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Abstract

The Douglas–Rachford algorithm is a very popular splitting technique for finding
a zero of the sum of two maximally monotone operators. However, the behaviour
of the algorithm remains mysterious in the general inconsistent case, i.e., when the
sum problem has no zeros. More than a decade ago, however, it was shown that in
the (possibly inconsistent) convex feasibility setting, the shadow sequence remains
bounded and it is weak cluster points solve a best approximation problem.

In this paper, we advance the understanding of the inconsistent case significantly
by providing a complete proof of the full weak convergence in the convex feasibility
setting. In fact, a more general sufficient condition for the weak convergence in the
general case is presented. Several examples illustrate the results.
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1 Introduction

In this paper we assume that

X is a real Hilbert space,

with inner product 〈·, ·〉 and induced norm ‖·‖. A classical problem in optimization is to
find a minimizer of the sum of two proper convex lower semicontinuous functions. This
problem can be modelled as

find x ∈ X such that 0 ∈ (A + B)x, (1)

where A and B are maximally monotone operators on X, namely the subdifferential op-
erators of the functions under consideration. For detailed discussions on problem (1) and
the connection to optimization problems we refer the reader to [8], [16], [18], [20], [22],
[32], [33], [31], [36], [37], and the references therein.

Due to its general convergence results, the Douglas–Rachford algorithm has become a
very popular splitting technique to solve the sum problem (1) provided that the solution
set is nonempty. The algorithm was first introduced in [23] to numerically solve certain
types of heat equations. Let x ∈ X, let T = T(A,B) be the Douglas–Rachford operator

associated with the ordered pair (A, B) (see (5)) and let JA be the resolvent of A (see
Fact 2.3). In their masterpiece [27], Lions and Mercier extended the algorithm to be able to
find a zero of the sum of two, not necessarily linear and possibly multivalued, maximally
monotone operators. They proved that the “governing sequence” (Tnx)n∈N converges
weakly to a fixed point of T, and that if A + B is maximally monotone, then the weak
cluster points of the “shadow sequence” (JATnx)n∈N are solutions of (1). In [34], Svaiter
provided a proof of the weak convergence of the shadow sequence, regardless of A + B.

Nonetheless, very little is known about the behaviour of the algorithm in the incon-
sistent setting, i.e., when the set of zeros of the sum is empty. In [9] (see Remark 5.6),
the authors showed that for the case when A and B are normal cone operators of two
nonempty closed convex subsets of X, and Pran(Id−T) ∈ ran(Id−T) (see Fact 5.1), then

the shadow sequence (JATnx)n∈N is bounded and its weak cluster points solve a certain
best approximation problem.

In this paper we derive some new and useful identities for the Douglas–Rachford op-
erator. The main contribution of the paper is generalizing the results in [9] by proving the
full weak convergence of the shadow sequence in the convex feasibility setting (see Theo-
rem 5.5). While the general case case remains open (see Example 5.7 and Remark 5.8), we
provide some sufficient conditions for the convergence of the shadow sequence in some
special cases (see Theorem 5.4).
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As a by product of our analysis we present a new proof for the result in [34] concerning
the weak convergence of the shadow sequence (see Theorem 6.2). Our proof is in the
spirit of the techniques used in [27].

The notation used in the paper is standard and follows largely [8].

2 Useful identities for the Douglas–Rachford operator

We start with two elementary identities which are easily verified directly.

Lemma 2.1. Let (a, b, z) ∈ X3. Then the following hold:

(i) 〈z, z − a + b〉 = ‖z − a + b‖2 + 〈a, z − a〉+ 〈b, 2a − z − b〉.
(ii) 〈z, a − b〉 = ‖a − b‖2 + 〈a, z − a〉+ 〈b, 2a − z − b〉.

(iii) ‖z‖2 = ‖z − a + b‖2 + ‖b − a‖2 + 2〈a, z − a〉+ 2〈b, 2a − z − b〉.

Lemma 2.2. Let (a, b, x, y, a∗, b∗, u, v) ∈ X8. Then

〈(a, b) − (x, y), (a∗, b∗)− (u, v)〉 = 〈a − b, a∗〉+ 〈x, u〉 − 〈x, a∗〉 − 〈a − b, u〉

+ 〈b, a∗ + b∗〉+ 〈y, v〉 − 〈y, b∗〉 − 〈b, u + v〉. (2)

Unless stated otherwise, we assume from now on that

A : X ⇒ X and B : X ⇒ X are maximally monotone operators.

The following result concerning the resolvent JA := (Id+A)−1 and the reflected resolvent
RA := 2JA − Id is well known; see, e.g., [8, Corollary 23.10(i)&(ii)].

Fact 2.3. JA : X → X is firmly nonexpansive and RA : X → X is nonexpansive.

Let us recall the well-known inverse resolvent identity (see, [31, Lemma 12.14]):

JA + JA−1 = Id, (3)

and the following useful description of the graph of A.

Fact 2.4 (Minty parametrization). (See [29].) M : X → gra A : x 7→ (JAx, JA−1 x) is a con-
tinuous bijection, with continuous inverse M−1 : gra A → X : (x, u) → x + u ; consequently,

gra A = M(X) =
{
(JAx, x − JAx)

∣∣ x ∈ X
}

. (4)
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Definition 2.5. The Douglas–Rachford splitting operator associated with (A, B) is

T := T(A,B) =
1
2(Id+RBRA) = Id−JA + JBRA. (5)

We will simply use T instead of T(A,B) provided there is no cause for confusion.

The following result will be useful.

Lemma 2.6. Let x ∈ X. Then the following hold:

(i) x − Tx = JAx − JBRAx = JA−1 x + JB−1 RAx.
(ii) (JAx, JBRAx, JA−1 x, JB−1 RAx) lies in gra(A × B).

Proof. (i): The first identity is a direct consequence of (5). In view of (3) JAx − JBRAx −
JA−1 x − JB−1 RAx = JAx − (x − JAx)− (JB + JB−1)RAx = RAx − RAx = 0, which proves
the second identity. (ii): Use (12) and Fact 2.4 applied to A × B at (x, RAx) ∈ X × X. �

The next theorem is a direct consequence of the key identities presented in Lemma 2.1.

Theorem 2.7. Let x ∈ X and let y ∈ X. Then the following hold:

(i) 〈Tx − Ty, x − y〉 = ‖Tx − Ty‖2 + 〈JAx − JAy, JA−1 x − JA−1y〉

+ 〈JBRAx − JBRAy, JB−1 RAx − JB−1 RAy〉.

(ii) 〈(Id−T)x − (Id−T)y, x − y〉 = ‖(Id−T)x − (Id−T)y‖2 + 〈JAx − JAy, JA−1 x − JA−1y〉

+ 〈JBRAx − JBRAy, JB−1 RAx − JB−1 RAy〉.

(iii) ‖x − y‖2 = ‖Tx − Ty‖2 + ‖(Id−T)x − (Id−T)y‖2 + 2〈JAx − JAy, JA−1 x − JA−1y〉

+ 2〈JBRAx − JBRAy, JB−1 RAx − JB−1 RAy〉.

(iv) ‖JAx − JAy‖2 + ‖JA−1 x − JA−1y‖2 − ‖JATx − JATy‖2 − ‖JA−1 Tx − JA−1Ty‖2

= ‖(Id−T)x − (Id−T)y‖2 + 2〈JATx − JATy, JA−1Tx − JA−1Ty〉

+ 2〈JBRAx − JBRAy, JB−1 RAx − JB−1 RAy〉.

(v) ‖JATx − JATy‖2 + ‖JA−1 Tx − JA−1 Ty‖2 ≤ ‖JAx − JAy‖2 + ‖JA−1 x − JA−1y‖2.

Proof. (i)–(iii): Use Lemma 2.1–(iii) respectively, with z = x − y, a = JAx − JAy and
b = JBRAx − JBRAy, (4) and (5). (iv): It follows from the (3) that

‖x − y‖2 = ‖JAx − JAy + JA−1 x − JA−1y‖2 (6a)

= ‖JAx − JAy‖2 + ‖JA−1 x − JA−1y‖2 + 2〈JAx − JAy, JA−1 x − JA−1y〉. (6b)

Applying (6) to (Tx, Ty) instead of (x, y) yields

‖Tx − Ty‖2 = ‖JATx − JATy‖2 + ‖JA−1 Tx − JA−1Ty‖2
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+ 2〈JATx − JATy, JA−1Tx − JA−1 Ty〉. (7)

Now combine (6), (7) and (iii) to obtain (iv). (v): In view of (4), the monotonicity of
A and B implies 〈JATx − JATy, JA−1Tx − JA−1Ty〉 ≥ 0 and 〈JBRAx − JBRAy, JB−1 RAx −
JB−1 RAy〉 ≥ 0. Now use (iv). �

3 The Douglas–Rachford operator, Attouch–Théra duality

and solution sets

The Attouch–Théra dual pair (see [1]) of (A, B) is (A, B)∗ := (A−1, B−>), where

B> := (− Id) ◦ B ◦ (− Id) and B−> := (B−1)> = (B>)−1. (8)

We use

Z := Z(A,B) = (A + B)−1(0) and K := K(A,B) = (A−1 + B−>)−1(0) (9)

to denote the primal and dual solutions, respectively (see, e.g., [7]).

Let us record some useful properties of T(A,B).

Fact 3.1. The following hold:

(i) (Lions and Mercier). T(A,B) is firmly nonexpansive.
(ii) (Eckstein). T(A,B) = T(A−1,B−>).

(iii) (Combettes). Z = JA(Fix T).
(iv) K = JA−1(Fix T).

Proof. (i): See, e.g., [27, Lemma 1], [24, Corollary 4.2.1 on page 139], [25, Corollary 4.1], or
Theorem 2.7(i) (ii): See e.g., [24, Lemma 3.6 on page 133] or [7, Proposition 2.16]). (iii): See
[21, Lemma 2.6(iii)]. (iv): See [7, Corollary 4.9]. �

The following notion, coined by Iusem [28], is very useful. We say that C : X ⇒ X is
paramonotone if it is monotone and we have the implication

(x, u) ∈ gra C
(y, v) ∈ gra C

〈x − y, u − v〉 = 0



 ⇒

{
(x, v), (y, u)

}
⊆ gra C. (10)

Example 3.2. Let f : X → ]−∞,+∞] be proper, convex and lower semicontinuous. Then ∂ f is
paramonotone by [28, Proposition 2.2] (or by [8, Example 22.3(i)]).
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We now recall that the so-called “extended solution set” (see [26, Section 2.1] and also
[7, Section 3]) is defined by

S := S(A,B) := {(z, k) ∈ X × X | − k ∈ Bz, k ∈ Az} ⊆ Z × K. (11)

Fact 3.3. Recalling Fact 2.4, we have the following:

(i) S = M(Fix T) =
{
(JA × JA−1)(y, y)

∣∣ y ∈ Fix T
}

.

(ii) Fix T = M−1(S) =
{

z + k
∣∣ (z, k) ∈ S

}
.

(iii) (Eckstein and Svaiter). S is closed and convex.

If A and B are paramonotone, then we additionally have:

(iv) S = Z × K.
(v) Fix T = Z + K.

Proof. (i)&(ii): This is [7, Theorem 4.5]. (iii): See [26, Lemma 2]. Alternatively, since Fix T is
closed, and M and M−1 are continuous, we deduce the closedness from (i). The convexity
was proved in [7, Corollary 3.7]. (iv) & (v): See [7, Corollary 5.5(ii)&(iii)]. �

Working in X × X, we recall that (see, e.g., [8, Proposition 23.16])

A × B is maximally monotone and JA×B = JA × JB. (12)

Corollary 3.4. Let x ∈ X and let (z, k) ∈ S . Then

‖(JATx, JA−1Tx)− (z, k)‖2 = ‖JATx − z‖2 + ‖JA−1 Tx − k‖2 (13a)

≤ ‖JAx − z‖2 + ‖JA−1 x − k‖2 (13b)

= ‖(JAx, JA−1 x)− (z, k)‖2 . (13c)

Proof. It follows from [7, Theorem 4.5] that z + k ∈ Fix T, JA(z + k) = z and JA−1(z + k) =
k. Now combine with Theorem 2.7(v) with y replaced by z + k. �

We recall, as consequence of [8, Corollary 22.19] and Example 3.2, that when X = R, the
operators A and B are paramonotone. In view of Fact 3.3(iv), we then have S = Z × K.

Lemma 3.5. Suppose that X = R. Let x ∈ X and let (z, k) ∈ Z × K. Then the following hold:

(i) ‖JATx − z‖2 ≤ ‖JAx − z‖2.
(ii) ‖JA−1 Tx − k‖2 ≤ ‖JA−1 x − k‖2.

Proof. (i): Set
q(x, z) := ‖JATx − z‖2 − ‖JAx − z‖2. (14)
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If x ∈ Fix T we get q(x, z) = 0. Suppose that x ∈ RrFix T. Since T is firmly nonexpansive
we have that Id−T is firmly nonexpansive (see [8, Proposition 4.2]), hence monotone by
[8, Example 20.27]. Therefore (∀x ∈ R r Fix T)(∀ f ∈ Fix T) we have

(x − Tx)(x − f ) = ((Id−T)x − (Id−T) f ) (x − f ) > 0. (15)

Notice that (14) can be rewritten as

q(x, z) = (JATx − JAx)((JATx − z) + (JAx − z)). (16)

We argue by cases.

Case 1: x < Tx.
It follows from (15) that

(∀ f ∈ Fix T) x < f . (17)

On the one hand, since JA is firmly nonexpansive, we have JA is monotone and therefore
JATx − JAx ≥ 0. On the other hand, it follows from Fact 3.1(iii) that (∃ f ∈ Fix T) such
that z = JA f = JAT f . Using (17) and the fact that JA is monotone we conclude that
JAx − z = JAx − JA f ≤ 0. Moreover, since JA and T are firmly nonexpansive operators
on R, we have JA ◦ T is firmly nonexpansive hence monotone and therefore (17) implies
that JATx − z = JATx − JAT f ≤ 0. Combining with (16) we conclude that (i) holds.

Case 2: x > Tx.
The proof follows similar to Case 1.

(ii) Apply the results of (i) to A−1 and use (3). �

In view of (11) one might conjecture that Corollary 3.4 holds when we replace S by
Z ×K. The following example gives a negative answer to this conjecture. It also illustrates
that when X 6= R, the conclusion of Lemma 3.5 could fail.

Example 3.6. Suppose that X = R
2, that A is the normal cone operator of R

2
+, and that B : X →

X : (x1, x2) 7→ (−x2, x1) is the rotator by π/2. Then Fix T = R+ · (1,−1), Z = R+ × {0}
and K = {0} × R+. Moreover, (∃x ∈ R

2) (∃(z, k) ∈ Z × K) such that ‖(JATx, JA−1Tx) −
(z, k)‖2 − ‖(JAx, JA−1 x)− (z, k)‖2

> 0 and ‖JATx − z‖2 − ‖JAx − z‖2 = 5
4 a2

> 0.

Proof. Let (x1, x2) ∈ R
2. Using [6, Proposition 2.10] we have

JB(x1, x2) = (1
2(x1 + x2),

1
2(−x1 + x2)) and RB(x1, x2) = (x2,−x1) = −B(x1, x2). (18)

Hence, R−1
B = (−B)−1 = B. Using (5) we conclude that (x1, x2) ∈ Fix T ⇔ (x1, x2) ∈

Fix RBRA. Hence

Fix T =
{
(x1, x2) ∈ R

2
∣∣ (x1, x2) = RBRA(x1, x2)

}
(19a)
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=
{
(x1, x2) ∈ R

2
∣∣ R−1

B (x1, x2) = 2JA(x1, x2)− (x1, x2)
}

(19b)

=
{
(x1, x2) ∈ R

2
∣∣ B(x1, x2) + (x1, x2) = 2P

R2
+
(x1, x2)

}
(19c)

=
{
(x1, x2) ∈ R

2
∣∣ (x1 − x2, x1 + x2) = 2P

R2
+
(x1, x2)

}
. (19d)

We argue by cases.

Case 1: x1 ≥ 0 and x2 ≥ 0. Then (x1, x2) ∈ Fix T ⇔ (x1 − x2, x1 + x2) = 2P
R2

+
(x1, x2) =

(2x1, 2x2) ⇔ x1 = −x2 and x1 = x2 ⇔ x1 = x2 = 0.

Case 2: x1 < 0 and x2 < 0. Then (x1, x2) ∈ Fix T ⇔ (x1 − x2, x1 + x2) = 2P
R2

+
(x1, x2) =

(0, 0) ⇔ x1 = x2 and x1 = −x2 ⇔ x1 = x2 = 0, which contradicts that x1 < 0 and x2 < 0.

Case 3: x1 ≥ 0 and x2 < 0. Then (x1, x2) ∈ Fix T ⇔ (x1 − x2, x1 + x2) = 2P
R2

+
(x1, x2) =

(2x1, 0) ⇔ x1 = −x2.

Case 4: x1 < 0 and x2 ≥ 0. Then (x1, x2) ∈ Fix T ⇔ (x1 − x2, x1 + x2) = 2P
R2

+
(x1, x2) =

(0, 2x2) ⇔ x1 = x2, which never occurs since x1 < 0 and x2 ≥ 0. Altogether we conclude
that Fix T = R+ · (1,−1), as claimed.

Using Fact 3.1(iii)&(iv) we have Z = JA(Fix T) = R+ × {0} , and K = JA−1(Fix T) =
(Id−JA)(Fix T) = {0} × R−.

Now let a > 0, let x = (a, 0), set z := (2a, 0) ∈ Z and set k := (0,−a) ∈ K. Notice
that Tx = x − P

R2
+
+ 1

2(Id−B)x = (a, 0) − (a, 0) + 1
2((a, 0) − (0, a)) = (1

2 a,− 1
2 a). Hence,

JAx = P
R2

+
(a, 0) = (a, 0), JA−1 x = P

R2
−
(a, 0) = (0, 0), JATx = P

R2
+
(1

2 a,− 1
2 a) = (1

2 a, 0), and

JA−1 x = P
R2

−
(1

2 a,− 1
2 a) = (0,− 1

2 a). Therefore

‖(JATx, JA−1 Tx)− (z, k)‖2 − ‖(JAx, JA−1 x)− (z, k)‖2

= ‖JATx − z‖2 + ‖JA−1 Tx − k‖2 − ‖JAx − z‖2 − ‖JA−1 x − k‖2

= ‖(1
2 a, 0)− (2a, 0)‖2 + ‖(0,− 1

2 a)− (0,−a)‖2 − ‖(a, 0)− (2a, 0)‖2 − ‖(0, 0)− (0,−a)‖2

= 9
4 a2 + 1

4 a2 − a2 − a2 = 1
2 a2

> 0.

Similarly one can verify that ‖JATx − z‖2 − ‖JAx − z‖2 = 5
4 a2

> 0. �
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4 Linear relations

In this section, we assume that1

A : X ⇒ X and B : X ⇒ X are maximally monotone linear relations;

equivalently, by [12, Theorem 2.1(xviii)], that

JA and JB are linear operators from X to X. (20)

This additional assumption leads to stronger conclusions.

Lemma 4.1. Id−T = JA − 2JB JA + JB.

Proof. Let x ∈ X. Then indeed x − Tx = JAx − JBRAx = JAx − JB(2JAx − x) = JAx −
2JB JAx + JBx. �

Lemma 4.2. Suppose that U is a linear subspace of X and that A = PU . Then A is maximally
monotone,

JA = JPU
= 1

2(Id+PU⊥), and RA = PU⊥ = Id−A. (21)

Proof. Let (x, y) ∈ X × X. Then

y = JAx ⇔ x = y + PUy. (22)

Now assume y = JAx. Since PU is linear, (22) implies that PU⊥x = PU⊥y. Moreover,

y = x − PUy = 1
2(x + x − 2PUy) = 1

2(x + y + PUy − 2PUy) = 1
2(x + y − PUy) = 1

2(x +

PU⊥y) = 1
2(x + PU⊥x). Next, RA = 2JA − Id = (Id+PU⊥)− Id = PU⊥ . �

We say that a linear relation A is skew (see, e.g., [15]) if (∀(a, a∗) ∈ gra A) 〈a, a∗〉 = 0.

Lemma 4.3. Suppose that A : X → X and B : X → X are both skew, and A2 = B2 = − Id.
Then Id−T = 1

2(Id−BA).

Proof. It follows from [6, Proposition 2.10] that RA = A and RB = B. Therefore (5) implies
that Id−T = 1

2(Id−RBRA) =
1
2(Id−BA). �

Example 4.4. Suppose that A and B are skew. Let x ∈ X and let y ∈ X. Then the following hold:

(i) 〈Tx − Ty, x − y〉 = ‖Tx − Ty‖2.
(ii) 〈(Id−T)x − (Id−T)y, x − y〉 = ‖(Id−T)x − (Id−T)y‖2.

1 A : X ⇒ X is a linear relation if gra A is a linear subspace of X × X.
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(iii) ‖x − y‖2 = ‖Tx − Ty‖2 + ‖(Id−T)x − (Id−T)y‖2.
(iv) ‖JAx − JAy‖2 + ‖JA−1 x − JA−1y‖2 − ‖JATx − JATy‖2 − ‖JA−1 Tx − JA−1Ty‖2

= ‖(Id−T)x − (Id−T)y‖2.

(v) ‖x‖2 = ‖Tx‖2 + ‖x − Tx‖2.
(vi) 〈Tx, x − Tx〉 = 0.

Proof. (i)–(iv): Apply Theorem 2.7, and use (4) as well as the skewness of A and B. (v):
Apply (iii) with y = 0. (vi): We have 2〈Tx, x − Tx〉 = ‖x‖2 − ‖Tx‖2 − ‖x − Tx‖2. Now
apply (v). �

Suppose that U is a closed affine subspace of X. One can easily verify that

(∀x ∈ X)(∀y ∈ X) 〈PUx − PUy, (Id−PU)x − (Id−PU)y〉 = 0. (23)

Example 4.5. Suppose that U and V are closed affine subspaces of X such that U ∩ V 6= ∅, that
A = NU , and that B = NV . Let x ∈ X, and let (z, k) ∈ Z × K). Then

‖(PU x, (Id−PU)x)− (z, k)‖2 − ‖(PUTx, (Id−PU)Tx)− (z, k)‖2 (24a)

= ‖x − (z + k)‖2 − ‖Tx − (z + k)‖2 (24b)

= ‖x − Tx‖2 (24c)

= ‖PUx − PV x‖2. (24d)

Proof. As subdifferential operators, A and B are paramonotone (by Example 3.2). It fol-
lows from Fact 3.3(v) and [7, Theorem 4.5] that

z + k ∈ Fix T, PU(z + k) = z and (Id−PU)(z + k) = k. (25)

Hence, in view of (23) we have

‖(PU x, (Id−PU)x)− (z, k)‖2 (26a)

= ‖PUx − z‖2 + ‖(Id−PU)x − k‖2 (26b)

= ‖PUx − PU(z + k)‖2 + ‖(Id−PU)x − (Id−PU)(z + k)‖2 (26c)

+ 2〈PUx − PU(z + k), (Id−PU)x − (Id−PU)(z + k)〉 (26d)

= ‖PUx − PU(z + k) + (Id−PU)x − (Id−PU)(z + k)‖2 (26e)

= ‖x − (z + k)‖2. (26f)

Applying (26) with x replaced by Tx yields

‖(PUTx, (Id−PU)Tx)− (z, k)‖2 = ‖Tx − (z + k)‖2. (27)
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Combining (26) and (27) yields (24b). It follows from (23) and Theorem 2.7(iii) applied
with (A, B, y) replaced by (NU , NV , z + k) that ‖x − (z + k)‖2 − ‖Tx − T(z + k)‖2 = ‖x −
Tx − ((z + k)− T(z + k))‖2, which in view of (25), proves (24c).

Now we turn to (24d). Let w ∈ U ∩ V. Then U = w + par U and V = w + par V.
Suppose momentarily that w = 0. In this case, par U = U and par V = V. Using [5,
Proposition 3.4(i)], we have

T = T(U,V) = PV PU + PV⊥PU⊥ . (28)

Therefore

x − Tx = PUx + PU⊥x − PV PUx − PV⊥PU⊥x = (Id−PV)PU x + (Id−PV⊥)PU⊥x (29a)

= PV⊥PUx + PV PU⊥x. (29b)

Using (29b) we have

‖x − Tx‖2 = ‖PV⊥PUx + PV PU⊥x‖2 = ‖PUx − PV PUx + PV x − PV PUx‖2 (30a)

= ‖PUx − 2PV PUx + PV x‖2 (30b)

= ‖PUx‖2 + ‖PV x‖2 + 4‖PV PUx‖2 (30c)

+ 2〈PUx, PV x〉 − 4〈PUx, PV PUx〉 − 4〈PV x, PV PUx〉 (30d)

= ‖PUx‖2 + ‖PV x‖2 − 2〈PUx, PV x〉 = ‖PUx − PV x‖2. (30e)

Now, if w 6= 0, by [11, Proposition 5.3] we have Tx = T(par U,par V)(x − w) + w. Therefore,

(30) yields ‖x − Tx‖2 = ‖(x − w)− T(par U,par V)(x − w)‖2 = ‖Ppar U(x − w)− Ppar V(x −

w)‖2 = ‖w + Ppar U(x − w) − (w + Ppar V(x − w))‖2 = ‖PUx − PV x‖2, where the last
equality follows from [8, Proposition 3.17]. �

5 Main results

In this section we consider the case when the set Z is possibly empty.

We recall the following important fact.

Fact 5.1 (Infimal displacement vector). (See, e.g., [2],[19] and [30].) Let T : X → X be
nonexpansive. Then ran(Id−T) is convex; consequently, the infimal displacement vector

v := Pran(Id−T). (31)

is the unique and well-defined element in ran(Id−T) such that ‖v‖ = inf
x∈X

‖x − Tx‖.
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Following [6], the normal problem associated with the ordered pair (A, B) is to2

find x ∈ X such that 0 ∈ v Ax + Bvx = Ax − v + B(x − v). (32)

We shall use
Zv := Z(v A,Bv) and Kv := K((v A)−1,(Bv)−>), (33)

to denote the primal normal and dual normal solutions, respectively. It follows from [6,
Proposition 3.3] that

Zv 6= ∅ ⇔ v ∈ ran(Id−T). (34)

Corollary 5.2. Let x ∈ X and let y ∈ X. Then the following hold:

∞

∑
n=0

‖(Id−T)Tnx − (Id−T)Tny‖2
< +∞, (35a)

∞

∑
n=0

〈JATnx − JATny, JA−1 Tnx − JA−1 Tny〉︸ ︷︷ ︸
≥0

< +∞, (35b)

∞

∑
n=0

〈JBRATnx − JBRATny, JB−1 RATnx − JB−1 RATny〉︸ ︷︷ ︸
≥0

< +∞. (35c)

Consequently,

(Id−T)Tnx − (Id−T)Tny → 0, (36a)

〈JATnx − JATny, JA−1 Tnx − JA−1 Tny〉 → 0, (36b)

〈JBRATnx − JBRATny, JB−1 RATnx − JB−1 RATny〉 → 0. (36c)

Proof. Let n ∈ N. Applying (4), to the points Tnx and Tny, we learn that
{(JATnx, JA−1Tnx), (JATny, JA−1 Tny)} ⊆ gra A, hence, by monotonicity of A we have
〈JATnx − JATny, JA−1 Tnx − JA−1 Tny〉 ≥ 0. Similarly 〈JBRATnx − JBRATny, JB−1 RATnx −
JB−1 RATny〉 ≥ 0. Now (35) and (36) follow from Theorem 2.7(iii) by telescoping. �

The next result on Fejér monotone sequences is of critical importance in our analysis.
(When (un)n∈N = (xn)n∈N one obtains a well-known result; see, e.g., [8, Theorem 5.5].)

Lemma 5.3 (new Fejér monotonicity principle). Suppose that E is a nonempty closed convex
subset of X, that (xn)n∈N is a sequence in X that is Fejér monotone with respect to E, i.e.,

(∀e ∈ E)(∀n ∈ N) ‖xn+1 − e‖ ≤ ‖xn − e‖, (37)

2Let w ∈ X be fixed. For the operator A, the inner and outer shifts associated with A are defined by
Aw : X ⇒ X : x 7→ A(x−w) and w A : X ⇒ X : x 7→ Ax−w. Note that Aw and w A are maximally monotone.
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that (un)n∈N is a bounded sequence in X such that its weak cluster points lie in E, and that

(∀e ∈ E) 〈un − e, un − xn〉 → 0. (38)

Then (un)n∈N converges weakly to some point in E.

Proof. It follows from (38) that

(∀(e1, e2) ∈ E× E) 〈e2 − e1, un − xn〉 = 〈un − e1, un − xn〉− 〈un − e2, un − xn〉 → 0. (39)

Now obtain four subsequences (xkn
)n∈N, (xln

)n∈N, (ukn
)n∈N and (uln

)n∈N such that
xkn

⇀ x1, xln
⇀ x2, ukn

⇀ e1 and uln
⇀ e2. Taking the limit in (39) along these sub-

sequences we have 〈e2 − e1, e1 − x1〉 = 0 = 〈e2 − e1, e2 − x2〉, hence

‖e2 − e1‖
2 = 〈e2 − e1, x2 − x1〉. (40)

Since {e1, e2} ⊆ E, we conclude, in view of [3, Theorem 6.2.2(ii)] or [10, Lemma 2.2], that
〈e2 − e1, x2 − x1〉 = 0. By (39), e1 = e2. �

We are now ready for our main result.

Theorem 5.4 (shadow convergence). Suppose that x ∈ X, that the sequence (JATnx)n∈N

is bounded and its weak cluster points lie in Zv, that Zv ⊆ Fix(v + T) and that (∀n ∈ N)
(∀y ∈ Fix(v + T)) JATny = y. Then the “shadow” sequence (JATnx)n∈N converges weakly to
some point in Zv.

Proof. Let y ∈ Fix(v + T). Using (36b) and [13, Proposition 2.4(iv)] we have

〈JATnx − y, Tnx + nv − JATnx〉 = 〈JATnx − y, Tnx − JATnx − (y − nv − y)〉 (41a)

= 〈JATnx − JATny, (Id−JA)T
nx − (Id−JA)T

ny〉 (41b)

→ 0. (41c)

Note that [13, Proposition 2.4(vi)] implies that (Tnx + nv)n∈N is Fejér monotone with
respect to Fix(v + T) and consequently with respect to Zv. Now apply Lemma 5.3 with
E replaced by Zv, (un)n∈N replaced by (JATnx)n∈N, and (xn)n∈N replaced by (Tnx +
nv)n∈N . �

As a powerful application of Theorem 5.4, we obtain the following striking strengthen-
ing of a previous result on normal cone operators.

Theorem 5.5. Suppose that U and V are nonempty closed convex subsets of X, that A = NU ,
that B = NV , that v = Pran(Id−T) and that U ∩ (v + V) 6= ∅. Let x ∈ X. Then (PUTnx)n∈N

converges weakly to some point in Zv = U ∩ (v + V).
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Proof. It follows from [9, Theorem 3.13(iii)(b)] that (PUTnx)n∈N is bounded and its
weak cluster points lie in U ∩ (v + V). Moreover [9, Theorem 3.5] implies that Zv =
U ∩ (v + V) ⊆ U ∩ (v + V) + NU−V(v) ⊆ Fix(v + T). Finally, [9, Lemma 3.12 & Propo-
sition 2.4(ii)] imply that (∀y ∈ Fix(v + T))(∀n ∈ N) PUTny = PU(y − nv) = y, hence all
the assumptions of Theorem 5.4 are satisfied and the result follows. �

Remark 5.6. Suppose that v ∈ ran(Id−T). More than a decade ago, it was shown in [9] that
when A = NU and B = NV , where U and V are nonempty closed convex subsets of X, that
(PUTnx)n∈N is bounded and its weak cluster points lie in U ∩ (v + V). Theorem 5.5 yields the
much stronger result that (PUTnx)n∈N converges weakly to a point in U ∩ (v + V).

Here is another instance of Theorem 5.4.

Example 5.7. Suppose that U is a closed linear subspace of X, that b ∈ U⊥
r {0}, that A = NU

and that B = Id+N(−b+U). Then Z = ∅, v = b ∈ ran(Id−T), Zv = {0} and Kv = U⊥.

Moreover, (∀x ∈ X) (∀n ∈ N) PUTnx = 1
2n PUx → 0 and ‖PU⊥Tnx‖ → ∞.

Proof. By the Brezis-Haraux theorem (see [17, Theorems 3 & 4] or [8, Theorem 24.20]) we
have X = int X ⊆ int ran B = int(ran Id+ ran N(−b+U)) ⊆ X, hence ran B = X. Using [14,

Corollary 5.3(ii)] we have ran(Id−T) = (dom A − dom B) ∩ (ran A + ran B) = (U + b −
U) ∩ (U⊥ + X) = b + U. Consequently, using [6, Definition 3.6] and [8, Proposition 3.17]
we have

v = Pran(Id−T)0 = Pb+U0 = b + PU(−b) = b ∈ U⊥
r {0} . (42)

Note that dom vA = dom A = U and dom Bv = v + dom B = b − b + U = U, hence
dom(v A + Bv) = U ∩ U = U. Let x ∈ U. Using (42) we have

x ∈ Zv ⇔ 0 ∈ NUx − b + x − b + N−b+U(x − b) = NUx − b + x − b + NUx (43a)

⇔ 0 ∈ U⊥ − b + x − b + U⊥ = x + U⊥ ⇔ x ∈ U⊥, (43b)

hence Zv = {0}, as claimed. As subdifferentials, both A and B are paramonotone, and so
are the translated operators v A and Bv. Since Zv = {0}, in view of [7, Remark 5.4] and
(42) we learn that

Kv = (NU0 − b) ∩ (0 − b + N−b+U(0 − b)) = (U⊥ − b) ∩ (−b + U⊥) = U⊥. (44)

Next we claim that
(∀x ∈ X) PUTx = 1

2 PUx. (45)

Indeed, note that JB = (Id+B)−1 = (2 Id+N−b+U)
−1 = (2 Id+2N−b+U)

−1 =
(Id+N−b+U)

−1 ◦ (1
2 Id) = P−b+U ◦ (1

2 Id) = −b + 1
2 PU, where the last identity follows

from [8, Proposition 3.17)] and (42). Now, using that3 PURU = PU and (42) we have

3It follows from [8, Corollary 3.20] that PU is linear, hence, PURU = PU(2PU − Id) = 2PU − PU = PU.
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PUT = PU(PU⊥ + JBRU) = PU JBRU = PU(−b + 1
2 PU)RU = PU(−b + 1

2 PU) = 1
2 PU. To

show that (∀x ∈ X) (∀n ∈ N) PUTnx = 1
2n PUx, we use induction. Let x ∈ X. Clearly,

when n = 0, the base case holds. Now suppose that for some n ∈ N, we have, for every
x ∈ X, PUTnx = 1

2n PUx. Now applying the inductive hypothesis with x replaced by Tx,

and using (45), we have PUTn+1x = PUTn(Tx) = 1
2n PUTx = 1

2n PU(
1
2 PUx) = 1

2n+1 PUx, as

claimed. Finally, using (42) and [30, Corollary 6(a)] we have ‖Tnx‖ → +∞, hence

‖PU⊥Tnx‖2 = ‖Tnx‖2 − ‖PUTnx‖2 = ‖Tnx‖2 − 1
4n ‖PUx‖2 → +∞. (46)

�
In fact, as we shall now see, the shadow sequence may be unbounded in the general

case, even when one of the operators is a normal cone operator.

Remark 5.8. (shadows in the presence of normal solutions)

(i) Example 5.7 illustrates that even when normal solutions exists, the shadows need not con-
verge. Indeed, we have Kv = U⊥ 6= ∅ but the dual shadows satisfy ‖PU⊥Tnx‖ → +∞.

(ii) Suppose that A and B are as defined in Example 5.7. Set Ã = A−1, B̃ = B−> and

Z̃ = Z(Ã,B̃). By [7, Proposition 2.4(v)] Z̃ 6= ∅ ⇔ K(Ã,B̃) = Z(A,B) 6= ∅, hence

Z̃ = ∅. Moreover, [6, Remarks 3.13 & 3.5] imply that v = b ∈ ran(Id−T) and

Z̃v = U⊥ + b = U⊥ 6= ∅. However, in the light of (i) the primal shadows satisfy
‖JÃTnx‖ = ‖JA−1 Tnx‖ = ‖PU⊥Tnx‖ → +∞.

(iii) Concerning Theorem 5.4, it would be interesting to find other conditions sufficient for weak
convergence of the shadow sequence or to even characterize this behaviour.

6 A proof of the Lions-Mercier-Svaiter theorem

In this section, we work under the assumptions that

Z 6= ∅ and Fix T 6= ∅. (47)

Parts of the following two results are implicit in [34]; however, our proofs are different.

Proposition 6.1. Let x ∈ X. Then the following hold:

(i) Tnx − Tn+1x = JATnx − JBRATnx = JA−1 Tnx + JB−1 RATnx → 0.
(ii) The sequence (JATnx, JBRATnx, JA−1Tnx, JB−1 RATnx)n∈N is bounded and lies in

gra(A × B).

Suppose that (a, b, a∗ , b∗) is a weak cluster point of (JATnx, JBRATnx, JA−1Tnx, JB−1 RATnx)n∈N.
Then:

15



(iii) a − b = a∗ + b∗ = 0.
(iv) 〈a, a∗〉+ 〈b, b∗〉 = 0.
(v) (a, a∗) ∈ gra A and (b, b∗) ∈ gra B.

(vi) For every x ∈ X, the sequence (JATnx, JA−1Tnx)n∈N is bounded and its weak cluster points
lie in S .

Proof. (i): Apply Lemma 2.6(i) with x replaced by Tnx. The claim of the strong limit
follows from combining Fact 3.1(i) and [2, Corollary 2.3] or [8, Theorem 5.14(ii)].

(ii): The boundedness of the sequence follows from the weak convergence of (Tnx)n∈N

(see, e.g.,[8, Theorem 5.14(iii)]) and the nonexpansiveness of the resolvents and reflected
resolvents of monotone operators (see, e.g., [8, Corollary 23.10(i) and (ii)]). Now apply
Lemma 2.6(ii) with x replaced by Tnx. (iii): This follows from taking the weak limit along
the subsequences in (i). (iv): In view of (iii) we have 〈a, a∗〉 + 〈b, b∗〉 = 〈a, a∗ + b∗〉 =
〈a, 0〉 = 0. (v): Let ((x, y), (u, v)) ∈ gra(A × B) and set

an := JATnx, a∗n := JA−1Tnx, bn := JBRATnx, b∗n := JB−1 RATnx. (48)

Applying Lemma 2.2 with (a, b, a∗ , b∗) replaced by (an, bn, a∗n, b∗n) yields

〈(an, bn)− (x, y), (a∗n, b∗n)− (u, v)〉 = 〈an − bn, a∗n〉+ 〈x, u〉 − 〈x, a∗n〉 − 〈an − bn, u〉

+ 〈bn, a∗n + b∗n〉+ 〈y, v〉 − 〈y, b∗n〉 − 〈bn, u + v〉. (49)

By (12), A × B is monotone. In view of (48), (49) and Proposition 6.1(ii), we deduce that

〈an − bn, a∗n〉+ 〈x, u〉 − 〈x, a∗n〉 − 〈an − bn, u〉

+ 〈bn, a∗n + b∗n〉+ 〈y, v〉 − 〈y, b∗n〉 − 〈bn, u + v〉 ≥ 0. (50)

Taking the limit in (50) along a subsequence and using (48), Proposition 6.1(i), (iii) and
(iv) yield

0 ≤ 〈x, u〉 − 〈x, a∗〉+ 〈y, v〉 − 〈y, b∗〉 − 〈b, u + v〉

= 〈x, u〉 − 〈x, a∗〉+ 〈y, v〉 − 〈y, b∗〉 − 〈a, u〉 − 〈b, v〉+ 〈a, a∗〉+ 〈b, b∗〉

= 〈a − x, a∗ − u〉+ 〈b − y, b∗ − v〉 = 〈(a, b) − (x, y), (a∗ , b∗)− (u, v)〉. (51)

By maximality of A × B (see (12)) we deduce that ((a, b), (a∗ , b∗)) ∈ gra(A ×
B). Therefore, (a, a∗) ∈ gra A and (b, b∗) ∈ gra B. (vi): The boundedness of
the sequence follows from (ii). Now let (a, b, a∗ , b∗) be a weak cluster point of
((JATnx, JBRATnx, JA−1Tnx, JB−1 RATnx))n∈N. By (v) we know that (a, a∗) ∈ gra A and
(b, b∗) = (a, b∗) ∈ gra B, which in view of (iv) implies a∗ ∈ Aa and −a∗ = b∗ ∈ Bb = Ba,
hence (a, a∗) ∈ S , as claimed (see (11)). �

Theorem 6.2. Let x ∈ X and let (z, k) ∈ S . Then the following hold:
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(i) For every n ∈ N,

‖(JATn+1x, JA−1Tn+1x)− (z, k)‖2 = ‖JATn+1x − z‖2 + ‖JA−1Tn+1x − k‖2 (52a)

≤ ‖JATnx − z‖2 + ‖JA−1 Tnx − k‖2 (52b)

= ‖(JATnx, JA−1Tnx)− (z, k)‖2 . (52c)

(ii) The sequence (JATnx, JA−1Tnx)n∈N is Fejér monotone with respect to S .
(iii) The sequence (JATnx, JA−1Tnx)n∈N converges weakly to some point in S .

Proof. (i): Apply Corollary 3.4 with x replaced by Tnx. (ii): This follows directly from (i).
(iii): Combine Proposition 6.1(vi), (ii), Fact 3.3(iii) and [8, Theorem 5.5]. �

Corollary 6.3. (Lions–Mercier–Svaiter). (JATnx)n∈N converges weakly to some point in Z.

Proof. This follows from Theorem 6.2(iii); see also Lions and Mercier’s [27, Theorem 1]
and Svaiter’s [34, Theorem 1]. �

Remark 6.4 (brief history). The Douglas–Rachford algorithm has its roots in the 1956 paper
[23] as a method for solving a system of linear equations. Lions and Mercier, in their brilliant
seminal work [27] from 1979, presented a broad and powerful generalization to its current form.
(See [11] and [21] for details on this connection.) They showed that (Tnx)n∈N converges weakly
to a point in Fix T and that the bounded shadow sequence (JATnx)n∈N has all its weak cluster
points in Z provided that A + B was maximally monotone. (Note that resolvents are not weakly
continuous in general; see, e.g., [35] or [8, Example 4.12].) Building on [4] and [26], Svaiter
provided a beautiful complete answer in 2011 (see [34]) demonstrating that A + B does not have
to be maximally monotone and that the shadow sequence (JATnx)n∈N in fact does converge weakly
to a point in Z. (He used Theorem 6.2; however, his proof differs from ours which is more in the
style of the original paper by Lions and Mercier [27].) Nonetheless, when Z = ∅, the complete
understanding of (JATnx)n∈N remains open — to the best of our knowledge, Theorem 5.4 is
currently the most powerful result available.

In our final result we show that when X = R, the Fejér monotonicity of the sequence
(JATnx, JA−1Tnx)n∈N with respect to S can be decoupled to yield Fejér monotonicity of
(JATnx)n∈N and (JA−1 Tnx)n∈N with respect to Z and K, respectively.

Lemma 6.5. Suppose that X = R. Let x ∈ X and let (z, k) ∈ Z × K. Then the following hold:

(i) The sequence (JATnx)n∈N is Fejér monotone with respect to Z.
(ii) The sequence (JA−1 Tnx)n∈N is Fejér monotone with respect to K.

Proof. Apply Lemma 3.5 with x replaced by Tnx. �

We point out that the conclusion of Lemma 6.5 does not hold when dim X ≥ 2, see [5,
Section 5 & Figure 1].
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Théra duality and the Douglas–Rachford algorithm, arXiv:1603.09418 [math.OC].

[12] H.H. Bauschke, S.M. Moffat, and X. Wang, Firmly nonexpansive mappings and maximally
monotone operators: correspondence and duality, Set-Valued and Variational Analysis 20
(2012), 131–153.

[13] H.H. Bauschke and W.M. Moursi, The Douglas–Rachford algorithm for two (not nec-
essarily intersecting) affine subspaces, to appear in SIAM Journal on Optimization,
arXiv:1504.03721 [math.OC].

[14] H.H. Bauschke, W.L. Hare, and W.M. Moursi, On the range of the Douglas–Rachford oper-
ator, to appear in Mathematics of Operation Research, arXiv:1405.4006v2 [math.OC].

18

http://arxiv.org/pdf/1603.09418v1.pdf
http://arxiv.org/pdf/1504.03721v1.pdf
http://arxiv.org/pdf/1405.4006.pdf


[15] H.H. Bauschke, X. Wang, and L. Yao, Examples of discontinuous maximal monotone linear
operators and the solution to a recent problem posed by B.F. Svaiter, Journal of Mathematical
Analysis and Applications 370 (2010), 224–241.

[16] J.M. Borwein, Fifty years of maximal monotonicity, Optimization Letters 4 (2010), 473–490.
[17] H. Brezis, A. Haraux, Image d’une Somme d’opérateurs Monotones et Applications, Israel
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