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ABSTRACT. In this paper we consider second order optimality conditions for a
bilinear optimal control problem governed by a strongly continuous semigroup
operator, the control entering linearly in the cost function. We derive first and
second order optimality conditions, taking advantage of the Goh transform.
We then apply the results to the heat and wave equations.
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1. INTRODUCTION

In this paper we derive no gap second order optimality conditions for optimal
control problems governed by a bilinear system being affine-linear in the control
and with pointwise constraints on the control; more precisely for a Banach space
‘H we consider optimal control problems for equations of type

(1.1) U+ AV = f+u(By + B¥); t€(0,T); ¥(0) =T,
where A is the generator of a strongly continuous semigroup on #H, and
(1.2) Vo M; feL0,T;H); BieH; ue LY0,T); By L(H).

This general framework includes in particular optimal control problems for the
bilinear heat and wave equations.

Optimal control problems which are affine-linear in the control are important
when addressing problems with L'-control costs. However, for affine-linear control
problems, the classical techniques of the calculus of variations do not lead to the
formulation of second order sufficient optimality conditions. This problem has been
studied in the context of optimal control of ordinary differential equations (ODEs)
based on the Legendre condition by Kelly [21], Goh [18], Dmitruk [13| [14], Poggi-
olini and Stefani [27], Aronna et al. [2], and Frankowska and Tonon [I7]; the case of
additional state constraints was considered in Aronna et al. [I]. In the context of
optimal control of PDEs there exist only a few papers on sufficient optimality con-
ditions for affine-linear control problems, see Bergounioux and Tiba [7], Troltzsch
[28], Bonnans and Tiba [9], who discuss generalized bang-bang control. Bonnans
[8] discussed singular arcs in the framework of semilinear parabolic equations. Let
us also mention the results on second order necessary or sufficient conditions by
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Casas [I0] (for the elliptc case), Casas and Troltzsch (review paper [12]), Casas,
Ryll and Troltzsch (FitzHugh-Nagumo equation [I1]).

Further, for optimal control of semigroups, the reader is referred to Li et al. [22]
23], Fattorini et al. [16, 15] and Goldberg and Troltzsch [19].

The contribution of this paper is to derive sufficient second order optimality
condition using the Goh transform [I8]. We generalize ideas in [8] to the case of
bilinear systems, in a semigroup setting. A general framework is presented which
allows to obtain sufficient optimality conditions under very general hypotheses. We
verify additionally that these conditions are satisfied in the case of control of the
heat and wave equations. We also discuss the case of a general diagonalizable
operator. In the companion paper [3], we wil extend these results to the case of
complex spaces, with an application to the Schrodinger equation.

The paper is organized as follows. Section[2presents the abstract control problem
in a semigroup setting and establishes some basic calculus rules. Necessary second
order optimality conditions are presented in Section Sufficient ones are the
subject of Section @l Applications to the control of the heat equation and wave
equation are presented in Section

Notation. Given a Banach space H, with norm | - ||, we denote by H* its
topological dual and by (h*, h)# the duality product between h € H and h* € H*.
We omit the index # if there is no ambiguity. If A is a linear (possibly unbounded)
operator from H into itself, its adjoint operator is denoted by A*. We let |- | denote
the Euclidean norm and AC'(0,T) the space of absolutely continuous functions over
[0,T]. By || - |Ip, for p € [1, 00], we mean by default the norm of L?(0,T).

2. THE ABSTRACT CONTROL PROBLEM IN A SEMIGROUP SETTING

2.1. Semigroup setting. Let H be a reflexive Banach space. Consider the ab-
stract differential equation (IT]) with data satisfying (L2), the unbounded operator
A over H being the generator of a (strongly) continuous semigroup denoted by e tA,
such that

(2.1) ||€7t'A||£(H) < CAeAAt, t >0,

for some positive ¢4 and A4. Thus (26 Ch. 1, Cor. 2.5]) A is a closed operator
and has dense domain defined by

—tA,
(2.2) dom(A) := {y € H; ltiﬁ)l w exists}
and, for y € dom(A):
ey —y
(2.3) Ay = _lt%l —

We define the mild solution of (1)) as the function ¥ € C(0,T; H) such that, for
all t € [0,T7]:

(2.4) U(t) = e MWy + /0 t e UmDA(f(s) +u(s)(Br + Ba¥(s)))ds.

This fixed-point equation has a unique solution in C(0,7T;H). Indeed, letting
T(¥)(t) denote the r.h.s. of [24), we see that 7 is a continuous mapping from
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C(0,T;H) into itself, and that given ¥! W2 in that space we have that

t
25)  TEYH () — T(W2)(1) = / e (=94 (5)B, (\111(5) - \112(5))ds.
0
For ¢t small enough, this is a contracting operator and, by induction, we deduce
that this equation is well-posed. We let W[u] denote the unique solution of (Z4)
for each u € L*(0, 7).

We recall that the adjoint of A is defined as follows: its domain is
(2.6)

dom(A*) := {p € H™; for some ¢ > 0: |{(p, Ay)| < c|ly||, for all y € dom(A)},

so that y — (p, Ay) has a unique extension to a linear continuous form over H,
which by the definition is \A*¢. This allows to define weak solutions [5]:

Definition 2.1. We say that ¥ € C(0,T;H) is a weak solution of (LI if ¥(0) =
U and, for any ¢ € dom(A*), the function t — (P, U(t)) is absolutely continuous
over [0,T] and satisfies

(2.7) %(d), U(t)) + (A" p, U (t)) = (@, f +u(t)(Byr + B2Y(t))), for a.a. t €10,T].

We recall the following result, see [5]:

Theorem 2.2. Let A be the generator of a strongly continuous semigroup. Then
there is a unique weak solution of (X)) that coincides with the mild solution.

So in the sequel we can use any of the two equivalent formulations (24]) or (Z1).
Let us set ((t) := w(t)y(t), where w is a primitive of v € L'(0,T) such that
w(0) =0, and y € C(0,T;H) is a mild solution for some b € L(0,T;H):

(2.8) y+Ay=0b
Corollary 2.3. Let y, w be as above. Then ¢ := wy is a mild solution of
(2.9) ¢+ AC = vy + wb.

Proof. Observe that a product of absolutely continuous functions is absolutely
continuous with the usual formula for the derivative of the product. So, given
¢ € dom(A*), the function t — (p,((t)) = w(t){p,y(t)) is absolutely continuous
and satisfies

(210) 0.0+ A0.0) = vlo+u (Glen) + (o)) = vl +ule)

dt
meaning that ¢ is solution of (29) in a weak sense. The conclusion follows with
Theorem [Z2 O

Theorem 2.4 (Basic estimate). There exists v > 0 not depending on (f,u) such
that the solution U of (L)) satisfies

(2.11) IWlleqo.ra <7 (H‘I’OHH + L fllzro.rim) + HBIHHHUHI) eliuly,
Proof. From equation [24) we get

t
MOl <eac ol +ca | 4 (1G] + [Balluls)]) ds
(2.12) 0

t
+CA€MTHB2||L(H>/ e % u(s)| [ (5) || 2 ds,
0
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We conclude with the following Gronwall’s inequality: if § € L'(0,7) and a €
L>(0,T), then

t
(2.13) a(t) <4 —|—/ 0(s)a(s)ds implies a(t) < SeJo 0(s)ds
0

The control and state spaces are, respectively,
(2.14) U:=LY0,T); Y:=C0,T;H).
For s € [1,00] we set U := L*(0,T). Let @ € U be given and ¥ solution of (IT)).
The linearized equation at (¥, @), to be understood in the mild or weak sense, is
(2.15) 2(t) + Az(t) = a(t)Baz(t) + v(t)(By + BaU(t));  z(0) =0,
where v € Y. In view of the previous analysis, for given v € U, the equation (Z10)

has a unique solution that we refer as z[v].

Theorem 2.5. The mapping u+— V[u] (mild solution of Z4)) from U to Y is of
class C*° and we have that

(2.16) DV[ulv = z[v], Yvel.

Proof. In order to prove differentiability of the mapping u — W[u], we apply the
Implicit Function Theorem to the mapping F: U x Y — Y x H defined by
(2.17)

Flu, ) = (\11 ety /Ot eI F(s) + uls)(Br + Ba¥(s)))ds, \11(0)> :

This bilinear and continuous mapping is of class C>® and it is easily checked that
Fu(u,¥) is an isomorphism, that is, the linear equation

t
(2.18) z—e My — / e~ )4y (s)Byz(s)ds = g, 2(0) = 2o
0

has, for any (g,20) € C(0,T;H) x H, a unique solution z in C'(0,T;H), as can
be deduced from the fixed-point argument in the beginning of the section. The
conclusion follows. O

2.2. Regularity of the solution. The above result may allow to prove higher
regularity results.

Definition 2.6 (Restriction property). Let E be a Banach space, with norm de-
noted by || - ||g with continuous inclusion in H. Assume that the restriction of
e~ to E has image in E, and that it is a continuous semigroup over this space.
We let A’ denote its associated generator, and et the associated semigroup. By

E2)-@3), we have that

—tA
(2.19) dom(A) := {y € F; 1tiﬁ)1

w belongs to E}

so that dom(A") C dom(A), and A’ is the restriction of A to dom(A"). We have
that

(2.20) le™" | 2om) < care™.
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for some constants car and Aar. Assume that By € E, and denote by BY the
restriction of By to E, which is supposed to have image in E and to be continuous
in the topology of E, that is,

(2.21) By € E; B,e€L(E).
In this case we say that E has the restriction property.

Lemma 2.7. Let E have the restriction property, Vo € E, and f € L*(0,T; E)
hold. Then ¥ € C(0,T; E) and the mapping u — ¥[u] is of class C*° from L*(0,T)
to C(0,T; E).

Proof. This follows from the semigroup theory applied to the generator A’. O

Remark 2.8. In view of [26] Thm. 2.4] the above Lemma applies with F = dom(A).

2.3. Dual semigroup. Since H is a reflexive Banach space it is known, e.g. [20]
Ch. 1, Cor. 10.6] that A* generates another strongly continuous semigroup called
the dual (backward) semigroup on H*, denoted by e *4" | which satisfies

(2.22) (e Ay = e7tAT,
Let (y,p) be solution of the forward-backward system

i) 9+Ay =ay+b,
(2.23) { (ii)) —p+A*p» =a'p+y,

where

be LY0,T;H),
(2.24) g € LY0,T;H"),

a 6 LOO( 7T7 (H))’

and for a.a. t € (0,7), a
that a* € L>(0,T; L(H")).
The mild solutions y € C(0,T;H), p € C(0,T;H*) of (Z23), satisfy for a.a.

€ (0,7):

*(t) € L(H*) is the adjoint operator of a(t) € L(H), so

(1) (t) = e~ 4y(0) + / e~ (=94 (a(s)y(s) + b(s))ds,
(2.25) 0

T
() pl8) = = T=4p(T) 1 [ 04 @ spte) + glo))
t
We have the integration by parts (IBP) Lemma:
Lemma 2.9. Let (y,p) € C(0,T;H) x C(0,T;H*) satisfy 223)-224). Then,

(226)  (p(T).y(T)) + / (9(6), y(D)dt = (p(0),y(0)) + / (), b(t)) .

Proof. Adding fOT<a* (t)p(t), fo ),a(t)y(t))dt to both sides of ([228]),
we get the equivalent equatlon

(2.27)
(p(T), y(T))+ / (@ (Op()+g(), y(1)dt = (p(0), y(0))+ / (1), alt)y(H)+b(E)dt.
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By (Z23)(i), we have the following expression for the first term in the Lh.s. of

@27
T
(2.28) (p(T),y(T)) = <6_TA*p(T),y(0)>+/O (™ T p(T), als)y(s) +b(s))ds.

Similarly, for the integrand in the second term in the Lh.s. of [Z27) we get, in view

of @23)(1),
(@™ (O)p(t) + 9(t), y(1))
(2.29) = (7™ (@ (O)p(t) + (1)), y(0))
+ /0 (e C=A (@ ()p(t) + g(t)), a(s)y(s) + b(s))ds.

Adding (228) and (2:29), and regrouping the terms we get

T
(2.30) (p(T),y(T)) + /O (a*()p(t) + g(t), y(t))dt = Ry + Ry,

where

(2.31)

Ry = (e T4 p(T),y(0)) + </0 e M (a* (t)p(t) + g(1))dt, y(0)) = (p(0), y(0)),

and R is the remainder. Thanks to Fubini’s Theorem
(2.32)

T T
B2 = / (e=T=94p(T) + / e DA (@ ()p(t) + g(1))dt, a(s)y(s) + b(s))ds
0

S

T
= [ o(e)atslste) + bpas
From (230)-(232) we get (Z21). The result follows. O

Corollary 2.10. Let (y,p) be as in Lemma[Z9, and ¢ an absolutely continuous
function over (0,T). Then
(2.33)

T T T
| 0wt = [eiper s — [ e () - too.u0))a

Proof. By the IBP Lemma [Z9] replacing T by an arbitrary time in (0,7), we
see that h(t) := (p(t),y(¢)) is a primitive of the integrable function (p(t),b(t)) —
(g9(t),y(t)). The Corollary follows then from the integration by parts formula in
the space of absolutely continuous functions. (I

Given (y,p) solution of 223) and B € L(H), set ®(t) := By(t). Then ¢ €
L>(0,T;H), is solution of an equation involving the operator AB — BA. In order
to defined properly the latter, consider the following hypotheses:

{ (i) Bdom(A) C dom(A);

(2.34) (ii) B*dom(A*) C dom(A*).
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Whenever these hypotheses hold, we may define the operators below, with domains
dom(A) and dom(.A*), respectively:

2.35) [A,B] :== AB — BA,
2. [B*,A"] .= B*" A" — A*"B”*.
Let E be a subspace of % with norm denoted by || - || g, and continuous inclusion.

Consider the following bracket extension property

{ dom(A) C E C H. o

(2:36) [A, B] has an extension by continuity over E, say [A, B].

Proposition 2.11. (i) Let (Z34) hold, and consider (y,¢) € dom(A) x dom(A*).
Then y € dom([B*, A*]*), ¢ € dom([A, B]*), and we have that

(2.37) (0, [A; Bly) = ([B", A%|¢,y) = ([A, B]",y) = (¢, [B", A"]"y).
(ii) Let in addition (236) hold. Then

(2.38) (|B*, A*|¢,y) = (¢, [A, Bly), forally € E and ¢ € dom(A").
Proof. (i) We have that

(2.39) (¢,[A,Bly) = (¢, ABy) — (¢, BAy) = (A*¢, By) — (B*¢, Ay)

= (B*"A"¢,y) — (A"B"¢,y) = ([B*, A9, y)
proving the first equality in (Z3T). This equality implies that ¢ € dom([A, B]*) as
well as the second equality (by the definition of the adjoint). We obtain the last
equality by similar arguments.

(ii) Let (yr) € dom(A), yr, — y in E. Then ([237) holds for yj, and passing to the
limit in the first equality we get (2.39). O

Remark 2.12. We do not have in general [A, B]* = [B*, A*] since the Lh.s has a
domain which may be larger than the one of A*.

Let us define M € L(E,H) by

(2.40) My = [A, Bly,
so that M* € L(H*, E*).

Corollary 2.13. Let (234) and 236) hold, (y,p) be solution of [223)-@224),
and ¢ be an absolutely continuous function over (0,T). (i) Let y € L'(0,T; E).

Then ®(t) = By(t) is a mild solution of
(2.41) ® + AD = Bay +b) + My = a® + Bb + [B,a]® + My,

and we have that

T
/O P(t)(p(t), 2(t))dt = [¢(t)(p(t), 2(t))],
(2.42)

= [ el (1000 B+ [Baly + 2ry(0)  (a0). 21 )t
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(ii) Assume that E has the restriction property, and that M*p € L*(0,T; H*). Then
the following IBP formula holds:

T
/O P(t)(p(t), 2(t))dt = [¢(t)(p(t), 2(t))],
(2.43)

= [ et (1000 B+ [Baly) + O1°0(0).5(0) ~ ). 90 )t

Proof. (i) By Theorem 2] it suffices to prove that ® is a weak solution of (2.41]).
Let ¢ € dom(A*) and set f := ay + b. Then (¢, ®(t)) = (B*¢,y(t)) is absolutely
continuous, and so, by (Z7) and the previous Proposition:

Clo.00) = S(Bo.y0) = —(AB6.y(0)

(2.44) =

t +(B"6.1)
(B A, y(0) + (B, A6, y(0) + (6, BY)
~ (A0, 0(0) + (B, AN, y(0) + (6, BY)

— (A7, ®(0) + My(t) + (6, BS),

where we use Proposition 2.I1[ii) in the last equality. Point (i) follows.

(ii) Let yor in E converge to yo in H, and b, € L*(0,T; E), by — b in L' (0,T;H).
Since F has the restriction property, the associated y; belong to C(0,T; E) and
therefore (Z.42]) holds for (bg,yx). Since M € L(E,H) we have that

(2.45)

/0 () (p(t), My(t))dt = / ()M p(t), y(1)) pdt = / ()M p(t), y(1))

where in the last equality we use the fact that M*p € L2(0,T;H), and that since E
is a subspace of H with dense inclusion, the action of H* over E can be identified
to the duality pairing in H. So, (Z43]) holds with (by,yx). Passing to the limit in
the latter we obtain the conclusion. (]

T

2.4. The optimal control problem. Let ¢ and g7 be continuous quadratic forms
over H, with associated symmetric and continuous operators

(2.46) Q,Qr € LIH,H"); qly) == (Qu,y); ar(y) == (Qry,y).
Given
(2.47) U, e L™ (O,T;H); War € H,

we introduce the cost function
T T
(2.48)  J(u,V):= a/ u(t)dt + %/ q(U(t) — Va(t)dt + 2q7(U(T) — Yar)
0 0
with a € R. The reduced cost is
(2.49) F(u) := J(u, Ulu)).
The set of feasible controls is
(2.50) Unag = {u € U; up < ult) <wupsace. on [0,T]},
with u,, < ups given constants. The optimal control problem is

(P) Min F'(u);  u € Ugg.
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We say that @ € U,g is a minimum (resp. weak minimum) of problem (P if
F(u) < F(u), for any u € Uyq (resp. u € Ugq, sufficiently close to 4 in the norm of

L*>(0,7)).
Given (f,yo) € L*(0,T;H) x H, denote by y[yo, f] the mild solution of
(2.51) y(t) + Ay(t) = f(t), te€(0,T),  y(0)=yo.

The compactness hypothesis is

(2.52) For given yg € H, the mapping f — Baylyo, f]
' is compact from L2(0,T;H) to L*(0,T;H).

Lemma 2.14. Let [252) hold. Then the mapping u — Vlu| is sequentially con-
tinuous from Us, endowed with the weakx topology, to C(0,T;H) endowed with the
weak topology.

Proof. Tf By = 0, the mapping u — ¥[u] is linear continuous, and therefore weakly
continuous from Uy to C(0,T;H).

Otherwise, for a bounded sequence (uy) in U, and associated sequence of states
(U), extracting if necessary a subsequence, we have that (uy) weakly* converges
to some @ in U, and Wy strongly converges in L?(0,T;H) to some \if, so that
uBa Wy, weakly converges in L2(0,T;H) to @By V. Hence, by the expression of mild
solutions, ¥y weakly converges in C(0,T;H) to ¥ and U is the state associated
with . 1

Theorem 2.15. Let [2352) hold. Then problem (P) has a nonempty set of minima.

Proof. Let us first notice that the problem is feasible. Since U,q is a bounded
subset of U, any minimizing sequence (ux) has a weakly* converging subsequence
to some @ € U. Reindexing, we may assume that (uj) weakly+ converges to .
So (ug) also weakly converges to @ in L2?(0,T). Since Uaq is a closed subset of
L?(0,T), necessarily @ € Uyq. By LemmaZId W[uy] — ¥[a] weakly in L2(0,T; H).
Since J is convex and continuous in L?(0,T) x L?(0,T;H), it is weakly l.s.c. so
that J(@, ¥[a]) < limg—eo J(ug, Plug]). Since the limit in the right hand-side of
latter inequality is the optimal value, necessarily (@, U[a]) is optimal. The result
follows. O

The costate equation is

(2.53) —p+Ap=Q( =Yy +uBsp; p(T) = Qr(¥(T) - Yar).
We denote by p[u] its mild (backward) solution:
(2.54)

T
p(t) = e(t_T)A*QT(\IJ(T)_\I’d(T))'i"/t el (Q(W(5) — Wa(s)) +uls)Bsp(s))ds.

We set
(2.55) A(t) :== o+ (p(t), Br + B ¥(t)).

Theorem 2.16. The mapping u+— F(u) is of class C*° from U to R and we have
that

T
(2.56) DF(u)v = /0 A(t)v(t)de, forallvel.
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Proof. That F(u) is of class C'*° follows from Theorem and the fact that J is
of class C*°. This also implies that, setting ¥ := Ulu] and z := z[u]:

T T
DF(u)v = 04/0 v(t)dt + /0 QU (t) — Wq(t),2(t))dt + Qr(¥(T) — Yar, 2(T)).
We deduce then (2350]) from Lemma 29 O

Let for w € Uyq and I,,,(u) and Ips(u) be the associated contact sets defined, up
to a zero-measure set, as

I(u) :={t € (0,T): u(t) = um},
Ing(u) :={t € (0,T) : u(t) = unm}.

The first order optimality necessary condition is given as follows.

(2.57)

Proposition 2.17. Let @ be a weak minimum of ([P). Then, up to a set of measure
zero, there holds

(2.58) {t: A(t) > 0} C Ln(a), {t: A(t) <0} C Ins(a0).

Proof. F is differentiable and attains its minimum over the convex set U4 at @ and
thus, if @+ v € U,q, then

F(@+ ov) — F(@)

2.59 0 <l = DF(a)v.
(2.59) < lim o (@)v
Since DF(4)v = fOT A(t)v(t)dt, this means that
T
(2.60) / At)(u(t) —a(t))dt > 0, for all u € Uy,
0
from which the conclusion easily follows. O

Set 80 := U — . We note for future reference that, since uW¥ — al = udW + Ulif,
we have that dW¥ is the mild solution of:

(2.61) %5\11(0 + A8 (1) = u(s)BadU(s) + v(t)(B1 + BoW(t)).
Thus, n := d¥ — 2z is solution of
(2.62) N(t) + An(t) = aBan(t) + v(s)B20Y(s).

We get the following estimates.

Lemma 2.18. The linearized state z solution of (Z1%), the solution §V of (ZGII),
and n = 0¥ — z solution of (ZG62) satisfy, whenever v remains in a bounded set of
LY(0,7):

(2.63) [zl = O(llv[lb),
(2.64) 16| oeo, ) = O(llv[),
(2.65) =m0 = 0S¥l o,r30) = O(lvl})-

Proof. By arguments close to those in the proof of Theorem 2.4] we get

(2.66) Izl Lo < A lfvfle” 1P
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for some 7' not depending on v, which, since ||v||; is bounded, proves ([Z63]). Then,

we also have by ([2.61))
(2.67)

169 o< 0,720 < K (ulla, B2l 2a0y) (1Bl + 1Ball o 11 o< 0,790 191
which implies (2.64). Finally, it holds with (2.62)
0l o0, 757 < K (Nall, 1Bl i20)) 10B20® || L1 0,750
< K (|allr, 1Ball o)) 1Ball o 109 0]l 10,750
that yields the first equality in [265). The second one follows in view of [264). O

(2.68)

3. SECOND ORDER OPTIMALITY CONDITIONS

3.1. A technical result. Let 4 € U , with associated state ¥ = U[4] and costate
p solution of @Z5), v € L*(0,T), and 2z € C(0,T;H). Let us set

T
B Q)= [ (ale(0) + 20050, Boz(t) )t + ar (=(T)).

Proposition 3.1. Let u belong toU. Set v :=u—a, ¥ := V[i], U := Uu]. Then
(3.2) F(u) = F(@) + DF(a)v + 2 Q(67, v).
Proof. We can expand the cost function as follows:

F(u) = F(i) + 5(q(6%) 4+ qp(6¥(T)))
S / Bt + / QUE(t) — (), 59))dt + Qr (¥ (T) — Wg(T), 6%(T)).

Applying Lemma[29to the pair (z, p), where z is solution of the linearized equation
[2I3), and using the expression of A in (2258]), we obtain the result. O

Corollary 3.2. Let u and G be as before, and set z := z[v]. Then
(3.4) F(u) = F(i) + DF (i)v + 5Q(z,v) + O(|[v]7)-
Proof. We have that

T

(3:5) Q(6¥,v) = Q(z,v) :/0 QW () + 2(t), n(t)) + 20(t){p(t), Ban(t))dt
+Qr(0¥(T) + 2(T),n(T)).

By ([2.63)-[2.65) we have that

(3.6) 16| Lo 0,737) + 121l Lo 0,720) = O([|v]|1),
(3.7) Inll L0, 7520y = OUIv[[1 16| Lo 0,730)) = O(I0]I13).
The result follows. g

Note that we will derive a refined Taylor expansion in Proposition .3l
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3.2. Second order necessary optimality conditions. Given a feasible control
u, the critical cone is defined as

ve LY0,T)| At)v(t) =0 a.e. on [0,T],
v(t) >0 a.e. on I, (u), v(t) <0 ae. on In(u)|

(3.8) C(u) == {

Theorem 3.3. Let 4 be a weak minimum of (P). Then there holds,
(3.9) Q(z[v],v) >0 for all v e C(a).
Proof. Let v € C(4) with v # 0. For 0 < & < upr — Uy, we set

. 0, ifa(t) € (um,um +¢€) U (up —e,upnr), or |u(t)] > 1/e,
(3.10) ve(?) '_{ v(t), otherwise.

Then DF(@)v. = 0, and for o € (0,£2), we have that @ + ov. € Uaq. Hence, from
Corollary B2 we get for z. := z[v.] that

F(u — F(u
(3.11) 0<2lim ZEFov) = F@) o

o—0 0'2

Since v. — v in LY(0,7) when ¢ — 0, then we obtain from Lemma 214 that
ze — z[v] in C(0,T;H) and the assertion follows from (BII)) and the continuity
of Q. O

3.3. Principle of Goh transform.

3.3.1. Goh transform. We now introduce the Goh transform on differential equa-
tions and on quadratic forms. We need to perform variants of it for equations
251)-(Z862) satisfied by ¥ and 1. So, we consider a general setting. Next let y
be the mild solution of

(3.12) g+ Ay = ay +b"v,  y(0) =0,
with
(3.13) a € L>®(0,T;L(H)); b’ € C(0,T;H),

and b is a mild solution of
(3.14) b0+ AW = g% € L2(0,T; H).

Given v € L'(0,T) and y the corresponding solution of [BI2), let us consider
the Goh transform associated with [BI2) as the mapping that, given (a,°,¢°),
associates to the pair (v,y) the pair (w,&,) € AC(0,T) x C(0,T; H) defined by

(3.15) w(t) :2/0 v(s)ds, &, =y —wb.

We set b! := ab® — ¢° and note that the norms below are well-defined:

(3.16)  |lalloo := llallLoe(0,7:2(20)); [[6°]]s == [V Leo,H);  1=0,1; s € [1,00],

although using the same notation for different norms, there is no danger of confu-
sion. In view of Corollary 23] and Theorem 2.4] we get:
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Lemma 3.4. Let B12)-BI4) hold. Then &, is the mild solution of
(3.17) &y + A&y = agy +wb';  £(0) =0.

In addition there exists ¢ : Ry — Ry mondecreasing such that the constant c, :=
c(|lalloo) satisfies

(3.18) €y lloqo. ) < callbl2llw]]2,
(3.19) lyllz < (T"2callb 12 + 16°]oo ) o]l

Proof. By the semigroup theory there exists ¢ : Ry — Ry nondecreasing such that
(3.20) 1€yl o120 < clllalloo) 10" wll a0, < clllalloo) 16 |2]w]l2,

so that BI8) holds. Since y = &, + wb°, we get
(3:21)  ly®llx < clllallso) 10 l2]lwll2 + [16°]|oo ()

implying (3:19). O

, for a.a. t € (0,7,

Remark 3.5. The Goh transform has the same structure as in the ODE case (see
e.g. equations (27)-(30) in [2]). In fact, if we write the equation ([BI2]) in the form
9= (a—A)y+bv, in view of [BI7), &, defined by Goh transform [BI5) is solution
of £ = (a — A)E, +wb', with b' = (a — A)° — 1° = ab® — ¢°.

We assume the existence of Fy C H with continuous inclusion having the re-
striction property, and such that

(3.22) dom(A) C E.

We can use Bs to denote the restriction of By to Fi, with no risk of confusion,
and let us write BY to refer to (B;)*. In the remainder of the paper we make the
following hypothesis:

(1) By € dOIIl(.A),
(i) Bzdom(A) C dom(A), Bjdom(A*) C dom(A*),
(3.23) (iii) for k=1,2: [.A, B’ﬂ has a continuous extension to Ej,
' denoted by My,
(iv) feL>®(0,T;H); M;pe L>(0,T;H*), k=1,2,
(v) W eL?0,T;E); [My,B]¥ e L®(0,T;H).

We refer to Section Bl where examples of problems, where these hypotheses are
easily checked, are provided.

Remark 3.6. Observe that (3.23)) (ii) implies that
(3.24)  Bidom(A) C dom(A), (B5)*dom(A*) C dom(A*), for k =1,2.

So, [A, Bs] is well-defined as operator with domain dom(.A), and point (iii) makes
sense.
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3.3.2. Goh transform for z. Let 4 € U have associated state . Recall that z is
solution of the linearized state equation (ZI3]). Set

(3.25) B(t) := By + By W(t).

We apply Corollary ZI3 with B := B, and y := ¥, so that (a,b) = (@Bs, f + 0B1).
Then & := Bg\ij satisfies

(3.26) 4+ AD = By(f 4 uB) + M.
Setting @' := B = By + ®, thanks to (323, we get
(3.27) '+ AP =g., where g. := ABy + Bo(f + 0B) + M, V.

We next apply Lemma B4 to the linearized state equation ([ZI5)), with here the
pair (a,b) corresponding to (a,,b,) = (1182,6). Clearly a, € L°(0,T;L(H)),
b, € C(0,T;H), and by B27), we have that & + AP’ belongs to L2(0,T;H) in

the sense of mild solutions. It follows that the dynamics for £ := z — wB with
w = fot v(s)ds reads

(3.28) £+ A = aBat + wb’;

where

(3.29) bl =a.b, — g, = —Bof — MyU — ABy.

Proposition 3.7. The solution z of the linearized state equation ([ZI3)) satisfies
the following estimate

(3.30) I€llco,rm) + 12l L20,m50) = O(Hw||2).
Proof. This follows from the restriction property and since hypothesis (8:23)) guar-
antees that bl € L°>°(0,T;H). O

3.4. Goh transform of the quadratic form. Let again @ € U, and set ¥ = W)
and p = p[u]. We recall the definition of the operator M in (240). Consider the
space

(3.31) W = (L*(0,T; Ey) N C([0,T);H)) x L*(0,T) x R.
We introduce the continuous quadratic form over W, defined by
(3.32) &, w. h) = Qr(&.h) + Qa(€.w) + Qp(w),
where Qp(w) := fOT w?(t)R(t)dt and

(3.33)

Qr (&, h) = qr(§(T) + hB(T)) + h*(p(T), BuBy + B3Y(T)) + h(p(T), Bo5(T)),
(3.34)

~ T A

Qu(g,w) = /0 () + 20(Q€, B + 20(Q(F — Wa), Bag) — 20(M;p,€) ) dt,
with R € L*>(0,T) given by

{ R(t) == q(B) + (Q(¥ — ), BoB) + (p(t), (1)),

(3.35) .
r(t) == B3 f(t) — AB2By + 2B2 ABy — [My, Bo] 0.
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Theorem 3.8. For v € L'(0,T) and w € AC(0,T) given by Goh transformation
BI3), there holds

(3'36) Q(Z[U],’U) = @(g[w],w,w(T)).

Proof. For the contributions of the terms with ¢(-) and ¢r(-), we replace z by £+wB.
For the contribution of the bilinear term in (8]) we proceed as follows. There holds
(3.37)

T T T

/ o(0) (1), Bz (1)) dt = / oty () (5(t), BaB())dt + / o(t) (1), Bat (1))t

0 0 0
=: ll(w) + lg(’w .

There holds

T
/0 o(yu(t)(p(t). BaBy) + v(tyw(t) (5(t), B2E (1)) dt
—: g1 (w) + galw).

We apply several times Corollary 213l for a := @82 and (as can be checked in each
case) [B,a] =0, and to begin with

(339) Yy = Bl; B = Bg; b:.= .ABl - ’&8281.

By B23) and since @ € L>°(0,T), [223)-(224) holds. We get:
(3.40)
T

g1(w) = 3w(T)*(H(T), BaB1) — %/0 w(t)*(p(t), Bo(ABy — aB2By))dt

(3.38) hi(w)

T T
1 [l QUE) — ). B — [ w0 (500,08
0 0
Applying (with similar arguments) Corollary [ZT3] with
(3.41) y:=U; B:= B3 b:=f+aB,

we get
(3.42)

T
g2(w) = 3w(T)*(B(T), B3Y(T)) + %/0 w(t)(Q(U(t) — Wa(t)), By¥(1))dt

3 [ w0, b 1 [ w260, B0 0 + 10
Finally setting
(3.43) y:=& Bi=By b:=uwbl,
we get with Corollary 213 with b} defined in (3.29):

T
faw) = w(T)B(T),Bater) + [ w(®QUI(E) ~ Wa(t)). Bat(D)a
(3.44) 0

T T
- / w(t)? (p(t), Babl (1)) dt — / w(t) (M 5(2), E()dr.
0 0

Combining the previous equalities, the result follows. O
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Given i € U,q, we write PCy (@) for the closure in the L? x R-topology of the
set
(3.45)  PC(1) := {(w,h) € Wh>(0,T) x R,w € C(d); w(0) =0, w(T) = h}.
The final value of w becomes an independent variable when we consider this closure.
Lemma 3.9. Let @ be a weak minimum for problem (P)). Then
(3.46) O(&[w], w, h) >0 for all (w,h) € PCy(a).

Proof. Let (w,h) € PC(4) with w = v € C(4). By Theorem B3] Q(z[v],v) > 0,
and so by TheoremBR 0 < Q(z[v],v) = Q(&[w], w, w(T)). By B23), Q(¢, w, h) has

a continuous extension to the space W defined in (831]). The conclusion follows. O

Definition 3.10 (Singular arc). A control u € Uyq is said to have a singular arc
over (t1,t2), with 0 <ty <ty < T, if, for all 0 € (0,%(t2 — t1)), there exists € > 0
such that

(3.47) u(t) € [um +e,up — €|,  for a.a. t € (t1+0,t2 —0).

We may also say that (t1,t2) is a singular arc itself. We call (t1,12) alower bound-
ary arc if u(t) = upy, for a.a. t € (t1,t2), and an upper boundary arc if u(t) = upy
for a.a. t € (t1,t2). We sometimes simply call them boundary arcs. We say that a
boundary arc (¢,d) is initial if ¢ =0, and final if d=T.

Corollary 3.11. Let 4 be a weak minimum for problem (P)). Assume that

(3.48) Wy e L0, T, H),

and that

(3.49) the mapping w — &[w] is compact from L*(0,T) to L*(0,T;H).
Let (t1,t2) be a singular arc. Then R € L>(0,T;H) defined in [330) satisfies
(3.50) R(t) >0 for a.a. t € (t1,t2).

Proof. Consider the set
(3.51) P:={(w,h) € PCy(1); w(t) =0 ae. over (0,T)\ (t1,t2).}.
By definition, P C PC5(1) and, therefore,

O(¢[w], w, k) >0, for all (w,h) € P.

Over P, @ is nonnegative (and therefore convex), and continuous, and hence, is
weakly Ls.c. By [349), the terms of Q where ¢ is involved are weakly continuous.

So, @b must be weakly l.s.c. over P. As it is well known, see e.g. [20, Theorem
3.2], this holds iff R(t) > 0 a.e. on (t1,t2). The conclusion follows. O

4. SECOND ORDER SUFFICIENT OPTIMALITY CONDITIONS

Given 4 and u in Uy,q with associated states ¥ and ¥ resp., setting v := u — 4
and z := z[v], we recall that 0¥ := ¥ — ¥ and 7 := §¥ — z are solution of (2,61

and (Z.62), resp.
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4.1. Goh transform for §U. We apply LemmaB3dlto ([Z61]), with here (asy, bsw) =
(uBa, B). Using again ([B.27) we obtain by the same arguments that the dynamics
for £59 := 6V — whB reads

(4.1) sw + Alsy = uBabsw + whjy;

Since gsy = g, we have by [3.23) that the amount below belongs to L?(0,T; H):
(4.2) biy = uBaB — gsu = BB — Baof — My — AB;.

Corollary 4.1. We have that

(4.3) 165w llc(o,r520) = O(llwll,),

(4.4) 16 20,7300 = O([[wlly)-

Proof. Consequence of Lemma [3.4] with here b° = B. O

4.2. Goh transform for 7. We next apply Lemma [B4] to the equation (2:62)),
with now (ay,b,;) = (iB2, B20¥). We need to apply Corollary 213 with B := B,
and y := 0W. Similarly to (B:26) we obtain that ® := By satisfies

(4.5) d4+ AD =g,, with g, = uB26V + vBaB + M5V.

The dynamics for &, := 7 — wB20V reads

(4.6) &y + A&, = WBs&, + wb);

with

(4.7) by = anby — gy = —vB30W — vByB — M0V

Lemma 4.2. We have that

(4.8) Illz= om0 = O(lvll2llw]2).

Proof. By Corollary 1] we have that

(4.9) 00| L1 0,730) < Vll2l0¥|L2(0,7:34) = O(l|vll2 [wll,)-

We conclude with the first equality in (2.63]). O

4.3. Main results. In this section we state a sufficient optimality condition, that
needs a new notion of optimality. The control @ is said to be a Pontryagin minimum
(see e.g. [25]) for problem (P)) if there exists € > 0 such that @ is optimal among all
the controls u € Uyq veritying ||u — ilj; < e. A bounded sequence (vy) C L>°(0,T)
is said to converge to 0 in the Pontryagin sense if ||vg||; — O.

We need some additional hypotheses:

(i) B3feC(0,T;H); ¥qgeC0,T;H),
(i) MipeCO,T;H), k=1,2

The following result states a refinement of the Taylor expansion stated in Corol-
lary

Proposition 4.3. Let 4 € U,q and let (vy) converge to 0 in the Pontryagin sense.
Then
(4.11)

T ~
J(+vx) = J (@) +/O A(t)or(t)dt + 3 Q(E[wr], wi, wi(T)) + ol |will3 + wi(T)?),

(4.10)

where ({[wg],wy) is obtained by the Goh transform.



18 M. SOLEDAD ARONNA, FREDERIC BONNANS, AND AXEL KRONER

Proof. First observe that, in view of the definitions of £ and £s¢, and of (B30) and
(@3), we have that

(4.12) 12(T)[l2e < €T I3 + [MIBl| Lo (0,7:2) = O([|w]l2 + |A]),
and
(4.13) [09(T) I3 < €5 (D)l + [R[IBll o< (0,7;20) = O([[wll2 + [R]).

We skip indexes k. Recalling that u = @+ v, 0¥ and z are the solutions of ([2:61))
and (2.13)), respectively, and = 0¥ —z, there holds the identity
(4.14)

Q(5‘1’av)—62(2av)=/0 (QUOW(t) + 2(1)), (1))t + (Qr(3W(T) + 2(T)), n(T))

T
+2 [ oo, Ban(o)a.
0
By @I2)-@I3), Corollary LTl and Lemma [£2] the first and second terms of the
r.hus. are of order of||w|)3 + h?). Recall now (Z62), and set
(4.15) y:=mn, a:=uBs, b:=vB0V, B:=B;.

Using Corollary 2.T3] (in fact, several times in the proof), the last integral in (£14)
can be rewritten as
(4.16)

T T N
/O v(t)(p(t), Ban(t))dt = [w<z3,an>]oT+/0 w(t)(Q(V(t) — Wa(t)), Ban)dt

T T
- / wlt)olt) (p(t), B3 50 (6))t — / w(t) (M p(t), (1))t

By arguments already used, all terms of the r.h.s. of @I8) are of order o(||w||3+h?),
except maybe for the third term. Recall the equation (Z6I]) for ¥ and define
(4.17) a:= 0By, b:=vBydV +vB, B:=B3,

and we have:
T
/0 w(tyo(t)(p(e), B2 6 (1)t

T
— P BN + 3 [ wleP QU - Walt), B 5 (0) e
(4.18) 0

N

T
/ w(t)2<p(t), v(t)B2(BoydW + B(t)) >dt
0
T
~3 / w(t)( M3p(), 8% (1) )t

0

Here, again, by the same arguments, using that v is uniformly essentially bounded
and (@A) we find that all terms are of order o(||w||§ + h?), except maybe for the
integral fOT w(t)?v(t)(p(t), BaB(t)))dt, which can be integrated using Corollary 23]
for

(4.19) y:=B, a:=uBy, b:=AB,+ MV +Byf, B:=B3



OPTIMAL CONTROL OF INFINITE DIMENSIONAL BILINEAR SYSTEMS 19

Hence we get
T
| worete o0, BB = 3l 6. BB

1 T
= / w(t) (Q(U(t) — Wq(t)), BIB)dt
(4.20) ’

/T w(t)(p(t), B2 (ABy + MW + By f))dt
0

Wl =

T
/0 w(t)* (Mgp(t), Bydt,

The first term in the right-hand side of ([@20) is of order o(h?), while the other
three have the form fOT w3(t)q(t)dt for ¢ € L>(0,T). Note in particular that

Wl

(4.21) (1), My (1)) = (MTP(1), W () 5y = (MTP(E), ¥ (8))

combined with ([@I0)(ii) implies that the above product is essentially bounded.
Then the following estimate holds

T
(4.22) /O w(t)’q(t)dt] < [lwllollwl3llllec = o([[w]]3),
we get
(4.23) Q(6F,v) — Q(z,v) = of||wlf3 + A?).
Finally, with Proposition Bl and Theorem 216l the result follows. O

Remember that A was defined in (ZB50). In the following we assume that the
following hypotheses hold:

(1) finite structure:

(4.24) there are finitely many boundary and singular maximal arcs
' and the closure of their union is [0, 7],

(2) strict complementarity for the control constraint (note that A is a continu-
ous function of time)

(4.25) A has nonzero values over the interior of each boundary arc, and
at time O (resp. T) if an initial (resp. final) boundary arc exists,

(3) letting Tpp denote the set of bang-bang junctions, we assume
(4.26) R(t) >0, teTpp.

Proposition 4.4. Let @ € Uyq satisfy [E24)—-[@25). Then PCs (@), that was de-
fined before BA0), satisfies
(4.27)
(w,h) € L?(0,T) x R; w is constant over boundary arcs,
PCsy(t) = w =0 over an initial boundary arc
and w = h over a terminal boundary arc

Proof. Similar to the one of [2] Lemma 8.1]. O
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Consider the following positivity condition: there exists o > 0 such that
(4.28) Q(&[w], w, h) > a(|jw||? + h?), for all (w, h) € PCy(d).

We say that @ satisfies a weak quadratic gmwth condmon 1f there exists § > 0 such
that for any u € U,q, setting v := u — 4 and w(t fo s)ds, we have

(4.29) F(u) > F(a) + B(||w]|3 4+ w(T)? ), if ||v||1 is small enough.

The word ‘weak’ makes reference to the fact that the growth is obtained for the L?
norm of w, and not the one of v.

Theorem 4.5. Let @ be a weak minimum for problem (P)), satisfying ([E24])-E28).
Then (E2]) holds iff the quadratic growth condition [@29) is satisfied.

Proof. Let [@28)) hold and let (vy,wy) contradict the weak quadratic growth con-

dition ([@29)), i.e
t
(4.30) U+vp € Uaa, vk #0, orllpiory =0, wi(t) = /0 vg(s)ds,
with
(4.31) J(+ ) < J(@) + o( k)

for v 1= ~y(wy, wyr) where y(w, h) = |[w||3 + h?, for any (w,h) € L*(0,T) x R.
Set hy, := wy.7, and (W, hy) == (wy, hi)/\/7k that has unit norm in L?(0,T) x R.
Extracting if necessary a subsequence, we have that there exists (w, h) in L2(0,T) x
R, such that 1y, converges weakly in L?(0, T) to @ and hy — h. Let & and &
denote the solution of ([B28)) associated with wy and w, respectively. Since w
€[w] is linear and continuous L2(0,T) — L>(0,T;H), & weakly converges to € in
L>(0,T;H). By the compactness hypothesis (Z52) we also have that & — Ein
L2(0,T; H).

We proceed in three steps, starting by proving the sufficiency of [@28). We
obtain in Step 1 that (@,h) € PCy(d), and in Step 2 that (iy, hi) — 0 strongly
in L(0,T) x R, which contradicts the fact that (i, hz) has unit norm. Finally in
Step 3 we prove the necessity of [L23).

Step 1. From Proposition 3] we have

T
(4.32) J@+w:ﬂm+Azwwmﬁ+m%y

Note that the integrand on the right hand-side of the previous equation is nonneg-
ative in view of the first order conditions given Proposition 2171 Using ([@3T]), it
follows that

(4.33) lim —— A(t)vg (t)dt = 0.
k—o0 Y Jo

Consider now a maximal boundary arc [c, d] and let £ > 0 be sufficiently small such
that c+e < d—e. In view of hypotheses ({20, A is uniformly positive (respectively,
uniformly negative) on [c + €,d — €], and therefore, from (£33) we get

S Y - )
(4.34) 0= kl;rx;o \/——7k / v (t)dt = kl;rr;o Wi (d —€) — wi(c+e).
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Since Wy, is monotonous on [¢,d] and € > 0 is arbitrarily small, it follows that,
extracting if necessary a subsequence, we can assume that wj, converges uniformly
on [c+ e,d — €] to a constant function. By a diagonal argument we may assume
that @ is constant on every of (the finitely many) boundary arcs [e, d].

For an initial (resp. final) boundary arc, in view of the strict complementarity
hypothesis (£25]) we have a similar argument using integrals between 0 and d — ¢
(resp. between ¢+ ¢ and T'). Since @y (0) = 0 (resp. @wr(T) = hy), we deduce that,
on this arc, w equals 0 (resp. h). Hence, we showed that (w, ﬁ) € PCs as desired.

Step 2. From (@29), Proposition 3] the non-negativity of fOTA(t)Uk(t)dt,
(@&3T), and the convergence of & to & in L2(0,T;H) we deduce that

(4.35) Q€ e, ) < o(1),

Let us consider the set Is := [0, T]\ (I,, UI) the closure of the union of singular
arcs, and recall the definition of Tpp in ([@20). We set for £ > 0

(4.36) Iipp = {t €[0,T); dist(t,Is UTpp) < e}, I :=[0,T]\ Ispp.

Recalling that wy converges uniformly on [c + €,d — €] for any bang arc [c,d] and
€ > 0 sufficiently small, we deduce that wj, convergence uniformly on the set 5.

Recall the definition of R in ([B33]). Observe that R(t) is continuous in view of
the continuity of f(t) and W,(t) in #, and of ¢(t) in E. By [28), there exists
a > 0, such that the quadratic form Q(¢[w], w, k) — ay(w, k) is nonnegative over
PC5(1). So, by hypothesis (£.26) and Corollary Bl we have that

(4.37) R(t) > 1 over Igpp.

We split the form O defined in B32) as O = Q7. + O} + 02, where
(4.38)
Orai=Or+ Qs Obfw) = / R(tyw(t)dt, O2(w) = / R(t)w(t)*dt.
EBB 15
By 3.49), éT,a(f['L h): L*(0,T) x R — R is weakly continuous. By (&3, the
restriction of Q} to L*(I5) is a Legendre form (it is weakly Ls.c. and, if wy, weakly
converges to Wy, and O} (wy) — Of (wy,), then wy, — & strongly in L?(I§55)). Thus
we have
éT,a (éu UA}u }AL) = h]zn éT,a (ék:a wku UA}k:,T)a
(4.39) Q) (1) < liminf Q} (),
Qp (i) = lim QF (ii).
k—o0

The last equality uses the fact that @y, — @ uniformly on I§. From ({28), [@39)
and ([33) and step 1, we get:

(4.40)

O"Y(ﬁ)v h) < Q(§7 w, h) < lim QT,G(&H W, ’Ut/k,T) + lim sup Ql% (ﬁ)k) + lim Q%(ﬁ)k)

k— 00 k—s 00 k— 00
= lim sup @(ék, Wy, ka) <0.
k—o0

Then, (@,h) = 0 and O} (i) — Ok (@) = 0. Since O} is a Legendre form, iy, —
W =0 in L?(I§zp). Given that by, converges uniformly to @ on I§, we get that
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(W, flk) strongly converges to (0,0) on L?(0,T) x R. This leads to a contradiction
since (Wy, hy) is a unit sequence. Thus, the quadratic growth (Z29) holds.
Step 3. Conversely, let the weak quadratic growth condition (£29) be given for

B > 0. Further let v € L?*(0,T) and w[v](s) := fOT v(s)ds. Applying the second
order necessary condition (see Lemma [B.9]) to problem

T
(4.41) min J(u, ¥) — 34, 4 ;:/ w[v](s)?ds + w[o](T)?
0
we obtain condition (Z28). O

5. APPLICATIONS

In this application section, after a general discussion for the case of diagonal-
izable operators, where the semigroup properties can be related to the structure
of the spectrum, we consider two important application fields, the heat and wave
equations. It is of interest to see the great qualitative difference between them, re-
lated in particular to the fact that for the wave equation, the commutators involve
no differential operators.

5.1. Diagonalizable operators. In our applications H is a separable Hilbert
space with a Hilbert basis {er; k € N}, of eigenvectors of A, with associated (real)
eigenvalues py. Let U € H, with components ¥y, := (U, e)3, where (-, )y denotes
the scalar product in H.

We have that

(5.1) dom(A) = {\1/ € H; Z ]2 Ws]? < oo} .

keN

Given an initial condition ¥y = ZkeN Worer € H, the semigroup verifies the fol-
lowing expression:

(5.2) e ATy = e Wgpey.
keN

Since Wy € H we have that Y, . [[Wor |3, < co. Let us note that the eigenvalues
ux have to comply with condition (21), i.e.

(5.3) 3 e R ()2 < (cac™?)” S Wit
keN keN

Letting Re denote the real part, we observe that |e~t*| = e~tRe(t) g0 that the
above condition ([B3]) is equivalent to

(5.4) D e 2Rl [y (4)2 < (cactt)? D Iw().

keN keN

Considering the case when ¥y = ey, for some k € N, we observe that (54) holds iff
the following bounded deterioration condition holds:

(5.5) = iréfuk > —00.
Then (&4]) holds with ¢4 =1 and A4 = v, and consequently:
(5.6) le™ e < e, > 0.

Observe that, if v > 0, then the semigroup results a contraction semigroup.
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In this setting we have the regularity results that follow. Set, for ¢ > 0,
(5.7) HO =T eM; Y (1+ k) Wx]* < o0},
keN

(so that H? = dom(A)), endowed with the norm

1/2
(5.8) TI= (Zu + wnwﬁ) .

keN

Then H? is a Banach space with dense, continuous inclusion in H. Since, for
0<qg<panda>0,it holds a? < 1+ aP, we have that H? C HP. Furthermore,
under the bounded deterioration condition (5.35)), it holds e *4(H) C H? and the
restriction of e 7% to H is itself a semigroup.

Remark 5.1. By the Hille-Yosida Theorem, A is the generator of a semigroup iff, for
some M >0and w € R, for all A >w, and n=1,2,..., (Al +.4) has a continuous
inverse that satisfies

(5.9) IAL+A) " e < M/(A—w)".
That is, A + px # 0 for all k, and for all f =", frer € H,

(5.10) SOOI+ T AP < ME = w) 7Y |l
k k

This holds iff, for all k, |A + pg| 72" < M?/(X — w)?™, that is,
(5.11) Nt ikl = (A —w)/M™

Now, consider M = 1 and note that (11 is equivalent to
(5.12) 2MN(w + ) > |pel® + w?

Dividing by A and taking A to oo, we get w + ux > 0. As expected, we recover the
bounded deterioration condition (@3] with w = —v, and we conclude that, with
these choices of M and w, the Hille-Yosida condition holds.

In this setting we have some compact inclusions.

Lemma 5.2. Let 0 < g < p. Then the inclusion of HP into H? is compact iff
|bie| = o0

Proof. Part 1. Let |u,| — oo. Reordering if necessary, we may assume that || is
a nondecreasing sequence. Let (¥™) be a bounded sequence in H?. Consider the
truncation at order N, say ¢™V" := > ken Yier € HP. The order N can be taken
large enough, so that |ux| > 1. It is easily checked that

q q
LA |pe]® 1+ |pn]

5.13 < , forany k> N.
(5:13) L+ pglP = 1+ |un P Y
Then
" — ™13 :ZkﬁN(1|+|,uk|q)|\PZ|2
1+ ] Z 2
< ————= > (1+|u?)| V7|
(5.14) L+ v P &
1+ |/1’N|q n
1

T 1+ |unlP
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By a diagonal argument we may assume that {o™'"}, cy has, for every N, a limit
say w¥ in H9. By (E.I4), for any € > 0, we can choose N large enough such that
WY — ¥"||q < e. It follows that U™ is a Cauchy sequence in HY.

Part 2. If there exists a subsequence (k;) C N, such that jy, is bounded, then
(ex;) is necessarily a bounded sequence in H? (and therefore in H?) that converges
to zero weakly, but not strongly, so that the inclusion of H? into H? cannot be
compact. 1

Lemma 5.3. If, for some ¢ > 0:
(5.15) By € HY; By e L(HY); fe LY0,T;HY); Vg€ HY,
then the solution of (1)) belongs to C(0,T;HI).

Proof. Consequence of Lemma 2.7 concerning the restriction property. O

5.2. Link with the variational setting for parabolic equations. The vari-
ational setting is as follows. Assuming as before H to be a Hilbert space, let V'
be another Hilbert space continuously embedded in H, with dense and compact
inclusion. We identify H with its dual and therefore, by the Gelfand triple theory,
with a dense subspace of V*. Given a continuous bilinear form a : V x V — R, we
consider the equation

(5.16) (W(t),0)y +a(U(t),v) = (f(t),v)x, fora.a. te (0,T)

with f € L?(0,T;H) and the initial condition ¥(0) = ¥y € H. It is assumed that
the bilinear form is semicoercive, that is, for some o > 0 and 8 € R:

(5.17) ay,y) = allyll — Blyll3, forally e V.

By the Lions-Magenes theory [24], equation (&I6) has a unique solution in the
space

(5.18) W(0,7T) := {u e L*0,T,V); uec L*0,T,V*)}.

It is known that W(0,7) C C(0,T;H), so that W(0,T) C L?(0,T;H). By Aubin’s
Lemma [4],

(5.19) the inclusion W (0,T) C L*(0,T;H) is compact.
Let Ay € L(V,V*) be defined by

(5.20) (Avu,v) = a(u,v), forall u,vin V.

The adjoint Axy € L(V, V™) satisfies

(5.21) (Avu,v) = a(v,u), for all u, vin V.

Since V' C H we can consider the following unbounded operators Ay and Aj, in
‘H, with domain

(5.22) dom(Ay):={veV; AyveH}; dom(A}):={veV; AjveH}

and Ayv := Ay for all v € dom(Ay), A,v = A} v for all v € dom(Aj},). Then
one can check that A3, is the adjoint of Ay.

Lemma 5.4. In the above setting, Ay is the generator of a semigroup, and when
f € L*0,T;H) the variational solution coincides with the mild solution.
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Proof. We first check that Ay is the generator of a semigroup thanks to the Hille-
Yosida Theorem. Let /5 be given by the semicoercivity condition (BIT). Set
ag(y,z) == a(y,z) + B(y,2)nu. Let f € H. By the Lax-Milgram Theorem, there
exists a unique y € V such that

(5.23) aly,z) = (f,z)n, forallveV,

and in addition

(5.24) (Avy, 2)| = la(y, 2)| = |(f, 2)n] < [[f izl
proving that Ayy € H, and therefore y € dom(Ay). Also,
(5.25) (Any, 2)n = (Avy, 2)v = ([, 2)n

for any z € V (and therefore for any z € H), means that Ayy = f.

In order to end the proof, in view of Theorem 2.2] it suffices to prove that
weak and variational solutions coincide. We only need to check that the strong
formulation implies the weak one. Taking v = ¥y in ([.I0), with ¢» € D(0,T) and
¢ € dom(A},) we get

T .
(5.26) / () [(F(0), ) + a(W(t),0) = (£(8),9)] at = 0.

Since 1 is an arbitrary element of D(0,7T), the L?(0,T) function in the brackets is
necessarily equal to zero. We conclude observing that a(¥(t), p) = (AL ¢, U(t))y
for a.a. t.

Theorem 5.5. Let hypothesis B.23)) hold. Then the compactness condition (252
is satisfied, and problem (P)) has a nonempty set of minima.

Proof. By our hypotheses, the mapping f U is continuous from L2(0,7) into
W (0,T). By 519), the mapping u — W[u] is compact from L2(0,T) to L2(0,T; H).
So, the compactness hypothesis (2.52)) holds, and the existence of a minimum follows
from Theorem O

5.3. Heat equation.

5.3.1. Statement of the problem. We first write the optimal control in an informal
way. Let Q be a bounded open subset of R” with C? boundary.
The state equation, where y = y(¢, x), is

(5.27)
8ygf£ 2 Any(t, ) = f(t, ) + u(bi(z) + ba(2)y(t, x)) in (0,T) x Q,
y(0,2) = yo(x) in Q,
y(t, ) =0 on (0,T) x 9.

Here Ay stands for the differential operator in divergence form, for (¢, ) € (0,T) x
Q:

(5.28) (Any)(t, ) Z 9 [ aji( aya(i’_f”)},
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where aj; € C%1(Q) satisfy, for each @ € Q, the symmetry hypothesis a;; = ax; as
well as, for some v > 0:

(5.29) > a(@)g& > vlg?, forall{ €R™, z € Q.
7,k=1

Let H := L?(Q) and V = H}(Q). We apply the abstract framework with H equal
to H. We choose dom(Ay) := H?(Q2)NV. The pair (H, V) satisfies the hypothesis
of the abstract parabolic setting, namely, that V' is continuously embedded in H,
with dense and compact inclusion. We next define Ay € L(V,V*) by

(5.30) (Avy, 2) Z/ ;y aazkdx, for all y, z in V.

7,k=1

The bilinear form over V defined by a(y, z) := (Ayy, z)v is continuous and satisfies
the semicoercivity condition (EIT). Since Ayy = Ayy for all y in H2(Q) NV, Ay
is nothing but the generator of the semigroup built in the previous section. This
semigroup is contracting, since the Hille Yosida characterization of a generator
given in Lemma [5.4l holds with M =1, n =1 and w = 0.

In the sequel of this study of the heat equation, we assume

(5.31) yo€ H;, feC0,T;H), b €dom(Ay), bae Ws ().

The corresponding data of the abstract theory are By := by and By € L(H) defined

by (Bay)(x) := ba(x)y(x) for y in H and = € Q. By Lemma [5.4] equation (5.27)
has a mild solution y in C'(0,T; H) which coincides with the variational solution in

the sense of (B.IG]).

The cost function is, given « € R:

T
J(u,y) = a/ u(t)dt + %/ (y(t, z) — ya(t, z))*dadt
0 (0,T)x9

(5.32)
+%/(9(T7 z) — yar(z))*da.
Q

We assume that
(5.33) ya € C(0,T;H); yar € V.

For u € L(0,T), write the reduced cost as F(u) := J(u, y[u]). The optimal control
problem is, Uyq being defined in ([Z50):

(5.34) Min F(u);  u € Uyg.

5.3.2. Commutators. Given y € dom(Az ), we have by (5.28]) that

Mly = (AHBQ_BQA’H):U
N N o[ oy
"X (oo [, 0]~y [or 522
(5.35) _ o (o] Oy Obs o[ oy
j%::l Fan |2k gy ) F g |~ bag Ay
_ Z": Obp [, Oy}, 0 [ %
. 8$k _ajkaxj 8:17k ajkyaxj '
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As expected, this commutator is a first order differential operator that has a con-
tinuous extension to the space V. In a similar way we can check that [My, Bs] is
the “zero order” operator given by

- b 8()2
5.36 My, Byly = —2 Y.
(5.50) b By = =2 3 ot

Remark 5.6. In the case of the Laplace operator, i.e. when a;;, = d;, we find that
(537) Mly = (A’HBQ — BgAH)y = 2Vb2 . Vy + yAbz; [Ml, Bg]y = 2y|Vb2|2,
and then for p € V:

(Mip,y)n = / (2Vby - Vy + yAbs) pdx
Q
(5.38) _ / (—2div(pVhs) + pAbs) ydo
Q

= / (2Vp - Vby — pAbs) ydx
Q
so that we can write
(5.39) Mip=2Vp- Vby — pAbs.
We have similar expressions for My and Mj, replacing by by b3.

5.3.3. Analysis of the optimality conditions. For the sake of simplicity we only dis-
cuss the case of the Laplace operator and assume that by (x) = 0 for all x € Q. The
costate equation is then

(5.40) —p—Ap=y—ya+ubp in (0,7) xQ p(T)=y(T)— yar-

Recalling the expression of bl in ([B.29), we obtain that the equation for ¢ := &,
introduced in ([B28) reduces to

(5.41) € — A& = by — w(baf + 2Vby - Vy — yAby) in (0,T) x Q;  £(0) =
The quadratic forms Q and Q defined in (1) and ([B32) are as follows:

T 2 2
(5.42)  Qzv) = / (1= + 20(6)(6),b22(0) )t + 12D
and as we recall from our general framework
(5.43) Q& w,h) = Qr (&, h) + Qa(&,w) + Qp(w),

with Qy(w) = [ w(t)R(t)dt, R € C(0,T), and

(5.44)  Qr(& h) = E(T) + hbod(T) |3 + h*(H(T), b39(T) 1t + h(P(T), ba&(T))
T

(5.45) Q€ w) = /0 (1€l + 200(2b29 — boya = 2V - Voo + pAbz, ) ),

(5.46) R(t) = b2dll3; + (5 — ya, b39) & + (5(£), 03 (£) = 2|V ba|*) .

Theorem 5.7. Let @ be a weak minimum. for problem ([B34l). Then (i) the second
order necessary condition ([BAG) holds, i.e.,

(5.47) O(&w],w, h) >0 for all (w,h) € PCy(4),



28 M. SOLEDAD ARONNA, FREDERIC BONNANS, AND AXEL KRONER

(ii) R(t) > 0 over singular arcs,
(iil) if additionally [@24)-@20) are satisfied, then the second order optimality con-
dition [@28)) holds iff the quadratic growth condition [L29) is satisfied.

Proof. (i) Tt suffices to check the hypotheses for Lemma Relations (3.23),
where we choose Fy := V, follows from (&31)), (E33]), and the above computation
of commutators. Since ygr € V' we have that

(5.48) pe L0, T;VNH*(Q)NH(0,T;H) C C(0,T;V),

so that M{p € C(0,T; H). Point (i) follows.

(ii) This follows from Corollary BIT], the compactness hypothesis (8:49) being a
standard result.

(iii) We apply Theorem 5 which assumes hypothesis (I0), and the latter are
satisfied in our present setting. 0

Remark 5.8. In the present framework, the generator of the semigroup is diago-
nalizable with a sequence of real eigenvalues y; — oco. By (G.)), the space H? of
section [5.1 coincides with H2 NV

Remark 5.9. It is not difficult to extend such results for more general differential
operators of the type, where the aj;, are as before, b € C%1(Q)" and ¢ € C%1(Q)™:
(5.49)

o)1) == 3 52 fagta) a4 50 2D 4 )
jk=1 J =1 J

5.4. Wave equation.

5.4.1. Statement of the problem. Again, let 2 be an open bounded subset of R™
with C? boundary. The state equation is

(5.50)
2
5%17t(§,w) + Anyi(t, ) = fo(t,z) + u(bi(z) + ba(x)y1 (¢, 2)) in (0,T) x Q,
0O =yn@), o000 =ye) WO
yi(t,z) =0 on (0,T) x 09,

with Ay as defined in (5.28), and again ajr € C%1(). Setting ya(t) := 1(t), we
can reformulate the state equation as a first-order system in time given by

(5.51) g+ Awy = f+u(Bi+Bay) te(0,T), y(0)=yo,

with
(5.52)

(0 —id (0 (0 0 A [y
AW.—<AH 0>’ 31.—<b1), Bz.—<b2 0>, f.—(fz), yo—(yg;).

Set H :=V x H with V := H}(Q) and H := L*(Q). We endow the space H with

the norm

1/2
(5.53) Iyl = (lall3 + llyall7r)

)
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where for z € V:
1/2

- 0z 0z
(5.54) Izllv == | Y aix(z) /Z%ja—xkdx

i k=1 §

It is known that Ay is the generator of a contraction semigroup with dom(Ayw ) =
H§, C H, where

(5.55) H§, = (H>(Q)NV) x V.

We verify the Hille Yosida characterization of a generator of a contraction semigroup
E9) with n =1 and w = 0 given by, for A > 0:

1
(5.56) Iyl + el < 5z (Il + 122015
Indeed, consider for (fi, f2) € H the system
(5.57) Ay, v)v = (y2,0)v = (f1,0)v, for all v € V,
(5.58) (Apyr, w)g + Ay, w)g = (fo,w)H, for all w € H.

Estimate (556) follows by setting (v, w) = (y1,y2), adding the two equations, and
using the Cauchy Schwarz inequality. Taking A = 0 and f = 0 we obtain by
similar arguments that the operator Ay is antisymmetric. One can also rely on
the eigenvector decomposition. See more in [6] p. 59, vol. I].

In this section we assume

(559)  (yoi,y02) € Hy'', br € HX(Q)NV, by € Wy™(Q), fo € L*(0,T;V).

Lemma 5.10. Under the assumptions (559) equation (BE0) has a unique mild
solution y in C(0,T; H3").

Proof. Consequence of Remark O

Furthermore, let the cost be given by

T T
(5.60)  J(u,y) := a/o u(t)dt + %/0 ly(t) = ya(®)]13,dt + 511y(T) = yarll3-
We assume that
(5.61) ya € C(0,T;H);  yar € H.

For u € L(0,T), write the reduced cost as F(u) := J(u, y[u]). The optimal control
problem is, Uyq being defined in ([2Z50):

(5.62) Min F'(u);  u € Ugg.
Lemma 5.11. Problem (562) has at least one minimum.

Proof. Set H := L?(0,T;#). By Aubin’s Lemma, the mapping f — boy1[yo, f] is
compact from H into L2 (0,T; H). Indeed, it is continuous from H to L?(0,T; V)N
HY0,T; H). We then easily pass to the limit in a minimizing sequence in the
nonlinear term of the state equation, that involves only the first component of the
state. O
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5.4.2. Commutators. We have

—by 0 0 O
s = (D) mmi= (O o
Here the commutator M is a zero order differential operator.

5.4.3. Analysis of optimality conditions. Again, for the sake of simplicity we only
discuss the case of the Laplace operator and assume that by(z) = 0 for all = € Q.

Lemma 5.12. Let dy € WH°°(Q) and da, d3 belong to L>(Q). Define N: H — H

by

(5:64) Ny = (2 CZ) (i) - (dzyldfldwz) '
Then with the same convention

(5.65) N*v = (Avl(dlAvvégvj Avl(d2U2)> .

Proof. Let y, z belong to H, then

(5.66) (2, Ny)p = (21, dagn)v + (22, doyn) b + (22, d3y2) -
Clearly

(5.67) (z1,diyn)v = (Avzr, diyn)v = (Ay (diAva), ).
Now

(5.68) (22,doy1) = (daz2,y1) 1 = (Ay' (d2z2),y1)v
Finally

(5.69) (22,dsy2)m = (d3z2,y2) 1 -

The result follows. O

Note that the above results uses the fact that Ay is a symmetric operator. As
a consequence

Avl(bzAvﬁ1)> .

(5.70) Myp= <_ bopa i (Mip,&)n = —(b2Avpr, &1)v + (bapa, o) m-

One easily checks that A, = ( 2‘ l(()i ) has the same domain as Ay,. Therefore
—Ax

the costate equation reads

(5.71) _1?1 ~ b2 = uwAy (bap2) + Y1 — Y1a,
—p2 + Aup1 = Y2 — Yad,

with final condition p(T') = yar.
The equation in £ := &, introduced in ([B.28) is given by

(5.72) E4 Awé = aBof +wb'; £(0)=0 with bl = —Bof — Myj.
Since By f = 0 the dynamics for £ reduces to

£ — & = wha1,
5.73 >
(5.73) { o+ An&i = uba&y — wbayo.
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The quadratic forms Q and Q defined in () and (332): First

T
(5.74)  Q(z0) = / (12115, + 20(0) (B (8), boza (D) )t + 12(D)1,
and second, Q(€,w, h) = Or (&, h) + (&, w) + Op(w), where

R T
(5.75) p(w) = /O w?(t)R(t)dt.

Here, R € C(0,T) and
(5.76)

Or(&,h) = |E0(D)3, + [1€2(T) + hboiir (T)||3 + h(pa(T), bot1 (T)) mr,
(5.77)

T
Qutew) = [ (el + 20(Ea. b))

T
(5.78) —I—/O (Qw@z — yad, b2&1) g + 2w({baAvpr, &1)v — (b2ﬁ2,§2)H))dt,

(5.79) R(t) = ||baiioll7; — 2(p2(t), b391) mr-

Theorem 5.13. Let @ be a weak minimum for problem (562). Then (i) The second
order necessary condition [BAG) holds, i.e.,

(5.80) Q(&[w],w,h) >0 for all (w,h) € PCy(1).

(ii) R(t) > 0 over singular arcs.
(iil) Let (@24)-@28) hold. Then the second order optimality condition [E28]) holds
iff the quadratic growth condition [{29) is satisfied.

Proof. (i) Again, it suffices to check the hypotheses for Lemma Relations
B23), where we choose E; := H, follow from (E52), and (GG, and the above
computation of the commutator which contains no derivative. In particular M{p €
C(0,T;H). Point (i) follows.

(ii) To apply Corollary BTl we check the compactness hypothesis ([49). We
have

(5.81) w s E[w], L*0,T)— L*(0,T;H),

with &[w] being the solution of (B73). Since &lw] € Z := C(0,T; Hg,(2)) and
lw] € L*(0,T; H x H-'(Q)). Since HZ, is compactly embedded in H, and H C
H x H=1(Q) with continuous inclusion, we conclude by Aubin’s Lemma.

(iil) We apply Theorem L5 which assumes hypothesis ([@I0), which is satisfied in
our present setting. 0

Remark 5.14. As for the heat equation the framework can be extended to more
general differential operators Ay of type (B49)).
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