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Abstract

Error bounds, which refer to inequalities that bound the distance of vectors in a test set
to a given set by a residual function, have proven to be extremely useful in analyzing the con-
vergence rates of a host of iterative methods for solving optimization problems. In this paper,
we present a new framework for establishing error bounds for a class of structured convex op-
timization problems, in which the objective function is the sum of a smooth convex function
and a general closed proper convex function. Such a class encapsulates not only fairly general
constrained minimization problems but also various regularized loss minimization formulations
in machine learning, signal processing, and statistics. Using our framework, we show that a
number of existing error bound results can be recovered in a unified and transparent manner.
To further demonstrate the power of our framework, we apply it to a class of nuclear-norm reg-
ularized loss minimization problems and establish a new error bound for this class under a strict
complementarity-type regularity condition. We then complement this result by constructing an
example to show that the said error bound could fail to hold without the regularity condition.
Consequently, we obtain a rather complete answer to a question raised by Tseng. We believe
that our approach will find further applications in the study of error bounds for structured
convex optimization problems.

1 Introduction

It has long been recognized that many convex optimization problems can be put into the form

min
x∈E

{F (x) := f(x) + P (x)} , (1)

where E is a finite-dimensional Euclidean space, f : E → (−∞,+∞] is a proper convex function
that is continuously differentiable on int(dom(f)), and P : E → (−∞,+∞] is a closed proper convex
function. On one hand, the constrained minimization problem

min
x∈C

f(x),
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where C ⊆ E is a closed convex set, is an instance of Problem (1) with P being the indicator
function of C; i.e.,

P (x) =

{

0 if x ∈ C,
+∞ otherwise.

On the other hand, various data fitting problems in machine learning, signal processing, and statis-
tics can be formulated as Problem (1), where f is a loss function measuring the deviation of a
solution from the observations and P is a regularizer intended to induce certain structure in the
solution. With the advent of the big data era, instances of Problem (1) that arise in contemporary
applications often involve a large number of variables. This has sparked a renewed interest in
first-order methods for solving Problem (1) in recent years; see, e.g., [38, 32, 41] and the references
therein. From a theoretical point of view, a fundamental issue concerning these methods is to
determine their convergence rates. It is well known that various first-order methods for solving
Problem (1) will converge at the sublinear rate of O(1/k2), where k ≥ 1 is the number of iterations;
see, e.g., [37, 5, 38, 23]. Moreover, the O(1/k2) convergence rate is optimal when the functions
f and P are given by first-order oracles [22]. However, in many applications, both f and P are
given explicitly and have very specific structure. It has been observed numerically that first-order
methods for solving structured instances of Problem (1) converge at a much faster rate than that
suggested by the theory; see, e.g., [11, 42]. Thus, it is natural to ask whether the structure of the
problem can be exploited in the convergence analysis to yield sharper convergence rate results.

As it turns out, a very powerful approach to addressing the above question is to study a so-
called error bound property associated with Problem (1). Formally, let X ⊆ E be the set of optimal
solutions to Problem (1), assumed to be non-empty. Furthermore, let T ⊆ E be a set satisfying
T ⊇ X and r : E → R+ be a function satisfying r(x) = 0 if and only if x ∈ X . We say that
Problem (1) possesses a Lipschitzian error bound (or simply error bound) for X with test set T
and residual function r if there exists a constant κ > 0 such that

d(x,X ) ≤ κ · r(x) for all x ∈ T, (2)

where d(x,X ) := infz∈X ‖z − x‖2 denotes the Euclidean distance from the vector x ∈ E to the
set X ⊆ E ; cf. [26]. Conceptually, the error bound (2) provides a handle on the structure of the
objective function F of Problem (1) in the neighborhood T of the optimal solution set X via the
residual function r. For the purpose of analyzing the convergence rates of first-order methods, one
particularly useful choice of the residual function is rprox(x) := ‖R(x)‖2, where R : E → E is the
residual map defined by

R(x) := proxP (x−∇f(x))− x (3)

and proxP : E → E is the proximal map associated with P ; i.e.,

proxP (x) := argmin
z∈E

{

1

2
‖x− z‖22 + P (z)

}

. (4)

Indeed, by comparing the optimality conditions of (1) and (4), it is immediate that x ∈ X if and
only if rprox(x) = 0. Moreover, it is known that many first-order methods for solving Problem (1)
have update rules that aim at reducing the value of the residual function; see, e.g., [18, 6, 39]. This
leads to the following instantiation of (2):

Error Bound with Proximal Map-Based Residual Function. For any ζ ≥ v∗ := minx∈E F (x),
there exist constants κ > 0 and ǫ > 0 such that

d(x,X ) ≤ κ‖R(x)‖2 for all x ∈ E with F (x) ≤ ζ, ‖R(x)‖2 ≤ ǫ. (EBP)
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The usefulness of the error bound (EBP) comes from the fact that whenever it holds, a host of first-
order methods for solving Problem (1), such as the proximal gradient method, the extragradient
method, and the coordinate (gradient) descent method, can be shown to converge linearly; see [18,
38] and the references therein. Thus, an important research issue is to identify conditions on the
functions f and P under which the error bound (EBP) holds. Nevertheless, despite the efforts of
many researchers over a long period of time, the repertoire of instances of Problem (1) that are
known to possess the error bound (EBP) is still rather limited. Below are some representative
scenarios in which (EBP) has been shown to hold:

(S1). ([25, Theorem 3.1]) E = R
n, f is strongly convex, ∇f is Lipschitz continuous, and P is

arbitrary (but closed, proper, and convex).

(S2). ([17, Theorem 2.1]) E = R
n, f takes the form f(x) = h(Ax) + 〈c, x〉, where A ∈ R

m×n,
c ∈ R

n are given and h : Rm → (−∞,+∞] is proper and convex with the properties that (i)
h is continuously differentiable on dom(h), assumed to be non-empty and open, and (ii) h is
strongly convex and ∇h is Lipschitz continuous on any compact subset of dom(h), and P has
a polyhedral epigraph.

(S3). ([38, Theorem 2]; cf. [44, Theorem 1]) E = R
n, f takes the form f(x) = h(Ax), where

A ∈ R
m×n and h : Rm → (−∞,+∞] are as in scenario (S2), and P is the grouped LASSO

regularizer; i.e., P (x) =
∑

J∈J ωJ‖xJ‖2, where J is a partition of the index set {1, . . . , n},
xJ ∈ R

|J | is the vector obtained by restricting x ∈ R
n to the entries in J ∈ J , and ωJ ≥ 0 is

a given parameter.

In many applications, such as regression problems, the function f of interest is not strongly convex
but has the structure described in scenarios (S2) and (S3). However, a number of widely used
structure-inducing regularizers P—most notably the nuclear norm regularizer—are not covered by
these scenarios. One of the major difficulties in establishing the error bound (EBP) for regularizers
other than those described in scenarios (S2) and (S3) is that they typically have non-polyhedral
epigraphs. Moreover, existing approaches to establishing the error bound (EBP) are quite ad hoc
in nature and cannot be easily generalized. Thus, in order to identify more scenarios in which the
error bound (EBP) holds, some new ideas would seem to be necessary.

In this paper, we present a new analysis framework for studying the error bound property (EBP)
associated with Problem (1). The framework applies to the setting where f has the form described
in scenario (S2) and P is any closed proper convex function. In particular, it applies to all the
scenarios (S1)–(S3). Our first contribution is to elucidate the relationship between the error bound
property (EBP) and various notions in set-valued analysis. This allows us to utilize powerful
tools from set-valued analysis to elicit the key properties of Problem (1) that can guarantee the
validity of (EBP). Specifically, we show that the problem of establishing the error bound (EBP)
can be reduced to that of checking the calmness of a certain set-valued mapping Γ induced by the
optimal solution set X of Problem (1); see Corollary 1. Furthermore, using the fact that X can
be expressed as the intersection of a polyhedron and the inverse of the subdifferential of P at a
certain point −ḡ ∈ E (see Proposition 1), we show that the calmness of Γ is in turn implied by
(i) the bounded linear regularity of the two intersecting sets and (ii) the calmness of (∂P )−1 at
−ḡ; see Theorem 2. These results provide a concrete starting point for verifying the error bound
property (EBP) and make it possible to simplify the analysis substantially. We remark that when
P has a polyhedral epigraph, the early works [18, 19] of Luo and Tseng have already pointed out a
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connection between (EBP) and the calmness of certain polyhedral multi-function. However, such
an idea has not been further explored in the literature to tackle more general forms of P .

To demonstrate the power of our proposed framework, we apply it to scenarios (S1)–(S3) and
show that the error bound results in [25, 17, 38] can be recovered in a unified manner; see Sec-
tions 4.1–4.3. It is worth noting that scenario (S3) involves the non-polyhedral grouped LASSO
regularizer, and the existing proof of the validity of the error bound (EBP) in this scenario employs
a highly intricate argument [38]. By contrast, our approach leads to a much simpler and more
transparent proof. Motivated by the above success, we proceed to apply our framework to the
following scenario, which again involves a non-polyhedral regularizer and arises in the context of
low-rank matrix optimization:

(S4). E = R
m×n, f takes the form f(X) = h(A(X)) + 〈C,X〉, where A : Rm×n → R

ℓ is a given
linear operator, C ∈ R

m×n is a given matrix, h : Rℓ → (−∞,+∞] is as in scenario (S2), and
P is the nuclear norm regularizer; i.e., P (X) = ‖X‖∗.

The validity of the error bound (EBP) in this scenario was left as an open question in [38] and
to date is still unresolved.1 As our second contribution in this work, we show that under a strict
complementarity-type regularity condition on the optimal solution set X of Problem (1), the error
bound (EBP) holds in scenario (S4); see Proposition 12. This is achieved by verifying conditions
(i) and (ii) mentioned in the preceding paragraph. Specifically, we first show that condition (i) is
satisfied under the said regularity condition. Then, we prove that (∂‖ · ‖∗)−1 is calm everywhere,
which implies that condition (ii) is always satisfied; see Proposition 11. We note that to the best of
our knowledge, this last result is new and could be of independent interest. To further understand
the role of the regularity condition, we demonstrate via a concrete example that without such
condition, the error bound (EBP) could fail to hold; see Section 4.4.4. Consequently, we obtain a
rather complete answer to the question raised by Tseng [38].

The following notations will be used throughout the paper. Let E ,T denote finite-dimensional
Euclidean spaces. The closed ball around x̄ ∈ E with radius r > 0 in E is given by BE(x̄, r) :=
{x ∈ E | ‖x− x̄‖2 ≤ r}. For simplicity, we denote the closed unit ball BE(0, 1) in E by BE . We use
S
n and O

n to denote the sets of n × n real symmetric matrices and n × n orthogonal matrices,
respectively. Given a matrix X ∈ S

n, we use X ∈ S
n
+ or X � 0 (resp. X ∈ S

n
++ or X ≻ 0) to

indicate that X is positive semidefinite (resp. positive definite). Also, we use ‖X‖F and ‖X‖ to
denote the Frobenius norm and spectral norm of the matrix X ∈ R

m×n, respectively.

2 Preliminaries

2.1 Basic Setup

Consider the optimization problem (1). Recall that its optimal value and optimal solution set are
denoted by v∗ and X , respectively. We shall make the following assumptions in our study:

Assumption 1 (Structural Properties of the Objective Function)

1It was claimed in [13] that the error bound (EBP) holds in scenario (S4). However, there is a critical flaw in the
proof. Specifically, contrary to what was claimed in [13, Supplementary Material, Section C], the matrices U

k and
V

k that satisfy displayed equations (37) and (38) need not satisfy displayed equation (35). The erroneous claim was
due to an incorrect application of [35, Lemma 4.3]. We thank Professor Defeng Sun and Ms. Ying Cui for bringing
this issue to our attention.
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(a) The function f : E → (−∞,+∞] takes the form

f(x) = h(A(x)) + 〈c, x〉, (5)

where A : E → T is a linear operator, c ∈ E is a given vector, and h : T → (−∞,+∞] is a
convex function with the following properties:

(i) The effective domain dom(h) of h is non-empty and open, and h is continuously differ-
entiable on dom(h).

(ii) For any compact convex set V ⊆ dom(h), the function h is strongly convex and its
gradient ∇h is Lipschitz continuous on V .

(b) The function P : E → (−∞,+∞] is convex, closed, and proper.

Assumption 2 (Properties of the Optimal Solution Set) The optimal solution set X is non-empty
and compact. In particular, v∗ > −∞.

The above assumptions yield several useful consequences. First, Assumption 1(a-i) implies
that dom(f) = A−1(dom(h)) = {x ∈ E | A(x) ∈ dom(h)} is also non-empty and open, and f is
continuously differentiable on dom(f). Second, under Assumption 1(a-ii), if the Lipschitz constant
of ∇h on the compact convex set V ⊆ dom(h) is Lh(V ), then the Lipschitz constant of ∇f on
A−1(V ) is at most Lh(V )‖A‖2, where ‖A‖ is the spectral norm of A. Third, Assumption 1 implies
that F is a closed proper convex function. Together with Assumption 2 and [30, Corollary 8.7.1],
we conclude that for any ζ ≥ v∗, the level set L(ζ) := {x ∈ E | F (x) ≤ ζ} is a compact subset of E .

Assumptions 1 and 2 are automatically satisfied by a number of applications. As an illustration,
consider the problem of regularized empirical risk minimization of linear predictors, which underlies
much of the development in machine learning. With N being the number of data points and
T = R

N , the problem takes the form

min
x∈E

{

1

N

N
∑

i=1

ℓ ([A(x)]i, bi) + P (x)

}

, (6)

where [A(x)]i is the i-th component of the vector A(x) and represents the i-th linear prediction,
bi is the i-th response, ℓ : R → R is a smooth convex loss function, and P : E → (−∞,+∞]
is a regularizer used to induce certain structure in the solution. It is clear that Problem (6)
is an instance of Problem (1). Moreover, one can easily verify that when instantiated with the
loss functions and regularizers in Table 1—which have been widely used in the machine learning
literature—Problem (6) satisfies both Assumptions 1 and 2.

2.2 A Characterization of the Optimal Solution Set X
Since Problem (1) is an unconstrained convex optimization problem, its first-order optimality con-
dition is both necessary and sufficient for optimality. Hence, we have

X = {x ∈ E | 0 ∈ ∇f(x) + ∂P (x)} . (7)

The following proposition shows that under Assumptions 1 and 2, the optimal solution set X admits
an alternative, more explicit characterization. Such a characterization will be central to our analysis
of the error bound property associated with Problem (1).
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ℓ(y, b) Domain of b

Linear Regression
1

2
(y − b)2 R

Logistic Regression log(1 + exp(−yb)) {−1, 1}
Poisson Regression −yb+ exp(y) {0, 1, . . .}

(a) Loss Functions

E P (x)

LASSO R
n ‖x‖1

Ridge R
n ‖x‖22

Grouped LASSO R
n

∑

J∈J

ωJ‖xJ‖2, ωJ ≥ 0,

J a partition of {1, . . . , n}
Nuclear Norm R

m×n ‖x‖∗
(b) Regularizers

Table 1: Some commonly used loss functions and regularizers.

Proposition 1 Consider the optimization problem (1). Under Assumptions 1 and 2, there exists
a ȳ ∈ T such that

A(x) = ȳ, ∇f(x) = ḡ for all x ∈ X , (8)

where ḡ = A∗∇h(ȳ) + c ∈ E. In particular, we have

X = {x ∈ E | A(x) = ȳ, −ḡ ∈ ∂P (x)} . (9)

Proof The proof of (8) is rather standard; cf. [36, 17]. For completeness’ sake, we include the
proof here. For arbitrary x1, x2 ∈ X , let y1 = A(x1) and y2 = A(x2). Note that the line segment
between y1 and y2 is a compact convex subset of dom(h). By Assumption 1(a-ii), the function h is
strongly convex on this set. Thus, there exists a σ > 0 such that

h

(

y1 + y2
2

)

≤ 1

2
h(y1) +

1

2
h(y2)−

σ

2
‖y1 − y2‖22.

Due to (5), the above is equivalent to

f

(

x1 + x2
2

)

≤ 1

2
f(x1) +

1

2
f(x2)−

σ

2
‖y1 − y2‖22.

Moreover, the convexity of P gives

P

(

x1 + x2
2

)

≤ 1

2
P (x1) +

1

2
P (x2).

Upon adding the above two inequalities and using x1, x2 ∈ X , we have

F

(

x1 + x2
2

)

≤ v∗ − σ

2
‖y1 − y2‖22.
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This implies that y1 = y2, for otherwise the above inequality contradicts the fact that v∗ is the
optimal value of Problem (1). Consequently, the map x 7→ A(x) is invariant over X ; i.e., there
exists a ȳ ∈ T such that A(x) = ȳ for all x ∈ X . Now, using (5) and Assumption 1(a-i), we compute
∇f(x) = A∗∇h(A(x)) + c. Since A(x) = ȳ for all x ∈ X , we have ∇f(x) = A∗∇h(ȳ) + c = ḡ for
all x ∈ X . This completes the proof of (8).

To establish (9), we first observe that by (7) and (8), every x ∈ X belongs to the set on the
right-hand side of (9). Now, for any x ∈ E satisfying A(x) = ȳ and −ḡ ∈ ∂P (x), we can use the
relationships ḡ = A∗∇h(ȳ) + c and ∇f(x) = A∗∇h(A(x)) + c to get 0 ∈ ∇f(x) + ∂P (x). This,
together with (7), implies that x ∈ X , as desired. ⊔⊓

2.3 Tools from Set-Valued Analysis

Proposition 1 reveals that the optimal solution set X of Problem (1) is completely characterized
by the vectors ȳ ∈ T and ḡ ∈ E . Thus, in order to estimate d(x,X ) for some x ∈ E \ X , a
natural idea is to take y = A(x) and an arbitrary −g ∈ ∂P (x) and establish a relationship between
d(x,X ) and ‖(y, g)− (ȳ, ḡ)‖2. Intuitively, if X is “nice” (e.g., satisfies certain regularity condition),
then one should be able to control the (local) growth of d(x,X ) by that of a “nice” function of
‖(y, g) − (ȳ, ḡ)‖2. Such an idea can be formalized using tools from set-valued analysis, which we
now introduce.

Let E1 and E2 be finite-dimensional Euclidean spaces. We say that a mapping Γ is a multi-
function (or set-valued mapping) from E1 to E2 (denoted by Γ : E1 ⇒ E2) if it assigns a subset Γ(u)
of E2 to each vector u ∈ E1. The graph and domain of Γ are defined by

gph(Γ) := {(u, v) ∈ E1 × E2 | v ∈ Γ(u)} ,
dom(Γ) := {u ∈ E1 | Γ(u) 6= ∅} ,

respectively. The inverse mapping of Γ, denoted by Γ−1, is the multi-function from E2 to E1 defined
by

Γ−1(v) := {u ∈ E1 | v ∈ Γ(u)} .
Before we proceed further, let us briefly illustrate some of the concepts above.

Example

(a) Let A ∈ R
m×n be a given m×n matrix. The mapping Γ defined by Γ(b) = {x ∈ R

n | Ax = b}
is a multi-function from R

m to R
n. Here, Γ(b) is simply the solution set of the linear system

Ax = b.

(b) Let P : E → (−∞,+∞] be a closed proper convex function. Its subdifferential ∂P is a multi-
function from E to E . Moreover, by [30, Corollary 23.5.1], we have (∂P )−1 = ∂P ∗, where P ∗

is the conjugate of P .
⊔⊓

Next, we introduce two regularity notions regarding set-valued mappings.

Definition 1 (see, e.g., [8, Chapter 3H])

(a) A multi-function Γ : E1 ⇒ E2 is said to be calm at ū ∈ E1 for v̄ ∈ E2 if (ū, v̄) ∈ gph(Γ) and
there exist constants κ, ǫ > 0 such that

Γ(u) ∩ BE2(v̄, ǫ) ⊆ Γ(ū) + κ‖u− ū‖2BE2 for all u ∈ E1. (10)
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(b) A multi-function Λ : E1 ⇒ E2 is said to be metrically sub-regular at ū ∈ E1 for v̄ ∈ E2 if
(ū, v̄) ∈ gph(Λ) and there exist constants κ, ǫ > 0 such that

d
(

u,Λ−1(v̄)
)

≤ κ · d (v̄,Λ(u)) for all u ∈ BE1(ū, ǫ). (11)

The notions of calmness and metric sub-regularity have played a central role in the study of error
bounds; see, e.g., [26, 9, 31, 27, 15] and the references therein. To see what these notions would
yield in the context of Problem (1), consider the multi-function Γ : T × E ⇒ E given by

Γ(y, g) = {x ∈ E | A(x) = y, −g ∈ ∂P (x)} . (12)

Suppose that Γ is calm at (ȳ, ḡ) ∈ T ×E for x̄ ∈ E , where ȳ and ḡ are given in Proposition 1. Note
that X = Γ(ȳ, ḡ) and x̄ ∈ X . Hence, by (10), there exist constants κ, ǫ > 0 such that

d(x,X ) ≤ κ‖(y, g) − (ȳ, ḡ)‖2 for all x ∈ Γ(y, g) ∩ BE(x̄, ǫ) and (y, g) ∈ E1. (13)

Since x ∈ Γ(y, g) ∩ BE(x̄, ǫ) is equivalent to (y, g) ∈ Γ−1(x) and x ∈ BE(x̄, ǫ), it follows from (13)
that

d(x,X ) ≤ κ · d
(

(ȳ, ḡ),Γ−1(x)
)

for all x ∈ BE(x̄, ǫ), (14)

which is an error bound for X with test set BE(x̄, ǫ) and residual function x 7→ d
(

(ȳ, ḡ),Γ−1(x)
)

.
Incidentally, the inequality (14) also shows that the multi-function Γ−1 : E ⇒ T × E is metrically
sub-regular at x̄ ∈ E for (ȳ, ḡ) ∈ T × E .

The error bound (14) shows that under a calmness assumption on the multi-function Γ given
in (12), the local growth of d(x,X ) is on the order of ‖(y, g) − (ȳ, ḡ)‖2, where y = A(x) and −g ∈
∂P (x) is arbitrary. This realizes the idea mentioned at the beginning of this sub-section. However,
we are ultimately interested in establishing the error bound (EBP), which is concerned with the
test set {x ∈ E | F (x) ≤ ζ, ‖R(x)‖2 ≤ ǫ} (where ζ ≥ v∗ is arbitrary and ǫ = ǫ(ζ) depends on ζ)
and residual function x 7→ ‖R(x)‖2. At first sight, it is not clear whether the error bounds (EBP)
and (14) are compatible. Indeed, the former involves only easily computable quantities (i.e., F (x)
and ‖R(x)‖2), while the latter involves quantities that are generally not known a priori (i.e., x̄ ∈ E ,
ȳ ∈ T , and ḡ ∈ E). Nevertheless, as we shall demonstrate in Section 3, the latter can be used to
establish the former under some mild conditions.

Before we leave this section, let us record two useful results regarding the notions of calmness
and metric sub-regularity. The first is a well-known equivalence between the calmness of a multi-
function and the metric sub-regularity of its inverse. One direction of the equivalence has already
manifested in our discussion above.

Fact 1 (see, e.g., [8, Theorem 3H.3]) For a multi-function Γ : E1 ⇒ E2, let (ū, v̄) ∈ gph(Γ). Then,
Γ is calm at ū for v̄ if and only if its inverse Γ−1 is metrically sub-regular at v̄ for ū.

The second result concerns a multi-function Γ : E1 ⇒ E2 that is calm at ū ∈ E1 for a set of
points V̄ ⊆ Γ(ū). It shows that if V̄ is compact, then the neighborhoods around each v̄ ∈ V̄ in the
definition of calmness can be made uniform.

Proposition 2 For a multi-function Γ : E1 ⇒ E2, let ū ∈ dom(Γ) and suppose that V̄ ⊆ Γ(ū) is
compact. Then, the following statements are equivalent:

(a) Γ is calm at ū for any v̄ ∈ V̄ .
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(b) There exist constants κ, ǫ > 0 such that

Γ(u) ∩
(

V̄ + ǫBE2

)

⊆ Γ(ū) + κ‖u− ū‖2BE2 for all u ∈ E1.

Proof It is clear that (b) implies (a). Hence, suppose that (a) holds. By (10), given any v̄ ∈ V̄ ,
there exist constants κ(v̄), ǫ(v̄) > 0 such that

Γ(u) ∩ BE2(v̄, ǫ(v̄)) ⊆ Γ(ū) + κ(v̄)‖u− ū‖2BE2 for all u ∈ E1. (15)

Let B◦
E2

denote the open unit ball around the origin in E2. Then, the set
⋃

v̄∈V̄

(

v̄ + ǫ(v̄)B◦
E2

)

forms
an open cover of the compact set V̄ . Hence, by the Heine-Borel theorem, there exist N points
(where N ≥ 1 is finite) v̄1, . . . , v̄N ∈ V̄ such that V̄ ⊆ ⋃N

i=1

(

v̄i + ǫ(v̄i)B
◦
E2

)

. We claim that there

exists a constant ǫ > 0 such that V̄ + ǫBE2 ⊆ ⋃N
i=1

(

v̄i + ǫ(v̄i)B
◦
E2

)

. Indeed, suppose that this is not
the case. Then, for k = 1, 2, . . ., we can find vectors wk, vk ∈ E2 such that for k = 1, 2, . . .,

vk ∈ V̄ ,

‖vk −wk‖2 ≤ 1/k,

‖wk − v̄i‖2 ≥ ǫ(v̄i) for i = 1, . . . , N.

Since V̄ is compact and {vk}k≥1 ⊆ V̄ , by passing to a subsequence if necessary, we may assume
that vk → v for some v ∈ V̄ . Then, we have

0 ≤ ‖v − wk‖2 ≤ ‖v − vk‖2 + ‖vk − wk‖2 → 0,

which shows that wk → v. On the other hand, since v ∈ V̄ , there exists an index i ∈ {1, . . . , N}
such that ‖v − v̄i‖2 = δ < ǫ(v̄i). This implies that

ǫ(v̄i) ≤ ‖wk − v̄i‖2 ≤ ‖wk − v‖2 + ‖v − v̄i‖2 = ‖wk − v‖2 + δ

for k = 1, 2, . . . , which contradicts the fact that wk → v. Thus, the claim is established.
Now, upon setting κ = maxi=1,...,N κ(v̄i), we obtain

Γ(u) ∩
(

V̄ + ǫBE2

)

⊆ Γ(u) ∩
N
⋃

i=1

(

v̄i + ǫ(v̄i)B
◦
E2

)

⊆ Γ(ū) + κ‖u− ū‖2BE2 for all u ∈ E1,

where the second inclusion is due to (15) and the fact that v̄i + ǫ(v̄i)B
◦
E2

⊆ BE2(v̄i, ǫ(v̄i)) for i =
1, . . . , N . This completes the proof. ⊔⊓

3 Sufficient Conditions for the Validity of the Error Bound (EBP)

Following our discussion in Section 2.3, we now show that under Assumptions 1 and 2, the error
bound (EBP) is implied by certain calmness property of the multi-function Γ given in (12). This is
achieved by exploring the relationships between error bounds defined using different test sets and
residual functions. For the sake of convenience, we shall refer to the multi-function Γ given in (12)
as the solution map associated with Problem (1) in the sequel.
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3.1 Error Bound with Neighborhood-Based Test Set

To begin, recall that the error bound (EBP) involves the test set {x ∈ E | F (x) ≤ ζ, ‖R(x)‖2 ≤ ǫ},
where ζ ≥ v∗ is arbitrary and ǫ > 0 depends on ζ. The following proposition shows that under
Assumptions 1 and 2, we can replace the test set by a neighborhood of X . This would facilitate
our analysis of the relationship between the error bound (EBP) and the calmness of the solution
map Γ, as the latter is also defined in terms of a neighborhood of X .

Proposition 3 Consider the optimization problem (1). Under Assumptions 1 and 2, the error
bound (EBP) holds if there exist constants κ, ρ > 0 such that

d(x,X ) ≤ κ‖R(x)‖2 for all x ∈ dom(f) with d(x,X ) ≤ ρ. (EBN)

Proof To establish the error bound (EBP), it suffices to show that for any ζ ≥ v∗, there exists an
ǫ > 0 such that

d(x,X ) ≤ ρ for all x ∈ E with F (x) ≤ ζ, ‖R(x)‖2 ≤ ǫ.

Suppose that this does not hold. Then, there exist a scalar ζ ≥ v∗ and a sequence {xk}k≥1 in E
such that F (xk) ≤ ζ for k = 1, 2, . . . and ‖R(xk)‖2 → 0, but d(xk,X ) > ρ for k = 1, 2, . . .. Since
{x ∈ E | F (x) ≤ ζ} is compact by Assumption 2, by passing to a subsequence if necessary, we may
assume that xk → x̄ for some x̄ ∈ E . Using the fact that proxP is 1-Lipschitz continuous on E
(see, e.g., [6, Lemma 2.4]) and ∇f is continuous on dom(f) (Assumption 1(a-i)), we see that R is
continuous on dom(f). This, together with the fact that ‖R(xk)‖2 → 0, implies that ‖R(x̄)‖2 = 0;
i.e., x̄ ∈ X . However, this contradicts the fact that d(xk,X ) > ρ for k = 1, 2, . . ., and the proof is
completed. ⊔⊓

Before we proceed, two remarks are in order. First, the reverse implication in Proposition 3
is also true if, in addition to Assumptions 1 and 2, the optimal solution set X of Problem (1)
is contained in the relative interior of dom(F ). However, since we will mostly focus on sufficient
conditions for the error bound (EBP) to hold, we will not indulge in proving this here. Second,
for those instances of Problem (1) that do not satisfy Assumption 2, one or both of the error
bounds (EBP) and (EBN) could fail to hold. The following example demonstrates such possibility.

Example Let C =
{

(x, y) ∈ R
2 | x ≤ 0, y ≥ 0

}

. Define the function f : (−∞, 1)× R → R by

f(x, y) =

{

y exp((x− 1)/y) if x < 1 and y > 0,
0 if x < 1 and y ≤ 0

and take P : R2 → {0} ∪ {+∞} to be the indicator function of C. Furthermore, let F : (−∞, 1)×
R → (−∞,+∞] be given by F (x, y) = f(x, y) + P (x, y). It can be verified that f is convex and
continuously differentiable on (−∞, 1) × R with

∇f(x, y) =











[

exp

(

x− 1

y

)

,

(

1− x− 1

y

)

exp

(

x− 1

y

)]T

if x ∈ (−∞, 1) and y > 0,

0 if x ∈ (−∞, 1) and y ≤ 0.

Moreover, we have

{

(x, y) ∈ R
2 | F (x, y) ≤ ζ

}

=







∅ if ζ < 0,
{

(x, y) ∈ R
2 | x ≤ 0, y = 0

}

if ζ = 0,
{

(x, y) ∈ R
2 | x ≤ min{0, 1 + y ln(ζ/y)}, y ≥ 0

}

if ζ > 0,
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which shows that the level sets of F are closed but not bounded. It follows that F is a closed proper
convex function with dom(F ) = C and

0 = v∗ = min
(x,y)∈R2

F (x, y), X =
{

(x, y) ∈ R
2 : x ≤ 0, y = 0

}

.

Next, we determine the residual map R on dom(F ). Recall that

R(x, y) =

[

x
y

]

− proxP

([

x
y

]

−∇f(x, y)

)

for all (x, y) ∈ (−∞, 1) × R.

Since P is the indicator function of C, it is easy to see that proxP is the projection operator onto
C. Note that for each y ≥ 0, the function

x 7→ y −
(

1− x− 1

y

)

exp

(

x− 1

y

)

is decreasing in x ∈ (−∞, 0]. Moreover, it can be verified that y − (1 + 1/y) exp(−1/y) ≥ 0 for all
y ≥ 0. It follows that

R(x, y) = ∇f(x, y) for all (x, y) ∈ dom(F ).

In particular, we have r(x, y) = ‖R(x, y)‖2 = ‖∇f(x, y)‖2 for all (x, y) ∈ dom(F ).
Now, observe that for any ζ > v∗ = 0, if (x̄, ȳ) /∈ X satisfies F (x̄, ȳ) ≤ ζ, then F (x, ȳ) ≤ ζ for

any x ≤ x̄. However, we have d((x, ȳ),X ) = ‖ȳ‖2 6= 0 for any x ≤ 0 and limx→−∞ ‖R(x, ȳ)‖2 = 0.
It follows that there do not exist constants κ, ǫ > 0 such that (EBP) holds. Similarly, for any ρ > 0,
we have

{(x, y) ∈ dom(F ) | d((x, y),X ) ≤ ρ} = {(x, y) ∈ dom(F ) | 0 ≤ y ≤ ρ} .
Since limx→−∞ ‖R(x, y)‖2 = 0 for any y ≥ 0, there does not exist a constant κ > 0 such that (EBN)
holds. In fact, the same arguments show that the instance in question does not possess a Hölderian
error bound; i.e., the error bounds (EBP) and (EBN) fail to hold even if one replaces the inequality
d(x,X ) ≤ κ‖R(x)‖2 by d(x,X ) ≤ κ‖R(x)‖α2 for any α ∈ (0, 1). ⊔⊓

3.2 Error Bound with Alternative Residual Function

As the reader would recall, a motivation for using x 7→ ‖R(x)‖2 as the residual function is that
the optimal solution set X can be characterized as X = {x ∈ E | R(x) = 0}. Since X admits the
alternative characterization (9), we can define another residual function ralt : E → R+ by

ralt(x) := ‖A(x)− ȳ‖2 + d(−ḡ, ∂P (x))

and consider the error bound

d(x,X ) ≤ κ (‖A(x)− ȳ‖2 + d(−ḡ, ∂P (x))) for all x ∈ E with d(x,X ) ≤ ρ, (EBR)

where κ, ρ > 0 are constants and ȳ ∈ T , ḡ ∈ E are given in Proposition 1. Our interest in the error
bound (EBR) stems from the following result, which reveals that it is closely related to certain
calmness property of the solution map Γ:

Proposition 4 Suppose that Problem (1) satisfies Assumptions 1 and 2. Let ȳ ∈ T and ḡ ∈ E be as
in Proposition 1. Then, the error bound (EBR) holds if and only if the solution map Γ : T ×E ⇒ E
is calm at (ȳ, ḡ) for any x̄ ∈ Γ(ȳ, ḡ).
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Proof Suppose that the error bound (EBR) holds. Let (y, g) ∈ T × E be arbitrary and suppose
that x ∈ Γ(y, g)∩(X+ρBE). In particular, we have A(x) = y and −g ∈ ∂P (x). Using the inequality
(a+ b)2 ≤ 2(a2 + b2), which is valid for all a, b ∈ R, we see from (EBR) that

d(x,X ) ≤ κ(‖y − ȳ‖2 + ‖g − ḡ‖2) ≤
√
2κ‖(y, g) − (ȳ, ḡ)‖2.

Since X = Γ(ȳ, ḡ), this implies that x ∈ Γ(ȳ, ḡ)+
√
2κ‖(y, g)− (ȳ, ḡ)‖2BE . Hence, Γ is calm at (ȳ, ḡ)

for any x̄ ∈ Γ(ȳ, ḡ).
Conversely, suppose that Γ is calm at (ȳ, ḡ) for any x̄ ∈ Γ(ȳ, ḡ). Since X = Γ(ȳ, ḡ) is compact

by Assumption 2, Proposition 2 implies the existence of κ, ρ > 0 such that

Γ(y, g) ∩ (X + ρBE) ⊆ X + κ‖(y, g) − (ȳ, ḡ)‖2BE for all (y, g) ∈ T × E . (16)

Now, let x ∈ E be such that d(x,X ) ≤ ρ and ∂P (x) 6= ∅. Using (16) and the inequality
√
a2 + b2 ≤

a+ b, which is valid for all a, b ≥ 0, we have

d(x,X ) ≤ κ‖(A(x), g) − (ȳ, ḡ)‖2 ≤ κ (‖A(x)− ȳ‖2 + ‖g − ḡ‖2) for all − g ∈ ∂P (x).

It follows that the error bound (EBR) holds. ⊔⊓
Since our goal is to link the error bound (EBP) and the calmness of the solution map Γ, in view

of Propositions 3 and 4, it remains to understand the relationship between the error bounds (EBN)
and (EBR). Towards that end, we prove the theorem, which constitutes the first main result of
this paper:

Theorem 1 Consider the optimization problem (1). Under Assumptions 1 and 2, the error bound
(EBN) holds if and only if the error bound (EBR) holds.

The proof of Theorem 1 relies on the following technical result:

Lemma 1 Suppose that Problem (1) satisfies Assumptions 1 and 2. Then, there exists a constant
ρ0 > 0 such that Nρ := {x ∈ E | d(x,X ) ≤ ρ} ⊆ dom(f) for all ρ ∈ (0, ρ0]. Moreover, there exist
constants LA, LR > 0, which depend on ρ0, such that for all x ∈ Nρ0 , we have

‖∇f(x)− ḡ‖2 ≤ LA‖A(x)− ȳ‖2 and ‖R(x)‖2 ≤ LR · d(x,X ),

where ȳ ∈ T and ḡ ∈ E are given in Proposition 1.

Proof Recall from the discussion in Section 2.1 that dom(f) is open. On the other hand, the
optimal solution set X is compact by Assumption 2. Since X ⊆ dom(f), a standard argument
shows that Nρ0 ⊆ dom(f) for some ρ0 > 0. Moreover, we have Nρ ⊆ Nρ′ whenever 0 < ρ < ρ′.

Clearly, the set Nρ0 is compact. This implies that A(Nρ0) = {A(x) ∈ T | x ∈ Nρ0} ⊆ dom(h)
is also compact. By Assumption 1(a-ii), ∇h is Lipschitz continuous on A(Nρ0). Hence, for any
x ∈ Nρ0 , there exists an LA > 0 such that

‖∇f(x)− ḡ‖2 = ‖A∗∇h(A(x)) −A∗∇h(ȳ)‖2 ≤ ‖A∗‖ · ‖∇h(A(x)) −∇h(ȳ)‖2 ≤ LA‖A(x)− ȳ‖2.

Now, let x̄ be the projection of x onto X . Then, we have ȳ = A(x̄) and ∇f(x̄) = ḡ by
Proposition 1 and R(x̄) = 0. This, together with the 1-Lipschitz continuity of proxP on E , implies
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that

‖R(x)‖2 = ‖R(x)−R(x̄)‖2
= ‖ (proxP (x−∇f(x))− x)− (proxP (x̄− ḡ)− x̄) ‖2
≤ ‖x− x̄‖2 + ‖proxP (x−∇f(x))− proxP (x̄− ḡ)‖2
≤ ‖x− x̄‖2 + ‖(x− x̄)− (∇f(x)− ḡ)‖2
≤ 2‖x− x̄‖2 + LA‖A(x)− ȳ‖2
≤ LR · d(x,X ),

where LR = LA‖A‖+ 2 > 0. This completes the proof. ⊔⊓
Proof of Theorem 1 Suppose that the error bound (EBN) holds. Then, there exist constants
κ0, ρ > 0 such that

d(x,X ) ≤ κ0‖R(x)‖2 for all x ∈ dom(f) with d(x,X ) ≤ ρ. (17)

By decreasing ρ if necessary, we may assume that {x ∈ E | d(x,X ) ≤ ρ} ⊆ dom(f), so that Lemma 1
applies. Let x ∈ E be such that d(x,X ) ≤ ρ and suppose that −g ∈ ∂P (x). Using the definition
of the proximity operator proxP in (4), it is straightforward to verify that x = proxP (x− g). This,
together with (17) and the definition of the residual map R in (3), leads to

d(x,X ) ≤ κ0‖proxP (x−∇f(x))− x‖2
= κ0‖proxP (x−∇f(x))− proxP (x− g)‖2
≤ κ0‖∇f(x)− g‖2 (18)

≤ κ0 (‖∇f(x)− ḡ‖2 + ‖ḡ − g‖2)
≤ κ0 (LA‖A(x)− ȳ‖2 + ‖g − ḡ‖2) (19)

≤ κ (‖A(x)− ȳ‖2 + ‖g − ḡ‖2) ,

where (18) follows from the 1-Lipschitz continuity of proxP on E , (19) follows from Lemma 1, and
κ = κ0 ·max{LA, 1} > 0. Since −g ∈ ∂P (x) is arbitrary, we conclude that the error bound (EBR)
holds.

Conversely, suppose that the error bound (EBR) holds. Then, there exist constants κ0, ρ0 > 0
such that

d(x,X ) ≤ κ0 (‖A(x)− ȳ‖2 + d(−ḡ, ∂P (x))) for all x ∈ E with d(x,X ) ≤ ρ0. (20)

By Lemma 1, there exists a constant ρ1 > 0 such that {x ∈ E | d(x,X ) ≤ ρ1} ⊆ dom(f). Set
ρ = min{ρ0, ρ1}/(LR + 1) > 0 and let x ∈ E be such that d(x,X ) ≤ ρ, where LR > 0 is given
in Lemma 1. Using the definition of the proximity operator proxP in (4) and the residual map R
in (3), we have 0 ∈ R(x) +∇f(x) + ∂P (x+R(x)), or equivalently,

− (∇f(x) +R(x)) ∈ ∂P (x+R(x)). (21)

In addition, the property of projection onto X , the triangle inequality, and Lemma 1 imply

d(x+R(x),X ) ≤ d(x,X ) + ‖R(x)‖2 ≤ (LR + 1)ρ ≤ ρ0. (22)
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It follows from (20)–(22) and Lemma 1 that

d(x+R(x),X ) ≤ κ0 (‖A(x+R(x))− ȳ‖2 + ‖∇f(x) +R(x)− ḡ‖2)
≤ κ0 [‖A(x)− ȳ‖2 + ‖∇f(x)− ḡ‖2 + (‖A‖+ 1)‖R(x)‖2]
≤ κ0 [(LA + 1)‖A(x) − ȳ‖2 + (‖A‖+ 1)‖R(x)‖2] .

Hence, we obtain

d(x,X ) ≤ d(x+R(x),X ) + ‖R(x)‖2 ≤ κ1 (‖A(x)− ȳ‖2 + ‖R(x)‖2) ,

where κ1 = max{κ0(LA + 1), κ0(‖A‖ + 1) + 1} > 0. Since (a + b)2 ≤ 2(a2 + b2) for any a, b ∈ R,
the above inequality yields

d(x,X )2 ≤ 2κ21
(

‖A(x)− ȳ‖22 + ‖R(x)‖22
)

for all x ∈ E with d(x,X ) ≤ ρ. (23)

Now, let V = {A(x) ∈ T | d(x,X ) ≤ ρ} ⊆ dom(h). Since X is compact, V is also compact. By
Assumption 1(a-ii), the function h is strongly convex on V . Hence, there exists a σ > 0 such that
for any x ∈ E satisfying d(x,X ) ≤ ρ, we have

σ‖A(x) − ȳ‖22 ≤ 〈∇h(A(x))−∇h(ȳ),A(x)− ȳ〉 = 〈∇f(x)− ḡ, x− x̄〉, (24)

where x̄ is the projection of x onto X . Using the convexity of P and the fact that −ḡ ∈ ∂P (x̄) and
−g(x) ∈ ∂P (x+R(x)), we have

〈ḡ − g(x), x +R(x)− x̄〉 ≥ 0.

It follows that

〈∇f(x)− ḡ, x− x̄〉+ ‖R(x)‖22 ≤ 〈ḡ −∇f(x) + x̄− x,R(x)〉
≤ (‖∇f(x)−∇f(x̄)‖2 + d(x,X )) ‖R(x)‖2
≤ (Lf + 1) · d(x,X ) · ‖R(x)‖2 (25)

for some constant Lf > 0, where we use the fact that ∇f is Lipschitz continuous on the compact set
{x ∈ E | d(x,X ) ≤ ρ} in the last inequality (see the discussion in Section 2.1). Since ‖R(x)‖22 ≥ 0
for all x ∈ E , we conclude from (23)–(25) that

d(x,X )2 ≤ κ2
(

d(x,X ) · ‖R(x)‖2 + ‖R(x)‖22
)

,

where κ2 = 2κ21 ·max{(Lf + 1)/σ, 1}. Solving the above quadratic inequality yields

d(x,X ) ≤ κ‖R(x)‖2 for all x ∈ E with d(x,X ) ≤ ρ,

where κ =
(

κ2 +
√

κ2(κ2 + 4)
)

/2. This completes the proof. ⊔⊓

Upon combining Propositions 3, 4 and Theorem 1, we obtain the following sufficient condition
for the error bound (EBP) to hold:

Corollary 1 Under the setting of Theorem 1, the error bound (EBP) holds if the solution map
Γ : T × E ⇒ E is calm at (ȳ, ḡ) for any x̄ ∈ Γ(ȳ, ḡ).

14



3.3 Verifying the Calmness of the Solution Map Γ

Corollary 1 reduces the problem of establishing the error bound (EBP) for those instances of
Problem (1) that satisfy Assumptions 1 and 2 to that of checking certain calmness property of the
solution map Γ. The upshot of this reduction is that the latter problem can be tackled using a wide
array of tools in set-valued analysis. As an illustration, let us develop a simple sufficient condition
for the calmness property stated in Corollary 1 to hold.

To motivate our approach, observe that the solution map Γ has a separable structure. Specifi-
cally, we have

Γ(y, g) = {x ∈ E | A(x) = y, −g ∈ ∂P (x)} = Γf (y) ∩ ΓP (g),

where Γf : T ⇒ E and ΓP : E ⇒ E are multi-functions defined by

Γf (y) := {x ∈ E | A(x) = y} , ΓP (g) := {x ∈ E | −g ∈ ∂P (x)} . (26)

Intuitively, if x ∈ E\X is close to both Γf (ȳ) and ΓP (ḡ), then it should be close to Γf (ȳ)∩ΓP (ḡ) = X .
This suggests that it may be possible to estimate d(x,X ) by separately estimating d(x,Γf (ȳ)) and
d(x,ΓP (ḡ)). Such idea can be formalized using the notion of bounded linear regularity of a collection
of closed convex sets. We begin with the definition.

Definition 2 (see, e.g., [3, Definition 5.6]) Let C1, . . . , CN be closed convex subsets of E with a
non-empty intersection C. We say that the collection {C1, . . . , CN} is boundedly linearly regular
if for every bounded subset B of E, there exists a constant κ > 0 such that

d(x,C) ≤ κ · max
i=1,...,N

d(x,Ci) for all x ∈ B.

Naturally, we are interested in the collection C = {Γf (ȳ),ΓP (ḡ)}. It is obvious that both Γf (ȳ)
and ΓP (ḡ) are convex, and that the former is closed. Using the fact that P is a closed proper
convex function (Assumption 1(b)) and [30, Theorem 24.4], we see that ΓP (ḡ) is closed as well. In
addition, we have Γf (ȳ)∩ΓP (ḡ) = X , which is non-empty by Assumption 2. Thus, the collection C
satisfies the hypothesis of Definition 2. The following result highlights the relevance of the notion
of bounded linear regularity in establishing the calmness property stated in Corollary 1.

Theorem 2 Suppose that Problem (1) satisfies Assumptions 1 and 2. Let ȳ ∈ T and ḡ ∈ E be as in
Proposition 1. Consider the collection C = {Γf (ȳ),ΓP (ḡ)}, where the multi-functions Γf : T ⇒ E
and ΓP : E ⇒ E are defined in (26). Suppose that the following two conditions hold:

(C1). The collection C is boundedly linearly regular.

(C2). For any x̄ ∈ X , the subdifferential ∂P : E ⇒ E is metrically sub-regular at x̄ for −ḡ.

Then, the solution map Γ : T × E ⇒ E is calm at (ȳ, ḡ) for any x̄ ∈ Γ(ȳ, ḡ).

Proof Condition (C2) and Fact 1 imply that (∂P )−1 : E ⇒ E is calm at −ḡ for any x̄ ∈ X . Since
X is compact by Assumption 2, Proposition 2 implies the existence of constants κ0, ǫ > 0 such that

(∂P )−1(−g) ∩ (X + ǫBE) ⊆ (∂P )−1(−ḡ) + κ0‖g − ḡ‖2BE for all g ∈ E .

It is clear that Γ(y, g) ⊆ ΓP (g) = (∂P )−1(−g) for any (y, g) ∈ T × E . Thus, the above inclusion
leads to

Γ(y, g) ∩ (X + ǫBE) ⊆ ΓP (ḡ) + κ0‖g − ḡ‖2BE for all (y, g) ∈ T × E .
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In particular, for any (y, g) ∈ T × E such that Γ(y, g) ∩ (X + ǫBE) 6= ∅, we have

d(x,ΓP (ḡ)) ≤ κ0‖g − ḡ‖2 for all x ∈ Γ(y, g) ∩ (X + ǫBE). (27)

On the other hand, observe that Γf (ȳ) is the set of solutions to a linear system. Thus, by the
Hoffman bound [12], there exists a constant κ1 > 0 such that

d(x,Γf (ȳ)) ≤ κ1‖A(x)− ȳ‖2 for all x ∈ E . (28)

Now, since X + ǫBE is bounded, by condition (C1), there exists a constant κ2 > 0 such that

d(x,Γ(ȳ, ḡ)) ≤ κ2 ·max {d(x,Γf (ȳ)), d(x,ΓP (ḡ))} for all x ∈ X + ǫBE . (29)

It follows from (27)–(29) that for any (y, g) ∈ T × E satisfying Γ(y, g) ∩ (X + ǫBE) 6= ∅, we have

d(x,Γ(ȳ, ḡ)) ≤ κ2 ·max {κ1‖A(x)− ȳ‖2, κ0‖g − ḡ‖2}
≤ κ · ‖(y, g) − (ȳ, ḡ)‖2 for all x ∈ Γ(y, g) ∩ (X + ǫBE),

where κ = κ2 ·max{κ0, κ1}. This implies that Γ is calm at (ȳ, ḡ) for any x̄ ∈ Γ(ȳ, ḡ), as desired. ⊔⊓
As seen from Theorem 2, the bounded linear regularity of the collection C can potentially

simplify the task of verifying the calmness property stated in Corollary 1 and hence of establishing
the error bound (EBP). Thus, it is natural to ask when the collection C is boundedly linearly
regular. The following fact provides a simple answer.

Fact 2 ([4, Corollary 3]) Let C1, . . . , CN be closed convex subsets of E, where Cr+1, . . . , CN are
polyhedral for some r ∈ {0, 1, . . . , N}. Suppose that

r
⋂

i=1

ri(Ci) ∩
N
⋂

i=r+1

Ci 6= ∅.

Then, the collection {C1, . . . , CN} is boundedly linearly regular.

Although Fact 2 only gives a sufficient condition for the collection C to be boundedly linearly
regular, it is already very useful for studying the error bound property (EBP) associated with
Problem (1). This will be elaborated in the next section.

4 Applications to Structured Convex Optimization

So far our investigation has focused on deriving conditions that can imply the error bound (EBP)
for the structured convex optimization problem (1). However, we have yet to exhibit instances
of Problem (1) that would satisfy those conditions. As it turns out, such instances abound in
applications. In this section, we will consider four classes of instances of Problem (1) and show
that they all possess the calmness property stated in Corollary 1. Consequently, they all have the
error bound property (EBP). Although previous works have already established the error bound
property for three of the four classes of instances mentioned above, we shall see that our approach
provides a unified and more transparent treatment of the existing results. More interestingly, our
approach allows us to resolve the validity of the error bound (EBP) for the fourth class of instances,
which comprises of structured convex optimization problems with nuclear norm regularization. This
answers an open question raised by Tseng [38].

For notational simplicity, in what follows, we shall refer to f as the loss function and P as the
regularizer. Moreover, unless otherwise stated, Assumptions 1 and 2 will be in force.
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4.1 Strongly Convex Loss Function

As a warm-up, suppose that the linear operator A in Assumption 1 is the identity; i.e., E = T and
A(x) = x for all x ∈ E . This gives rise to instances of Problem (1) in which the loss function f is
strongly convex and has a Lipschitz continuous gradient on any compact convex set V ⊆ dom(f).
Conversely, any such loss function can be put into the form (5) by letting A to be the identity map,
h = f , and c = 0. It is well known that in this case the error bound (EBP) holds whenever the
optimal solution set X is non-empty; see, e.g., [25, Theorem 3.1]. To recover this result using the
machinery developed in Section 3, we first observe that the solution map Γ is given by

Γ(y, g) =

{

{y} if −g ∈ ∂P (y),
∅ otherwise.

(30)

Now, note that X is either empty or a singleton. Thus, the non-emptiness of X is equivalent to
Assumption 2. In particular, we have X = Γ(ȳ, ḡ) = {x̄}, where x̄ = ȳ ∈ E and ḡ = ∇h(x̄) + c ∈ E
with −ḡ ∈ ∂P (x̄). This, together with (30), implies that

Γ(y, g) ⊆ Γ(ȳ, ḡ) + ‖y − ȳ‖2BE ⊆ Γ(ȳ, ḡ) + ‖(y, g) − (ȳ, ḡ)‖2BE for all (y, g) ∈ T × E ,

which in turn implies that Γ is calm at (ȳ, ḡ) for x̄ ∈ Γ(ȳ, ḡ). The desired conclusion then follows
from Corollary 1.

Proposition 5 Suppose that Problem (1) satisfies Assumptions 1 and 2. Suppose further that A
is the identity map, so that the loss function f is strongly convex and has a Lipschitz continuous
gradient on any compact convex set V ⊆ dom(f). Then, the error bound (EBP) holds.

4.2 Polyhedral Convex Regularizer

Next, we consider instances of Problem (1) in which the regularizer P is polyhedral convex. This
covers settings where P is the LASSO regularizer (i.e., P (x) = ‖x‖1) or the ℓ∞-norm regularizer
(i.e., P (x) = ‖x‖∞). In view of Corollary 1, to establish the error bound (EBP), it suffices to check
conditions (C1) and (C2) in Theorem 2. Towards that end, let us write Γ(y, g) = Γf (y) ∩ ΓP (g),
where Γf ,ΓP are defined in (26). Since P is a polyhedral convex function, its conjugate P ∗ is also a
polyhedral convex function [30, Theorem 19.2]. Thus, by [30, Corollary 23.5.1 and Theorem 23.10],
the set

∂P ∗(−ḡ) = (∂P )−1(−ḡ) = ΓP (ḡ)

is polyhedral convex. As Γf (ȳ) is also polyhedral convex (it is the set of solutions to a linear
system), we conclude from Fact 2 that the collection {Γf (ȳ),ΓP (ḡ)} is boundedly linearly regular;
i.e., condition (C1) is satisfied.

Now, by [28, Proposition 3], ∂P ∗ = (∂P )−1 is a polyhedral multi-function; i.e., gph(∂P ∗) is the
union of a finite (possibly empty) collection of polyhedral convex sets (see [45] for an alternative
proof of this result). Hence, we can invoke a celebrated result of Robinson [29] to conclude that
(∂P )−1 is calm at −ḡ for any x̄ ∈ X ; see [8, Proposition 3H.1]. This, together with Fact 1, implies
that for any x̄ ∈ X , ∂P is metrically sub-regular at x̄ for −ḡ; i.e., condition (C2) is satisfied.

Proposition 6 Suppose that Problem (1) satisfies Assumptions 1 and 2 with P being a polyhedral
convex regularizer. Then, the error bound (EBP) holds.

17



Modulo the boundedness assumption on X (see Assumption 2), our argument above leads to
an alternative proof of Theorem 2.1 in Luo and Tseng [17] and a part of Theorem 4 in Tseng and
Yun [39]. It is worth noting that one can use the machinery developed in Section 3 to establish
the error bound (EBP) without assuming the boundedness of X . However, one needs to exploit
the polyhedrality of P , just as it was done in [17, 39]. Since our original motivation is to develop
an analysis framework that can tackle non-polyhedral regularizers P , we choose not to pursue a
separate, more refined analysis for the polyhedral case, so as to streamline the presentation.

4.3 Grouped LASSO Regularizer

Now, let us consider Problem (1) with grouped LASSO regularization; i.e., E = R
n and P : Rn → R

takes the form P (x) =
∑

J∈J ωJ‖xJ‖2, where J is a partition of {1, . . . , n}, xJ ∈ R
|J | is the vector

obtained by restricting x ∈ R
n to the entries in J ∈ J , and ωJ ≥ 0 is a given parameter. The

grouped LASSO regularizer, which is convex but not polyhedral in general, is motivated by the
desire to induce sparsity among the variables at a group level and has found many applications
in statistics; see, e.g., [16, 43, 21]. In a groundbreaking work, Tseng [38] showed that the error
bound (EBP) holds in this case. However, his proof involves a delicate and tedious argument. In
particular, it does not offer much insight into how the grouped LASSO regularizer is different from
other non-polyhedral convex regularizers, for which a Lipschitzian error bound similar to (EBP)
typically does not hold without further assumptions (we shall see one such example in the next sub-
section). In what follows, we will provide an alternative, more transparent proof of Tseng’s result
using the machinery developed in Section 3. The proof reveals that the grouped LASSO regularizer
and the solution map Γ it induces possess nice structural and regularity properties. Such properties
make it possible to establish the error bound (EBP) even though the grouped LASSO regularizer
is non-polyhedral.

To begin, recall that for any x ∈ F , where F is a finite-dimensional Euclidean space, we have

∂‖x‖2 = {s ∈ F | ‖s‖2 ≤ 1, 〈s, x〉 = ‖x‖2} =

{

BF if x = 0,

x/‖x‖2 otherwise.
(31)

Since ∂P (x) =
∑

J∈J ωJ∂‖xJ‖2 by [30, Theorem 23.8] and J is a partition of {1, . . . , n}, a simple
calculation shows that −g ∈ ∂P (x) if and only if −gJ ∈ ωJ∂‖xJ‖2 for all J ∈ J . In particular, for
any g ∈ R

n, we have

ΓP (g) =
∏

J∈J

ΓP,J(g), (32)

where
ΓP,J(g) :=

{

x ∈ R
|J | | −gJ ∈ ωJ∂‖x‖2

}

for J ∈ J .

The following result provides an explicit characterization of ΓP,J(g), where J ∈ J :

Proposition 7 Let J ∈ J and g ∈ R
n be fixed. If ωJ = 0, then

ΓP,J(g) =

{

R
|J | if gJ = 0,

∅ otherwise.
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On the other hand, if ωJ > 0, then

ΓP,J(g) =











∅ if ‖gJ‖2 > ωJ ,
{

a · gJ ∈ R
|J | | a ≤ 0

}

if ‖gJ‖2 = ωJ ,

{0} if ‖gJ‖2 < ωJ .

Consequently, ΓP,J(g) is a polyhedral convex set.

Proof The case where ωJ = 0 is trivial. Thus, let us focus on the case where ωJ > 0. Using (31),
it is clear that ΓP,J(g) = ∅ (resp. ΓP,J(g) = {0}) when ‖gJ‖2 > ωJ (resp. ‖gJ‖2 < ωJ). Now,
suppose that ‖gJ‖2 = ωJ and x ∈ ΓP,J(g). By (31) and the Cauchy-Schwarz inequality, we have
‖x‖2 = 〈−gJ/ωJ , x〉 ≤ ‖x‖2, which implies that x is a non-negative multiple of −gJ/ωJ . Conversely,
it is easy to see that a · gJ ∈ ΓP,J(g) for any a ≤ 0. This completes the proof. ⊔⊓

From (32) and Proposition 7, we see that ΓP (ḡ) is a polyhedral convex set. Thus, by Fact 2,
the collection {Γf (ȳ),ΓP (ḡ)} is boundedly linearly regular; i.e., condition (C1) in Theorem 2 is
satisfied.

Next, we show that for any x̄ ∈ X , ∂P is metrically sub-regular at x̄ for −ḡ; i.e., condition (C2)
in Theorem 2 is also satisfied. Using the product structure (32) of ΓP , for any x ∈ R

n, we have

d
(

x, (∂P )−1(−ḡ)
)2

= d (x,ΓP (ḡ))
2 =

∑

J∈J

d (xJ ,ΓP,J(ḡ))
2 =

∑

J∈J

d
(

xJ , (ωJ∂‖ · ‖2)−1(−ḡJ)
)2

.

Moreover, observe that

d (−ḡ, ∂P (x))2 =
∑

J∈J

d (−ḡJ , ωJ∂‖xJ‖2)2 .

Since (x̄,−ḡ) ∈ gph(∂P ), Proposition 7 implies that ḡJ = 0 whenever ωJ = 0, where J ∈ J . This
in turn implies that

d
(

x, (∂P )−1(−ḡ)
)2

=
∑

J∈J |ωJ>0

d
(

xJ , (ωJ∂‖ · ‖2)−1(−ḡJ)
)2

=
∑

J∈J |ωJ>0

d
(

xJ , (∂‖ · ‖2)−1(−ḡJ/ωJ)
)2

(33)

and

d (−ḡ, ∂P (x))2 =
∑

J∈J |ωJ>0

d (−ḡJ , ωJ∂‖xJ‖2)2 =
∑

J∈J |ωJ>0

ω2
J · d (−ḡJ/ωJ , ∂‖xJ‖2)2 . (34)

To proceed, we prove the following result, which would allow us to bound each summand in (33)
by the corresponding summand in (34).

Proposition 8 The multi-function ∂‖ · ‖2 : F ⇒ F is metrically sub-regular at any x ∈ F for any
s ∈ F such that (x, s) ∈ gph(∂‖ · ‖2).

Proof Let (x0, s0) ∈ gph(∂‖ · ‖2) be arbitrary. By (31), we have ‖s0‖2 ≤ 1. Consider first the case
where ‖s0‖2 < 1. We have x0 = 0 and (∂‖ · ‖2)−1(s0) = {0}. It follows that for any x ∈ F ,

d
(

x, (∂‖ · ‖2)−1(s0)
)

= ‖x‖2.
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On the other hand, set ǫ = min{‖y − s0‖2 | ‖y‖2 = 1}. Since ‖s0‖2 < 1, we have ǫ > 0. Moreover,
for any x ∈ F \ {0}, we have d(s0, ∂‖x‖2) = ‖s0 − (x/‖x‖2)‖2 ≥ ǫ. Thus, we obtain

d
(

x, (∂‖ · ‖2)−1(s0)
)

≤ d(s0, ∂‖x‖2) for all x ∈ BF (x0, ǫ),

as required.
Next, consider the case where ‖s0‖2 = 1. Let ǫ > 0 be arbitrary and set κ = ‖x0‖2 + ǫ > 0. We

claim that
d
(

x, (∂‖ · ‖2)−1(s0)
)

≤ κ · d(s0, ∂‖x‖2) for all x ∈ BF (x0, ǫ).

Indeed, let x ∈ BF(x0, ǫ) be arbitrary. If x = 0, then d
(

x, (∂‖ · ‖2)−1(s0)
)

= d(s0, ∂‖x‖2) = 0,
which implies that the above inequality holds trivially. Otherwise, note that by Proposition 7, we
have (∂‖ · ‖2)−1(s0) = {a · s0 ∈ F | a ≥ 0}. This, together with (31) and the definition of κ, yields

d
(

x, (∂‖ · ‖2)−1(s0)
)

≤ ‖x− ‖x‖2 · s0‖2 = ‖x‖2 · ‖s0 − (x/‖x‖2)‖2 ≤ κ · d(s0, ∂‖x‖2),

as desired. ⊔⊓
From Proposition 8 and the fact that (x̄J ,−ḡJ) ∈ gph(ωJ∂‖ · ‖2) for J ∈ J , we deduce that for

each J ∈ J with ωJ > 0, there exist constants κJ , ǫJ > 0 such that

d
(

xJ , (∂‖ · ‖2)−1(−ḡJ/ωJ)
)

≤ κJ · d (−ḡJ/ωJ , ∂‖xJ‖2) for all xJ ∈ B
R|J|(x̄J , ǫJ ). (35)

It then follows from (33), (34), and (35) that

d
(

x, (∂P )−1(−ḡ)
)2 ≤

∑

J∈J |ωJ>0

κ2J · d (−ḡJ/ωJ , ∂‖xJ‖2)2

≤ κ2 · d (−ḡ, ∂P (x))2 for all x ∈ BRn(x̄, ǫ),

where
κ = max

J∈J |ωJ>0

κJ
ωJ

and ǫ = min
J∈J |ωJ>0

ǫJ .

In other words, ∂P is metrically sub-regular at x̄ for −ḡ.
Finally, by invoking Theorem 2 and Corollary 1, we recover the following result of Tseng [38,

Theorem 2]:

Proposition 9 Suppose that Problem (1) satisfies Assumptions 1 and 2 with P being the grouped
LASSO regularizer. Then, the error bound (EBP) holds.

4.4 Nuclear Norm Regularizer

Lastly, we consider instances of Problem (1) in which P is the nuclear norm regularizer; i.e.,
E = R

m×n and P : Rm×n → R is given by P (X) = ‖X‖∗. Without loss of generality, we assume
that m ≤ n. The nuclear norm regularizer has been widely used in convex relaxations of low-rank
matrix optimization problems; see, e.g., [1, 10, 14] and the references therein. However, to the best
of our knowledge, the question of whether the error bound (EBP) holds in this case remains open;
see Footnote 1. In the sequel, we resolve this question by utilizing the machinery developed in
Section 3. Specifically, we first show that the error bound (EBP) holds in this case under certain
strict complementarity-type regularity condition. Then, we give a concrete example to show that
without such condition, the error bound (EBP) could fail to hold.
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4.4.1 Basic Results in Matrix Theory

Let us begin by recalling some basic results in matrix theory. Consider an arbitrary matrix X ∈
R
m×n of rank r ≤ m, whose i-th largest singular value is denoted by σi(X) for i = 1, . . . ,m. Let

X = U
[

Σ(X) 0
]

V T =
[

U+ U0

]

[

Σ+(X) 0

0 0

]

[

V+ V0

]T
(36)

be any singular value decomposition (SVD) of X, where U =
[

U+ U0

]

∈ O
m is orthogonal

with U+ ∈ R
m×r and U0 ∈ R

m×(m−r); V =
[

V+ V0

]

∈ O
n is orthogonal with V+ ∈ R

n×r and

V0 ∈ R
n×(n−r); Σ(X) = Diag(σ1(X), . . . , σm(X)) ∈ S

m and Σ+(X) = Diag(σ1(X), . . . , σr(X)) ∈ S
r

are diagonal. The following characterization of the subdifferential of the nuclear norm is well known:

Fact 3 (see, e.g., [40, Example 2]) We have

∂‖X‖∗ =

{

[

U+ U0

]

[

Ir 0

0 W

]

[

V+ V0

]T
∣

∣

∣
‖W‖ ≤ 1

}

,

where Ir is the r × r identity matrix.

Although the matrices Σ(X) and Σ+(X) are uniquely determined by X, there could be multiple
pairs of orthogonal matrices (U, V ) that decompose X into the form (36). Let

Ξ(X) :=
{

(U, V ) ∈ O
m ×O

n | X = U
[

Σ(X) 0
]

V T
}

be the set of all such pairs of orthogonal matrices. Furthermore, let σ̄1(X) > σ̄2(X) > · · · > σ̄s(X)
be the distinct non-zero singular values of X. Then, we can define the index sets

Ik := {i ∈ {1, . . . ,m} | σi(X) = σ̄k(X)} for k = 1, . . . , s.

The following result explains the relationship between different SVDs of X:

Fact 4 (see, e.g., [7, Proposition 5]) Let (U1, V1), (U2, V2) ∈ Ξ(X) be given. Then, there exist
orthogonal matrices Qk ∈ O

|Ik| for k = 1, . . . , s, Q′ ∈ O
m−r, and Q′′ ∈ O

n−r such that

UT
1 U2 =

[

Q 0

0 Q′

]

and V T
1 V2 =

[

Q 0

0 Q′′

]

,

where Q = BlkDiag(Q1, . . . , Qs) ∈ O
r.

To facilitate our study of the local behavior of the solution map Γ, we will also need the following
matrix perturbation results:

Fact 5 (see, e.g., [33, Chapter IV, Theorem 4.11]) For any X,Y ∈ R
m×n and i ∈ {1, . . . ,m},

|σi(X)− σi(Y )| ≤ ‖X − Y ‖F .

Fact 6 (cf. [7, Proposition 7]) For any X ∈ R
m×n, there exist constants γ, δ > 0 such that if

Y ∈ R
m×n satisfies ‖X − Y ‖F ≤ δ and UY ∈ O

m, VY ∈ O
n satisfy (UY , VY ) ∈ Ξ(Y ), then there

exists a pair of orthogonal matrices (UX , VX) ∈ Ξ(X) such that

‖(UX , VX)− (UY , VY )‖F ≤ γ‖X − Y ‖F .
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4.4.2 Characterization of ΓP

Armed with the results in Section 4.4.1, our goal now is to derive an explicit expression for ΓP (G),
where G ∈ R

m×n is arbitrary. Recall that

ΓP (G) =
{

X ∈ R
m×n | −G ∈ ∂‖X‖∗

}

.

Suppose that ΓP (G) 6= ∅. Then, we have ‖−G‖ ≤ 1 by Fact 3. This allows us to divide the singular
values of −G into the following three groups:

σi(−G) = 1 for i = 1, . . . , s̄,

σi(−G) ∈ (0, 1) for i = s̄+ 1, . . . , r̄,

σi(−G) = 0 for i = r̄ + 1, . . . ,m,

where r̄ = rank(−G). In particular, every SVD of −G can be put into the form

−G =
[

Ū1 Ū(0,1) Ū0

]





Is̄ 0 0

0 Σ̄(0,1) 0

0 0 0





[

V̄1 V̄(0,1) V̄0

]T
, (37)

where
[

Ū1 Ū(0,1) Ū0

]

∈ O
m is orthogonal with Ū1 ∈ R

m×s̄, Ū(0,1) ∈ R
m×(r̄−s̄), and Ū0 ∈

R
m×(m−r̄);

[

V̄1 V̄(0,1) V̄0

]

∈ O
n is orthogonal with V̄1 ∈ R

n×s̄, V̄(0,1) ∈ R
n×(r̄−s̄), and V̄0 ∈

R
n×(n−r̄); Σ̄(0,1) = Diag (σs̄+1(−G), . . . , σr̄(−G)) ∈ S

r̄−s̄ is diagonal. Using (37), we have the
following characterization of ΓP (G):

Proposition 10 Suppose that −G admits the SVD (37). Then, we have

ΓP (G) =







[

Ū1 Ū(0,1) Ū0

]





Z 0 0

0 0 0

0 0 0





[

V̄1 V̄(0,1) V̄0

]T

∣

∣

∣

∣

∣

Z ∈ S
s̄
+







.

Proof Let Z ∈ S
s̄
+ be arbitrary and Z = QΛQT be its spectral decomposition, where Q ∈ O

s̄ is
orthogonal and Λ ∈ S

s̄ is diagonal. Consider the matrix

X =
[

Ū1 Ū(0,1) Ū0

]





Z 0 0

0 0 0

0 0 0





[

V̄1 V̄(0,1) V̄0

]T
.

Since Z � 0, the diagonal entries of Λ are non-negative. It follows that

X =
[

Ū1Q Ū(0,1) Ū0

]





Λ 0 0

0 0 0

0 0 0





[

V̄1Q V̄(0,1) V̄0

]T

is an SVD of X. This, together with Fact 3 and the fact that ‖Σ̄(0,1)‖ < 1, implies

[

Ū1Q Ū(0,1) Ū0

]





Is̄ 0 0

0 Σ̄(0,1) 0

0 0 0





[

V̄1Q V̄(0,1) V̄0

]T ∈ ∂‖X‖∗.
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Upon observing that QQT = Is̄ and using (37), we conclude that −G ∈ ∂‖X‖∗, or equivalently,
X ∈ ΓP (G), as desired.

Conversely, let X ∈ R
m×n be such that X ∈ ΓP (G). Suppose that rank(X) = r and X admits

the SVD (36). Since −G ∈ ∂‖X‖∗, Fact 3 implies the existence of a matrix W ′ ∈ R
(m−r)×(n−r)

with ‖W ′‖ ≤ 1 such that

−G =
[

U+ U0

]

[

Ir 0

0 W ′

]

[

V+ V0

]T
.

Note that since ‖W ′‖ ≤ 1, we have σi(W
′) ∈ (0, 1] for i = 1, . . . , r′, where r′ = rank(W ′). Now, let

W ′ = U ′

[

Σ+(W
′) 0

0 0

]

(V ′)T

be an SVD ofW ′, where U ′ ∈ O
m−r, V ′ ∈ O

n−r are orthogonal and Σ+(W
′) = Diag(σ1(W

′), . . . , σr′(W
′)) ∈

S
r′ is diagonal. Then, we have the following alternative SVD of −G:

−G =
[

U+ U0U
′
]





Ir 0 0

0 Σ+(W
′) 0

0 0 0





[

V+ V0V
′
]T

. (38)

Upon comparing (37) and (38) and noting that Ir̄−s̄ ≻ Σ̄(0,1) and Ir′ � Σ+(W
′), we have r ≤ s̄ and

([

Ū1 Ū(0,1) Ū0

]

,
[

V̄1 V̄(0,1) V̄0

])

∈ Ξ(−G),
([

U+ U0U
′
]

,
[

V+ V0V
′
])

∈ Ξ(−G).

By Fact 4, there exist orthogonal matrices Q ∈ O
s̄, Q′ ∈ O

m−s̄, and Q′′ ∈ O
n−s̄ such that

[

Q 0

0 Q′

]

=
[

Ū1 Ū(0,1) Ū0

]T [

U+ U0U
′
]

, (39)

[

Q 0

0 Q′′

]

=
[

V̄1 V̄(0,1) V̄0

]T [

V+ V0V
′
]

. (40)

In particular, we have

[

Ū1 Ū(0,1) Ū0

]T
X

[

V̄1 V̄(0,1) V̄0

]

=
[

Ū1 Ū(0,1) Ū0

]T [

U+ U0

]

[

Σ+(X) 0

0 0

]

[

V+ V0

]T [

V̄1 V̄(0,1) V̄0

]

(41)

=

[

Q 0

0 Q′

] [

Σ+(X) 0

0 0

] [

Q 0

0 Q′′

]T

, (42)

where (41) follows from the SVD of X in (36); (42) follows from (39), (40), and the fact that

[

U+ U0

]

[

Σ+(X) 0

0 0

]

[

V+ V0

]T
=

[

U+ U0U
′
]

[

Ir 0

0 (U ′)T

] [

Σ+(X) 0

0 0

] [

Ir 0

0 V ′

]

[

V+ V0V
′
]T

=
[

U+ U0U
′
]

[

Σ+(X) 0

0 0

]

[

V+ V0V
′
]T

.
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Note that Q ∈ O
s̄ and Σ+(X) ∈ S

r
++. Hence, we cannot multiply Q and Σ+(X) directly. Never-

theless, since r ≤ s̄, we can still expand (42) to obtain

X =
[

Ū1 Ū(0,1) Ū0

]





Z 0 0

0 0 0

0 0 0





[

V̄1 V̄(0,1) V̄0

]T

for some Z ∈ S
s̄
+. This completes the proof. ⊔⊓

4.4.3 Metric Sub-Regularity of ∂P

Our next task is to show that the subdifferential of the nuclear norm, ∂‖ · ‖∗, is metrically sub-
regular at any X ∈ R

m×n for any −G ∈ R
m×n such that (X,−G) ∈ gph(∂‖ · ‖∗); i.e., for any

(X0,−G0) ∈ gph(∂‖ · ‖∗), there exist constants κ, ǫ > 0 such that

d
(

X, (∂‖ · ‖∗)−1(−G0)
)

≤ κ · d (−G0, ∂‖X‖∗) for all X ∈ BRm×n(X0, ǫ). (43)

This result, which could be of independent interest, is crucial to understanding the validity of
the error bound (EBP) for Problem (1) when P is the nuclear norm regularizer. Note that by a
standard argument (see, e.g., [8, Exercise 3H.4]), it suffices to establish the existence of constants
κ0, ǫ0, δ0 > 0 such that

d
(

X, (∂‖ · ‖∗)−1(−G0)
)

≤ κ0 · d (−G0, ∂‖X‖∗ ∩ BRm×n(−G0, δ0)) for all X ∈ BRm×n(X0, ǫ0).
(44)

Towards that end, let (X0,−G0) ∈ gph(∂‖ ·‖∗) and ǫ0 > 0 be arbitrary, with rank(−G0) = r̃. Since
−G0 ∈ ∂‖X0‖∗, Fact 3 implies the existence of an integer s̃ ∈ {1, . . . , r̃} such that σi(−G0) = 1 for
i = 1, . . . , s̃; σi(−G0) ∈ (0, 1) for i = s̃+1, . . . , r̃; σi(−G0) = 0 for i = r̃+1, . . . ,m. Hence, we may
express any SVD of −G0 as

−G0 =
[

Ũ1 Ũ(0,1) Ũ0

]





Is̃ 0 0

0 Σ̃(0,1) 0

0 0 0





[

Ṽ1 Ṽ(0,1) Ṽ0

]T
,

where
[

Ũ1 Ũ(0,1) Ũ0

]

∈ O
m is orthogonal with Ũ1 ∈ R

m×s̃, Ũ(0,1) ∈ R
m×(r̃−s̃), and Ũ0 ∈

R
m×(m−r̃);

[

Ṽ1 Ṽ(0,1) Ṽ0

]

∈ O
n is orthogonal with Ṽ1 ∈ R

n×s̃, Ṽ(0,1) ∈ R
n×(r̃−s̃), and Ṽ0 ∈

R
n×(n−r̃); Σ̃(0,1) = Diag (σs̃+1(−G), . . . , σr̃(−G)) ∈ S

r̃−s̃ is diagonal. Now, let γ0, δ0 > 0 be the con-
stants that guarantee the property stated in Fact 6 holds at −G0. Consider a matrix X ∈ R

m×n

with ‖X −X0‖F ≤ ǫ0. The inequality (44) trivially holds if ∂‖X‖∗ ∩ BRm×n(−G0, δ0) = ∅. Hence,
suppose that there exists a −G ∈ ∂‖X‖∗ ∩ BRm×n(−G0, δ0), whose SVD is given by (37). In par-
ticular, we have σi(−G) = 1 for i = 1, . . . , s̄; σi(−G) ∈ (0, 1) for i = s̄ + 1, . . . , r̄; σi(−G) = 0 for
i = r̄+1, . . . ,m, where r̄ = rank(−G). In view of Fact 5, we may, by adjusting δ0 > 0 if necessary,
assume that σi(−G) ∈ (0, 1) for i = s̃+ 1, . . . , r̃. Consequently, we have s̄ ≤ s̃ and r̄ ≥ r̃.

To proceed, let

Ū =
[

Ū1 Ū(0,1) Ū0

]

, V̄ =
[

V̄1 V̄(0,1) V̄0

]T
,

Ũ =
[

Ũ1 Ũ(0,1) Ũ0

]

, Ṽ =
[

Ṽ1 Ṽ(0,1) Ṽ0

]T
.
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Since X ∈ ΓP (G) and X0 ∈ ΓP (G0), Proposition 10 implies the existence of positive semidefinite
matrices Z̄ ∈ S

s̄
+ and Z̃ ∈ S

s̃
+ such that

X = Ū





Z̄ 0 0

0 0 0

0 0 0



 V̄ T and X0 = Ũ





Z̃ 0 0

0 0 0

0 0 0



 Ṽ T . (45)

Moreover, since ‖G −G0‖F ≤ δ0, by Fact 6, there exists a pair (Ũ⋆, Ṽ ⋆) ∈ Ξ(−G0) such that

‖(Ũ⋆, Ṽ ⋆)− (Ū , V̄ )‖F ≤ γ0‖G−G0‖F . (46)

Upon recall that (Ũ , Ṽ ) ∈ Ξ(−G0) and invoking Fact 4, we obtain

ŨT Ũ⋆ =

[

Q 0

0 Q′

]

and Ṽ T Ṽ ⋆ =

[

Q 0

0 Q′′

]

for some orthogonal matrices Q ∈ O
s̃, Q′ ∈ O

m−s̃, and Q′′ ∈ O
n−s̃. Now, consider the matrix

X⋆
0 = Ũ⋆





Z̄ 0 0

0 0 0

0 0 0



 (Ṽ ⋆)T ∈ R
m×n.

Observe that since s̄ ≤ s̃, we have

ŨTX⋆
0 Ṽ = ŨT Ũ⋆

[

Z̄ 0

0 0

]

(Ṽ ⋆)T Ṽ

=

[

Q 0

0 Q′

] [

Z̄ 0

0 0

] [

Q 0

0 Q′′

]T

=





Z̄⋆ 0 0

0 0 0

0 0 0





for some Z̄⋆ ∈ S
s̃
+. This, together with Proposition 10, implies that X⋆

0 ∈ ΓP (G0). Hence, by
setting κ0 =

√
2γ0 (‖X0‖F + ǫ0), we have

d
(

X, (∂‖ · ‖∗)−1(−G0)
)

= d(X,ΓP (G0))

≤ ‖X −X⋆
0‖F

=

∥

∥

∥

∥

∥

∥

Ū





Z̄ 0 0

0 0 0

0 0 0



 V̄ T − Ũ⋆





Z̄ 0 0

0 0 0

0 0 0



 (Ṽ ⋆)T

∥

∥

∥

∥

∥

∥

F

≤
√
2 · ‖X‖F · ‖(Ũ⋆, Ṽ ⋆)− (Ū , V̄ )‖F (47)

≤ κ0 · ‖G−G0‖F , (48)
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where (47) follows from (45) and the fact that for any matrix A ∈ R
m×n and orthogonal matrices

U1, U2 ∈ O
m, V1, V2 ∈ O

n,

‖U1AV
T
1 − U2AV

T
2 ‖F = ‖U1AV

T
1 − U1AV

T
2 + U1AV

T
2 − U2AV

T
2 ‖F

≤ ‖A(V1 − V2)
T ‖F + ‖(U1 − U2)A‖F

≤
√
2 · ‖A‖F · ‖(U1, V1)− (U2, V2)‖F ;

(48) follows from (46) and the fact that ‖X − X0‖F ≤ ǫ0. Since the above inequality holds for
arbitrary X ∈ BRm×n(X0, ǫ0) and −G ∈ ∂‖X‖∗ ∩ BRm×n(−G0, δ0), we conclude that (44) holds.
Thus, we obtain the following proposition, which constitutes the second main result of this paper:

Proposition 11 The multi-function ∂‖ · ‖∗ : R
m×n

⇒ R
m×n is metrically sub-regular at any

X ∈ R
m×n for any G ∈ R

m×n such that (X,G) ∈ gph(∂‖ · ‖∗).

4.4.4 Validity of the Error Bound (EBP)

Theorem 2 and Proposition 11 imply that in order to establish the error bound (EBP) for the
nuclear norm-regularized problem (1), it suffices to show that the collection C = {Γf (ȳ),ΓP (Ḡ)},
where ȳ = A(X) and Ḡ = ∇f(X) for any X ∈ X (recall Proposition 1), is boundedly linearly
regular. Since Proposition 10 suggests that the set ΓP (Ḡ) is not polyhedral in general, we can
invoke Fact 2 to conclude that the collection C is boundedly linearly regular if the regularity
condition Γf (ȳ) ∩ ri(ΓP (Ḡ)) 6= ∅ holds. However, such condition is not entirely satisfactory, as it
reveals very little about the structure of the optimal solution set X . This motivates us to develop
an alternative regularity condition, which leads to the third main result of this paper:

Proposition 12 Suppose that Problem (1) satisfies Assumptions 1 and 2 with P being the nuclear
norm regularizer. Suppose further that there exists an X⋆ ∈ X satisfying

0 ∈ ∇f(X⋆) + ri(∂‖X⋆‖∗). (49)

Then, the error bound (EBP) holds.

Proof Recall from (9) that −Ḡ ∈ ∂‖X‖∗ for any X ∈ X . Hence, we have ‖ − Ḡ‖ ≤ 1 by Fact 3.
In particular, we may assume that −Ḡ admits the SVD (37). Since X⋆ ∈ X satisfies (49), we have
−∇f(X⋆) = −Ḡ ∈ ri(∂‖X⋆‖∗). This, together with (37) and Fact 3, implies that rank(X⋆) = s̄.
Now, observe that X⋆ ∈ ΓP (Ḡ), as −Ḡ ∈ ∂‖X⋆‖∗. Since rank(X⋆) = s̄, Proposition 10 yields
X⋆ ∈ ri(ΓP (Ḡ)). Since we also have X⋆ ∈ Γf (ȳ), we conclude that Γf (ȳ) ∩ ri(ΓP (Ḡ)) 6= ∅. Hence,
by Fact 2, the collection {Γf (ȳ),ΓP (Ḡ)} is boundedly linearly regular. Upon combining this with
Proposition 11 and then invoking Theorem 2, the desired result follows. ⊔⊓

To put Proposition 12 into perspective, let us make the following remarks:

(a) It is helpful to think of (49) as a strict complementarity condition. Indeed, suppose that −Ḡ =

−∇f(X⋆) admits the SVD (37) and let Ī =
[

Ū1 Ū(0,1) Ū0

] [

Im 0
] [

V̄1 V̄(0,1) V̄0

]T ∈
R
m×n. Then,

Ī +∇f(X⋆) =
[

Ū1 Ū(0,1) Ū0

]





0 0 0 0

0 Ir̄−s̄ − Σ̄(0,1) 0 0

0 0 Im−r̄ 0





[

V̄1 V̄(0,1) V̄0

]T
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is an SVD of Ī +∇f(X⋆). By Proposition 10, we may write

X⋆ =
[

Ū1 Ū(0,1) Ū0

]





Z⋆ 0 0

0 0 0

0 0 0





[

V̄1 V̄(0,1) V̄0

]T
(50)

for some Z⋆ ∈ S
s̄
+. It follows that X⋆ and Ī +∇f(X⋆) are complementary in the sense that

〈X⋆, Ī +∇f(X⋆)〉 = 0.

Now, if the regularity condition (49) holds, then the proof of Proposition 12 shows that
X⋆ ∈ ri(ΓP (Ḡ)). In particular, we have Z⋆ ∈ S

s̄
++ in (50). This yields rank(X⋆) + rank(Ī +

∇f(X⋆)) = m; i.e., X⋆ and Ī + ∇f(X⋆) are strictly complementary. Conversely, the strict
complementarity between X⋆ and Ī+∇f(X⋆) implies that Z⋆ ∈ S

s̄
++ in (50). Hence, by (37)

and Fact 3, we have −Ḡ = −∇f(X⋆) ∈ ri(∂‖X⋆‖∗); i.e., the regularity condition (49) holds.

(b) Using the fact that X = Γf (ȳ)∩ ΓP (Ḡ) and Proposition 10, we see that X is the solution set
of a linear matrix inequality. As such, it is natural to ask whether the error bound (EBP)
in this case follows from existing error bounds for general linear matrix inequalities (see,
e.g., [34, 2]). It turns out that if the decision variable X is a symmetric matrix (i.e., E = S

n),
then it is indeed possible to use the machinery in [34] to establish the error bound (EBP) for
Problem (1) under the same regularity condition (49). However, the argument is tedious and
does not reveal much insight. Moreover, it is not easy to generalize the argument to handle
the case where X is not symmetric or is rectangular. Therefore, we do not pursue such an
approach here.

In view of Proposition 12, it is natural to ask whether the error bound (EBP) holds without the
regularity condition (49). Unfortunately, the answer is negative in general. To see this, consider
the nuclear norm-regularized problem

min
X∈R2×2

f(X) + ‖X‖∗, (51)

where f : R2×2 → R is the function given by f(X) = h(A(X)), h : R2 → R is the function given by

h(y) =
1

2

∥

∥

∥
B1/2y −B−1/2d

∥

∥

∥

2

2
with B =

[

3/2 −2
−2 3

]

≻ 0 and d =

[

5/2
−1

]

,

and A : R2×2 → R
2 is the linear operator given by

A(X) = (X11,X22).

Note that h is continuously differentiable and strongly convex on R
2. Moreover, we have ∇h(y) =

By − d for any y ∈ R
2, which implies that ∇h is Lipschitz continuous on R

2. Thus, Problem (51)
satisfies Assumption 1.

Since the adjoint operator of A, denoted by A∗ : R2 → R
2×2, is given by

A∗(y1, y2) =

[

y1 0
0 y2

]

,
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a straightforward calculation shows that for any X ∈ R
2×2,

∇f(X) = A∗∇h(A(X)) =





3

2
X11 − 2X22 −

5

2
0

0 −2X11 + 3X22 + 1



 . (52)

Now, consider the matrix

X̄ =

[

1 0
0 0

]

.

Using (52), we have

∇f(X̄) =

[

−1 0
0 −1

]

.

Moreover, using Fact 3, it is easy to verify that

∂‖X̄‖∗ =
{

Z ∈ R
2×2 | Z11 = 1, Z12 = Z21 = 0, Z22 ∈ [−1, 1]

}

.

Hence, we obtain −∇f(X̄) ∈ ∂‖X̄‖∗, which shows that X̄ is an optimal solution to Problem (51);
i.e., X̄ ∈ X .

Next, we claim that X = {X̄}. Indeed, consider an arbitrary X̃ ∈ X . Since h is strongly convex
on R

2, by Proposition 1, we have

A(X̃) = A(X̄) =

[

1
0

]

and ∇f(X̃) = ∇f(X̄) =

[

−1 0
0 −1

]

.

The first relation gives X̃11 = 1 and X̃22 = 0. On the other hand, the second relation and the
optimality of X̃ imply

−∇f(X̃) =

[

1 0
0 1

]

∈ ∂

∥

∥

∥

∥

[

1 X̃12

X̃21 0

]∥

∥

∥

∥

∗

.

This, together with Proposition 10, shows that X̃ ∈ S
2
+. Since X̃22 = 0, we have X̃12 = X̃21 = 0.

It follows that X̃ = X̄, as claimed. In particular, Problem (51) satisfies Assumption 2 as well.
Now, let {δk}k≥0 be a sequence such that δk ց 0 and define the sequence {Xk}k≥0 by

Xk =

[

1 + 2δ2k δk
δk δ2k

]

for k = 0, 1, . . . .

It is clear from the construction that Xk → X̄ and

d(Xk,X ) = ‖Xk − X̄‖F = Θ(δk). (53)

On the other hand, using (52), we have

∇f(Xk) =

[

−1 + δ2k 0
0 −1− δ2k

]

.

It follows that

R(Xk) = S1

(

Xk −∇f(Xk)
)

−Xk = S1

([

2 + δ2k δk
δk 1 + 2δ2k

])

−
[

1 + 2δ2k δk
δk δ2k

]

, (54)
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where S1 : Rm×n → R
m×n is the so-called matrix shrinkage operator defined as follows: Given a

matrix X ∈ R
m×n, S1(X) ∈ R

m×n is the matrix obtained by taking any SVD of X and replacing
the singular value σi(X) by max{σi(X) − 1, 0}, for i = 1, . . . ,m; see, e.g., [20, Theorem 3]. Since

[

2 + δ2k δk
δk 1 + 2δ2k

]

� I2 for k = 0, 1, . . . ,

the definition of S1 implies that

S1

([

2 + δ2k δk
δk 1 + 2δ2k

])

=

[

2 + δ2k δk
δk 1 + 2δ2k

]

− I2 =

[

1 + δ2k δk
δk 2δ2k

]

.

Upon substituting the above equation into (54), we obtain

R(Xk) =

[

−δ2k 0
0 δ2k

]

for k = 0, 1, . . . ,

which shows that ‖R(Xk)‖F = Θ(δ2k). This, together with (53), leads to ‖R(Xk)‖F = o(d(Xk,X )).
Consequently, Problem (51) does not possess the error bound property (EBP). It is worth noting
that since X̄ is the unique optimal solution to Problem (51) and

−∇f(X̄) = I2 6∈ ri(∂‖X̄‖∗) =
{

Z ∈ R
2×2 | Z11 = 1, Z12 = Z21 = 0, Z22 ∈ (−1, 1)

}

,

the regularity condition (49) fails to hold in this example.

5 Conclusion

In this paper, we employed tools from set-valued analysis to develop a new framework for estab-
lishing error bounds for a class of structured convex optimization problems. We showed that such
a framework can be used to recover a number of existing error bound results in a unified and
transparent manner. To further demonstrate the power of our framework, we applied it to a class
of nuclear-norm regularized loss minimization problems and showed, for the first time, that this
class of problems possesses an error bound property under a strict complementarity-type regularity
condition. We then complemented this result by constructing an example to show that the said
error bound could fail to hold without the regularity condition. Consequently, we obtained a rather
complete answer to a question raised by Tseng [38]. A natural and interesting future direction is to
apply our framework to study the error bound property associated with other families of instances
of Problem (1) in which P is non-polyhedral; see, e.g., [45].
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