality.

Example 3 Here we consider an example similar to those of Section 6.2 in [15], which is given by

C3 :=
{

x ∈ R
2 : |x1| ≤ x2, (2x1 + x2 − 1) (−2x1 − x2 − 1) ≤ 0

}

.

The homogeneous version of this set is given by

C3 := H
+
3 ∩ S3 =

{

(x, x0) ∈ R
3 : |x1| ≤ x2, (2x1 + x2 − x0) (−2x1 − x2 − x0) ≤ 0

}

,

where H
+
3 :=

{

(x, x0) ∈ R
3 : x2 ≥ 0

}

and

S3 :=
{

(x, x0) ∈ R
3 : x2

1 ≤ x2
2, (2x1 + x2 − x0) (−2x1 − x2 − x0) ≤ 0

}

.

Similar to Example 2 we can check Assumption (23) of Corollary 2 through Lemma 4 as C3 is the union of
two convex sets with non-empty interior. We can also check that E = [0, 1/4]∪ [1,1] and H3 only separates
the set associated to the first interval. Then λi = 0 and λi+1 = 1/4 and

conv (C3) ⊆
{

x ∈ R
2 : |x1| ≤ x2, 1 − x1 − 2x2 ≤ 0

}

. (28)

Using Corollary 2, we obtain the convex relaxation given in (28). Note that this relaxation is stronger
than the trivial convex relaxation

{

x ∈ R
2 : |x1| ≤ x2

}

obtained by removing the non-convex inequality
and keeping the convex inequality defining C3. Furthermore, we can check that equality holds in (28)
although Assumption (25) of Corollary 2 does not hold. Therefore, Corollary 2 cannot prove that the
convex relaxation in (28) is in fact giving the closed convex hull.

For next pair of examples, we have that neither of the inequalities needed to describe the closed convex
hull is one of the original inequalities.

Example 4 Here we consider the set given by

S4 :=
{

(x, x0) ∈ R
3 : 2x2

1 − x2
2 − x2

0 ≤ 0, −x2
1 + x2

2 − x2
0 ≤ 0

}

.

One can see that E :=
{

(x, x0) ∈ R
3 : x0 = 0

}

separates S4. Let S
+
4 := E

+ ∩S4 and let P0 and P1 be the
matrices associated with the quadratic inequalities. Assumption (22) of Corollary 1 can easily be checked

using Lemma 3 or by noting that for every (x, x0) ∈ S
+
4 and ε > 0 we have that (x, x0 + ε) ∈ int

(

S
+
4

)

. We

can also check that E = [1/2,2/3] and that E separates the set associated to this interval. Then, λi = 1/2
and λi+1 = 2/3 and Corollary 1 yields

conv
(

S
+
4

)

=
{

(x, x0) ∈ R
3 : |x1| ≤

√
2x0, |x2| ≤

√
3x0

}

.

In contrast to Examples 1–3, because λi, λi+1 /∈ {0, 1}, neither of the inequalities given by Corollary 1 is
one of the original inequalities. We can also check that the two new inequalities given by Corollary 1 are

non-redundant for the description of conv
(

S
+
4

)

.
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Example 5 Consider the Example 1 in [45] and Example 2 in [38], which is given by

S5 :=
{

x ∈ R
2 : x2

1 − x2
2 + 2x1 + 2 ≤ 0, −x2

1 + x2
2 + 2x1 − 2 ≤ 0

}

.

We can check Assumption (26) of Corollary 3 through Lemma 4 by noting that S5 is the union of two
(non-convex) sets that satisfy Assumption (19). Alternatively, we can first note that if x ∈ S5 satisfies both
inequalities of S5 strictly, then x ∈ int (S5) and the Assumption (26) is trivially satisfied. Furthermore,
if x ∈ S5 satisfies one of the inequalities strictly, we can trivially perturb x so that it remains in S5 and
satisfies both inequalities strictly. Hence, the only nontrivial check of the Assumption (26) is for points
x ∈ S5 that satisfy both inequalities of S5 at equality. We can easily check that only two such points exist
and each of them satisfy (x1 − ε, x2) ∈ int (S5) for all sufficiently small ε > 0. We can also check that
E = [0, 1/2 − 1/(2

√
2)] ∪ [1/2,1/2 + 1/(2

√
2)] and D = {1/2} ⊆ [1/2,1/2 + 1/(2

√
2)]. Then, λi = 1/2 and

λi+1 = 1/2 + 1/(2
√

2) and Corollary 3 yields

conv (S5) =
{

x ∈ R
2 : x1 ≤ 0, |y| ≤

√
2 − x

}

.

Again, because λi, λi+1 /∈ {0, 1}, neither of the inequalities given by Corollary 3 is one of the original
inequalities. We can also check that the two new inequalities given by Corollary 3 are non-redundant for
the description of conv (S5).

For the following example, we have that λi = λi+1, so Corollaries 1 and 2 yield a single inequality.
In both cases, this single inequality is the convex inequality defining the original set. Hence, while the
corollaries are applicable to construct convex relaxations, they only yield the trivial convex relaxation
obtained by removing the non-convex inequality and keeping the convex inequality defining the original
set. In the homogeneous case, Corollary 1 will still be useful because it proves that this trivial relaxation
characterizes the convex hull, but in the non-homogeneous case, Corollary 2 will not be useful as it cannot
characterize the convex hull which is strictly contained in the trivial relaxation.

Example 6 Here we consider the homogeneous version of the example from Section 4.4 in [15], which is
given by

C6 := H
+
6 ∩ S6 =

{

(x, x0) ∈ R
3 : |x1| ≤ x2, x1(x2 − x0) ≤ 0

}

,

where H
+
6 :=

{

(x, x0) ∈ R
3 : x2 ≥ 0

}

and S6 :=
{

(x, x0) ∈ R
3 : x2

1 ≤ x2
2, x1x2 − x1x0 ≤ 0

}

. Assump-
tion (26) of Corollary 1 can easily be checked through Lemma 4 by noting that C6 is the union of two convex
sets with non-empty interior. We may hence use Corollary 1 to construct conv (C6). For that note that
E = [0, 0] ∪ [1, 1], and that H6 only separates the set associated to the first interval. Hence, λi = λi+1 = 0
and

conv (C6) = K0 =
{

(x, x0) ∈ R
3 : |x1| ≤ x2

}

.

Finally, note that we trivially have conv (C6) ⊆
{

(x, x0) ∈ R
3 : |x1| ≤ x2

}

. However, the equality in this
containment proven by Corollary 1 is not trivial. The non-homogeneous version of this example is given
by

C6 :=
{

x ∈ R
2 : |x1| ≤ x2, x1x2 − x1 ≤ 0

}

.

While Corollary 2 shows that conv (C6) ⊆
{

x ∈ R
2 : |x1| ≤ x2

}

, equality does not hold in this containment.
This aligns with the fact that (25) is violated and hence Corollary 2 is not applicable.

We end this section by considering an example where topological Assumption (19) fails and discussing
one possible way to adapt the results in this paper to such a setting. This example also illustrates how one
of the inequalities in the closed convex hull characterization may be redundant.



16 Modaresi et al.

Example 7 For any ε ≥ 0, consider the generalization of the example from Section 4.5 in [15], which is
given by

C7 (ε) := H
+
7 ∩ S7 (ε) :=

{

(x1, x0) ∈ R
2 : |x1| ≤ x0, 2x1x0 − (2 + ε)x2

1 ≤ 0
}

,

where H
+
7 :=

{

(x1, x0) ∈ R
2 : x0 ≥ 0

}

and S7 (ε) :=
{

(x1, x0) ∈ R
2 : x2

1 ≤ x2
0, 2x1x0 − (2 + ε)x2

1 ≤ 0
}

.

If we let P0 =

[

1 0
0 −1

]

and P1 (ε) =

[

−(2 + ε) 1
1 0

]

be the matrices associated to S7 (ε), we have that

E =

[

0,
1

2
− f(ε)

]

∪
[

1

2
+ f(ε),1

]

,

where f (ε) := 1
2

√

ε
4+ε

. If ε > 0, then E is composed of two intervals and we can check that H7 only

separates the sets associated to the first interval. The inequality associated to λi = 0 is the conic constraint
|x1| ≤ x0 and the one associated to λi+1 = 1

2 − f(ε) is dominated by this conic constraint and is hence
redundant. We can also check that Assumption (22) is satisfied and then by Corollary 1, we have

conv (C7 (ε)) =
{

(x1, x0) ∈ R
2 : |x1| ≤ x0

}

. (29)

In contrast, if ε = 0, we have that E becomes the complete interval [0, 1] and we instead obtain λi+1 =
1. We can check that in this case (29) still holds, but the inequality associated to λi+1 = 1 implies
x1 ≤ 0, which removes a portion of the closed convex hull and is hence invalid. This aligns with the fact
that Assumption (22) is not satisfied for ε = 0 and hence Corollary 1 cannot characterize relaxations of
conv (C7 (ε)).

The construction of E in Lemma 2 in [45] explicitly considers the possibility of E = [λ1, λ2]∪[λ3, λ4] with
λ2 = λ3 and relates the λi’s to the rank (and in particular singularity) of the pencil Pλ = (1 −λ)P0 +λP1.
However, special treatment of degenerate cases such as ε = 0 in this example is not considered in [45],
since it is not required for the case of strict inequalities (indeed for the strict inequality version for ε = 0,
the choice λi+1 = 1 is correct). Recognizing such degenerate cases may allow relaxing the Assumption (22)
in Corollary 1. However, achieving this will likely require adapting the proofs of some of the technical
results from [45] or combining them with additional results. For instance, in this example maintaining
λi+1 = 1

2 − f(ε) even for ε = 0 yields a correct characterization of conv (C7 (ε)), so perhaps some type of
perturbation analysis could resolve the issues with the non-compliance with Assumption (22).

4.6 Comparison to the closed convex hull characterizations by Burer and Kılınç-Karzan

The work in [15] studies the closed convex hull characterization of sets defined as the intersection of a conic
quadratic and a quadratic inequality similar to those defined in (9) and (10) given by non-strict inequalities.
The work in [15] studies a similar aggregation technique and identifies a set of assumptions that need to
be verified in order to get the closed convex hull. Theorem 1 in [15] states the main result of the paper. In
this section we do a comparison between the results in [15] and our work and highlight the similarities and
differences of the two approaches.

In the language of this paper the first assumption in [15] is:

P0 has exactly one negative eigenvalue and H is a separator of
{

y ∈ R
n+1 : q0 ≤ 0

}

. (A1)

Assumption (A1) simply formalizes the fact that [15] studies the intersection of a conic quadratic and a
general quadratic inequality and hence is not an actual restriction in the context of [15]. Under Assump-
tion (A1), the second assumption of [15] simply requires int (S) 6= ∅. This assumption is shared by this
paper and we denote it (A2). Note that Assumption (A2) is similar to the topological Assumption (22) as
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it requires the non-emptiness of int (S); however, the topological Assumption (22) is more restrictive than
Assumption (A2) as it requires more than just the non-emptiness of the interior. The third assumption in
[15] is a minor technical assumption on the singularity of P0 and P1 as follows: either (i) P0 is nonsingular,
(ii) P0 is singular and P1 is positive definite on null(P0), or (iii) P0 is singular and P1 is negative definite
on null(P0). We denote this assumption (A3) and show that this assumption seems to be mildly restrictive.
Using Assumption (A3), [15] defines an s ∈ [0, 1] that allows then to describe the closed convex hull using
conic quadratic inequalities associated to the pencils Pλ := (1 − λ)P0 + λP1 at λ = 0 and λ = s. In
particular, this forces one of the inequalities to be the original conic quadratic inequality, which is a natural
choice in the context of [15]. Depending on the details of Assumption (A3), the choice of s is either 0 or the
minimum s ∈ (0, 1] such that the pencil Ps is singular. The last two assumptions of [15] are geometric as-
sumptions on the inequalities used to describe the closed convex hull. To state these assumptions, let Hns

be the natural separator of Ss :=
{

y ∈ R
n+1 : qs < 0

}

and let Ks := H
+
s

∩ Ss for H
+
s

∈
{

H
+
ns

, H−

ns

}

be defined analogously to Kλi
and Kλi+1

in (7). With this notation, the homogeneous version of the
geometric assumptions is

s = 1 or Ks ∩ Hns
∩

{

y ∈ R
n+1 : q1 < 0

}

6= ∅, (A4)

while the non-homogeneous version is

s = 1 or

{[

x
0

]

∈ R
n+1 :

[

x
0

]

∈ Ks ∩ Hns

}

∩
{

y ∈ R
n+1 : q1 < 0

}

6= ∅

or (A5)
{[

x
0

]

∈ R
n+1 :

[

x
0

]

∈ Ks

}

∩
{

y ∈ R
n+1 : q0 ≤ 0

}

∩ H
+ ⊆

{

y ∈ R
n+1 : q1 ≤ 0

}

.

With this notation, Theorem 1 in [15] can be written as follows.

Theorem 3 Let S :=
{

y ∈ R
n+1 : q

i
≤ 0, i = 0, 1

}

. If Assumptions (A1)–(A3) hold, then there exists
s ∈ [0, 1] such that

conv
(

H
+ ∩ S

)

⊆
{

y ∈ R
n+1 : q0 ≤ 0

}

∩ H
+ ∩ Ks, (30)

where H is a separator of S
′ :=

{

y ∈ R
n+1 : q0 ≤ 0

}

. In such a case, the right hand side of (30) can be
described by two conic quadratic inequalities. If additionally Assumption (A4) is satisfied, then (30) holds
at equality.

If Assumptions (A1)–(A3) hold, then there exists s ∈ [0, 1] such that

conv (G) ⊆
{

x ∈ R
n :

[

x
1

]

∈ H
+ ∩ S

′

}

∩
{

x ∈ R
n :

[

x
1

]

∈ Ks

}

, (31)

for G =

{

x ∈ R
n :

[

x
1

]

∈ H
+ ∩ S

}

. In such a case, the right hand side of (31) can be described by

two conic quadratic inequalities. If additionally Assumptions (A4)–(A5) are satisfied, then (31) holds at
equality.

To compare Theorem 3 and the results in this paper, we begin by summarizing the assumptions needed
by each proposition to construct convex relaxations and to characterize the closed convex hull for each
class of set. These assumptions are shown in Table 1. We only include assumptions that are not trivially
satisfied by the corresponding class (e.g., non-emptiness), and for the closed convex hull characterization we
only include the additional assumptions needed on top of those required to construct a convex relaxation.
For instance, Assumption (A1) is automatically satisfied for sets described by one conic quadratic and one
quadratic inequality, therefore we do not include it as a requirement for Theorem 3 to construct a convex
relaxation of these sets. Similarly, for sets described by homogeneous quadratic inequalities that satisfy
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topological Assumption (22), the convex relaxation obtained from Corollary 1 automatically characterizes
the closed convex hull, therefore no additional assumptions are required (i.e., Corollary 1 either characterizes
the closed convex hull or cannot give a non-trivial convex relaxation). Finally, we note that the assumptions
for the convex relaxations are for the applicability of the propositions and do not guarantee that they will
yield a useful relaxation. In particular, a set may satisfy the convex relaxation assumptions for a given
proposition, but the proposition may only yield a trivial relaxation that can also be obtained without the
proposition (cf. non-homogeneous case of Example 6).

Class of Set and Proposition Assumptions for Convex Relaxation Assumptions for Convex Hull
Homogeneous quadratic set S using Theorem 3 Assumptions (A1)–(A3) Assumption (A4)
Homogeneous quadratic set S using Corollary 1 Topological Assumption (22) –
Conic plus quadratic set C using Theorem 3 Assumptions (A2)–(A3) Assumptions (A4)–(A5)
Conic plus quadratic set C using Corollary 2 Topological Assumption (23) Containment Assumption (25)
General quadratic set S using Theorem 3 Assumptions (A1)–(A3) Assumptions (A4)–(A5)
General quadratic set S using Corollary 3 Topological Assumption (26) –

Table 1 Assumptions to obtain convex relaxations and closed convex hull characterizations for homogeneous
quadratic set S :=

{

y ∈ Rn+1 : q
i

≤ 0, i = 0, 1
}

, non-homogeneous conic quadratic plus quadratic set C :=
{x ∈ R

n : L0 ≤ 0, q1 ≤ 0} and general non-homogeneous quadratic set S := {x ∈ R
n : qi ≤ 0, i = 0, 1}.

We now compare Theorem 3 and the results in this paper using examples from Section 4.5. We begin by
showing examples where Assumptions (A1) and (A3) restrict the applicability of Theorem 3 as compared
to the results in this paper. We then show how Assumption (22) restricts the applicability of Corollary 1 as
compared with Theorem 3 and how Assumption (25) restricts the applicability of Corollary 2 as compared
with Theorem 3. Finally, we comment on the results of Section 7 in [15].

Note that in all of the examples below, the trivial relaxation given by the convex inequality L0 ≤ 0 (for
non-homogeneous sets living in R

n) or L0 ≤ 0 (for homogeneous sets living in R
n+1) used in the definition

of the non-convex set remains valid, and it is assumed that this convex relaxation is immediately available
in both Theorem 3 and the results in this paper.

To show how Assumption (A1) can be a tangible restriction when compared with the results in this
paper we can use Examples 4 and 5 from Section 4.5. For Example 4, we have that Assumption (A1)
is violated because neither P0 nor P1 have exactly one negative eigenvalue. Hence, Theorem 3 cannot

characterize a relaxation for conv
(

S
+
4

)

. For Example 5, we have that Assumption (A1) is violated, since

there is no separator H of the first homogeneous quadratic inequality which can be used to write S5 as

S5 =

{

(x, x0) ∈ R
3 :

[

x
1

]

∈ H
+ ∩ S3

}

,

where S5 is the homogeneous version of S5. Hence, Theorem 3 cannot characterize a relaxation for conv (S5).
We note that considering cases beyond Assumption (A1) was out of the intended scope of [15]. Indeed, one
important difference between Theorem 3 and Corollaries 1–3 is that the former only adds one inequality
and the latter can add two inequalities. Adding one inequality is sufficient for the intended scope of [15],
but two inequalities may be necessary for other cases such as Examples 4 and 5.

To show how technical Assumption (A3) can be mildly restrictive when compared with the results in
this paper we can use the homogeneous version of Example 6 from Section 4.5. Because Assumption (A3)
is violated, Theorem 3 does not lead to any relaxation stronger than the trivial relaxation, and it cannot
prove that the closed convex hull is given by the trivial relaxation. In contrast, Corollary 1 proves that
the trivial relaxation yields the closed convex hull. Note that if we instead consider the non-homogeneous
version of Example 6, Assumption (A3) is technically not restrictive. Indeed, in this case, neither Theorem 3
nor Corollary 2 lead to any relaxation stronger than the trivial relaxation.
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To show how Assumption (25) of Corollary 2 is restrictive as compared with Assumption (A5) of
Theorem 3 we can use Example 3 from Section 4.5. Corollary 2 can show

conv (C3) ⊆
{

x ∈ R
2 : |x1| ≤ x2 1 − x1 − 2x2 ≤ 0

}

, (32)

but since Assumption (25) is violated, it cannot prove that equality holds in (32). In contrast, Theorem 3
can construct the relaxation and prove the equality in (32).

To show how Assumption (22) from Corollary 1 can be restrictive when compared with Theorem 3 we
can use Example 7 from Section 4.5 with ε = 0. Since Assumption (22) does not hold, the only relaxation for
conv (C7) that Corollary 1 can characterize is the trivial relaxation

{

(x1, x0) ∈ R
2 : |x1| ≤ x0

}

. Theorem 3
can also characterize this relaxation, but in a more systematic way that could provide non-trivial relaxations
for other sets for which Assumption (22) fails. Analyzing how Theorem 3 characterizes this relaxation
provides a convenient way to compare the technical results related to the selection of s in [15] and λi and
λi+1 in [45]. For this, let P0 and P0 be the matrices defined in Example 7. The value s from Theorem 3 is
the minimum s ∈ (0, 1] such that the pencil (1 − s)P0 + sP1 is singular, which corresponds to s = 1

2 − f(ε)
for f defined in Example 7. For ε > 0, this s is identical to λi+1 obtained by Corollary 1 which yields the
relaxation for Example 7. In contrast, for ε = 0, we have s = 1/2 and Theorem 3 yields an inequality that
is valid for conv (C7), while λi+1 = 1 and Corollary 1 yields an invalid inequality. Hence, Theorem 3 seems
to be less sensitive to the degeneracy issues caused by the violation of Assumption (22) that we discussed
at the end of Example 7. We end the discussion of Example 7 by noting that for all ε ≥ 0, we have that
Ks is dominated by the original conic inequality |x1| ≤ x0. This shows that, similarly to the results in this
paper, Theorem 3 can also yield a redundant inequality Ks.

We note that for Examples 1 and 2, Theorem 3 yields the same results as Corollaries 2 and 3.
Finally, we consider the sets studied in Section 7 of [15]. This section develops simplifications of As-

sumptions A1–A5 for intersections of a conic section and a general quadratic constraint. All resulting sets
correspond to the intersection of a convex quadratic inequality with a general quadratic inequality. The
convex hull of the strict inequality version of all these sets can be characterized without any assumptions
by Theorem 2. Similarly, characterizing the closed convex hull of the non-strict inequality versions through
Corollary 3 only requires the sets to be contained in the closure of their interiors. Because this last assump-
tion is not too restrictive, we can find examples where Corollary 3 can construct the closed convex hull of
the intersections of a conic section and a general quadratic constraint, while the simplified assumptions from
Section 7 of [15] do not hold. For instance, Example 3 in [38] shows how Corollary 3 yields the closed con-
vex hull of a paraboloid intersected with a non-convex quadratic constraint. This example does not satisfy
the simplified assumptions in Section 7 of [15]; however, it satisfies the more general Assumptions A1–A5.
Hence there does not seem to be a major difference on the applicability of the two techniques on this class
of problems.
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26. Hiriart-Urruty, J-B., Lemaréchal, C.: Fundamentals of convex analysis. Springer Science & Business Media (2012)

27. Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra and its Applications 2, 451 – 558
(1969)

28. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra. Mathematical Programming 3,
23–85 (1972)

29. Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P.: Progress in linear programming-based algorithms for integer
programming: An exposition. INFORMS Journal on Computing 12, 2–23 (2000)
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