
An Abstract Model for Branching and its
Application to Mixed Integer Programming

Pierre Le Bodic∗ and George Nemhauser
Georgia Institute of Technology

August 23, 2016

Abstract
The selection of branching variables is a key component of branch-and-

bound algorithms for solving Mixed-Integer Programming (MIP) prob-
lems since the quality of the selection procedure is likely to have a signifi-
cant effect on the size of the enumeration tree. State-of-the-art procedures
base the selection of variables on their “LP gains”, which is the dual bound
improvement obtained after branching on a variable. There are various
ways of selecting variables depending on their LP gains. However, all
methods are evaluated empirically. In this paper we present a theoretical
model for the selection of branching variables. It is based upon an ab-
straction of MIPs to a simpler setting in which it is possible to analytically
evaluate the dual bound improvement of choosing a given variable. We
then discuss how the analytical results can be used to choose branching
variables for MIPs, and we give experimental results that demonstrate
the effectiveness of the method on MIPLIB 2010 “tree” instances where
we achieve a 5% geometric average time and node improvement over the
default rule of SCIP, a state-of-the-art MIP solver.

1 Introduction
Branch & Bound (B&B) [11] is currently the most successful and widely used
algorithm to solve general Mixed Integer Programs (MIPs). B&B searches the
solution space by recursively splitting it, which is traditionally represented by a
tree, where the root node is associated with the entire solution space and where
sibling nodes represent a partition of the solution space of their parent node.
At each node, the subspace is encoded by a MIP, and its Linear Program (LP)
relaxation is solved to provide a dual bound. If the LP is infeasible, or if the
LP bound is no better than the primal bound, the node is pruned (the primal
bound is the value of the best feasible solution found so far). Otherwise, the
subspace at that node is partitioned and the two corresponding children nodes

∗Now at the Faculty of Information Technology of Monash University.

1

ar
X

iv
:1

51
1.

01
81

8v
3

 [
m

at
h.

O
C

]
 2

2
A

ug
 2

01
6

are recursively explored. The part of the B&B algorithm that decides how to
partition the solution space is referred to as the branching rule. Typically, the
branching rule selects one variable among the candidate variables, i.e. those that
have a fractional value in the LP solution of the current node, but are required
to be integer in the original MIP. Formally, suppose that at the current node the
value of an integer variable x in the node’s LP solution is xlp 6∈ Z. Branching on
x would result in two children, each encoding a solution subspace, one in which
x is upper-bounded by bxlpc, the other in which x is lower-bounded by dxlpe.
The PhD thesis [1] provides a practical point of view of the latest advances in
MIP solving and branching in particular. For a general overview of MIP solving
and B&B, see [13], [5] and [6].

This research is motivated by the desire to understand the fundamentals of
state-of-the-art MIP branching rules (many of which are justified experimen-
tally). The main contribution of this paper is the introduction of theoretical
decision problems to study the branching component of B&B. Based on an
analysis of these models, we introduce new scoring functions, and prove their
efficiency on both simulated experiments and MIP instances. The paper is or-
ganized as follows. After defining the abstract B&B model in Section 2, we
study the simplest of our problems in Section 3. More complex problems are
introduced and analyzed in Sections 4 and 5, respectively. Section 6 introduces
two new scoring functions based on the theory developed in previous sections.
Experimental results are presented in Section 7 and conclusions are given in
Section 8.

2 Abstract Branch & Bound model
In this section we model an abstract version of B&B through a series of defini-
tions. We start by defining what we consider to be a variable.

Definition 1 . A variable x is encoded by a pair of non-negative (left and
right) integer gains (lx, rx) with 1 ≤ lx ≤ rx.

The lx and rx gains model the dual bound changes that occur when branch-
ing on the variable x. We suppose that these two gains are known and fixed.
(Note that when solving a MIP using B&B, these gains are not fixed for a
variable.)

We now define a Branch & Bound tree.

Definition 2 . Given a set of variables, a Branch & Bound tree is a binary
tree (in the graph sense) with one variable x assigned to each inner node i .

We then say that variable x is branched on at node i. Note that, in Definition
2, the root node is considered as an inner node. Also note that, in our abstract
model, the gains (lx, rx) of a variable x do not change with the depth of the
node where the variable is branched on, nor do they depend on the dual bound
at this node.

2

These two definitions naturally lead to the definition of dual gap closed at a
node i in a B&B tree. Note that throughout the article, the gap will always refer
to the absolute gap (as opposed to the relative gap), i.e. the absolute difference
between the primal bound and the dual bound.

Definition 3 . The dual gap gi closed at a node i, referred to as gi, is given
by the recursive formula

gi =

0 if i is the root node
gh + lx(h) if i is the left child of node h
gh + rx(h) if i is the right child of node h,

where x(h) is the variable branched on at node h.

For instance, if at a node i, the dual bound is gi = 10, and variable (2, 5)
is branched on, the dual bound closed at the left and right children of i are 12
and 15, respectively.

The gap closed by a B&B tree is defined as follows:

Definition 4 . A tree closes a gap G if for all leaves i, gi ≥ G holds.

Throughout, the size of a tree refers to the number of nodes of the tree.
Using these definitions, the following sections define problems that model the
B&B algorithm in increasing complexity.

3 The Single Variable Branching problem
The first problem we define using the abstract model set up in Section 2 is the
Single Variable Branching (SVB) problem, which is a tree-size measure-
ment problem.

Problem Single Variable Branching
Input: one variable encoded by (l, r) ∈ Z2

>0, G ∈ Z>0, k ∈ Z>0, such that
l ≤ r ≤ G.
Question: Is the size of the Branch & Bound tree that closes the gap G, re-
peatedly using variable (l, r), at most k?

In the example given in Figure 1, a B&B tree that closes a gap of G = 6 is
built using only variables with gains (2, 5). Observe that any tree closing a gap
G contains the unique tree that closes G in a minimum number of nodes. As
we will see, the analysis of SVB will prove more complex and insightful than it
may seem at first glance.

3.1 Motivation: state-of-the-art scoring functions and ex-
ample

A state-of-the-art branching rule for MIP solving (as implemented in SCIP [2])
is a hybrid of mainly two methods: strong branching and pseudo-cost branch-
ing. Given a candidate variable x, strong branching computes the LP gains of

3

0

2

4

6 9

7

5

7 10

Figure 1: B&B tree with 9 nodes that closes a gap of 6 with variable gains
(2, 5). The gap closed at each node is indicated by the value at the center of
each node.

the would-be children of the current node if x is branched on. The candidate
variable which provide the best LP bounds is then branched on. Pseudo-cost
branching complements strong branching; it keeps track of the LP gains of
branching variables for which the children have already been processed, and,
given sufficient historical data, estimates the gains that would be computed by
strong branching. Strong branching is computationally expensive, as it requires
solving many LPs, while pseudo-cost branching only requires a few arithmetic
operations at each node. However, pseudo-cost branching is an estimate, and
it requires initialization. The state-of-the-art branching rule essentially consists
of using strong branching early in the tree, i.e. at the root node and a few sub-
sequent levels, while pseudo-cost branching is called at lower levels. In practice,
there are many refinements to these methods. We direct the reader to Tobias
Achterberg’s PhD thesis [1] and references therein for an in-depth review of
branching rules.

At each node, strong branching (or pseudo-cost branching) provides the
(estimated) LP gains (lx, rx) resulting from branching up and down for each
fractional variable x. Each candidate variable x is then scored according to its
gains (lx, rx), and the the highest scoring variable is selected for branching. The
state-of-the-art scoring function used for this purpose is:

max(ε, lx) ·max(ε, rx),

where ε > 0 is chosen close to 0 (e.g. ε = 10−6 in [1]) to break the ties if all
variables satisfy min(lx, rx) = 0, but plays no role otherwise. We simply refer
to this scoring function as the product function. Prior to the introduction of
the product function, the linear (or convex) function was the standard:

(1− µ) · lx + µ · rx,

where µ is a parameter in [0, 1] (µ = 1
6 in [1]). In [1], Achterberg reports

that switching from the linear function to the product function yields an
improvement of 14% in computing time, and 34% in number of nodes. The
rationale behind the linear function with µ = 1

6 is that it should be preferable
to improve the dual bound of both children by a little rather than only one of

4

0 10 20 30 40 50

0

20

40

60

gap

tr
ee
-s
iz
e

(a) Tree-sizes for gaps in [1, 50]

0 20 40 60 80 100

0

500

1,000

1,500

2,000

gap

(b) Tree-sizes for gaps in [1, 100]

Figure 2: Plot of the sizes of the trees built with variables (10, 10) (in blue) and
(2, 49) (in red).

them. The product function prefers equal left and right gains, i.e. it is more
likely to produce a balanced tree. However, there are types of instances for
which the linear function performs better, so the product function does not
systematically outperform the linear one.

To the best of our knowledge, both the linear and the product function
have been established experimentally, and no theoretical evidence supports the
use of one over the other, or over any other possible function. We now give a
simple example suggesting that more complex functions are required to score
variables. If the product or the linear functions are good scoring functions
for solving MIPs, then they should also perform well on simple models such
as SVB. Consider variables (10, 10) and (2, 50): both the product and the
linear function (with default linear coefficient µ = 1

6) assign these variables
an equal score. Observe that variable (2, 49) receives a smaller score than (2, 50)
(and therefore than variable (10, 10)). We now consider the tree-sizes of two
SVB instances, one that has variable (2, 49) as input, the other having variable
(10, 10).

Figure 2 gives two SVB tree-size plots. For gaps no larger than 40, variable
(10, 10) requires fewer nodes than (2, 49) to close the gap, but larger gaps are
closed faster with (2, 49). For a gap of 1000, using only (10, 10) produces a
tree 323 million times larger than using only (2, 49), yet both scoring functions
assign a higher score to variable (10, 10). It is clear from this example that the
state-of-the-art scoring functions are imperfect.

5

3.2 A polynomial-time algorithm
There exists a simple recurrence relation that solves SVB. For a given gap G,
t(G) is defined as the size of the SVB tree that closes G:

t(G) =
{

1 if G ≤ 0
1 + t(G− l) + t(G− r) otherwise.

(1)

Hence, for a given k, the answer to SVB is YES if and only if t(G) ≤
k. Unfortunately, computing t(G) requires O(G) operations. Therefore the
running time of this algorithm is pseudo-polynomial (and thus exponential) in
the encoding length of the input. Moreover, observe that we do not necessarily
have G = O(log(k)) for YES instances of SVB: if the given variables are all
(1, G), then k = 2G + 1 is the tree-size. However, there exists a closed-form
formula that can be evaluated in polynomial time:
Theorem 1 . SVB is in P. Furthermore, a formula for the size of the B&B
tree is

t(G) = 1 + 2 ·
dG

r e∑
kr=1

(
kr + dG−(kr−1)·r

l e − 1
kr

)
. (2)

Proof. The size of the input is O(log(G) + log(k)). Let T be the minimal tree
that closes the gap G, and let d = dG

r e be the minimum depth of its leaf nodes.
If k < 2d+1 − 1, the answer to the decision problem SVB is necessarily NO,
therefore we can assume the opposite throughout the rest of proof. It follows
that d = O(log(k)). Starting from the root of T , we turn right at most d times
before finding a leaf. For a given path from the root to a leaf, let kl (resp.
kr) denote the number of times we turn left (resp. right). Observe that a pair
(kl, kr) does not uniquely identify a leaf. Furthermore, since the number of
leaves is in O(k), it is impossible to iterate over all of them in a time polynomial
in the size of the input. However, since all leaves satisfy kr ≤ d, it is possible
to iterate over all the values of kr. From now on we suppose that kr ≤ d is
fixed, and restrict our attention to those leaves that are reached by turning
right exactly kr times. The inequality

kl · l + kr · r < G+ r

must hold for each leaf, since the gap closed at each leaf cannot exceed G by
r or more, as otherwise the gap would already be closed at the leaf’s parent.
We therefore have the bound kl ≤ dG−r(kr−1)

l e − 1, and the depth of a leaf is
bounded by kr + dG−r(kr−1)

l e − 1. Furthermore, observe that any kr elements
chosen in the set {1, . . . , kr + dG−r(kr−1)

l e − 1} uniquely determine a path to a
leaf, and that each leaf can be encoded using this scheme. This bijection thus
ensures that the number of such leaves is

(kr+dG−r(kr−1)
l e−1

kr

)
. The total number

of leaves is therefore
dG

r e∑
kr=0

(
kr + dG−(kr−1)·r

l e − 1
kr

)
. (3)

6

Formula (3) can be computed in O(d2) = O(log2(k)) operations, which is poly-
nomial in the size of the input. Observe how the formula iterates over the
possible kr’s but avoids iterating over the range of kl’s, as this may require
O(k) steps. Since each inner node has exactly two children, the theorem is
proven.

Evaluating formula (2) becomes impractical as the gap G becomes large. We
present below an asymptotic study of the tree-size that can be used in practice
when formula (2) is too expensive to compute.

3.3 Asymptotic study
Analyzing algorithms through a related recurrence relation similar to (1) (and
its mathematical properties, such as the asymptotic behavior) is a standard
technique (see [7, Section 4.5]). In this section and throughout the article we
however systematically provide self-sufficient explanations and analyzes, as our
readership may not be familiar with algorithm analysis techniques.

As the gap to close G becomes large, we prove that the tree-size grows es-
sentially linearly, i.e. there exists a fixed ratio determining the growth of the
tree. Perhaps the most popular example of this phenomenon is the Fibonacci
sequence, for which the golden ratio 1+

√
5

2 corresponds to the asymptotic growth
rate between two consecutive numbers. In fact, the Fibonacci sequence is given
by the recursion formula (1) with variable (1, 2) up to the additive constant 1,
which does not intervene in asymptotic results. This section therefore provides
convergence results on sequences generalizing the Fibonacci sequence. Unfor-
tunately, even though using the same notion for the ratio as in the Fibonacci
sequence would be the most intuitive, the limit of t(G+1)

t(G) when G tends to in-
finity may not exist in our case. Indeed, consider variable (2, 2), and the limit
of these two subsequences:

lim
G→∞
G odd

t(G+ 1)
t(G) = 1 lim

G→∞
G even

t(G+ 1)
t(G) = 2.

In this example, the ratio t(G+1)
t(G) does not converge as G tends to infinity.

However, there exists another definition of the ratio, that can be shown to
converge. We use the following definition:

Definition 5 . The ratio of a variable is

ϕ = lim
G→∞

l

√
t(G+ l)
t(G) .

With this definition, variable (2, 2) has ratio ϕ =
√

2. This means that,
asymptotically, the number of nodes doubles for every two additional units of
gap to close.

7

Since the ratio ϕ indicates the growth rate of a tree in the SVB setting, a
variable with a small ratio requires a smaller SVB tree than one with a bigger
ratio, given a large enough gap G. The ratios of the two variables taken as
example in Section 3.1, namely (10, 10) and (2, 49), are approximately 1.071
and 1.049, respectively. This explains why variable (2, 49) produces smaller
trees than (10, 10) for large enough gaps. Throughout this section we show
that the limit defining the ratio ϕ in Definition 5 always exists and how it can
be computed. We first prove Proposition 2, which gives an equivalent way of
defining ϕ.

Proposition 2 . If the limit ϕ exists, then we also have

ϕ = lim
G→∞

r

√
t(G+ r)
t(G) .

Proof.

ϕlr =
(

lim
G→∞

t(G+ l)
t(G)

)r

= lim
G→∞

t(G+ l)
t(G) · t(G+ l)

t(G) · . . . · t(G+ l)
t(G)

= lim
G→∞

t(G+ lr)
t(G+ l(r − 1)) ·

t(G+ l(r − 1))
t(G+ l(r − 2)) · . . . ·

t(G+ l)
t(G)

= lim
G→∞

t(G+ lr)
t(G)

= lim
G→∞

t(G+ lr)
t(G+ (l − 1)r)) ·

t(G+ (l − 1)r)
t(G+ (l − 2)r) · . . . ·

t(G+ r)
t(G)

=
(

lim
G→∞

t(G+ r)
t(G)

)l

.

Proposition 3 . If the limit ϕ exists, then r
√

2 ≤ ϕ ≤ l
√

2.

Proof. Let T (resp. T l, T r) be the tree that closes the gap G (resp. G + l,
G + r), and observe that the tree T is a sub-tree of T l and T r (all three have
the same root). First, each leaf of T is an inner node of T r. This means that
the number of nodes at least asymptotically doubles, thus 2 is a lower bound
on ϕr. Second, each leaf of T is either a leaf or the parent of two leaves in T l,
hence 2 is an upper bound on ϕl.

The limit ϕ clearly exists in the case l = r, and the bounds in the above
property provide the exact value. We now prove that the limit ϕ exists in
general:

8

Theorem 4 . When G tends to infinity, both sequences l

√
t(G+l)

t(G) and r

√
t(G+r)

t(G)
converge to ϕ, which is the unique root greater than 1 of the equation p(x) =
xr − xr−l − 1 = 0.

Proof. See Appendix A.1 and Theorem 6.

Corollary 5 . A numerical approximation of ϕr is given by the fixed-point
iteration

f(x) = 1 + 1
x

l
r − 1

with starting point x = 2.

Proof. See Appendix A.1.

Having established Theorem 4, the definitions of ϕ and p should now make
more sense, as they can be shown to originate more directly from the definition
of the sequence:

t(G) = 1 + t(G− l) + t(G− r)

⇒ t(G)
t(G− r) = 1

t(G− r) + t(G− l)
t(G− r) + 1

⇒ lim
G→∞

t(G)
t(G− r) = lim

G→∞

(
1

t(G− r) + t(G− l)
t(G)

t(G)
t(G− r) + 1

)
⇒ϕr = ϕr−l + 1.

The polynomial p : x→ xr − xr−l − 1 is the so-called characteristic polynomial
of the recurrence sequence defining t. The Abel–Ruffini theorem [8, p. 264]
states that there is no general closed-form formula for roots of polynomials with
degrees five or higher. Since we are dealing with a particular trinomial, a formula
still might exist, however we have not been able to determine one. Throughout
the paper we therefore resort to numerical methods to determine ϕ (see Section
6.2). The characteristic polynomial for trees with arbitrary degrees has been
discussed at length in a SAT setting in [10], where the ratio ϕ is referred to as
the τ -value.

Examples of variables and their respective ratios are given in Table 1. In
the case where the sum of the variable gains is fixed (Table 1a), choosing l close
to r minimizes the ratio of a variable (l, r). However, if the product is fixed
(Table 1b), then the opposite is preferable. Figure 3 gives a plot of the ratio as
a function of the left and right gains.

Once the value of ϕ is determined, it is then easy to circumvent theO(log2(k))
complexity of the closed-form Formula (2), by evaluating t(F) for some value F
much smaller than G, and approximating t(G) using the formula

t(G) ≈ ϕG−F t(F).

We now establish some useful properties of p.

9

Variable (6, 10) (5, 11) (4, 12) (3, 13) (2, 14) (1, 15)
ϕ 1.0926 1.0955 1.1002 1.107 1.1204 1.1468

(a) Variables that satisfy l + r = 16
Variable (6, 10) (5, 12) (4, 15) (3, 20) (2, 30) (1, 60)

ϕ 1.0926 1.0907 1.0873 1.0813 1.0709 1.0515

(b) Variables that satisfy l · r = 60

Table 1: Ratios for some variables, truncated to 5 significant digits.

Figure 3: Variable ratio for left and right gains in [10, 100].

10

Theorem 6 . The characteristic polynomial p : x→ xr−xr−l− 1 satisfies the
following properties.

• p is monotonically increasing in [1,∞)

• in [1,∞), p has a single real root ϕ > 1

Proof. Consider the sign of p′(x) = rxr−1 − (r − l)xr−l−1 when x ∈ R+.

p′(x) > 0⇔ xr−l−1(rxl − r + l) > 0
⇔ rxl − r + l > 0

⇔ x >
l

√
1− l

r

⇐ x ≥ 1.

We thus know that p is increasing over [1,∞). Furthermore, p(1) = −1 and
limx→∞ p(x) =∞, and p is continuous, therefore there exists a single root ϕ in
(1,∞).

This analysis is corroborated by the fact that the tree-size increases when
incrementing the gap by l or r, thus we should have ϕ > 1.

4 The Multiple Variable Branching problem
We consider the Multiple Variable Branching problem (MVB), which nat-
urally extends the SVB problem, defined as follows:

Problem Multiple Variable Branching
Input: n variables encoded by (li, ri), i ∈ {1, . . . , n}, an integer G > 0, an
integer k > 0.
Question: Is there a Branch & Bound tree with at most k nodes that closes
the gap G, using each variable as many times as needed?

Figure 4 illustrates the difference between MVB and SVB, given two vari-
ables (2, 5) and (3, 3), andG = 7. In the MVB tree, variable (2, 5) is branched on
at all (inner) nodes except the bottom left one, where variable (3, 3) is branched
on.

There is a recursive equation for MVB, similar to (1) for SVB. For a given
gap G, t(G) is defined as the minimum size of a MVB tree that closes G:

t(G) =
{

1 if G ≤ 0
1 + min

1≤i≤n
(t(G− li) + t(G− ri)) otherwise. (4)

The time complexity of this algorithm is O(nG), which is pseudo-polynomial in
the size of the input. Unlike SVB, we do not know whether MVB can be solved
in polynomial time. For a given G, we say that variable i is branched on at the
corresponding node if i ∈ arg min1≤i≤n(t(G− li) + t(G− ri)).

11

0

2

4

6

8 11

9

7

5

7 10

(a) SVB tree for variable (2, 5) (size=11).

0

2

4

7 7

7

5

7 10

(b) Minimum-size MVB tree (size=9).

0

3

6

9 9

6

9 9

3

6

9 9

6

9 9

(c) SVB tree for variable (3, 3) (size=15).

Figure 4: For a gap G = 7, SVB trees using variable (2, 5) or (3, 3), and
minimum-size MVB tree using both.

4.1 Motivating example (continued)
Following the example introduced in Section 3.1 for the SVB problem, consider
now the plot of the MVB tree-sizes in Figure 5 (the SVB plots are the same as
in Figure 2).

As anticipated, for a given gap, the MVB tree-size is smaller than each of the
SVB tree-sizes. However, the difference in tree-sizes with (2, 49) does not seem
to increase drastically. Indeed, for a gap of 1000, the SVB tree-size of (2, 49) is
only 1.798 times larger than the MVB tree-size (and this ratio is approximately
constant for larger gaps). In fact, for this instance, we can verify experimentally
that variable (2, 49) is branched on at every node for which the gap to close is
at least 31. This phenomenon is the subject of the next section.

4.2 Asymptotic study
Let ϕ (resp. ϕi) now denote the ratio associated with the recursive equation
(4) of MVB (resp., for SVB, equation (1) for variable i). Furthermore, for a
variable i, let pi be its characteristic polynomial, for i = 1, . . . , n. Formally, we
define the ratio for a MVB problem to be

ϕ = lim
G→∞

z

√
t(G+ z)
t(G)

12

0 10 20 30 40 50

0

20

40

60

gap

tr
ee
-s
iz
e

(a) Tree-sizes for gaps in [1, 50]

0 20 40 60 80 100

0

500

1,000

1,500

2,000

gap

(b) Tree-sizes for gaps in [1, 100]

Figure 5: Plot of the sizes of the trees built with variables (10, 10) (in blue) and
(2, 49) (in red), and both (in green).

where z is the least common multiple of all li and ri.

Theorem 7 . ϕ = mini ϕi

Proof. See Appendix A.2.

Essentially, this means that for a large G, the tree-size grows at the growth
rate of the best variable for SVB. Therefore we also have

t(G) ≈ ϕG−F t(F)

for large gaps F and G, with G ≥ F . Furthermore, we propose the following
conjecture.

Conjecture 1 . For each instance of MVB, there exist a gap H such that for
all gaps greater than H, variable i = arg minj ϕj is always branched on at the
root node.

Proving this conjecture (and proving that H is polynomially bounded by the
size of the input) may help design a polynomial-time algorithm for MVB. Figure
6 provides the value of H for instances of MVB with two variables, (10, 10) and
(2, r), where r is the value on the horizontal axis. The value of H is maximized
for r = 29, which also minimizes |ϕ(10,10) − ϕ(2,r)|.

5 The General Variable Branching problem
The General Variable Branching problem (GVB) is defined as follows:

Problem General Variable Branching
Input: n variables encoded by (li, ri), i = 1, . . . , n, an integer G > 0, an integer
k > 0, and a vector of multiplicities m ∈ Zn

>0.

13

10 20 30 40 50

0

500

1,000

1,500

2,000

Right gain r of (2, r)

G
ap

H

Figure 6: Value of the gap H for the MVB problem with variable (10, 10) and
(2, r), for varying values of r.

Question: Is there a Branch & Bound tree with at most k nodes that closes
the gap G, branching on each variable i at most mi times on each path from the
root to a leaf?

Observe that GVB comprises the input of problem MVB, and additionally
stipulates that each variable may not be used more than a given number of
times on each path from the root to a leaf. Consequently, GVB corresponds to
MVB whenever the multiplicity of each input variable is large enough, therefore
GVB generalizes MVB.

When solving a MIP instance using a B&B search, the minimization version
of GVB models the problem of choosing a variable to branch on under the
following simplifying hypotheses:

• The up and down gains are known for each variable, and are invariant.

• If the problem is feasible, the optimal value is known.

The first hypothesis is not satisfied in practice. However, as the B&B tree
grows, pseudo-costs become better approximations for the up and down gains.
Likewise, the second hypothesis becomes true at some point during the B&B
search. So, while both hypotheses are not initially satisfied, they become more
accurate as the tree grows. As we will see, these hypotheses are not sufficient to
render the GVB problem theoretically tractable. A recursion for GVB similar
to (4) for MVB is

t(G,m) =
{

1 if G ≤ 0
1 + min

1≤i≤n,mi>0
(t(G− li,m− vi) + t(G− ri,m− vi)) otherwise

(5)
where m and vi, are both vectors of size n; m is the vector of multiplicities, and
vi is the indicator vector of the set {i} (i.e. the ith element of vi is 1, the n− 1

14

0

3

6 6

3

6 6

(a) Minimum-size MVB tree (size=7).

0

3

5

6 6

8

3

5

6 6

8

(b) Minimum-size GVB tree (size=11).

Figure 7: Minimum-size trees for MVB and GVB with inputG = 6 and variables
(1, 1), (2, 5), (3, 3) (in GVB, with multiplicities 1).

others are 0). This algorithm keeps track of the variables already branched on,
and, in the case where all multiplicities are 1, its running time is O(2nG).

Figure 7 gives the minimum-size B&B tree for a GVB instance and an MVB
instance that has the same variables and gap as input.

5.1 Complexity of GVB
For the complexity result presented in this section, it is sufficient to consider
the case where all multiplicities are one. We prove the #P-hardness of GVB by
reducing it to a variant of counting knapsack solutions:

Problem #Knapsack
Input: N items with weights w1, . . . , wN and W the capacity of the knapsack,
a given K, all integer positive.
Question: Are there at least K distinct feasible solutions x to the (covering)
knapsack constraint

∑N
i=1 wixi ≥W , with xi ∈ {0, 1}, i = 1, . . . , N?

Note that in our definition of the #Knapsack problem, we ask for at least
K solutions. This variant of the counting problem can solve the exact counting
problem by e.g. dichotomy in O(N) calls, hence it is #P-hard.

Theorem 8 . GVB is (weakly) #P-hard

Proof. We build an instance of the GVB problem that embeds an instance of the
#Knapsack problem. Set n = N + 1, and for each i ∈ {1, . . . , n− 1}, create a
variable with gains (C,C +wi), where C =

∑
j∈{1,...,N} wj ; furthermore, create

the nth variable (C,C). Set the target gap G = (n− 1)C +W and the number
of allowed nodes k = 2n+1 − 1 − 2K. Finally, set all multiplicities to one.
Suppose, without loss of generality, that the knapsack instance is feasible, and
thus C ≥ W . We prove that the answer to this GVB instance is YES if and
only if the answer to the instance of #Knapsack is YES.

First, observe that a minimum-size tree is obtained by branching on the
variable with the biggest right gains, i.e. corresponding to the biggest items
(w.r.t. wi), and finally by branching on the dummy variable with gains (C,C).

15

Consider a tree T that closes the gap G. Observe that each leaf of T has at
least depth n−1, and at most n. In fact, there is a one-to-one mapping between
(not necessarily feasible) solutions of the knapsack instance and nodes at depth
n− 1. Furthermore, there is a one-to-one mapping between feasible solutions of
the knapsack instance and leaves at depth n− 1. Therefore, since an infeasible
knapsack instance would yield a perfect tree, with 2n+1− 1 nodes, each feasible
solution decreases the number of nodes by 2 exactly. If there are at least K
feasible solutions to #Knapsack, there is a tree with at most 2n+1 − 1 − 2K
nodes for their corresponding GVB instance, and vice-versa.

In this proof we use the fact that the domination relation, formally defined
in Section 6, is a total order on the set of variables, and thus which variables
to branch on to obtain a minimum-size tree is trivial. As a result, we actually
prove Theorem 8 for a special case of the GVB problem, where at a given level,
a single variable is branched on at every node. Similar to SVB, this special case
is therefore a tree measurement problem.

Theorem 8 in particular implies, under the widely believed conjecture that
the polynomial hierarchy PH [15] is proper to the second level, that GVB is
neither in NP nor in co-NP. This is because PH ⊆ P#P [16].

6 Using the abstract model for scoring branch-
ing candidates

6.1 Applicability of our results to rational numbers
The results we present in Section 3 through 5 suppose integer gains and gap.
This does not hold in general when solving MIP instances, where numbers are
encoded as rationals. It is however sufficient to notice that in SVB, MVB or
GVB, if some data is rational, there exists a scaling factor q ∈ Q+, such that,
if the gap and all gains are multiplied by q, all data become integer. Indeed, in
the abstract setting described in Section 2, which holds for SVB, MVB or GVB,
suppose a B&B tree closes a gap G, and all gains are multiplied by q, then the
same tree closes a gap q ·G, since the gap closed at each node is the sum of all
gains along the path from the root to the leaf.

Furthermore, given a variable with rational gains (l, r) ∈ Q2
+, and a scaling

factor q ∈ Q+, such that the scaled variable has gains (q · l, q · r) ∈ Z2
+, then the

ratio ϕ of the scaled variable can be computed as described in Section 3, and
we have

ϕqr − ϕq(r−l) − 1 = 0⇔ (ϕq)r − (ϕq)(r−l) − 1 = 0,

therefore the ratio of variable (l, r) is given by ϕq.
Finally, the proof of Theorem 1 (for the closed-form formula) does not re-

quire data to be integer, or even rational, and Corollary 5 (for the fixed-point
equation) inherently works on rational numbers. We implement both formulas
in our code without any scaling.

16

6.2 The ratio scoring function
Recall from Section 3.1 that a scoring function combines the left and right LP
gains to score candidate variables. The variable with the highest score is then
branched on. The linear and product functions are two scoring functions that
were presented in Section 3.1. In this section, we introduce the ratio scoring
function, based on Definition 5 for the SVB problem. Given two variables i and
j and their respective ratios ϕi and ϕj , it selects the variable with the smallest
ratio.

To help analyze the behavior of the ratio scoring function, we formalize the
concept of domination for two variables.

Definition 6 . Given two variables (l1, r1) and (l2, r2), we say that (l1, r1)
dominates (l2, r2) if and only if l1 ≥ l2 and r1 ≥ r2, with at least one of the
inequalities strict.

Proposition 9 . Suppose variable (l1, r1) dominates variable (l2, r2). Then,

1. Both the product and the linear function assign a better score to (l1, r1)
than to (l2, r2).

2. In the MVB or GVB problem setting, if both (l1, r1) and (l2, r2) are
branched on on a common path, branching on (l1, r1) before branching
on (l2, r2) yields a tree of size no larger than the converse.

Proof. Part 1 is obvious. Part 2 can be proven by observing that if in a B&B
tree, variable (l2, r2) is branched on before (l1, r1), then the tree where the
variables are switched closes a gap at least as large.

In other words, the linear and the product scoring functions prefer non-
dominated variables, as dominated variables necessarily yield larger trees. We
prove that the ratio scoring function also exhibits this property:

Theorem 10 . Suppose variable (l1, r1) dominates variable (l2, r2), then ϕ1 <
ϕ2.

Proof. Starting with the definition of the characteristic polynomial of variable
j, we establish:

0 = p2(ϕ2) = ϕr2
2 − ϕ

r2−l2
2 − 1 = ϕr2

2 (1− ϕ−l2
2)− 1

< ϕr1
2 (1− ϕ−l1

2)− 1 = p1(ϕ2).

Therefore, by Theorem 6, ϕ2 > ϕ1.

As a consequence, the ratio of a dominated variable does not have to be
computed. Moreover, to perform comparisons between ratios, it is not necessary
to compute both of them.

Proposition 11 . Suppose that the ratio ϕ1 of variable (l1, r1) has been com-
puted, then, given a variable (l2, r2), ϕ2 < ϕ1 if and only if p2(ϕ1) > 0.

17

Proof. Direct using Theorem 6.

Hence a strategy to reduce the number of ratio computations is to compute
ϕ for a variable that is believed to be a good candidate for branching (e.g. the
best according to the product function), and use Proposition 11 to test all other
candidates, computing the ratio of a variable only if it is proven to be smaller
than the current best one.

The scoring rule that we implement uses the strategy described in Algo-
rithm 1. The computation of the ratio at Steps 2 and 5 is done numerically.
We have implemented and tested five different methods, namely the fixed-point
iteration method described in Corollary 5, a simple bisection method, New-
ton and Laguerre’s method [14, Chapter 9]), and a direct method computing
(5) using the closed-form formula described in Theorem 1 for a large enough
gap. Iterative methods are initialized with starting point r

√
2, which is a proven

lower bound (see Proposition 3). Experiments have shown that if r
l ≤ 100,

Laguerre’s method was the most effective, otherwise the fixed-point iteration
method should be used. Following this rule, computing the ratio of a variable
takes around 20 milliseconds of CPU time on a modern computer.

Algorithm 1 Implementation of the ratio scoring function.
1: Filter out the branching candidates with dominated gains. . Theorem 10
2: Compute the ratio ϕ∗ of the best variable according to the product function.

3: for all remaining branching candidates i do
4: if pi(ϕ∗) < 0 then . Proposition 11
5: Compute the ratio ϕi and set ϕ∗ = ϕi.
6: end if
7: end for
8: return the variable with ratio ϕ∗.

Observe that if the ratio and one of the left (resp. right) gain are fixed, then
the right (resp. left) gain can be computed analytically:

Proposition 12 . Given a variable (l, r) and its ratio ϕ, then

r = − log(1− ϕ−l)
logϕ l = − log(1− ϕ−r)

logϕ .

Proof. Direct using the definition of the polynomial p.

Figure 8 has been generated using this property. The leftmost point (cor-
responding to variable (100, 100)) serves as a reference, and each curve is such
that its points have the same score according to one scoring function: the red
curve corresponds to the linear function with default µ, blue to the product,
and green to the ratio. Unsurprisingly, the red curve is a line and the blue
curve is a parabola. Note how the product function and the ratio function
match very closely when l and r are close to each other. This essentially means

18

020406080100
0

500

1,000

1,500

left gain

rig
ht

ga
in

ratio
linear
product

Figure 8: Right gains depending on the left gain such that the score is constant.

that if all variables have roughly equal left and right gains, the product and
ratio functions behave similarly. If this is not the case, then the ratio func-
tion prefers variables with unequal left and right gains compared to the product
function.

6.3 The svts scoring function
Ranking the variables by ratio only makes sense for large enough gaps. Consider
again the example given in Section 3.1, and suppose that variables (10, 10) and
(2, 49) are the only candidates for branching. The ratio function would score
variable (2, 49) higher, independent of the gap. However, in the SVB setting, if
the gap is no larger than 40 then (10, 10) is the better variable. We therefore
define a more refined scoring function that takes the gap into account. Given
the gap at a given node, this scoring rule ranks the variables according to their
SVB tree-sizes. We therefore call this scoring function the svts function, for
“Single Variable Tree-Size”. Algorithm 2 describes the implementation of the
svts function. We introduce a parameter D, which determines whether an
approximation of the tree-size should be used, depending on the smallest depth
of a leaf in the SVB B&B tree, i.e. dG

ri
e, given a variable (li, ri) and a gap

G. Parameter D effectively bounds the number of terms to add in the closed-
form formula (2) to compute the SVB tree-size. If dG

ri
e > D (i.e. the gap

G is such that the formula (2) would require computing more than D terms),
then the exact tree-size is computed for a smaller gap, namely riD, and an
approximation of the tree-size t(G) is computed approximately using the ratio.
In our implementation we have set D = 100. Deactivating Step 5 (i.e. not
filtering out dominated variables) increases the average running time of a MIP
solver implementing Algorithm 2 as a scoring function in B&B by 4% (in the
setup of Section 7.2.1). Deactivating Step 11 (i.e. not restricting the evaluation
of formula (2) to “small” trees) increases the average running time by 11%.

Note that for a large enough gap, the SVB function is equivalent to the
ratio function, i.e. the rankings of variables are equal.

19

Algorithm 2 Implementation of the svts scoring function.
1: Compute the absolute gap G at the current node.
2: if G =∞ then . e.g. no primal solution is known.
3: return the variable selected by Algorithm 1. . Theorem 7
4: end if
5: Filter out the branching candidates with dominated gains.
6: for all remaining branching candidates i with gains (li, ri) do
7: Let d = dG

ri
e. . The minimum depth of the SVB tree

8: if d =∞ then
9: Set the tree-size ti(G) =∞.

10: else
11: Let G̃ = ri ∗min(d,D). . D is a parameter
12: Compute the SVB tree-size ti(G̃) using formula (2).
13: if G̃ < G then
14: Compute the ratio ϕi.
15: Compute the SVB tree-size ti(G) ≈ ϕG−G̃

i ti(G̃). . see (3.3)
16: end if
17: end if
18: end for
19: if all variables i have ti(G) =∞ then
20: return the variable selected by Algorithm 1.
21: else
22: return the variable i with minimum ti(G).
23: end if

20

We next evaluate the ratio and SVB scoring function in simulations as well
as MIP benchmarks.

7 Experimental results
Numerous MIP solving algorithms are developed and parametrized by a trial-
and-error loop of experiments on MIP benchmarks. The major drawback of this
procedure is evidently the computational burden it involves. Another significant
flaw is that the instances used to develop the algorithm are often the ones used to
benchmark it. This may lead to overfitting, which means that the algorithm will
perform much better on these instances than on general ones. The magnitude
of this problem increases with the number of parameters of a method. In an
effort to mitigate these issues, we carry out simulations on a large set of random
instances in Section 7.1. The results we obtain on these simulated instances
confirm the improvements we achieve on standard MIP benchmarks in Section
7.2.

7.1 Numerical simulations
In order to evaluate the performance of the linear, product and ratio scor-
ing functions detailed in Section 6, we run simulations in which these scoring
functions are used to select variables on MVB and GVB instances. The GVB
problem models the B&B algorithm more closely than the MVB problem, but in
practice it is only possible to obtain exact tree-sizes for the latter problem. We
do not run simulations on the svts function, as it requires computing tree-sizes
for all variables and each possible gap.

We evaluate the scoring functions on synthetically generated instances. The
variable gains are generated in one of four different ways:

• Balanced [B] Both left and right gains are integers uniformly drawn in
the interval [1, 1000] (if necessary, gains are switched to ensure that the
left gain is less than or equal to the right gain).

• Unbalanced [U] The left (resp. right) gain is an integer uniformly drawn
in the interval [1, 500] (resp. [501, 1000]).

• Very Unbalanced [V] The left (resp. right) gain is an integer uniformly
drawn in the interval [1, 250] (resp. [251, 1000]).

• Extremely Unbalanced [X] The left (resp. right) gain is an integer
uniformly drawn in the interval [1, 100] (resp. [101, 1000]).

We will refer to these different ways of generating variables as different data
types.

21

7.1.1 Simulation results for the MVB problem

Recall that in the MVB problem, one variable can be used an arbitrary number
of times. In this section, two types of methods are evaluated. The first type
correspond to scoring functions that can be or are actually implemented in MIP
solvers to choose which variable to branch on (e.g. the product function). The
second type are problem solving algorithms, which use knowledge of the MVB
problem, and cannot directly be implemented in MIP solvers (e.g. an exact
recursive algorithm). The methods of the first type are the ones we are really
interested in, while the methods of the second type help evaluate the first ones.
We compute the tree-sizes that result from the following methods, listed by
order of increasing exactness.

• linear (with different values of the parameter µ), product and ratio
scoring functions. Since the ranking of variables obtained by scoring
functions only depends on the left and right gains, the same variable is
branched on at every node, which means the tree-size obtained by select-
ing variables using a scoring function corresponds to the tree-size of the
SVB tree for the variable with the best score.

• Lower Bound (LB) for scoring functions: it is the minimum tree-size of all
SVB instances, for all variables in the input of the MVB instance.

• The exact recursive function, as described in Section 4: this method pro-
duces a minimum-size tree for the instance.

Each branching strategy in this list necessarily produces trees with fewer nodes
than those listed higher in the list. Note that the linear, product and ratio
scoring functions are listed together, as it is a priori not clear whether any of
the scoring function dominates the others. These are the scoring functions we
are primarily interested in.

The other parameters have been chosen as follows:

• The number of variables for each instance is 100. Increasing the number
of variables is possible, however the chances of producing a variable that
dominates all others would increase.

• The gap is set at G = 105. Increasing G by an order of magnitude may
cause the tree-sizes to exceed the maximum number that can be encoded
by a double-precision floating-point representation (≈ 10307).

• The number of instances for each of the B, U, V and X type of variables
is 100.

Table 2 provides two different performance measures for each type of data
and each branching strategy. The first performance measure, “t-s”, is the per-
centile change in geometric means of the tree-sizes compared to the (exact)
minimum tree-size. For instance, the number 26.2 (at the top-left of the ta-
ble) indicates that this branching strategy yielded trees with, on average, 26.2%

22

Data linear(µ) product ratio LB
µ = 0 1

6
1
3

1
2 1

B t-s 26.2 8.23 6.23 3.10 1017 2.84 2.84 2.83
wins 88 93 95 99 8 100 100

U t-s 1008 96.79 6.07 8.43 1023 6.60 3.35 3.14
wins 11 67 93 90 10 93 98

V t-s 1020 57.93 24.85 282.28 1023 29.82 5.75 5.75
wins 19 77 86 65 14 83 99

X t-s 1047 6.07 731.44 105 1031 93.86 6.07 6.07
wins 7 100 72 50 13 82 100

Table 2: Simulation results on MVB.

more nodes than the minimum-size trees. For the cases where the difference
is in orders of magnitude, only the order is indicated. Note that the tree-sizes
obtained in the experiments vary from around 1030 for the balanced data to
up to 10300 for extremely unbalanced data. The second performance measure,
“wins”, is the number of times a scoring function produces the smallest tree-size
among the linear, product and ratio functions (LB is excluded as it neces-
sarily produces smaller tree-sizes). In case of a tie, multiple scoring functions
win.

First, observe that the performance (w.r.t. tree-size) of branching strategies
generally decreases as the left and right gains of the variables become less bal-
anced. For some values of µ, the linear function performs extremely badly.
More interestingly, it appears that the best value of µ heavily depends on the
balance of data. The value µ = 1

2 is better for balanced data (B), while for
extremely unbalanced data (X), µ = 1

6 performs best, in a tie with the ratio
function. For this type of data, the tie may be explained by Figure 8, where the
linear and ratio functions tend to pick similar variables for very unbalanced
gains. Similarly, the tie between the product function and the ratio function
for balanced data may be explained by the fact that they pick similar vari-
ables for balanced gains. The ratio function wins on 397 out of 400 instances,
and is very close to the theoretical bound LB that these scoring functions can
achieve. Note that both the ratio function and LB are within 7% of the actual
minimum-tree size, even for the most unbalanced data.

Additional results with smaller gaps are given in Appendix B.

7.1.2 Simulation results for the GVB problem

The experiments we carry out in this section are significantly different than those
we did on MVB: indeed, in the GVB problem, each variable can only be used
a given number of times on a path from the root to a leaf. As a consequence,
we are not able to compute the exact minimum tree-sizes, as the state space of
the recurrence equation (5) is too large. For simplicity, and to ensure that the
results in this section would be different than those from Section 7.1, we have
set multiplicities to 1. Note that the algorithms that compute the tree-sizes for
scoring functions are also harder to solve than in the previous section, and the

23

gaps G used in our instances are therefore smaller. The parameters of these
experiments are presented below.

• As in the previous section, the number of variables for each instance is
100, and the number of instances for each of the B, U, V and X type of
variables is also 100.

• The gap takes different values for each type of data. Indeed, while a
gap of e.g. G = 5000 can be closed with a few hundred nodes in the
balanced case, it can only be closed in half of the instances for extremely
unbalanced data. We therefore adapt the gap to the data. In each case,
the minimum gap tested is chosen such that the tree-sizes are at least 100.
The maximum gap tested is chosen such that the depth of the trees is close
to 100, i.e. the number of variables, but also such that all 100 instances
can be solved. The average between the minimum and the maximum gap
is also tested.

Table 3 presents the simulation results, in a format similar to Table 2. Since
we do not know the minimum tree-sizes in these experiments, the reference is
the product function, as it is the state of the art. As a consequence, negative
changes may (and do) occur. The observation we made in the previous experi-
ments on MVB, which is that the ratio function benefits from unbalancedness,
clearly carries over. Furthermore, for a given type of data, it also profits from an
increase in the gap. An approximate 7% decrease in the number of nodes occurs
when these two facts are taken together. Moreover, the ratio function has, by
far, the largest number of wins. Note that the linear function outperforms the
ratio or the product function in some cases.

A table similar to Table 3 for the MVB problem is given in Appendix B.
Since the product function seems to perform slightly better for small gaps,

and the ratio improves with larger gaps, the idea of changing the scoring
function depending on the gap naturally arises. Table 4 provides the results of
this hybrid function for the maximum gaps considered for each data type. The
notation is the same as in Table 3 (including the fact that the product function
is taken as a reference). The hybrid ratio-product function is parametrized by
h, the height at which the scoring function used at a node switches from ratio
to product (the height of a node is the length of the longest path to reach a
leaf from this node). For example, h = 10 means that at nodes that would
have a height of 10 or less with the ratio function, the product function is
used instead. As a consequence, h = 0 corresponds to the ratio function, and
h = 100 to the product function (since there are 100 variables, the depth of a
leaf is at most 100).

First, observe that we do obtain a slight reduction in the number of nodes for
any value of h (except for data U and h = 50). Second, note that the optimal
value for the height parameter increases as the data becomes less balanced.
Third, observe how for each data type, the relative change compared to the
product function is unimodal, which suggests a low variability of the results
and backs up our analysis.

24

Data Gap linear(µ) product ratio
µ = 0 1

6
1
3

1
2 1

B

5000 t-s 1.94 0.55 -0.15 0.41 235.83 0.00 -0.03
wins 67 77 85 76 0 82 83

15000 t-s 21.34 9.37 1.18 2.36 1051.56 0.00 0.06
wins 2 3 17 14 0 41 45

25000 t-s 57.70 19.45 0.89 19.23 1742.11 0.00 -0.96
wins 0 0 7 1 0 28 64

U

5000 t-s 50.86 10.63 -0.02 4.27 314.73 0.00 0.17
wins 0 2 45 3 0 48 44

12500 t-s 86.38 30.30 0.75 19.99 1562.15 0.00 -0.74
wins 0 0 11 0 0 29 60

20000 t-s 71.91 22.99 0.30 61.17 3874.17 0.00 -2.29
wins 0 0 2 0 0 14 84

V

5000 t-s 257.39 4.76 6.50 54.40 282.93 0.00 -0.91
wins 0 1 0 0 0 35 65

7500 t-s 428.67 11.88 14.85 102.26 425.88 0.00 -2.29
wins 0 0 0 0 0 25 75

10000 t-s 528.58 24.38 25.76 135.77 525.01 0.00 -5.81
wins 0 0 0 0 0 4 96

X

2000 t-s 445.42 8.29 42.80 63.76 89.95 0.00 3.15
wins 0 3 0 0 0 76 28

3000 t-s 903.02 6.72 47.56 73.37 107.32 0.00 -1.16
wins 0 0 0 0 0 43 58

4000 t-s 1537.76 2.47 41.26 68.27 105.88 0.00 -6.90
wins 0 1 0 0 0 2 97

Table 3: Simulation results on GVB.

Data (ratio) Hybrid ratio-product(h) (product)
(& Gap) h = 0 10 20 30 40 50 100

B t-s -0.96 -1.31 -0.49 -0.02 0.00 0.00 0.00
(25000) wins 6 71 28 13 12 12 12

U t-s -2.29 -2.29 -3.37 -1.01 -0.05 0.01 0.00
(20000) wins 0 7 79 14 0 0 0

V t-s -5.81 -5.81 -6.18 -8.38 -4.40 -0.46 0.00
(10000) wins 0 0 5 81 14 0 0

X t-s -6.90 -6.95 -7.38 -9.03 -10.57 -8.27 0.00
(4000) wins 0 0 0 14 73 13 0

Table 4: Simulation results on GVB using a hybrid ratio-product function,
parametrized by a height h.

25

7.2 Experiments on MIP instances
We have modified the solver SCIP 3.1.1 [2] to use the ratio or the svts function,
alternatively to the default product function. Besides the changes necessary for
the implementation of these new scoring functions, no other change to SCIP has
been made. In particular, the decision to use strong branching or pseudo-costs
on a given variable and at a given node is unchanged. Furthermore, note that
in SCIP, the selection of the branching variable does not solely rely on the
product. There are a number of “soft” tie-breakers that can come into play if
the product scores of multiple variables are almost equal. This is referred to as
hybrid branching [3]. If at a given node, the variable that the hybrid branching
rule selects is not the one that maximizes the product function, then we keep
that variable and do not use the ratio or svts function. Finally, for the ratio,
we use the parameter h = 10 as defined in Section 7.1.2, following the results of
Table 4. This essentially means that whenever a node is believed to be “close”
to the leaves, the product function is used rather than the ratio function.

7.2.1 Benchmark instances

The benchmark test set comprises the instances from MIPLIB 3.0, MIPLIB
2003 [4], and MIPLIB 2010 Benchmark [9]. These instances are the state of
the art in MIP benchmarking. The instances that are at the time of writing
classified as “open” have been removed, which leaves 159 instances. For feasible
instances, the optimal value is provided as a primal bound, and primal heuristics
are disabled (for all instances). Cuts after the root node are also disabled to
reduce performance variability [12]. The disconnected components presolver
is disabled as it can lead to different transformed problems, and thus possibly
increased variability. Furthermore, for each instance, ten different seeds are used
to create random permutations of the input (using SCIP’s internal procedure).
A time limit of two hours is specified. In this setting, the testbed comprises
1590 instances, and the total running time that this experiment required on a
single machine is 4 months.

Three different scoring functions are tested. The first one is the product
function, which is the default in SCIP. The second one is the ratio function,
defined in Section 6.2. The third one is the svts function defined in Section
6.3.

Table 5 gives the result for these three scoring functions, with product as
the reference. Each line corresponds to the 10 permutations of each instance of
the test set. There are three columns for each scoring function. The columns
of the product scoring function gives absolute performance measures, while the
two others give measures relative to product. For product, the first column
provides the number of permutations solved, and, for the other two functions,
the difference from the reference. Note that all 10 permutations of a given
instance may not be solved the same number of times depending on the scoring
function used. For each instance, we determine for each scoring function the
number of permutations solved. Let N be the minimum and note that N can

26

be as large as 6 and we could still have no single permutation solved by all
three scoring functions. After having determined N for a given instance, we
take the N best results for each scoring function and compute the arithmetic
averages. These averages of time (in seconds) and nodes are directly displayed
for the product function. In the nodes column, we use the letters k and m as
a shorthand for thousands and millions. For the ratio and svts functions, we
display the ratio of averages for both time and nodes, compared to the product.
Considering the N best permutations rather than the intersection of the sets of
solved permutations enables more data to be used, and reflects in the averages
the fact that some scoring functions solve more permutations, giving them a
fair advantage.

The instances for which at least one permutation can be solved at the root
node by any setting, or for which no permutation is solved by all settings (i.e.
N = 0), are not displayed. We similarly exclude instances that can be solved
in less than a second by at least one setting and permutation. Note that these
instances are accounted in the total number of instances solved, but not in the
different average measures.

The total, geometric mean and shifted geometric mean (with shifts 10 and
100 for time and nodes, respectively) [1, p. 321] are provided at the bottom of
the table. These are not computed on the averages given at each line, but on
each value that is used to compute the line averages (i.e. an instance solved 10
times by all settings counts more than an instance solved fewer than 10 times
by all settings).

Function ratio solves marginally more instances than the product function.
Both functions ratio and svts slightly outperform product, in terms of time
and nodes used. The difference in performance is especially apparent when
considering the total resources used, as it mostly reflects the performance on
large instances, on which the scoring functions we introduce perform better.
In Section 7.2.2, we will consider a set of instances that contains instances
that experimentally require large B&B trees, and on which this observation is
comfirmed.

Instance product ratio svts
time (s) nodes # time (s) nodes # time (s) nodes

30n20b8 10 521 10 +0 1.02 1.49 +0 1.01 1.34
aflow30a 10 36 2.5k +0 0.98 0.99 +0 0.96 0.89
aflow40b 10 3483 210.9k +0 0.68 0.65 +0 0.70 0.63
air04 10 30 7 +0 0.96 1.00 +0 1.03 1.00
app1-2 10 845 565 +0 0.90 1.01 +0 0.89 1.14
arki001 2 4862 1.3m +0 0.73 0.74 +1 0.85 0.80

ash608gpia-3col 10 87 5 +0 1.04 1.00 +0 1.01 1.00
bell5 10 1 1.1k +0 0.99 1.00 +0 0.99 1.00
biella1 10 217 2.8k +0 0.98 1.06 +0 0.99 1.00
bienst2 10 288 112.6k +0 1.05 0.98 +0 1.11 1.09

binkar10_1 10 431 135.8k +0 1.09 1.03 +0 1.01 0.98
blend2 10 2 222 +0 0.99 1.00 +0 1.01 1.01
cap6000 10 8 1.8k +0 1.00 1.04 +0 1.01 1.05
csched010 9 6035 721.2k -1 0.86 0.86 +0 0.90 0.84
danoint 2 7047 1.2m -1 1.00 0.96 -1 1.02 0.97
dcmulti 10 2 9 +0 1.00 1.00 +0 1.00 1.00

dfn-gwin-UUM 10 256 62.9k +0 1.03 1.07 +0 1.05 0.96
Table 5: Comparison of scoring function on the benchmark test set (continues
in the next page).

27

Instance product ratio svts
time (s) nodes # time (s) nodes # time (s) nodes

eil33-2 10 103 496 +0 0.97 0.99 +0 1.11 0.97
eilB101 10 134 4.4k +0 0.82 0.84 +0 0.88 0.76
enlight13 0 - - +10 - - +0 - -
fast0507 10 129 494 +0 0.98 1.18 +0 0.99 1.22
fiber 10 5 12 +0 1.00 1.00 +0 1.01 1.10

fixnet6 10 5 9 +0 1.00 1.00 +0 1.01 1.02
gesa2-o 10 4 4 +0 1.01 1.00 +0 1.01 1.00
gesa2_o 10 4 5 +0 0.99 1.00 +0 1.00 1.00
gesa3 10 4 20 +0 0.99 1.00 +0 0.99 0.97

gesa3_o 10 4 9 +0 0.99 1.00 +0 1.00 1.00
glass4 10 29 11.5k +0 1.26 1.34 +0 1.05 1.03

iis-100-0-cov 10 2286 83.6k +0 0.97 0.99 +0 0.97 0.99
iis-pima-cov 10 806 6.7k +0 1.00 0.96 +0 1.00 0.96
khb05250 10 1 7 +0 0.99 1.00 +0 0.98 1.00
l152lav 10 2 16 +0 1.01 1.05 +0 1.01 1.00
lseu 10 2 1.0k +0 0.92 0.83 +0 1.09 1.11

map18 10 462 260 +0 1.03 0.99 +0 1.05 1.00
map20 10 422 300 +0 1.06 1.00 +0 1.00 0.98
mas74 10 1810 3.3m +0 0.87 0.88 +0 0.92 0.90
mas76 10 200 484.2k +0 0.83 0.83 +0 0.98 0.98
mcsched 10 268 18.1k +0 0.99 1.01 +0 0.98 0.95

mik-250-1-100-1 10 1832 829.9k +0 1.18 1.17 +0 1.30 1.31
mine-166-5 10 30 356 +0 1.01 0.95 +0 1.05 1.13
mine-90-10 10 1228 116.9k +0 0.92 0.96 +0 1.13 1.18
misc03 10 2 125 +0 0.98 1.02 +0 0.98 0.97
misc06 10 1 7 +0 0.99 1.00 +0 1.01 1.00
misc07 10 45 23.8k +0 1.24 1.28 +0 1.06 0.99
mod008 10 5 12 +0 0.99 1.07 +0 0.99 1.00
mod011 10 74 886 +0 0.97 0.89 +0 0.98 0.96
modglob 10 1 20 +0 1.00 1.04 +0 1.00 1.01

momentum2 1 4417 13.6k +1 1.30 1.33 +1 1.15 1.13
msc98-ip 10 1959 6.3k +0 0.90 1.00 +0 0.77 0.75
mzzv11 10 732 233 +0 0.99 0.89 +0 1.00 0.91
mzzv42z 10 554 11 +0 1.01 1.04 +0 0.97 1.04
n4-3 10 1213 46.6k +0 1.04 0.99 +0 1.03 0.95

neos-1109824 10 395 23.2k +0 0.52 0.37 +0 0.93 0.85
neos-1396125 10 486 69.9k +0 1.00 1.01 +0 0.81 0.81
neos-476283 10 431 131 +0 0.88 0.99 +0 1.00 0.94
neos-686190 10 142 1.8k +0 1.13 1.22 +0 1.13 1.18

neos13 10 275 12 +0 0.95 0.98 +0 1.00 0.98
neos18 10 76 5.3k +0 1.27 1.59 +0 1.12 1.16
net12 10 2011 2.9k +0 1.03 1.07 +0 1.08 1.08

netdiversion 10 1463 13 +0 0.97 0.92 +0 0.95 1.04
newdano 5 5636 1.3m -1 1.02 0.96 +0 0.95 0.97
noswot 10 573 679.8k +0 1.54 1.57 +0 1.43 1.36

ns1208400 10 414 174 +0 1.10 1.20 +0 1.13 1.33
ns1688347 10 81 92 +0 1.02 1.14 +0 1.05 0.92
ns1766074 10 5740 925.7k +0 0.98 0.98 +0 0.99 0.98
ns1830653 10 492 18.6k +0 0.98 1.03 +0 0.91 0.92
nsrand-ipx 3 5004 584.7k +7 0.33 0.30 +2 0.50 0.49

nw04 10 2719 10 +0 0.84 1.00 +0 0.93 1.00
opm2-z7-s2 10 858 977 +0 1.03 1.00 +0 0.92 0.79

p0201 10 3 10 +0 0.99 1.02 +0 1.00 1.02
p2756 10 4 10 +0 1.00 1.00 +0 1.01 1.00
pg5_34 10 1397 116.0k +0 0.93 0.93 +0 0.96 0.94
pk1 10 123 325.8k +0 1.13 1.14 +0 1.09 1.06

pp08a 10 2 237 +0 1.00 1.01 +0 0.98 1.01
pp08aCUTS 10 2 153 +0 0.99 1.02 +0 0.99 1.05
pw-myciel4 0 - - +7 - - +4 - -

qiu 10 106 12.5k +0 1.00 1.02 +0 0.98 0.98
qnet1 10 11 4 +0 0.98 1.00 +0 1.00 1.00

qnet1_o 10 6 4 +0 0.97 1.00 +0 0.98 1.00
rail507 10 130 507 +0 1.07 1.17 +0 1.08 1.19

ran16x16 10 544 349.3k +0 0.82 0.82 +0 0.81 0.78
rd-rplusc-21 0 - - +1 - - +0 - -
reblock67 10 250 47.9k +0 0.98 1.02 +0 0.93 0.94

Table 5: Comparison of scoring function on the benchmark test set (continues
in the next page).

28

Instance product ratio svts
time (s) nodes # time (s) nodes # time (s) nodes

rmatr100-p10 10 109 799 +0 1.03 1.00 +0 1.02 0.93
rmatr100-p5 10 140 387 +0 0.96 0.99 +0 0.95 0.99

rmine6 3 3540 380.6k +1 1.10 1.05 -2 2.00 2.39
rocII-4-11 10 419 4.7k +0 2.43 5.91 +0 1.27 1.80

rococoC10-001000 1 4677 323.9k +1 0.83 0.81 +1 0.44 0.50
roll3000 9 3781 429.3k -2 1.15 1.18 -3 0.84 0.83
rout 10 111 44.6k +0 0.73 0.73 +0 0.94 0.94

satellites1-25 10 1590 3.4k +0 1.03 0.98 +0 1.02 1.01
set1ch 10 2 5 +0 1.00 0.92 +0 1.00 0.92
sp98ic 10 4736 276.2k +0 0.49 0.42 +0 0.70 0.58
sp98ir 10 71 1.6k +0 0.97 1.16 +0 0.98 1.15
stein27 10 2 4.2k +0 0.98 0.98 +0 1.00 0.99
stein45 10 34 51.5k +0 0.92 0.98 +0 0.97 0.99

tanglegram1 7 1749 289 -1 1.13 1.06 -2 0.90 0.58
tanglegram2 10 10 4 +0 0.98 1.00 +0 1.00 1.00
timtab1 10 1184 774.5k +0 1.04 1.04 +0 1.01 1.02
tr12-30 10 3644 780.2k +0 1.02 1.08 +0 1.00 1.02

unitcal_7 9 3415 32.0k +1 0.76 0.75 +0 0.91 0.87
vpm2 10 2 180 +0 1.00 1.05 +0 0.98 1.01

zib54-UUE 3 4914 413.0k +0 1.20 1.18 +0 1.09 1.13
Total 1225 705680 121.4m +24 0.92 0.97 +1 0.94 0.97

Geo. mean 98 1.2k 0.98 1.00 0.99 0.98
Sh. geo. mean 148 2.8k 0.98 1.00 0.99 0.98

Table 5: Comparison of scoring function on the benchmark test set.

7.2.2 Instances with large B&B trees

MIPLIB 2010 also has a so-called tree set with 52 instances, which “contains
instances that (empirically) lead to large enumeration trees” [9]. These instances
have been selected because the scoring functions ratio and svts defined in
Section 6 have specifically been designed to solve instances with large B&B
trees. We have tested our scoring functions on these instances in the same
setup as the experiments of Section 7.2.1, but we gave a time limit of 12 hours
to allow for a more significant number of instances to be solved. Including
permutations, the testbed comprises 520 instances, and required the equivalent
of 19 months of running time on a single machine.

Table 6 provides the result for the tree test set with the same notation as
Table 5 in Section 7.2.1. Both functions ratio and svts largely outperform
product, both in terms of time and nodes, and solve slightly more instances.
Note that some instances in this test set do not require larger trees than those in
the benchmark test set (e.g. glass4, ns894788 and pg). This is probably due to
the fact that MIP solvers have made significant progress for these instances since
this test set was designed. A more extensive report of the numerical experiments
is provided in the appendices, Section C.

Instance product ratio svts
time (s) nodes # time (s) nodes # time (s) nodes

csched007 10 31000 5.7m +0 0.78 0.75 +0 0.82 0.76
csched008 10 1440 112.4k +0 1.21 1.03 +0 1.14 1.06

Table 6: Comparison of scoring function on the tree test set (continues in the
next page).

29

Instance product ratio svts
time (s) nodes # time (s) nodes # time (s) nodes

glass4 10 28 11.5k +0 1.37 1.34 +0 1.03 1.03
gmu-35-40 0 - - +2 - - +1 - -
k16x240 10 23835 23.2m +0 0.88 0.89 +0 0.86 0.85

neos-1616732 10 9182 2.5m +0 0.85 0.94 +0 0.82 0.84
neos-942830 10 9184 1.5m +0 0.95 0.95 +0 1.00 0.94

neos15 1 34352 12.3m +0 0.91 0.94 +0 0.87 0.91
neos858960 10 3997 2.8m +0 0.92 0.93 +0 0.92 0.93
noswot 10 556 679.8k +0 1.62 1.57 +0 1.44 1.36

ns1766074 10 5747 925.7k +0 0.95 0.98 +0 0.98 0.98
pg 10 24 203 +0 1.01 0.97 +0 1.01 1.10

ran14x18 10 23039 18.4m +0 0.83 0.82 +0 0.87 0.81
reblock166 4 16858 1.6m +2 0.98 1.00 +2 0.79 0.95
timtab1 10 1142 774.5k +0 1.05 1.04 +0 1.02 1.02
umts 10 8726 1.5m +0 0.69 0.71 +0 0.64 0.65

wachplan 10 15334 324.2k +0 1.02 1.01 +0 1.01 1.01
Total 155 1434131 602.1m +4 0.87 0.87 +3 0.87 0.84

Geo. mean 2879 618.6k 0.97 0.96 0.95 0.95
Sh. geo. mean 3021 636.4k 0.97 0.96 0.95 0.95

Table 6: Comparison of scoring function on the tree test set.

8 Conclusions
We developed one of the first models for the branching component of the Branch
& Bound algorithm, over fifty years after its introduction. We proved that these
models are relevant by theoretically establishing new scoring functions that are
efficient for MIP solving. Numerous questions naturally arise regarding these
models.

One possible line of investigation relates to the computational complexity
of the decision problems we have defined. For instance, can MVB be solved in
polynomial time (even for two variables)? Is there an approximation algorithm
for the minimization version of GVB?

Scoring functions are the only components of B&B that we numerically an-
alyze through the theory we develop in this paper. Are there other elements of
B&B that can be studied via the current models? There certainly exist decision
problems that can model the B&B algorithm more accurately than GVB (e.g. if
the gains of a variable are not fixed). Would the analysis of these models deepen
our understanding of B&B, and lead to additional MIP solving improvements?

Acknowledgments
The authors would like to thank Eduardo Uchoa for pointing out reference [10]
and Graham Farr for helping with the discussion at the end of Section 5.1. This
research was funded by AFOSR grant FA9550-12-1-0151 of the Air Force Office
of Scientific Research and the National Science Foundation Grant CCF-1415460
to the Georgia Institute of Technology.

30

References
[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische

Universität Berlin, 2007.

[2] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical
Programming Computation, 1(1):1–41, July 2009.

[3] T. Achterberg and T. Berthold. Hybrid branching. In WJ. Hoeve and
J. N. Hooker, editors, Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, volume 5547 of
Lecture Notes in Computer Science, pages 309–311. Springer, 2009.

[4] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research
Letters, 34(4):361–372, 2006.

[5] T. Achterberg and R. Wunderling. Mixed Integer Programming: Analyzing
12 Years of Progress, pages 449–481. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[6] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer programming, volume
271 of Graduate Texts in Mathematics. Springer, 2014.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[8] N. Jacobson. Basic Algebra I: Second Edition. Dover, 2009.

[9] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby,
E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann,
T. Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter. MIPLIB 2010. Math-
ematical Programming Computation, 3(2):103–163, 2011.

[10] O. Kullmann. Fundaments of branching heuristics. In Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfia-
bility, volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 205–244. IOS Press, 2009.

[11] A. H. Land and A. G. Doig. An automatic method of solving discrete
programming problems. Econometrica, 28(3):pp. 497–520, 1960.

[12] A. Lodi and A. Tramontani. Performance variability in mixed-integer pro-
gramming. In TutORials in Operations Research: Theory Driven by Influ-
ential Applications, chapter 2, pages 1–12. 2013.

[13] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-
tion. Wiley-Interscience, New York, NY, USA, 1988.

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 3 edition, 2007.

31

[15] Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3(1):1 – 22, 1976.

[16] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM
Journal of Computing, 20(5):865–877, October 1991.

Appendices
A Proofs
A.1 Proof of Theorem 4 and Corollary 5

Theorem . When G tends to infinity, both sequences l

√
t(G+l)

t(G) and r

√
t(G+r)

t(G)
converge to ϕ, which is the unique root greater than 1 of the equation p(x) =
xr − xr−l − 1 = 0.

Proof. Proposition 3 proves the case l = r, therefore we suppose throughout the
proof that r > l. First, we define the notation

L = lim inf
G→∞

t(G+ l)
t(G) L̄ = lim sup

G→∞

t(G+ l)
t(G)

R = lim inf
G→∞

t(G+ r)
t(G) R̄ = lim sup

G→∞

t(G+ r)
t(G) .

Using the recursive definition (1) of t between the first and the second lines, we
can easily establish:

L =
(

lim sup
G→∞

t(G)
t(G+ l)

)−1
=
(

lim sup
G→∞

t(G− l)
t(G)

)−1

=
(

lim sup
G→∞

t(G)− t(G− r)
t(G)

)−1
=
(

1− lim sup
G→∞

t(G− r)
t(G)

)−1

=
(

1− lim sup
G→∞

t(G)
t(G+ r)

)−1
=
(

1−
(

lim inf
G→∞

t(G+ r)
t(G)

)−1
)−1

= (1−R−1)−1 = 1 + 1
R− 1 . (note that R ≥ 2.)

Similarly, L̄ = 1 + 1
R̄−1 . Next, we obtain

lim inf
G→∞

t(G+ lr)
t(G) = lim inf

G→∞

t(G+ lr)
t(G+ (l − 1)r)

t(G+ (l − 1)r)
t(G+ (l − 2)r) . . .

t(G+ r)
t(G)

≥ lim inf
G→∞

t(G+ lr)
t(G+ (l − 1)r) lim inf

G→∞

t(G+ (l − 1)r)
t(G+ (l − 2)r) . . . lim inf

G→∞

t(G+ r)
t(G)

=
(

lim inf
G→∞

t(G+ r)
t(G)

)l

= Rl.

32

Also, we have

lim sup
G→∞

t(G+ lr)
t(G) = lim sup

G→∞

t(G+ lr)
t(G+ l(r − 1)) . . .

t(G+ l)
t(G)

≤ lim sup
G→∞

t(G+ lr)
t(G+ l(r − 1)) . . . lim sup

G→∞

t(G+ l)
t(G)

=
(

lim sup
G→∞

t(G+ l)
t(G)

)r

= L̄r.

Together, these yield

L̄r ≥ lim sup
G→∞

t(G+ lr)
t(G) ≥ lim inf

G→∞

t(G+ lr)
t(G) ≥ Rl.

Following the same steps, we can show R̄l ≥ Lr. Starting from this inequality,
we prove

R̄
l
r ≥ L = 1 + 1

R− 1 ⇒ R ≥ 1 + 1
R̄

l
r − 1

.

Likewise, we can show that the inequality R̄ ≤ 1 + 1
R

l
r−1

holds.
We now introduce two monotonic sequences αn and ωn that respectively

bound R from below and bound R̄ from above, and we prove that they converge
to the same limit. For all non-negative n, let αn and ωn be defined as follows:

αn =
{

2 if n = 0
f(ωn−1) otherwise

ωn = f(αn)

where f(x) = 1 + 1
x

l
r−1

for all x ∈ (1,∞). We first prove by induction that for

all non-negative integer n, αn and ωn satisfy αn ≤ R ≤ R̄ ≤ ωn. Proposition
3 ensures that α0 = 2 is a lower bound on R. Suppose that for a given non-
negative n, the inequality αn ≤ R holds. We prove that R̄ ≤ ωn holds too:

αn ≤ R⇒ 1 + 1

α
l
r
n − 1

≥ 1 + 1
R

l
r − 1

≥ R̄

⇒ f(αn) ≥ R̄
⇒ ωn ≥ R̄.

The same reasoning also proves that for all non-negative integers n, ωn ≥ R̄
implies αn+1 ≤ R. The sequence αn thus bounds R from below, and ωn bounds
R̄ from above.

We now prove that αn is monotonically increasing. Consider the inequality:

α1 > α0 ⇔ f(f(2)) > 2⇔ 1
f(2) l

r − 1
> 1⇔ f(2) < 2 r

l

⇔ 1 + 1
2 l

r − 1
< 2 r

l ⇔ 2 l
r < 2 r

l (2 l
r − 1)⇔ r > l.

33

Suppose now that for a given non-negative n, αn > αn−1. This implies that
ωn < ωn−1:

ωn − ωn−1 = 1

α
l
r
n − 1

− 1

α
l
r
n−1 − 1

< 0⇔ α
l
r
n > α

l
r
n−1.

In turn, for that given n, ωn < ωn−1 implies αn+1 > αn. The sequence αn and
ωn are thus increasing and decreasing, respectively. Since they are bounded,
each of them converges to one of the solutions of the fixed-point equation x =
f(x). We now prove that there is a unique solution to that equation:

x = f(x)⇔ x = 1 + 1
x

l
r − 1

⇔ (x l
r − 1)(x− 1) = 1

⇔ x
l+r

r − x l
r − x = 0

⇔ p(X) = Xr −Xr−l − 1 = 0

where X = x
1
r . We establish in Theorem 6 that the polynomial p has a unique

root in (1,∞), hence the fixed-point equation x = f(x) also has a unique solu-
tion. Consequently, it is necessary that both sequences αn and ωn converge to
this unique fixed point, and thus R = R̄. Furthermore, the sequence r

√
t(G+r)

t(G)
converges to the root ϕ > 1 of the polynomial p.

Since we have established that L = 1 + 1
R−1 and L̄ = 1 + 1

R̄−1 , it follows
that L = L̄. Since p(ϕ) = 0, ϕ equivalently satisfies ϕl = 1 + 1

ϕr−1 , therefore
L = L̄ = ϕl.

Corollary . A numerical approximation of ϕr is given by the fixed-point iter-
ation

f(x) = 1 + 1
x

l
r − 1

.

with the starting point x = 2.

Proof. Recall the definition of the sequences αn and ωn as given in the proof
of Theorem 4 (notice that function f has the same definition). The sequence
fn generated by the fixed-point equation is (2, f(2), f(f(2)), f(f(f(2))), . . .),
which is equal to (α0, ω0, α1, ω1, . . .). Formally, the sequence fn generated by
the fixed-point equation satisfies

fn =
{
αn

2
if n is even

ωn+1
2

if n is odd.

In the proof of Theorem 4, we prove that both αn and ωn converge to ϕr when
n tends to infinity, therefore fn also converges to ϕr.

34

A.2 Proof of Theorem 7
Recall that z is the least common multiple of all li and ri.

Theorem . ϕ = mini ϕi

Proof. Let α be such that for all positive integers x ≤ z,

αx ≤ lim inf
G→∞

t(G+ x)
t(G) ≤ lim sup

G→∞

t(G+ x)
t(G) . (6)

A possible value is α = 1. Similar to the proof of Theorem 4, we use the notation

Z = lim inf
G→∞

t(G+ z)
t(G) Z̄ = lim sup

G→∞

t(G+ z)
t(G) .

For all variables i, we have:

Z̄ = lim sup
G→∞

(
t(G+ z)

t(G+ z − li)
t(G+ z − li)
t(G+ z − 2li)

. . .
t(G+ z − (z

li
− 1)li)

t(G)

)

≤
(

lim sup
G→∞

t(G+ li)
t(G)

) z
li

=
(

lim sup
G→∞

1 + minj(t(G+ li − lj) + t(G+ li − rj))
t(G)

) z
li

≤
(

1 + lim sup
G→∞

t(G+ li − ri)
t(G)

) z
li

≤

(
1 +

(
lim inf
G→∞

t(G)
t(G+ li − ri)

)−1
) z

li

≤

(
1 +

(
lim inf
G→∞

t(G+ ri − li)
t(G)

)−1
) z

li

≤
(
1 + αli−ri

) z
li

where the last line follows from the lower bound on α−x from (6).
Suppose there exists a variable i such that α > ϕi, then we establish, using

Theorem 6:

α > ϕi ⇒ pi(α) > 0
⇒ αri − αri−li − 1 > 0
⇒ 1 + αli−ri < αli

⇒ (1 + αli−ri)
z
li < (αli)

z
li

⇒ Z̄ < αz.

35

This contradicts expression (6), hence for all variables i, α ≤ ϕi. Suppose that
there exists a variable i such that ϕz

i < Z̄, then

αz ≤ ϕz
i < Z̄ ≤

(
1 + αli−ri

) z
li ⇒ αli < 1 + αli−ri

⇒ αri−lipi(α) < 0
⇒ α < ϕi,

which is a contradiction, hence for all variables i, Z̄ ≤ ϕz
i . In addition, for each

variable i,

Z ≥
(

lim inf
G→∞

t(G+ ri)
t(G)

) z
ri

≥
(

lim inf
G→∞

1 + minj(t(G+ ri − lj) + t(G+ ri − rj))
t(G)

) z
ri

≥
(

min
j

lim inf
G→∞

t(G+ ri − lj) + t(G+ ri − rj)
t(G)

) z
ri

.

Hence there must exist a variable j such that

Z ≥
(

1 + lim inf
G→∞

t(G+ rj − lj)
t(G)

) z
rj

≥
(
1 + αrj−lj

) z
rj .

Suppose α < ϕj , then, using Theorem 6 in the first line:

α < ϕj ⇒ pj(α) < 0
⇒ 1 + αrj−lj > αrj

⇒ (1 + αrj−lj)
z

rj > (αrj)
z

rj

⇒ Z > αz.

Since ϕz
j > αz implies Z > αz, then Z ≥ ϕz

j must be true. This can be shortly
proven by writing

(ϕz
j > αz ⇒ Z > αz)⇒ ¬(ϕz

j > αz ∧ Z ≤ αz)⇒ ¬(ϕz
j > Z)⇒ ϕz

j ≤ Z.

Since ϕz
i ≥ Z̄ holds for all variables i, then variable j satisfies ϕz

j ≤ Z ≤ Z̄ ≤ ϕz
i

for all variables i. We can finally conclude that

lim
G→∞

z

√
t(G+ z)
t(G) = min

i
ϕz

i .

36

Data Gap linear(µ) product ratio LB
µ = 0 1

6
1
3

1
2 1

B

5000 t-s 0.13 0.15 0.15 0.46 517.40 0.16 0.16 0.11
wins 99 98 98 96 21 97 97

15000 t-s 6.02 3.49 3.13 2.80 1004 2.76 2.76 2.62
wins 89 94 96 98 8 99 99

25000 t-s 7.78 3.68 3.18 2.72 1005 2.71 2.71 2.71
wins 88 93 95 99 8 100 100

U

5000 t-s 98.02 2.47 0.96 0.90 1353.05 0.96 0.87 0.73
wins 16 85 95 89 12 96 93

12500 t-s 544.24 10.22 2.76 3.59 1004 2.82 2.79 2.50
wins 13 74 99 84 10 97 92

20000 t-s 1860.53 16.64 3.58 4.15 1006 3.80 3.17 3.09
wins 13 70 92 87 11 90 95

V

5000 t-s 694.14 7.43 7.49 15.47 1587.97 6.52 5.80 5.49
wins 20 82 81 61 13 87 92

7500 t-s 2176.92 7.79 7.81 18.20 5596.92 6.75 5.89 5.69
wins 19 81 83 64 14 86 94

10000 t-s 6456.22 9.48 8.17 22.52 1004 7.61 5.81 5.72
wins 19 76 86 66 15 83 97

X

2000 t-s 626.55 5.64 14.14 36.89 527.77 5.08 5.64 4.79
wins 11 85 64 45 12 91 85

3000 t-s 1943.09 6.21 16.60 48.57 1198.56 6.76 6.21 5.67
wins 9 88 68 47 12 88 88

4000 t-s 5797.74 6.03 18.73 60.70 2449.16 7.30 6.03 5.68
wins 9 93 67 47 12 89 93

Table 7: Simulation results on MVB presented as Table 2.

B Additional numerical simulations
We give an additional set of simulations on the MVB model, with the same
target gaps as in the simulations on GVB, so that one can compare both exper-
imental setups easily. For the same experiment, we present two different tables,
Table 7 and 8, where the results are presented as in Table 2 and 3, respectively.
The two differences between Table 7 and 8 are thus the presence (or absence) of
the last column LB, and the reference used for relative performance (for Table
7 it is the minimum tree-size, and for Table 8 it is the tree-size produced by
product).

These results show that ratio performs generally better than product and
linear, and that this phenomenon becomes more significant as the gap to close
increases. If we compare Table 8 to Table 3, it appears that ratio is even more
at an advantage on GVB than on MVB. One reason may be that, for a given
instance, the best variable for ratio and product may be the same, or not very
different, and in the MVB experiments this best variable would be branched on
at every node. However, in GVB, this variable would be branched on only at
the root node, and the subsequent best variables chosen by ratio and product
are likely to differ. Indeed, observe that there are many more ties in the MVB
experiments than in the GVB experiments.

37

Data Gap linear(µ) product ratio
µ = 0 1

6
1
3

1
2 1

B

5000 t-s -0.03 -0.02 -0.02 0.30 516.40 0.00 0.00
wins 99 98 98 96 21 97 97

15000 t-s 3.18 0.71 0.36 0.04 1004 0.00 0.00
wins 89 94 96 98 8 99 99

25000 t-s 4.94 0.94 0.46 0.01 1005 0.00 0.00
wins 88 93 95 99 8 100 100

U

5000 t-s 96.14 1.50 0.00 -0.06 1339.26 0.00 -0.09
wins 16 85 95 89 12 96 93

12500 t-s 526.58 7.20 -0.06 0.75 1004 0.00 -0.03
wins 13 74 99 84 10 97 92

20000 t-s 1788.75 12.37 -0.21 0.34 1006 0.00 -0.61
wins 13 70 92 87 11 90 95

V

5000 t-s 645.51 0.85 0.90 8.40 1484.61 0.00 -0.68
wins 20 82 81 61 13 87 92

7500 t-s 2032.98 0.97 0.99 10.73 5236.79 0.00 -0.81
wins 19 81 83 64 14 86 94

10000 t-s 5992.84 1.74 0.52 13.86 1004 0.00 -1.67
wins 19 76 86 66 15 83 97

X

2000 t-s 591.45 0.54 8.62 30.28 497.44 0.00 0.54
wins 11 85 64 45 12 91 85

3000 t-s 1813.72 -0.52 9.21 39.16 1116.33 0.00 -0.52
wins 9 88 68 47 12 88 88

4000 t-s 5396.50 -1.18 10.65 49.77 2275.74 0.00 -1.18
wins 9 93 67 47 12 89 93

Table 8: Simulation results on MVB presented as Table 3.

38

C Detailed results for the experiments on MIP
instances

We present in Section C.1 and C.2 the detailed results for the benchmark and
tree test sets, as described in Section 7.2.1 and 7.2.2, respectively. There are
three tables in each section, one for each of the scoring function tested, namely
product, ratio, and svts. In each table, each line corresponds to all 10 per-
mutations for each instance of the test set. The second column indicates the
number of permuted instances solved. We provide statistics in terms of time,
number of nodes and LP iterations. For each of these three measures, we give,
from left to right in the table, the minimum, average over solved instances (and
average over all 10 instances), and maximum. In the node and LP iterations
columns, we use the letters k, m and b as a shorthand for thousands, millions
and billions. Total and averages are provided at the end of each table. Note
that it would not be fair to compare the measures over solved instances in this
setting. Indeed, the set of solved instances differ depending on the scoring func-
tion considered. Function ratio generally solves more hard instances, thus the
averages on solved instances have higher values.

C.1 Benchmark test set results
Tables 9, 10 and 11 give the results on the benchmark test set for the scoring
functions product, ratio, and svts, respectively.

39

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

10teams 10 1 1 (1) 1 1 1 (1) 1 1.0k 1.2k (1.2k) 1.6k
30n20b8 10 483 521 (521) 544 7 10 (10) 15 31.7k 37.5k (37.5k) 48.6k
a1c1s1 0 7200 - (7200) 7200 308.8k - (433.7k) 577.7k 11.9m - (13.0m) 14.6m

acc-tight5 10 0 0 (0) 0 0 0 (0) 0 0 0 (0) 0
aflow30a 10 33 36 (36) 42 1.8k 2.5k (2.5k) 4.2k 34.5k 45.1k (45.1k) 64.9k
aflow40b 10 2592 3483 (3483) 4952 142.9k 210.9k (210.9k) 289.1k 2.9m 4.4m (4.4m) 6.0m
air04 10 28 30 (30) 40 6 7 (7) 8 11.6k 13.0k (13.0k) 14.6k
app1-2 10 603 845 (845) 1362 29 565 (565) 2.0k 8.5k 28.3k (28.3k) 84.0k
arki001 2 3738 4862 (6732) 7200 1.0m 1.3m (1.7m) 1.9m 5.3m 6.8m (11.5m) 17.0m

ash608gpia-3col 10 80 87 (87) 111 5 5 (5) 9 8.0k 10.3k (10.3k) 19.1k
atlanta-ip 0 7200 - (7200) 7200 4.1k - (6.8k) 9.4k 1.9m - (2.4m) 2.9m

bab5 0 7200 - (7200) 7200 10.8k - (16.2k) 21.9k 721.2k - (946.2k) 1.3m
beasleyC3 0 7200 - (7200) 7200 790.1k - (1.1m) 1.5m 28.5m - (32.8m) 36.6m

bell5 10 1 1 (1) 1 1.1k 1.1k (1.1k) 1.1k 1.3k 1.4k (1.4k) 1.6k
biella1 10 163 217 (217) 286 2.0k 2.8k (2.8k) 5.3k 266.8k 355.8k (355.8k) 518.3k
bienst2 10 208 288 (288) 414 82.9k 112.6k (112.6k) 167.1k 2.1m 2.9m (2.9m) 3.9m

binkar10_1 10 268 431 (431) 592 85.4k 135.8k (135.8k) 196.2k 633.3k 1.0m (1.0m) 1.4m
blend2 10 1 2 (2) 2 166 222 (222) 305 780 960 (960) 1.2k
bley_xl1 10 1155 2182 (2182) 4539 1 1 (1) 1 2.6k 14.4k (14.4k) 97.8k
bnatt350 10 0 0 (0) 0 0 0 (0) 0 0 0 (0) 0
cap6000 10 8 8 (8) 8 1.7k 1.8k (1.8k) 1.8k 2.6k 2.7k (2.7k) 2.7k

core2536-691 10 9 11 (11) 13 1 1 (1) 1 9.1k 11.5k (11.5k) 15.5k
cov1075 0 7200 - (7200) 7200 1.1m - (1.2m) 1.3m 37.5m - (40.3m) 44.0m
csched010 9 5048 6151 (6256) 7200 561.5k 738.0k (752.7k) 884.3k 28.9m 37.7m (38.4m) 45.0m
danoint 2 7047 7073 (7175) 7200 1.2m 1.2m (1.2m) 1.3m 51.7m 51.9m (53.8m) 57.0m
dcmulti 10 2 2 (2) 3 6 9 (9) 10 1.5k 1.6k (1.6k) 1.7k

dfn-gwin-UUM 10 239 256 (256) 291 62.9k 62.9k (62.9k) 62.9k 1.0m 1.0m (1.0m) 1.0m
disctom 10 0 1 (1) 2 0 1 (1) 1 0 358 (358) 1.1k
dsbmip 10 1 1 (1) 1 1 1 (1) 1 974 1.2k (1.2k) 1.3k
egout 10 0 0 (0) 0 1 1 (1) 1 37 39 (39) 42
eil33-2 10 93 103 (103) 123 442 496 (496) 598 24.3k 26.8k (26.8k) 31.0k
eilB101 10 101 134 (134) 204 2.7k 4.4k (4.4k) 8.6k 235.0k 318.5k (318.5k) 480.9k
enigma 10 0 0 (0) 0 0 0 (0) 0 0 0 (0) 0
enlight13 0 7200 - (7200) 7200 4.1m - (4.6m) 4.9m 18.7m - (20.1m) 21.2m
enlight14 0 7200 - (7200) 7200 4.7m - (5.1m) 5.4m 20.6m - (22.1m) 22.9m

ex9 10 2 2 (2) 3 0 0 (0) 0 0 0 (0) 0
fast0507 10 116 129 (129) 140 412 494 (494) 534 48.1k 54.1k (54.1k) 58.7k
fiber 10 4 5 (5) 5 1 12 (12) 51 735 1.1k (1.1k) 1.6k

fixnet6 10 5 5 (5) 5 7 9 (9) 12 1.4k 1.7k (1.7k) 2.2k
flugpl 10 0 0 (0) 0 220 221 (221) 221 188 188 (188) 188

Table 9: Detailed results for the product scoring function on the benchmark test set(continues in the next page).

40

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

gen 10 0 0 (0) 0 1 1 (1) 1 139 143 (143) 146
gesa2 10 3 4 (4) 4 2 3 (3) 3 1.2k 1.3k (1.3k) 1.4k
gesa2-o 10 4 4 (4) 4 2 4 (4) 5 1.1k 1.4k (1.4k) 1.5k
gesa2_o 10 4 4 (4) 4 4 5 (5) 5 1.4k 1.6k (1.6k) 1.7k
gesa3 10 4 4 (4) 4 18 20 (20) 22 1.6k 1.7k (1.7k) 1.7k

gesa3_o 10 4 4 (4) 4 7 9 (9) 11 1.4k 1.9k (1.9k) 2.3k
glass4 10 15 29 (29) 45 5.4k 11.5k (11.5k) 18.9k 36.3k 75.2k (75.2k) 130.2k

gmu-35-40 0 7200 - (7200) 7200 8.1m - (10.1m) 12.4m 24.9m - (28.2m) 33.0m
gt2 10 0 0 (0) 0 1 1 (1) 1 91 91 (91) 91

harp2 0 7200 - (7200) 7200 4.5m - (5.0m) 5.9m 5.0m - (5.7m) 7.0m
iis-100-0-cov 10 2194 2286 (2286) 2461 80.4k 83.6k (83.6k) 86.9k 3.3m 3.4m (3.4m) 3.5m
iis-bupa-cov 0 7200 - (7200) 7200 132.0k - (134.2k) 137.1k 7.8m - (8.0m) 8.2m
iis-pima-cov 10 737 806 (806) 926 6.1k 6.7k (6.7k) 7.6k 375.4k 411.6k (411.6k) 469.6k
khb05250 10 1 1 (1) 1 2 7 (7) 9 323 554 (554) 837
l152lav 10 1 2 (2) 2 15 16 (16) 17 1.5k 1.8k (1.8k) 2.0k

lectsched-4-obj 10 1 1 (1) 1 0 0 (0) 0 0 0 (0) 0
lseu 10 2 2 (2) 2 971 1.0k (1.0k) 1.1k 3.5k 3.6k (3.6k) 3.7k

m100n500k4r1 10 0 0 (0) 0 1 1 (1) 1 166 203 (203) 260
macrophage 0 7200 - (7200) 7200 955.7k - (1.1m) 1.2m 17.1m - (19.0m) 22.1m
manna81 10 1 1 (1) 1 1 1 (1) 1 3.1k 3.2k (3.2k) 3.2k
map18 10 391 462 (462) 578 225 260 (260) 289 84.6k 91.1k (91.1k) 98.9k
map20 10 367 422 (422) 480 277 300 (300) 329 83.5k 89.9k (89.9k) 95.7k

markshare1 0 7200 - (7200) 7200 22.2m - (23.1m) 23.7m 45.9m - (48.0m) 49.3m
markshare2 0 7200 - (7200) 7200 26.4m - (26.8m) 27.2m 63.7m - (64.8m) 65.7m

mas74 10 1729 1810 (1810) 1982 3.2m 3.3m (3.3m) 3.3m 12.5m 12.9m (12.9m) 12.9m
mas76 10 197 200 (200) 203 484.2k 484.2k (484.2k) 484.2k 1.6m 1.6m (1.6m) 1.6m
mcsched 10 209 268 (268) 369 12.7k 18.1k (18.1k) 25.9k 469.7k 674.1k (674.1k) 1.0m

mik-250-1-100-1 10 1732 1832 (1832) 1995 787.0k 829.9k (829.9k) 904.1k 2.5m 2.7m (2.7m) 2.9m
mine-166-5 10 28 30 (30) 33 186 356 (356) 722 3.9k 4.8k (4.8k) 5.7k
mine-90-10 10 338 1228 (1228) 2701 37.9k 116.9k (116.9k) 208.2k 236.6k 681.9k (681.9k) 1.1m
misc03 10 1 2 (2) 2 59 125 (125) 239 1.9k 2.8k (2.8k) 3.9k
misc06 10 1 1 (1) 2 3 7 (7) 10 1.3k 1.8k (1.8k) 2.3k
misc07 10 36 45 (45) 62 17.9k 23.8k (23.8k) 29.6k 140.6k 180.7k (180.7k) 223.9k
mitre 10 45 48 (48) 54 1 1 (1) 1 1.3k 1.4k (1.4k) 1.4k

mod008 10 5 5 (5) 5 11 12 (12) 12 544 594 (594) 607
mod010 10 1 1 (1) 1 2 3 (3) 4 905 1.0k (1.0k) 1.3k
mod011 10 61 74 (74) 88 601 886 (886) 1.5k 49.6k 67.1k (67.1k) 96.1k
modglob 10 1 1 (1) 2 10 20 (20) 27 675 768 (768) 1.0k

momentum1 0 7200 - (7200) 7200 18.6k - (21.1k) 26.2k 892.2k - (1.5m) 1.9m
momentum2 1 4417 4417 (6922) 7200 13.6k 13.6k (22.9k) 27.8k 426.1k 426.1k (733.2k) 859.9k

Table 9: Detailed results for the product scoring function on the benchmark test set(continues in the next page).

41

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

msc98-ip 10 934 1959 (1959) 4088 2.3k 6.3k (6.3k) 16.3k 783.4k 1.9m (1.9m) 4.3m
mspp16 0 7200 - (7200) 7200 0 - (0) 0 0 - (0) 0
mzzv11 10 672 732 (732) 832 12 233 (233) 776 48.6k 60.0k (60.0k) 76.0k
mzzv42z 10 493 554 (554) 620 2 11 (11) 20 32.9k 40.5k (40.5k) 46.5k
n3div36 0 7200 - (7200) 7200 96.8k - (147.7k) 173.9k 985.7k - (1.2m) 1.5m
n3seq24 0 7200 - (7200) 7200 82.4k - (116.2k) 190.0k 1.3m - (2.1m) 3.3m
n4-3 10 831 1213 (1213) 1846 30.8k 46.6k (46.6k) 70.9k 1.3m 1.7m (1.7m) 2.5m

neos-1109824 10 234 395 (395) 632 10.1k 23.2k (23.2k) 40.7k 103.8k 207.0k (207.0k) 353.5k
neos-1337307 0 7200 - (7200) 7200 231.6k - (268.3k) 307.0k 3.5m - (3.7m) 4.0m
neos-1396125 10 236 486 (486) 884 32.1k 69.9k (69.9k) 129.8k 911.0k 1.8m (1.8m) 3.4m
neos-1601936 10 7 7 (7) 8 1 1 (1) 1 10.4k 11.0k (11.0k) 11.4k
neos-476283 10 314 431 (431) 584 67 131 (131) 201 8.0k 11.3k (11.3k) 16.5k
neos-686190 10 97 142 (142) 173 1.6k 1.8k (1.8k) 2.0k 34.2k 37.2k (37.2k) 39.9k
neos-849702 10 0 0 (0) 0 0 0 (0) 0 0 0 (0) 0
neos-916792 0 7200 - (7200) 7200 197.5k - (239.2k) 280.2k 2.3m - (2.8m) 3.3m
neos-934278 0 7200 - (7200) 7200 7.8k - (11.3k) 18.1k 5.6m - (6.8m) 7.8m

neos13 10 246 275 (275) 294 12 12 (12) 12 3.0k 3.0k (3.0k) 3.0k
neos18 10 58 76 (76) 119 3.6k 5.3k (5.3k) 8.1k 118.6k 177.5k (177.5k) 296.9k
net12 10 1279 2011 (2011) 2973 2.1k 2.9k (2.9k) 3.7k 1.1m 2.0m (2.0m) 3.3m

netdiversion 10 1032 1463 (1463) 2132 5 13 (13) 57 30.5k 46.3k (46.3k) 86.3k
newdano 5 4722 5939 (6569) 7200 1.1m 1.3m (1.5m) 1.9m 54.7m 69.5m (73.1m) 85.7m
noswot 10 283 573 (573) 1136 367.0k 679.8k (679.8k) 1.0m 1.2m 2.1m (2.1m) 3.2m

ns1208400 10 225 414 (414) 626 1 174 (174) 533 142.1k 286.5k (286.5k) 433.0k
ns1688347 10 59 81 (81) 105 6 92 (92) 438 5.8k 23.8k (23.8k) 38.2k
ns1758913 6 1651 3272 (4843) 7200 1 1 (1) 1 29.3k 44.1k (50.4k) 74.6k
ns1766074 10 5324 5740 (5740) 6120 895.3k 925.7k (925.7k) 949.9k 3.4m 3.7m (3.7m) 3.8m
ns1830653 10 402 492 (492) 726 15.9k 18.6k (18.6k) 24.6k 1.1m 1.3m (1.3m) 1.9m
nsrand-ipx 3 2411 5004 (6541) 7200 248.9k 584.7k (903.1k) 1.1m 1.6m 3.6m (5.4m) 6.8m

nw04 10 1979 2719 (2719) 3271 7 10 (10) 12 1.3k 1.6k (1.6k) 1.9k
opm2-z7-s2 10 679 858 (858) 1106 707 977 (977) 1.4k 43.2k 64.4k (64.4k) 86.8k
opt1217 5 2 2 (3601) 7200 1 1 (1.7m) 4.4m 747 798 (9.3m) 29.5m
p0033 10 0 0 (0) 0 1 1 (1) 1 57 57 (57) 57
p0201 10 2 3 (3) 3 4 10 (10) 39 1.1k 1.4k (1.4k) 2.8k
p0282 10 1 2 (2) 2 2 3 (3) 3 459 649 (649) 890
p0548 10 1 1 (1) 1 1 1 (1) 1 331 331 (331) 331
p2756 10 4 4 (4) 4 10 10 (10) 10 538 547 (547) 555
pg5_34 10 1257 1397 (1397) 1824 116.0k 116.0k (116.0k) 116.0k 2.2m 2.2m (2.2m) 2.2m
pigeon-10 0 7200 - (7200) 7200 929.9k - (1.1m) 1.1m 4.2m - (6.5m) 9.1m

pk1 10 120 123 (123) 126 325.8k 325.8k (325.8k) 325.8k 1.9m 1.9m (1.9m) 1.9m
pp08a 10 2 2 (2) 3 107 237 (237) 350 2.0k 3.3k (3.3k) 5.1k

Table 9: Detailed results for the product scoring function on the benchmark test set(continues in the next page).

42

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

pp08aCUTS 10 2 2 (2) 3 75 153 (153) 245 1.8k 2.5k (2.5k) 3.8k
protfold 0 7200 - (7200) 7200 15.6k - (30.4k) 48.7k 15.0m - (21.9m) 26.5m

pw-myciel4 0 7200 - (7200) 7200 482.7k - (561.1k) 624.2k 19.4m - (21.9m) 24.7m
qiu 10 78 106 (106) 125 9.6k 12.5k (12.5k) 14.3k 304.7k 410.6k (410.6k) 495.1k

qnet1 10 9 11 (11) 12 3 4 (4) 6 3.7k 4.0k (4.0k) 4.5k
qnet1_o 10 5 6 (6) 6 3 4 (4) 6 2.5k 2.8k (2.8k) 3.3k
rail507 10 114 130 (130) 156 450 507 (507) 540 51.6k 54.6k (54.6k) 56.3k

ran16x16 10 491 544 (544) 606 322.5k 349.3k (349.3k) 397.2k 2.6m 2.9m (2.9m) 3.2m
rd-rplusc-21 0 7200 - (7200) 7200 42.8k - (70.9k) 174.8k 450.1k - (729.0k) 1.6m
reblock67 10 203 250 (250) 312 41.6k 47.9k (47.9k) 57.5k 459.6k 504.7k (504.7k) 618.0k
rentacar 10 5 6 (6) 7 2 2 (2) 2 2.8k 3.2k (3.2k) 3.8k

rgn 10 1 1 (1) 1 1 1 (1) 2 327 392 (392) 556
rmatr100-p10 10 106 109 (109) 116 789 799 (799) 805 64.1k 64.2k (64.2k) 64.3k
rmatr100-p5 10 128 140 (140) 160 387 387 (387) 387 67.5k 67.6k (67.6k) 67.6k

rmine6 3 3540 4297 (6329) 7200 380.6k 461.5k (780.9k) 985.0k 2.6m 3.1m (5.6m) 7.0m
rocII-4-11 10 352 419 (419) 522 3.4k 4.7k (4.7k) 7.0k 71.6k 84.6k (84.6k) 110.5k

rococoC10-001000 1 4677 4677 (6947) 7200 37.1k 323.9k (309.5k) 562.8k 13.2m 13.2m (22.6m) 32.2m
roll3000 9 1543 4724 (4971) 7200 150.3k 529.1k (551.7k) 804.1k 2.3m 6.9m (7.3m) 10.8m
rout 10 57 111 (111) 186 18.8k 44.6k (44.6k) 68.9k 263.8k 614.3k (614.3k) 930.2k

satellites1-25 10 925 1590 (1590) 2011 1.1k 3.4k (3.4k) 5.7k 149.4k 765.6k (765.6k) 1.5m
set1ch 10 2 2 (2) 3 3 5 (5) 7 987 1.1k (1.1k) 1.5k
seymour 0 7200 - (7200) 7200 101.9k - (111.6k) 120.6k 7.3m - (7.9m) 8.4m
sp97ar 0 7200 - (7200) 7200 118.5k - (155.3k) 179.1k 4.0m - (4.8m) 5.4m
sp98ic 10 2283 4736 (4736) 6527 123.0k 276.2k (276.2k) 389.0k 2.0m 4.3m (4.3m) 6.3m
sp98ir 10 57 71 (71) 85 1.2k 1.6k (1.6k) 1.9k 30.6k 35.6k (35.6k) 42.2k
stein27 10 2 2 (2) 2 3.7k 4.2k (4.2k) 4.5k 13.7k 14.4k (14.4k) 14.9k
stein45 10 32 34 (34) 38 48.6k 51.5k (51.5k) 54.3k 260.0k 267.4k (267.4k) 272.8k
swath 0 7200 - (7200) 7200 107.7k - (147.6k) 194.0k 1.4m - (1.8m) 2.4m

tanglegram1 7 833 2464 (3885) 7200 21 745 (1.6k) 3.8k 118.3k 596.8k (848.4k) 1.7m
tanglegram2 10 7 10 (10) 17 3 4 (4) 7 6.0k 6.8k (6.8k) 9.1k
timtab1 10 767 1184 (1184) 1512 532.7k 774.5k (774.5k) 1.0m 4.4m 6.0m (6.0m) 8.0m
timtab2 0 7200 - (7200) 7200 3.0m - (3.3m) 3.6m 34.6m - (36.6m) 39.1m
tr12-30 10 3006 3644 (3644) 4240 685.0k 780.2k (780.2k) 900.4k 3.3m 3.7m (3.7m) 4.1m
triptim1 10 178 203 (203) 232 1 1 (1) 1 30.7k 33.8k (33.8k) 35.9k
unitcal_7 9 1576 3415 (3794) 7200 11.8k 32.0k (35.9k) 71.3k 204.8k 499.0k (547.7k) 1.2m
vpm1 10 0 0 (0) 0 1 1 (1) 1 59 60 (60) 60
vpm2 10 2 2 (2) 2 151 180 (180) 207 1.6k 1.8k (1.8k) 2.1k

vpphard 0 7200 - (7200) 7200 814 - (8.3k) 21.9k 1.3m - (1.5m) 1.7m
zib54-UUE 3 3911 4914 (6514) 7200 378.8k 413.0k (592.5k) 734.1k 17.1m 20.7m (27.9m) 32.9m

Table 9: Detailed results for the product scoring function on the benchmark test set(continues in the next page).

43

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

Total 1225 809064 (3437062) 128.2m (1.0b) 1.7b (7.6b)
Arit. mean 660 (2162) 104.7k (660.0k) 1.4m (4.8m)

Sh. geo. mean 87 (251) 1.3k (4.4k) 33.4k (111.4k)

Table 9: Detailed results for the product scoring function on the benchmark test set.

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

10teams 10 0 1 (1) 1 1 1 (1) 1 1.0k 1.2k (1.2k) 1.6k
30n20b8 10 485 529 (529) 571 7 15 (15) 34 32.6k 37.1k (37.1k) 42.9k
a1c1s1 0 7200 - (7200) 7200 277.0k - (430.3k) 545.7k 10.7m - (13.4m) 15.1m

acc-tight5 10 0 0 (0) 0 0 0 (0) 0 0 0 (0) 0
aflow30a 10 34 35 (35) 39 1.7k 2.5k (2.5k) 4.4k 34.2k 43.9k (43.9k) 61.4k
aflow40b 10 1596 2372 (2372) 2974 93.8k 137.2k (137.2k) 171.5k 2.0m 2.9m (2.9m) 3.6m
air04 10 27 29 (29) 34 6 7 (7) 8 11.6k 13.0k (13.0k) 14.6k
app1-2 10 619 758 (758) 986 29 572 (572) 2.0k 8.4k 23.6k (23.6k) 65.9k
arki001 2 3386 3566 (6473) 7200 954.3k 971.4k (1.7m) 2.1m 5.1m 5.1m (10.2m) 15.8m

ash608gpia-3col 10 80 91 (91) 108 5 5 (5) 9 8.0k 10.3k (10.3k) 19.1k
atlanta-ip 0 7200 - (7200) 7200 5.8k - (7.3k) 9.2k 1.8m - (2.4m) 2.7m

bab5 0 7200 - (7200) 7200 15.3k - (20.6k) 36.9k 710.2k - (1.0m) 1.5m
beasleyC3 0 7200 - (7200) 7200 1.0m - (1.2m) 1.5m 21.9m - (27.0m) 34.5m

bell5 10 1 1 (1) 1 1.1k 1.1k (1.1k) 1.1k 1.3k 1.4k (1.4k) 1.6k
biella1 10 158 214 (214) 269 1.9k 3.0k (3.0k) 4.9k 250.9k 341.5k (341.5k) 434.8k
bienst2 10 237 301 (301) 391 86.0k 110.2k (110.2k) 161.3k 2.2m 2.9m (2.9m) 3.9m

binkar10_1 10 290 470 (470) 797 90.5k 140.5k (140.5k) 204.9k 675.9k 1.0m (1.0m) 1.5m
blend2 10 1 2 (2) 2 183 221 (221) 313 820 975 (975) 1.1k
bley_xl1 10 1124 2010 (2010) 3012 1 1 (1) 1 2.6k 14.4k (14.4k) 97.8k
bnatt350 10 0 0 (0) 0 0 0 (0) 0 0 0 (0) 0
cap6000 10 8 8 (8) 8 1.8k 1.8k (1.8k) 1.9k 2.6k 2.7k (2.7k) 2.8k

core2536-691 10 10 11 (11) 12 1 1 (1) 1 9.1k 11.5k (11.5k) 15.5k
cov1075 0 7200 - (7200) 7200 1.1m - (1.2m) 1.4m 37.8m - (41.0m) 44.4m
csched010 8 4327 5206 (5605) 7200 503.2k 616.8k (673.5k) 947.6k 25.9m 32.0m (35.1m) 48.9m
danoint 1 7061 7061 (7186) 7200 1.1m 1.2m (1.2m) 1.2m 50.1m 50.1m (53.8m) 55.8m
dcmulti 10 2 2 (2) 3 6 9 (9) 10 1.5k 1.6k (1.6k) 1.7k

dfn-gwin-UUM 10 250 265 (265) 295 67.3k 67.3k (67.3k) 67.3k 1.0m 1.0m (1.0m) 1.0m
disctom 10 0 1 (1) 2 0 1 (1) 1 0 358 (358) 1.1k

Table 10: Detailed results for the ratio scoring function on the benchmark test set(continues in the next page).

44

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

dsbmip 10 1 1 (1) 1 1 1 (1) 1 974 1.2k (1.2k) 1.3k
egout 10 0 0 (0) 0 1 1 (1) 1 37 39 (39) 42
eil33-2 10 89 100 (100) 125 438 492 (492) 518 22.5k 24.3k (24.3k) 26.3k
eilB101 10 89 110 (110) 126 2.5k 3.7k (3.7k) 5.6k 173.7k 241.1k (241.1k) 314.8k
enigma 10 0 0 (0) 0 0 0 (0) 0 0 0 (0) 0
enlight13 10 2225 2414 (2414) 2630 924.0k 924.0k (924.0k) 924.0k 4.2m 4.2m (4.2m) 4.2m
enlight14 0 7200 - (7200) 7200 3.8m - (4.2m) 4.5m 18.1m - (19.2m) 20.2m

ex9 10 2 2 (2) 3 0 0 (0) 0 0 0 (0) 0
fast0507 10 118 127 (127) 140 462 585 (585) 644 52.2k 59.6k (59.6k) 66.7k
fiber 10 4 5 (5) 5 1 12 (12) 51 735 1.1k (1.1k) 1.6k

fixnet6 10 5 5 (5) 5 7 9 (9) 12 1.4k 1.7k (1.7k) 2.2k
flugpl 10 0 0 (0) 0 229 229 (229) 229 187 187 (187) 187
gen 10 0 0 (0) 0 1 1 (1) 1 139 143 (143) 146
gesa2 10 4 4 (4) 4 2 3 (3) 3 1.2k 1.3k (1.3k) 1.4k
gesa2-o 10 4 4 (4) 4 2 4 (4) 5 1.1k 1.4k (1.4k) 1.5k
gesa2_o 10 4 4 (4) 5 4 5 (5) 5 1.4k 1.6k (1.6k) 1.7k
gesa3 10 4 4 (4) 4 18 20 (20) 22 1.6k 1.7k (1.7k) 1.7k

gesa3_o 10 4 4 (4) 5 7 9 (9) 11 1.4k 1.9k (1.9k) 2.3k
glass4 10 17 36 (36) 80 5.5k 15.4k (15.4k) 35.9k 41.5k 102.8k (102.8k) 242.0k

gmu-35-40 0 7200 - (7200) 7200 8.9m - (10.6m) 11.8m 24.2m - (29.9m) 37.1m
gt2 10 0 0 (0) 0 1 1 (1) 1 91 91 (91) 91

harp2 0 7200 - (7200) 7200 5.1m - (5.8m) 6.5m 5.6m - (6.8m) 8.2m
iis-100-0-cov 10 2119 2217 (2217) 2318 79.0k 82.9k (82.9k) 86.9k 3.2m 3.4m (3.4m) 3.6m
iis-bupa-cov 0 7200 - (7200) 7200 129.9k - (133.5k) 137.8k 7.8m - (8.0m) 8.2m
iis-pima-cov 10 770 804 (804) 863 6.1k 6.4k (6.4k) 6.9k 375.9k 397.2k (397.2k) 422.0k
khb05250 10 1 1 (1) 1 2 7 (7) 9 323 554 (554) 837
l152lav 10 1 2 (2) 2 15 17 (17) 19 1.5k 1.8k (1.8k) 2.0k

lectsched-4-obj 10 1 1 (1) 1 0 0 (0) 0 0 0 (0) 0
lseu 10 1 1 (1) 2 827 857 (857) 910 3.1k 3.2k (3.2k) 3.2k

m100n500k4r1 10 0 0 (0) 0 1 1 (1) 1 166 203 (203) 260
macrophage 0 7200 - (7200) 7200 961.8k - (1.1m) 1.2m 14.1m - (17.8m) 21.8m
manna81 10 1 1 (1) 1 1 1 (1) 1 3.1k 3.2k (3.2k) 3.2k
map18 10 406 477 (477) 552 219 258 (258) 289 83.6k 90.9k (90.9k) 98.9k
map20 10 384 445 (445) 630 279 300 (300) 329 83.9k 89.7k (89.7k) 95.5k

markshare1 0 7200 - (7200) 7200 22.6m - (23.5m) 23.9m 46.1m - (48.0m) 48.8m
markshare2 0 7200 - (7200) 7200 23.9m - (24.8m) 25.6m 57.2m - (59.4m) 61.5m

mas74 10 1518 1566 (1566) 1672 2.9m 2.9m (2.9m) 2.9m 11.3m 11.3m (11.3m) 11.3m
mas76 10 160 165 (165) 178 403.2k 403.2k (403.2k) 403.2k 1.3m 1.3m (1.3m) 1.3m
mcsched 10 174 266 (266) 409 10.2k 18.3k (18.3k) 29.5k 378.0k 657.4k (657.4k) 1.0m

mik-250-1-100-1 10 2025 2166 (2166) 2290 901.6k 971.8k (971.8k) 1.1m 3.0m 3.3m (3.3m) 3.5m
Table 10: Detailed results for the ratio scoring function on the benchmark test set(continues in the next page).

45

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

mine-166-5 10 28 31 (31) 33 186 340 (340) 572 3.9k 4.7k (4.7k) 5.7k
mine-90-10 10 327 1129 (1129) 2565 32.6k 112.7k (112.7k) 203.9k 209.1k 643.3k (643.3k) 1.1m
misc03 10 1 2 (2) 2 77 128 (128) 225 2.2k 2.9k (2.9k) 3.9k
misc06 10 1 1 (1) 2 3 7 (7) 10 1.3k 1.8k (1.8k) 2.3k
misc07 10 45 56 (56) 69 24.2k 30.6k (30.6k) 35.5k 177.9k 236.3k (236.3k) 273.8k
mitre 10 44 49 (49) 58 1 1 (1) 1 1.3k 1.4k (1.4k) 1.4k

mod008 10 5 5 (5) 5 12 13 (13) 15 580 601 (601) 607
mod010 10 1 1 (1) 1 2 3 (3) 4 905 1.0k (1.0k) 1.3k
mod011 10 61 72 (72) 91 549 784 (784) 997 47.6k 62.4k (62.4k) 75.8k
modglob 10 1 1 (1) 2 10 21 (21) 27 694 769 (769) 1.0k

momentum1 0 7200 - (7200) 7200 20.2k - (23.1k) 26.8k 1.2m - (1.6m) 2.1m
momentum2 2 5734 6457 (7051) 7200 16.0k 19.8k (24.7k) 30.6k 469.3k 516.5k (723.6k) 1.1m
msc98-ip 10 969 1760 (1760) 4134 2.8k 6.3k (6.3k) 18.1k 743.4k 1.6m (1.6m) 4.1m
mspp16 0 7200 - (7200) 7200 0 - (0) 0 0 - (0) 0
mzzv11 10 631 724 (724) 778 12 206 (206) 966 48.6k 58.3k (58.3k) 76.3k
mzzv42z 10 497 557 (557) 628 2 12 (12) 20 32.9k 40.4k (40.4k) 46.5k
n3div36 0 7200 - (7200) 7200 99.5k - (144.6k) 181.8k 777.6k - (1.2m) 1.6m
n3seq24 0 7200 - (7200) 7200 77.7k - (110.4k) 184.5k 1.3m - (1.9m) 2.4m
n4-3 10 868 1260 (1260) 1780 30.4k 46.0k (46.0k) 64.3k 1.2m 1.8m (1.8m) 2.3m

neos-1109824 10 131 205 (205) 292 4.7k 8.5k (8.5k) 15.0k 54.2k 86.0k (86.0k) 141.0k
neos-1337307 0 7200 - (7200) 7200 233.7k - (265.2k) 305.7k 3.1m - (3.6m) 4.4m
neos-1396125 10 276 484 (484) 911 38.4k 71.0k (71.0k) 141.8k 1.1m 1.7m (1.7m) 3.1m
neos-1601936 10 7 7 (7) 8 1 1 (1) 1 10.4k 11.0k (11.0k) 11.4k
neos-476283 10 318 380 (380) 569 75 129 (129) 201 8.0k 11.3k (11.3k) 16.4k
neos-686190 10 101 161 (161) 189 1.9k 2.2k (2.2k) 2.6k 36.1k 41.2k (41.2k) 45.1k
neos-849702 10 0 0 (0) 0 0 0 (0) 0 0 0 (0) 0
neos-916792 0 7200 - (7200) 7200 142.1k - (180.5k) 206.6k 1.7m - (2.2m) 2.5m
neos-934278 0 7200 - (7200) 7200 7.3k - (9.5k) 13.9k 5.9m - (6.6m) 7.8m

neos13 10 241 262 (262) 298 10 12 (12) 12 3.0k 3.0k (3.0k) 3.0k
neos18 10 74 97 (97) 120 6.1k 8.4k (8.4k) 11.6k 166.7k 228.9k (228.9k) 299.4k
net12 10 1608 2077 (2077) 2447 2.1k 3.1k (3.1k) 4.0k 1.5m 2.1m (2.1m) 2.6m

netdiversion 10 1060 1413 (1413) 2078 5 12 (12) 49 30.0k 50.1k (50.1k) 138.1k
newdano 4 4309 5757 (6623) 7200 1.1m 1.2m (1.5m) 2.0m 52.7m 66.2m (72.2m) 86.7m
noswot 10 327 880 (880) 3601 436.9k 1.1m (1.1m) 4.3m 1.4m 2.8m (2.8m) 8.6m

ns1208400 10 315 456 (456) 650 1 210 (210) 702 142.1k 337.6k (337.6k) 646.9k
ns1688347 10 58 82 (82) 115 6 105 (105) 322 5.8k 24.3k (24.3k) 44.4k
ns1758913 7 2224 4119 (5043) 7200 1 1 (1) 1 29.3k 50.0k (55.8k) 88.0k
ns1766074 10 5197 5611 (5611) 6066 895.4k 907.9k (907.9k) 942.4k 3.5m 3.6m (3.6m) 3.8m
ns1830653 10 367 484 (484) 791 14.9k 19.0k (19.0k) 33.8k 933.0k 1.3m (1.3m) 2.3m
nsrand-ipx 10 808 3768 (3768) 7097 59.9k 464.5k (464.5k) 830.8k 508.6k 3.1m (3.1m) 6.0m

Table 10: Detailed results for the ratio scoring function on the benchmark test set(continues in the next page).

46

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

nw04 10 1989 2283 (2283) 3039 7 10 (10) 12 1.3k 1.6k (1.6k) 1.9k
opm2-z7-s2 10 705 883 (883) 1092 537 976 (976) 1.3k 35.3k 68.7k (68.7k) 102.0k
opt1217 5 2 2 (3601) 7200 1 1 (1.6m) 3.6m 747 798 (8.7m) 22.6m
p0033 10 0 0 (0) 0 1 1 (1) 1 57 57 (57) 57
p0201 10 2 3 (3) 3 4 10 (10) 33 1.1k 1.4k (1.4k) 2.5k
p0282 10 1 1 (1) 2 2 3 (3) 3 459 649 (649) 890
p0548 10 1 1 (1) 1 1 1 (1) 1 331 331 (331) 331
p2756 10 4 4 (4) 4 10 10 (10) 10 538 547 (547) 555
pg5_34 10 1243 1304 (1304) 1365 107.6k 107.6k (107.6k) 107.6k 2.0m 2.0m (2.0m) 2.0m
pigeon-10 0 7200 - (7200) 7200 832.7k - (1.0m) 1.2m 4.3m - (5.8m) 7.1m

pk1 10 137 139 (139) 143 369.8k 369.8k (369.8k) 369.8k 2.1m 2.1m (2.1m) 2.1m
pp08a 10 2 2 (2) 3 111 240 (240) 402 2.1k 3.3k (3.3k) 5.7k

pp08aCUTS 10 2 2 (2) 3 75 155 (155) 255 1.8k 2.5k (2.5k) 3.7k
protfold 0 7200 - (7200) 7200 21.6k - (35.7k) 43.9k 15.7m - (20.8m) 25.3m

pw-myciel4 7 3923 5559 (6051) 7200 447.2k 583.7k (607.0k) 780.5k 10.8m 15.5m (16.9m) 21.2m
qiu 10 79 106 (106) 134 10.2k 12.7k (12.7k) 15.7k 315.4k 416.9k (416.9k) 522.3k

qnet1 10 9 10 (10) 12 3 4 (4) 6 3.7k 4.0k (4.0k) 4.5k
qnet1_o 10 5 5 (5) 6 3 4 (4) 6 2.5k 2.8k (2.8k) 3.3k
rail507 10 113 140 (140) 170 446 596 (596) 678 49.1k 60.4k (60.4k) 67.9k

ran16x16 10 405 444 (444) 522 245.1k 286.9k (286.9k) 332.6k 2.1m 2.4m (2.4m) 2.9m
rd-rplusc-21 1 4462 4462 (6926) 7200 38.4k 135.5k (69.2k) 135.5k 248.3k 584.3k (750.0k) 2.0m
reblock67 10 174 245 (245) 304 42.7k 48.7k (48.7k) 55.4k 451.0k 517.6k (517.6k) 571.4k
rentacar 10 5 6 (6) 6 2 2 (2) 2 2.8k 3.2k (3.2k) 3.8k

rgn 10 1 1 (1) 1 1 1 (1) 2 327 392 (392) 556
rmatr100-p10 10 106 112 (112) 124 789 799 (799) 805 64.1k 64.2k (64.2k) 64.3k
rmatr100-p5 10 128 134 (134) 141 383 383 (383) 383 66.8k 66.8k (66.8k) 66.8k

rmine6 4 3898 4981 (6312) 7200 398.0k 519.3k (731.9k) 944.1k 2.5m 3.5m (5.1m) 6.8m
rocII-4-11 10 631 1019 (1019) 1566 13.1k 27.6k (27.6k) 50.1k 162.4k 303.4k (303.4k) 523.0k

rococoC10-001000 2 3864 4825 (6725) 7200 121.8k 354.5k (343.0k) 531.1k 10.2m 12.1m (23.3m) 37.9m
roll3000 7 2335 4709 (5456) 7200 255.7k 558.7k (639.5k) 868.2k 3.6m 6.8m (8.0m) 12.5m
rout 10 30 81 (81) 160 7.9k 32.6k (32.6k) 66.1k 167.6k 484.9k (484.9k) 948.0k

satellites1-25 10 915 1636 (1636) 1928 1.1k 3.4k (3.4k) 7.2k 124.0k 855.6k (855.6k) 1.6m
set1ch 10 2 2 (2) 3 3 5 (5) 7 987 1.1k (1.1k) 1.5k
seymour 0 7200 - (7200) 7200 107.9k - (112.7k) 130.3k 7.4m - (8.0m) 8.6m
sp97ar 0 7200 - (7200) 7200 130.1k - (153.3k) 174.3k 4.5m - (4.9m) 5.2m
sp98ic 10 1287 2309 (2309) 3184 61.1k 117.2k (117.2k) 168.3k 941.4k 1.9m (1.9m) 2.8m
sp98ir 10 60 69 (69) 75 1.5k 1.8k (1.8k) 2.1k 32.2k 41.8k (41.8k) 46.7k
stein27 10 2 2 (2) 2 3.8k 4.1k (4.1k) 4.4k 13.4k 14.2k (14.2k) 14.7k
stein45 10 31 32 (32) 34 48.3k 50.3k (50.3k) 53.0k 254.3k 262.4k (262.4k) 271.7k
swath 0 7200 - (7200) 7200 104.6k - (160.7k) 214.4k 1.5m - (2.0m) 2.6m

Table 10: Detailed results for the ratio scoring function on the benchmark test set(continues in the next page).

47

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

tanglegram1 6 695 2543 (4406) 7200 21 573 (1.2k) 3.1k 118.3k 500.2k (864.5k) 1.6m
tanglegram2 10 7 10 (10) 17 3 4 (4) 7 6.0k 6.8k (6.8k) 9.1k
timtab1 10 856 1235 (1235) 1607 592.7k 803.6k (803.6k) 993.3k 4.6m 6.3m (6.3m) 7.9m
timtab2 0 7200 - (7200) 7200 3.2m - (3.5m) 3.8m 31.6m - (34.8m) 39.2m
tr12-30 10 3100 3707 (3707) 4222 714.9k 846.1k (846.1k) 969.6k 3.3m 4.0m (4.0m) 4.6m
triptim1 10 169 188 (188) 232 1 1 (1) 1 30.7k 33.8k (33.8k) 35.9k
unitcal_7 10 1465 2796 (2796) 4669 10.3k 27.4k (27.4k) 58.0k 195.9k 455.2k (455.2k) 987.2k
vpm1 10 0 0 (0) 0 1 1 (1) 1 59 60 (60) 60
vpm2 10 2 2 (2) 2 179 190 (190) 205 1.7k 1.8k (1.8k) 2.0k

vpphard 0 7200 - (7200) 7200 838 - (3.5k) 7.2k 1.2m - (1.6m) 1.7m
zib54-UUE 3 5441 5899 (6810) 7200 437.3k 487.7k (608.2k) 745.6k 23.7m 25.3m (29.3m) 32.4m

Total 1249 849097 (3304297) 138.5m (996.1m) 1.6b (7.1b)
Arit. mean 680 (2078) 110.9k (626.5k) 1.3m (4.5m)

Sh. geo. mean 92 (245) 1.4k (4.4k) 36.2k (108.8k)

Table 10: Detailed results for the ratio scoring function on the benchmark test set.

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

10teams 10 1 1 (1) 1 1 1 (1) 1 1.0k 1.2k (1.2k) 1.6k
30n20b8 10 479 526 (526) 605 7 14 (14) 36 32.6k 37.5k (37.5k) 41.7k
a1c1s1 0 7200 - (7200) 7200 308.8k - (420.7k) 510.0k 11.5m - (13.8m) 15.4m

acc-tight5 10 0 0 (0) 0 0 0 (0) 0 0 0 (0) 0
aflow30a 10 31 35 (35) 38 1.7k 2.2k (2.2k) 3.3k 32.9k 41.2k (41.2k) 52.5k
aflow40b 10 1533 2437 (2437) 3328 79.0k 133.3k (133.3k) 212.9k 2.0m 3.2m (3.2m) 4.9m
air04 10 28 31 (31) 35 6 7 (7) 8 11.6k 13.0k (13.0k) 14.6k
app1-2 10 601 754 (754) 1061 29 645 (645) 3.1k 8.8k 27.5k (27.5k) 105.4k
arki001 3 2992 5105 (6571) 7200 747.9k 1.3m (1.5m) 1.9m 4.4m 6.3m (10.4m) 15.5m

ash608gpia-3col 10 79 88 (88) 103 5 5 (5) 9 8.0k 10.3k (10.3k) 19.1k
atlanta-ip 0 7200 - (7200) 7200 4.2k - (7.0k) 8.5k 1.6m - (2.3m) 2.8m

bab5 0 7200 - (7200) 7200 11.6k - (17.6k) 24.6k 658.3k - (990.6k) 1.3m
beasleyC3 0 7200 - (7200) 7200 763.6k - (966.1k) 1.3m 25.9m - (29.9m) 33.1m

bell5 10 1 1 (1) 1 1.1k 1.1k (1.1k) 1.1k 1.3k 1.4k (1.4k) 1.6k
biella1 10 150 215 (215) 281 1.5k 2.8k (2.8k) 4.6k 230.7k 354.3k (354.3k) 492.2k
bienst2 10 232 320 (320) 436 84.8k 123.1k (123.1k) 174.1k 2.2m 3.3m (3.3m) 4.5m

binkar10_1 10 248 437 (437) 729 76.9k 133.1k (133.1k) 216.8k 576.7k 1.0m (1.0m) 1.7m
Table 11: Detailed results for the svts scoring function on the benchmark test set(continues in the next page).

48

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

blend2 10 1 2 (2) 2 166 225 (225) 346 796 993 (993) 1.3k
bley_xl1 10 1102 1916 (1916) 2738 1 1 (1) 1 2.6k 14.4k (14.4k) 97.8k
bnatt350 10 0 0 (0) 0 0 0 (0) 0 0 0 (0) 0
cap6000 10 8 8 (8) 9 1.8k 1.9k (1.9k) 1.9k 2.6k 2.7k (2.7k) 2.8k

core2536-691 10 10 11 (11) 13 1 1 (1) 1 9.1k 11.5k (11.5k) 15.5k
cov1075 0 7200 - (7200) 7200 1.1m - (1.2m) 1.3m 36.5m - (40.5m) 44.1m
csched010 9 4332 5550 (5715) 7200 483.4k 616.0k (632.5k) 780.7k 27.1m 34.7m (35.7m) 44.1m
danoint 1 7182 7182 (7198) 7200 1.1m 1.2m (1.2m) 1.2m 50.4m 50.4m (54.1m) 58.0m
dcmulti 10 2 2 (2) 2 6 9 (9) 10 1.5k 1.6k (1.6k) 1.7k

dfn-gwin-UUM 10 245 269 (269) 304 60.2k 60.2k (60.2k) 60.2k 999.8k 999.8k (999.8k) 999.8k
disctom 10 0 1 (1) 2 0 1 (1) 1 0 358 (358) 1.1k
dsbmip 10 1 1 (1) 1 1 1 (1) 1 974 1.2k (1.2k) 1.3k
egout 10 0 0 (0) 0 1 1 (1) 1 37 39 (39) 42
eil33-2 10 98 114 (114) 142 444 482 (482) 532 23.7k 26.4k (26.4k) 28.9k
eilB101 10 96 118 (118) 135 2.0k 3.4k (3.4k) 5.7k 203.7k 284.9k (284.9k) 360.5k
enigma 10 0 0 (0) 0 0 0 (0) 0 0 0 (0) 0
enlight13 0 7200 - (7200) 7200 3.8m - (4.0m) 4.3m 18.7m - (19.9m) 20.7m
enlight14 0 7200 - (7200) 7200 4.0m - (4.3m) 4.6m 18.8m - (19.6m) 20.6m

ex9 10 2 2 (2) 3 0 0 (0) 0 0 0 (0) 0
fast0507 10 113 128 (128) 143 504 602 (602) 760 56.5k 62.5k (62.5k) 69.3k
fiber 10 4 5 (5) 5 1 13 (13) 57 735 1.1k (1.1k) 1.7k

fixnet6 10 5 5 (5) 5 7 10 (10) 13 1.4k 1.7k (1.7k) 2.2k
flugpl 10 0 0 (0) 0 240 240 (240) 240 197 197 (197) 197
gen 10 0 0 (0) 0 1 1 (1) 1 139 143 (143) 146
gesa2 10 4 4 (4) 4 2 3 (3) 3 1.2k 1.3k (1.3k) 1.4k
gesa2-o 10 4 4 (4) 4 2 4 (4) 5 1.1k 1.4k (1.4k) 1.5k
gesa2_o 10 4 4 (4) 4 4 5 (5) 5 1.4k 1.6k (1.6k) 1.7k
gesa3 10 4 4 (4) 4 16 20 (20) 20 1.6k 1.7k (1.7k) 1.7k

gesa3_o 10 4 4 (4) 5 7 9 (9) 11 1.4k 1.9k (1.9k) 2.3k
glass4 10 15 30 (30) 53 5.5k 11.8k (11.8k) 22.5k 37.6k 74.4k (74.4k) 147.2k

gmu-35-40 0 7200 - (7200) 7200 9.4m - (10.6m) 12.3m 25.3m - (31.3m) 34.3m
gt2 10 0 0 (0) 0 1 1 (1) 1 91 91 (91) 91

harp2 0 7200 - (7200) 7200 4.6m - (5.3m) 6.0m 5.4m - (6.0m) 6.6m
iis-100-0-cov 10 2081 2229 (2229) 2377 77.9k 83.1k (83.1k) 87.4k 3.2m 3.4m (3.4m) 3.5m
iis-bupa-cov 0 7200 - (7200) 7200 128.4k - (132.7k) 137.1k 7.8m - (7.9m) 8.1m
iis-pima-cov 10 722 802 (802) 916 5.9k 6.4k (6.4k) 7.1k 373.6k 399.9k (399.9k) 436.0k
khb05250 10 1 1 (1) 1 2 7 (7) 9 323 554 (554) 837
l152lav 10 1 2 (2) 2 15 16 (16) 17 1.5k 1.8k (1.8k) 2.0k

lectsched-4-obj 10 1 1 (1) 1 0 0 (0) 0 0 0 (0) 0
lseu 10 2 2 (2) 2 1.1k 1.1k (1.1k) 1.2k 3.7k 3.9k (3.9k) 4.0k

Table 11: Detailed results for the svts scoring function on the benchmark test set(continues in the next page).

49

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

m100n500k4r1 10 0 0 (0) 0 1 1 (1) 1 166 203 (203) 260
macrophage 0 7200 - (7200) 7200 907.9k - (1.1m) 1.2m 15.4m - (17.3m) 19.0m
manna81 10 1 1 (1) 1 1 1 (1) 1 3.1k 3.2k (3.2k) 3.2k
map18 10 411 484 (484) 595 223 259 (259) 287 84.5k 92.3k (92.3k) 103.0k
map20 10 379 424 (424) 511 265 295 (295) 327 84.5k 90.1k (90.1k) 95.9k

markshare1 0 7200 - (7200) 7200 22.6m - (23.1m) 23.4m 46.1m - (47.2m) 47.9m
markshare2 0 7200 - (7200) 7200 23.7m - (24.2m) 24.6m 56.7m - (58.1m) 58.9m

mas74 10 1599 1665 (1665) 1835 3.0m 3.0m (3.0m) 3.0m 11.6m 11.6m (11.6m) 11.6m
mas76 10 193 196 (196) 205 475.5k 475.5k (475.5k) 475.5k 1.6m 1.6m (1.6m) 1.6m
mcsched 10 182 261 (261) 348 11.5k 17.3k (17.3k) 25.3k 414.7k 642.2k (642.2k) 961.7k

mik-250-1-100-1 10 1887 2374 (2374) 2948 870.0k 1.1m (1.1m) 1.4m 2.7m 3.4m (3.4m) 4.1m
mine-166-5 10 29 32 (32) 37 237 402 (402) 801 4.0k 4.9k (4.9k) 5.9k
mine-90-10 10 386 1387 (1387) 2572 36.4k 138.0k (138.0k) 303.1k 241.2k 773.0k (773.0k) 1.4m
misc03 10 2 2 (2) 2 63 121 (121) 207 2.0k 2.7k (2.7k) 3.7k
misc06 10 1 1 (1) 2 3 7 (7) 10 1.3k 1.8k (1.8k) 2.3k
misc07 10 40 48 (48) 55 16.9k 23.5k (23.5k) 27.9k 129.5k 186.8k (186.8k) 227.8k
mitre 10 43 49 (49) 61 1 1 (1) 1 1.3k 1.4k (1.4k) 1.4k

mod008 10 5 5 (5) 5 11 12 (12) 12 544 594 (594) 607
mod010 10 1 1 (1) 1 2 3 (3) 4 905 1.0k (1.0k) 1.3k
mod011 10 63 72 (72) 83 611 852 (852) 1.3k 51.1k 67.0k (67.0k) 90.2k
modglob 10 1 1 (1) 2 10 20 (20) 27 675 767 (767) 1.0k

momentum1 0 7200 - (7200) 7200 13.9k - (22.6k) 26.6k 1.1m - (1.5m) 1.9m
momentum2 2 5089 5299 (6820) 7200 15.4k 15.4k (22.5k) 25.9k 469.9k 650.1k (783.4k) 1.1m
msc98-ip 10 677 1503 (1503) 2348 2.2k 4.8k (4.8k) 12.1k 542.1k 1.3m (1.3m) 2.3m
mspp16 0 7200 - (7200) 7200 0 - (0) 0 0 - (0) 0
mzzv11 10 666 730 (730) 809 12 213 (213) 991 48.5k 58.3k (58.3k) 78.4k
mzzv42z 10 502 535 (535) 600 2 12 (12) 20 32.9k 40.6k (40.6k) 46.5k
n3div36 0 7200 - (7200) 7200 105.3k - (149.2k) 180.9k 877.1k - (1.3m) 1.7m
n3seq24 0 7200 - (7200) 7200 79.3k - (109.1k) 135.4k 1.1m - (1.9m) 2.8m
n4-3 10 811 1246 (1246) 1934 28.8k 44.1k (44.1k) 65.6k 1.2m 1.7m (1.7m) 2.4m

neos-1109824 10 176 367 (367) 619 7.9k 19.7k (19.7k) 34.6k 92.4k 178.8k (178.8k) 303.9k
neos-1337307 0 7200 - (7200) 7200 239.3k - (258.8k) 280.5k 3.6m - (3.8m) 4.0m
neos-1396125 10 312 396 (396) 597 33.5k 56.9k (56.9k) 103.0k 999.3k 1.5m (1.5m) 2.0m
neos-1601936 10 7 7 (7) 8 1 1 (1) 1 10.4k 11.0k (11.0k) 11.4k
neos-476283 10 357 432 (432) 580 91 123 (123) 168 8.0k 11.3k (11.3k) 16.3k
neos-686190 10 117 161 (161) 261 1.5k 2.1k (2.1k) 5.0k 35.5k 42.8k (42.8k) 79.9k
neos-849702 10 0 0 (0) 0 0 0 (0) 0 0 0 (0) 0
neos-916792 0 7200 - (7200) 7200 172.2k - (203.4k) 229.1k 2.0m - (2.4m) 2.8m
neos-934278 0 7200 - (7200) 7200 6.1k - (9.3k) 13.0k 5.5m - (6.5m) 7.9m

neos13 10 255 276 (276) 309 10 12 (12) 12 3.0k 3.0k (3.0k) 3.0k
Table 11: Detailed results for the svts scoring function on the benchmark test set(continues in the next page).

50

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

neos18 10 64 86 (86) 145 4.1k 6.1k (6.1k) 8.8k 128.7k 196.2k (196.2k) 281.8k
net12 10 1061 2178 (2178) 2975 1.8k 3.1k (3.1k) 4.7k 1.0m 2.2m (2.2m) 3.2m

netdiversion 10 896 1395 (1395) 2319 5 14 (14) 64 30.5k 53.7k (53.7k) 153.2k
newdano 5 4277 5616 (6408) 7200 1.1m 1.4m (1.4m) 1.8m 52.3m 67.7m (67.8m) 81.2m
noswot 10 332 817 (817) 2766 413.9k 922.0k (922.0k) 2.8m 1.4m 2.7m (2.7m) 7.2m

ns1208400 10 288 466 (466) 653 1 232 (232) 830 142.1k 353.5k (353.5k) 676.5k
ns1688347 10 58 84 (84) 116 6 85 (85) 328 5.8k 23.5k (23.5k) 36.8k
ns1758913 6 2203 3830 (5178) 7200 1 1 (1) 1 29.3k 44.1k (53.6k) 75.1k
ns1766074 10 5159 5666 (5666) 6568 895.4k 907.9k (907.9k) 942.4k 3.5m 3.6m (3.6m) 3.8m
ns1830653 10 409 448 (448) 473 15.0k 17.1k (17.1k) 19.5k 1.0m 1.2m (1.2m) 1.2m
nsrand-ipx 5 805 3972 (5586) 7200 67.5k 497.6k (764.0k) 1.3m 615.8k 3.0m (4.5m) 7.3m

nw04 10 2024 2529 (2529) 3112 7 10 (10) 12 1.3k 1.6k (1.6k) 1.9k
opm2-z7-s2 10 590 787 (787) 1075 533 768 (768) 1.0k 36.0k 53.4k (53.4k) 61.5k
opt1217 5 2 3 (3601) 7200 1 1 (1.6m) 3.7m 747 798 (8.2m) 22.7m
p0033 10 0 0 (0) 0 1 1 (1) 1 57 57 (57) 57
p0201 10 2 3 (3) 4 4 10 (10) 33 1.1k 1.5k (1.5k) 2.5k
p0282 10 1 2 (2) 2 2 3 (3) 3 459 649 (649) 890
p0548 10 1 1 (1) 1 1 1 (1) 1 331 331 (331) 331
p2756 10 4 4 (4) 5 10 10 (10) 10 538 547 (547) 555
pg5_34 10 1243 1343 (1343) 1652 109.5k 109.5k (109.5k) 109.5k 2.1m 2.1m (2.1m) 2.1m
pigeon-10 0 7200 - (7200) 7200 854.8k - (995.6k) 1.2m 3.7m - (5.6m) 7.1m

pk1 10 129 134 (134) 142 344.3k 344.3k (344.3k) 344.3k 2.0m 2.0m (2.0m) 2.0m
pp08a 10 2 2 (2) 3 117 240 (240) 400 2.0k 3.4k (3.4k) 5.8k

pp08aCUTS 10 2 2 (2) 3 89 161 (161) 283 1.8k 2.5k (2.5k) 3.8k
protfold 0 7200 - (7200) 7200 18.9k - (25.0k) 30.6k 15.3m - (20.8m) 24.4m

pw-myciel4 4 5756 6617 (6967) 7200 480.0k 637.1k (669.7k) 809.1k 15.7m 18.0m (20.0m) 23.0m
qiu 10 82 105 (105) 120 10.0k 12.3k (12.3k) 13.7k 319.1k 406.7k (406.7k) 482.1k

qnet1 10 9 10 (10) 12 3 4 (4) 6 3.7k 4.0k (4.0k) 4.5k
qnet1_o 10 5 5 (5) 6 3 4 (4) 6 2.5k 2.8k (2.8k) 3.3k
rail507 10 119 141 (141) 184 568 601 (601) 636 59.8k 62.8k (62.8k) 66.3k

ran16x16 10 399 442 (442) 504 247.1k 273.3k (273.3k) 308.5k 2.3m 2.5m (2.5m) 2.9m
rd-rplusc-21 0 7200 - (7200) 7200 48.9k - (83.1k) 172.9k 320.6k - (949.1k) 2.3m
reblock67 10 162 232 (232) 276 38.6k 45.1k (45.1k) 52.0k 394.4k 484.5k (484.5k) 553.7k
rentacar 10 5 6 (6) 6 2 2 (2) 2 2.8k 3.2k (3.2k) 3.8k

rgn 10 1 1 (1) 1 1 1 (1) 2 327 392 (392) 556
rmatr100-p10 10 106 111 (111) 126 739 745 (745) 755 62.2k 62.5k (62.5k) 63.0k
rmatr100-p5 10 129 133 (133) 139 381 382 (382) 383 67.6k 67.6k (67.6k) 67.6k

rmine6 1 7074 7074 (7187) 7200 818.0k 909.7k (894.0k) 942.4k 5.6m 5.6m (6.2m) 6.8m
rocII-4-11 10 413 534 (534) 807 5.1k 8.4k (8.4k) 15.2k 83.9k 119.6k (119.6k) 194.5k

rococoC10-001000 2 2069 4622 (6684) 7200 80.4k 360.8k (296.9k) 559.6k 6.1m 10.4m (23.8m) 36.5m
Table 11: Detailed results for the svts scoring function on the benchmark test set(continues in the next page).

51

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

roll3000 6 1499 3186 (4791) 7200 157.0k 356.4k (570.1k) 931.1k 2.4m 4.6m (7.6m) 13.8m
rout 10 38 105 (105) 164 10.7k 41.7k (41.7k) 67.1k 206.5k 607.4k (607.4k) 891.0k

satellites1-25 10 951 1619 (1619) 2244 1.1k 3.5k (3.5k) 6.6k 180.8k 802.0k (802.0k) 1.8m
set1ch 10 2 2 (2) 3 3 5 (5) 7 987 1.1k (1.1k) 1.5k
seymour 0 7200 - (7200) 7200 106.0k - (111.0k) 119.3k 7.5m - (7.9m) 8.5m
sp97ar 0 7200 - (7200) 7200 122.9k - (147.3k) 183.7k 4.1m - (4.8m) 5.4m
sp98ic 10 1614 3332 (3332) 4676 76.0k 159.7k (159.7k) 222.7k 1.4m 2.9m (2.9m) 4.1m
sp98ir 10 57 70 (70) 77 1.3k 1.8k (1.8k) 2.3k 30.6k 41.5k (41.5k) 48.8k
stein27 10 2 2 (2) 2 3.7k 4.2k (4.2k) 4.5k 13.5k 14.3k (14.3k) 15.0k
stein45 10 32 33 (33) 37 49.0k 51.2k (51.2k) 55.7k 255.5k 265.5k (265.5k) 281.1k
swath 0 7200 - (7200) 7200 105.3k - (149.3k) 193.5k 1.5m - (1.9m) 2.5m

tanglegram1 5 827 1579 (4390) 7200 21 168 (876) 1.9k 118.3k 282.1k (899.9k) 1.7m
tanglegram2 10 7 10 (10) 16 3 4 (4) 7 6.0k 6.9k (6.9k) 9.1k
timtab1 10 778 1193 (1193) 1579 495.8k 790.9k (790.9k) 1.0m 4.1m 6.3m (6.3m) 8.5m
timtab2 0 7200 - (7200) 7200 3.0m - (3.3m) 3.6m 30.1m - (34.9m) 38.3m
tr12-30 10 2856 3629 (3629) 4583 634.3k 792.2k (792.2k) 977.1k 3.2m 4.0m (4.0m) 4.7m
triptim1 10 160 185 (185) 224 1 1 (1) 1 30.7k 33.8k (33.8k) 35.9k
unitcal_7 9 1521 3101 (3511) 7200 12.3k 27.8k (34.3k) 92.8k 216.6k 487.5k (558.4k) 1.2m
vpm1 10 0 0 (0) 0 1 1 (1) 1 59 60 (60) 60
vpm2 10 2 2 (2) 2 149 182 (182) 195 1.6k 1.8k (1.8k) 1.9k

vpphard 0 7200 - (7200) 7200 687 - (6.5k) 13.3k 1.3m - (1.5m) 1.8m
zib54-UUE 3 4985 5380 (6654) 7200 447.1k 466.3k (589.3k) 708.8k 22.0m 23.4m (29.1m) 32.8m

Total 1226 778074 (3398874) 126.9m (1.0b) 1.6b (7.3b)
Arit. mean 635 (2138) 103.5k (635.3k) 1.3m (4.6m)

Sh. geo. mean 86 (249) 1.3k (4.4k) 33.5k (110.8k)

Table 11: Detailed results for the svts scoring function on the benchmark test set.

52

C.2 Tree test set results
Tables 12, 13 and 14 give the results on the tree test set for the scoring functions
product, ratio, and svts, respectively.

53

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

blp-ar98 0 43200 - (43200) 43200 1.5m - (2.0m) 2.3m 13.5m - (17.0m) 20.2m
csched007 10 26734 31000 (31000) 39186 4.8m 5.7m (5.7m) 7.0m 101.7m 124.5m (124.5m) 152.4m
csched008 10 750 1440 (1440) 3065 58.2k 112.4k (112.4k) 221.9k 7.4m 15.4m (15.4m) 33.7m
enlight15 0 43200 - (43200) 43200 20.1m - (21.9m) 22.8m 101.4m - (111.2m) 116.3m
enlight16 0 43200 - (43200) 43200 23.2m - (24.1m) 25.3m 99.6m - (103.6m) 109.1m
glass4 10 15 28 (28) 45 5.4k 11.5k (11.5k) 18.9k 36.3k 75.2k (75.2k) 130.2k

gmu-35-40 0 43200 - (43200) 43200 64.2m - (70.4m) 78.4m 157.1m - (172.4m) 186.6m
gmu-35-50 0 43200 - (43200) 43200 51.1m - (58.6m) 72.5m 165.5m - (213.7m) 246.4m

go19 0 43200 - (43200) 43200 9.9m - (10.7m) 11.3m 333.2m - (355.0m) 377.6m
k16x240 10 19787 23835 (23835) 29016 18.3m 23.2m (23.2m) 27.7m 74.4m 90.7m (90.7m) 112.9m
leo1 0 43200 - (43200) 43200 3.6m - (3.9m) 4.4m 44.8m - (49.7m) 52.8m

markshare_5_0 0 43200 - (43200) 43200 121.2m - (123.8m) 126.0m 217.9m - (222.6m) 226.5m
maxgasflow 0 43200 - (43200) 43200 1.4m - (1.8m) 2.3m 8.3m - (12.8m) 18.8m

mc11 0 43200 - (43200) 43200 2.4m - (3.2m) 3.9m 42.1m - (49.9m) 60.4m
momentum1 0 43200 - (43200) 43200 143.2k - (166.0k) 188.9k 4.1m - (4.7m) 5.8m
neos-1426635 0 43200 - (43200) 43200 35.4m - (40.6m) 44.1m 244.4m - (263.1m) 283.0m
neos-1426662 0 43200 - (43200) 43200 18.6m - (21.2m) 23.4m 125.3m - (137.8m) 154.4m
neos-1436709 0 43200 - (43200) 43200 14.3m - (17.1m) 18.6m 181.6m - (214.3m) 275.9m
neos-1440460 0 43200 - (43200) 43200 20.0m - (21.1m) 22.5m 275.8m - (298.6m) 340.2m
neos-1442119 0 43200 - (43200) 43200 16.8m - (18.7m) 20.4m 186.4m - (207.1m) 227.1m
neos-1442657 0 43200 - (43200) 43200 15.4m - (17.7m) 20.0m 216.4m - (249.7m) 297.3m
neos-1616732 10 8341 9182 (9182) 9915 2.3m 2.5m (2.5m) 2.6m 31.6m 34.0m (34.0m) 36.1m
neos-1620770 0 43200 - (43200) 43200 4.8m - (6.2m) 7.7m 70.3m - (94.7m) 123.4m
neos-820146 0 43200 - (43200) 43200 8.8m - (10.1m) 11.1m 341.1m - (367.0m) 386.1m
neos-820157 0 43200 - (43200) 43200 7.0m - (7.5m) 8.1m 290.2m - (320.5m) 347.5m
neos-826650 0 43200 - (43200) 43200 1.5m - (2.4m) 3.5m 137.8m - (198.7m) 230.6m
neos-826841 0 43200 - (43200) 43200 3.8m - (4.3m) 4.7m 127.2m - (141.8m) 160.5m
neos-847302 0 43200 - (43200) 43200 2.6m - (3.0m) 3.4m 407.3m - (422.1m) 434.1m
neos-911880 0 43200 - (43200) 43200 18.9m - (24.3m) 30.6m 65.2m - (103.5m) 142.6m
neos-942830 10 1831 9184 (9184) 17919 237.4k 1.5m (1.5m) 3.2m 11.1m 72.4m (72.4m) 139.5m

neos15 1 34352 34352 (42315) 43200 12.3m 12.3m (16.5m) 17.7m 106.9m 106.9m (134.1m) 148.0m
neos16 0 43200 - (43200) 43200 7.3m - (8.6m) 9.7m 63.3m - (77.8m) 89.9m

neos858960 10 3687 3997 (3997) 4338 2.7m 2.8m (2.8m) 3.0m 51.3m 54.0m (54.0m) 56.9m
nobel-eu-DBE 0 43200 - (43200) 43200 7.3m - (8.7m) 10.6m 48.2m - (56.2m) 65.1m

noswot 10 272 556 (556) 868 367.0k 679.8k (679.8k) 1.0m 1.2m 2.1m (2.1m) 3.2m
ns1456591 0 43200 - (43200) 43200 297.4k - (513.6k) 892.9k 11.8m - (23.1m) 45.7m
ns1766074 10 5495 5747 (5747) 6173 895.3k 925.7k (925.7k) 949.9k 3.4m 3.7m (3.7m) 3.8m
ns2081729 0 43200 - (43200) 43200 8.8m - (18.3m) 31.1m 34.6m - (53.1m) 75.7m
ns894788 10 4 4 (4) 4 1 1 (1) 1 303 387 (387) 487

p2m2p1m1p0n100 0 43200 - (43200) 43200 197.4m - (198.4m) 199.4m 103.3m - (103.8m) 104.4m
Table 12: Detailed results for the product scoring function on the tree test set(continues in the next page).

54

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

p80x400b 0 43200 - (43200) 43200 24.2m - (27.3m) 30.3m 80.4m - (86.5m) 95.9m
pg 10 23 24 (24) 24 203 203 (203) 203 14.3k 14.3k (14.3k) 14.3k

pigeon-10 0 43200 - (43200) 43200 3.7m - (4.4m) 5.2m 13.8m - (24.9m) 39.8m
pigeon-11 0 43200 - (43200) 43200 3.0m - (3.9m) 4.7m 12.6m - (17.0m) 24.9m
pigeon-12 0 43200 - (43200) 43200 3.1m - (3.7m) 4.0m 12.3m - (23.1m) 38.6m
ran14x18 10 16956 23039 (23039) 31792 13.1m 18.4m (18.4m) 25.3m 102.2m 139.1m (139.1m) 189.5m

ran14x18-disj-8 0 17544 - (25432) 38252 5.7m - (7.8m) 12.5m 80.9m - (114.5m) 177.4m
reblock166 4 14474 16858 (32663) 43200 1.4m 1.6m (3.5m) 7.3m 5.3m 6.5m (13.4m) 26.4m
timtab1 10 754 1142 (1142) 1536 532.7k 774.5k (774.5k) 1.0m 4.4m 6.0m (6.0m) 8.0m
umts 10 1544 8726 (8726) 24776 219.7k 1.5m (1.5m) 3.8m 2.6m 15.3m (15.3m) 49.8m

wachplan 10 12679 15334 (15334) 18784 269.8k 324.2k (324.2k) 398.4k 107.9m 131.1m (131.1m) 162.9m
wnq-n100-mw99-14 0 43200 - (43200) 43200 39.2k - (42.4k) 45.8k 3.8m - (4.0m) 4.2m

Total 155 1434174 (17024498) 602.1m (8.7b) 7.0b (57.5b)
Arit. mean 9253 (32739) 3.9m (16.8m) 45.3m (110.6m)

Sh. geo. mean 2136 (17459) 361.9k (3.2m) 5.7m (37.3m)

Table 12: Detailed results for the product scoring function on the tree test set.

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

blp-ar98 0 43200 - (43200) 43200 1.6m - (1.9m) 2.3m 14.9m - (17.2m) 19.1m
csched007 10 20695 24218 (24218) 28186 3.7m 4.2m (4.2m) 4.8m 90.5m 101.9m (101.9m) 123.7m
csched008 10 824 1737 (1737) 2992 63.6k 115.6k (115.6k) 179.2k 8.6m 19.7m (19.7m) 35.7m
enlight15 0 43200 - (43200) 43200 25.6m - (26.9m) 28.0m 106.2m - (111.8m) 117.5m
enlight16 0 43200 - (43200) 43200 23.8m - (25.1m) 26.7m 106.6m - (113.0m) 120.5m
glass4 10 15 38 (38) 101 5.5k 15.4k (15.4k) 35.9k 41.5k 102.8k (102.8k) 242.0k

gmu-35-40 2 7147 15954 (37751) 43200 11.1m 23.6m (61.0m) 75.4m 26.0m 54.0m (158.9m) 217.1m
gmu-35-50 0 43200 - (43200) 43200 50.0m - (62.7m) 73.9m 169.3m - (200.3m) 228.2m

go19 0 43200 - (43200) 43200 9.3m - (9.8m) 10.6m 342.5m - (355.9m) 377.2m
k16x240 10 15703 20899 (20899) 28244 16.2m 20.6m (20.6m) 28.1m 58.4m 86.2m (86.2m) 118.0m
leo1 0 43200 - (43200) 43200 3.3m - (3.8m) 4.3m 48.1m - (51.2m) 54.5m

markshare_5_0 0 43200 - (43200) 43200 126.2m - (133.5m) 137.7m 231.0m - (244.3m) 252.1m
maxgasflow 0 43200 - (43200) 43200 1.4m - (1.6m) 1.9m 7.8m - (15.0m) 21.4m

mc11 0 43200 - (43200) 43200 2.6m - (3.2m) 4.0m 29.6m - (39.3m) 50.2m
momentum1 0 43200 - (43200) 43200 125.9k - (162.4k) 187.3k 3.8m - (4.5m) 5.1m
neos-1426635 0 43200 - (43200) 43200 38.3m - (41.1m) 44.6m 245.9m - (266.6m) 292.7m

Table 13: Detailed results for the ratio scoring function on the tree test set(continues in the next page).

55

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

neos-1426662 0 43200 - (43200) 43200 20.1m - (21.7m) 23.3m 126.7m - (136.2m) 149.1m
neos-1436709 0 43200 - (43200) 43200 11.9m - (18.3m) 21.1m 154.4m - (203.6m) 376.6m
neos-1440460 0 43200 - (43200) 43200 19.7m - (21.0m) 23.6m 259.9m - (290.8m) 397.0m
neos-1442119 0 43200 - (43200) 43200 18.0m - (19.2m) 20.7m 188.3m - (203.6m) 230.9m
neos-1442657 0 43200 - (43200) 43200 16.1m - (18.3m) 19.6m 210.2m - (251.1m) 321.3m
neos-1616732 10 7160 7773 (7773) 8407 2.1m 2.3m (2.3m) 2.5m 27.3m 29.6m (29.6m) 31.3m
neos-1620770 0 43200 - (43200) 43200 5.3m - (6.3m) 7.3m 76.6m - (94.7m) 116.6m
neos-820146 0 43200 - (43200) 43200 8.6m - (10.3m) 12.0m 334.8m - (373.5m) 431.3m
neos-820157 0 43200 - (43200) 43200 6.9m - (7.7m) 9.4m 288.2m - (317.3m) 348.6m
neos-826650 0 43200 - (43200) 43200 1.8m - (2.2m) 3.1m 151.4m - (206.6m) 235.5m
neos-826841 0 43200 - (43200) 43200 4.0m - (4.5m) 5.1m 114.0m - (137.8m) 159.1m
neos-847302 0 43200 - (43200) 43200 2.8m - (3.1m) 3.3m 383.0m - (414.0m) 435.1m
neos-911880 0 43200 - (43200) 43200 23.0m - (27.7m) 33.0m 86.9m - (118.9m) 165.8m
neos-942830 10 1634 8689 (8689) 13644 228.5k 1.4m (1.4m) 2.7m 11.2m 67.8m (67.8m) 93.8m

neos15 1 31393 31393 (42019) 43200 11.6m 11.6m (16.6m) 17.9m 95.9m 95.9m (135.6m) 149.3m
neos16 0 43200 - (43200) 43200 7.0m - (8.9m) 11.5m 60.9m - (77.6m) 97.4m

neos858960 10 3542 3676 (3676) 3886 2.5m 2.6m (2.6m) 2.8m 46.9m 48.7m (48.7m) 51.5m
nobel-eu-DBE 0 43200 - (43200) 43200 6.4m - (7.6m) 8.7m 56.7m - (64.7m) 70.8m

noswot 10 344 900 (900) 3519 436.9k 1.1m (1.1m) 4.3m 1.4m 2.8m (2.8m) 8.6m
ns1456591 0 43200 - (43200) 43200 194.3k - (472.5k) 716.5k 13.7m - (31.3m) 49.7m
ns1766074 10 5038 5463 (5463) 5760 895.4k 907.9k (907.9k) 942.4k 3.5m 3.6m (3.6m) 3.8m
ns2081729 0 43200 - (43200) 43200 10.4m - (22.2m) 35.9m 33.5m - (63.9m) 97.9m
ns894788 10 4 4 (4) 5 1 1 (1) 1 303 387 (387) 487

p2m2p1m1p0n100 0 43200 - (43200) 43200 196.7m - (199.1m) 204.2m 102.9m - (104.2m) 106.9m
p80x400b 0 43200 - (43200) 43200 25.0m - (27.2m) 28.8m 75.0m - (84.6m) 94.9m

pg 10 23 24 (24) 26 197 197 (197) 197 14.5k 14.5k (14.5k) 14.5k
pigeon-10 0 43200 - (43200) 43200 4.0m - (4.7m) 5.2m 18.2m - (25.2m) 38.1m
pigeon-11 0 43200 - (43200) 43200 3.1m - (4.2m) 5.5m 13.1m - (18.3m) 27.8m
pigeon-12 0 43200 - (43200) 43200 3.2m - (3.9m) 4.6m 12.5m - (19.7m) 36.0m
ran14x18 10 13454 19209 (19209) 26510 10.5m 15.0m (15.0m) 20.7m 81.0m 113.2m (113.2m) 152.9m

ran14x18-disj-8 0 11086 - (16055) 21427 3.6m - (5.0m) 6.3m 49.6m - (74.0m) 94.1m
reblock166 6 11729 19725 (29115) 43200 1.5m 2.0m (2.7m) 6.1m 5.7m 8.5m (12.0m) 24.9m
timtab1 10 855 1200 (1200) 1547 592.7k 803.6k (803.6k) 993.3k 4.6m 6.3m (6.3m) 7.9m
umts 10 1296 6009 (6009) 13658 186.5k 1.1m (1.1m) 2.4m 2.5m 10.6m (10.6m) 27.2m

wachplan 10 10904 15674 (15674) 24922 247.9k 327.1k (327.1k) 458.9k 92.2m 133.2m (133.2m) 217.3m
wnq-n100-mw99-14 0 43200 - (43200) 43200 31.4k - (35.5k) 37.6k 3.3m - (3.5m) 3.7m

Total 159 1336785 (16660531) 575.3m (8.8b) 6.5b (56.6b)
Arit. mean 8407 (32039) 3.6m (17.0m) 40.8m (108.9m)

Sh. geo. mean 2191 (17044) 376.9k (3.1m) 5.8m (36.9m)
Table 13: Detailed results for the ratio scoring function on the tree test set(continues in the next page).

56

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

Table 13: Detailed results for the ratio scoring function on the tree test set.

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

blp-ar98 0 43200 - (43200) 43200 1.4m - (1.7m) 1.9m 13.9m - (17.4m) 20.3m
csched007 10 18507 25355 (25355) 37366 3.0m 4.3m (4.3m) 5.9m 77.9m 105.6m (105.6m) 143.6m
csched008 10 555 1641 (1641) 4820 46.1k 118.6k (118.6k) 267.0k 5.2m 18.3m (18.3m) 59.2m
enlight15 0 43200 - (43200) 43200 23.1m - (24.8m) 25.9m 103.0m - (111.6m) 117.4m
enlight16 0 43200 - (43200) 43200 21.8m - (25.2m) 26.3m 97.5m - (113.6m) 119.0m
glass4 10 17 29 (29) 51 5.5k 11.8k (11.8k) 22.5k 37.6k 74.4k (74.4k) 147.2k

gmu-35-40 1 39750 39750 (42855) 43200 59.9m 59.9m (71.2m) 79.2m 132.3m 132.3m (190.1m) 224.3m
gmu-35-50 0 43200 - (43200) 43200 49.0m - (61.6m) 75.1m 178.0m - (206.2m) 249.4m

go19 0 43200 - (43200) 43200 9.6m - (10.3m) 11.0m 327.1m - (352.8m) 370.0m
k16x240 10 16692 20462 (20462) 24643 15.3m 19.7m (19.7m) 24.0m 63.6m 82.9m (82.9m) 107.4m
leo1 0 43200 - (43200) 43200 3.1m - (3.4m) 3.9m 50.2m - (54.8m) 59.0m

markshare_5_0 0 43200 - (43200) 43200 125.0m - (128.0m) 130.1m 228.9m - (234.2m) 238.1m
maxgasflow 0 43200 - (43200) 43200 1.3m - (1.7m) 2.1m 8.2m - (16.2m) 20.7m

mc11 0 43200 - (43200) 43200 2.3m - (3.1m) 3.5m 35.8m - (47.8m) 57.0m
momentum1 0 43200 - (43200) 43200 128.9k - (176.4k) 197.3k 4.4m - (5.1m) 5.8m
neos-1426635 0 43200 - (43200) 43200 36.5m - (40.8m) 44.2m 208.8m - (249.2m) 276.9m
neos-1426662 0 43200 - (43200) 43200 17.7m - (20.8m) 22.9m 119.7m - (138.4m) 153.3m
neos-1436709 0 43200 - (43200) 43200 16.5m - (18.8m) 20.8m 163.8m - (184.7m) 212.8m
neos-1440460 0 43200 - (43200) 43200 18.4m - (20.7m) 21.9m 246.9m - (282.5m) 332.5m
neos-1442119 0 43200 - (43200) 43200 18.6m - (19.5m) 20.4m 192.1m - (200.8m) 215.1m
neos-1442657 0 43200 - (43200) 43200 15.4m - (18.1m) 19.5m 211.3m - (243.0m) 275.0m
neos-1616732 10 6605 7487 (7487) 8361 1.8m 2.1m (2.1m) 2.3m 25.8m 28.4m (28.4m) 31.3m
neos-1620770 0 43200 - (43200) 43200 4.2m - (5.9m) 6.9m 64.9m - (90.7m) 112.0m
neos-820146 0 43200 - (43200) 43200 9.3m - (10.2m) 10.9m 355.7m - (373.3m) 393.6m
neos-820157 0 43200 - (43200) 43200 7.1m - (7.7m) 8.6m 297.0m - (319.2m) 346.5m
neos-826650 0 43200 - (43200) 43200 1.8m - (2.3m) 3.3m 162.4m - (206.9m) 234.4m
neos-826841 0 43200 - (43200) 43200 3.6m - (4.3m) 5.0m 116.9m - (142.3m) 171.9m
neos-847302 0 43200 - (43200) 43200 2.6m - (2.9m) 3.4m 396.7m - (410.4m) 424.2m
neos-911880 0 43200 - (43200) 43200 15.4m - (26.3m) 31.9m 68.0m - (104.3m) 136.6m
neos-942830 10 2538 9145 (9145) 18941 375.5k 1.4m (1.4m) 3.0m 18.7m 73.7m (73.7m) 156.3m

neos15 1 29801 29801 (41860) 43200 11.2m 11.2m (16.2m) 17.8m 97.9m 97.9m (139.3m) 151.4m
neos16 0 43200 - (43200) 43200 8.1m - (8.9m) 10.3m 72.2m - (79.6m) 89.7m
Table 14: Detailed results for the svts scoring function on the tree test set(continues in the next page).

57

Instance #solved time (s) nodes LP iterations
min avg max min avg max min avg max

neos858960 10 3359 3665 (3665) 3784 2.5m 2.6m (2.6m) 2.8m 46.9m 48.7m (48.7m) 51.5m
nobel-eu-DBE 0 43200 - (43200) 43200 7.5m - (8.2m) 8.9m 41.5m - (58.2m) 69.4m

noswot 10 331 799 (799) 2625 413.9k 922.0k (922.0k) 2.8m 1.4m 2.7m (2.7m) 7.2m
ns1456591 0 43200 - (43200) 43200 178.7k - (463.2k) 696.1k 14.8m - (31.5m) 48.1m
ns1766074 10 5349 5607 (5607) 6443 895.4k 907.9k (907.9k) 942.4k 3.5m 3.6m (3.6m) 3.8m
ns2081729 0 43200 - (43200) 43200 11.0m - (22.8m) 32.6m 38.5m - (67.6m) 97.2m
ns894788 10 4 4 (4) 5 1 1 (1) 1 303 387 (387) 487

p2m2p1m1p0n100 0 43200 - (43200) 43200 196.3m - (197.8m) 199.5m 102.7m - (103.5m) 104.4m
p80x400b 0 43200 - (43200) 43200 24.2m - (26.4m) 29.2m 82.3m - (89.2m) 96.4m

pg 10 23 24 (24) 25 223 223 (223) 223 14.7k 14.7k (14.7k) 14.7k
pigeon-10 0 43200 - (43200) 43200 3.4m - (4.4m) 5.0m 15.5m - (24.3m) 41.6m
pigeon-11 0 43200 - (43200) 43200 3.0m - (4.2m) 5.9m 12.6m - (18.3m) 28.4m
pigeon-12 0 43200 - (43200) 43200 3.1m - (3.9m) 4.4m 11.5m - (20.4m) 40.1m
ran14x18 10 13372 19987 (19987) 26400 10.1m 14.8m (14.8m) 19.8m 85.9m 122.7m (122.7m) 158.6m

ran14x18-disj-8 0 14834 - (20026) 23964 4.4m - (5.9m) 7.2m 70.4m - (94.7m) 118.8m
reblock166 6 10968 17803 (27962) 43200 1.2m 1.9m (2.8m) 7.8m 5.0m 8.1m (12.0m) 26.4m
timtab1 10 739 1168 (1168) 1685 495.8k 790.9k (790.9k) 1.0m 4.1m 6.3m (6.3m) 8.5m
umts 10 1536 5581 (5581) 9636 258.5k 999.4k (999.4k) 1.5m 2.6m 8.9m (8.9m) 17.9m

wachplan 10 11060 15542 (15542) 25357 247.9k 327.1k (327.1k) 458.9k 92.2m 133.2m (133.2m) 217.3m
wnq-n100-mw99-14 0 43200 - (43200) 43200 29.9k - (33.5k) 35.9k 3.1m - (3.4m) 3.7m

Total 158 1341327 (16747991) 572.3m (8.8b) 6.6b (56.7b)
Arit. mean 8489 (32208) 3.6m (16.9m) 42.0m (109.1m)

Sh. geo. mean 2140 (17096) 364.2k (3.1m) 5.7m (37.2m)

Table 14: Detailed results for the svts scoring function on the tree test set.

58

	1 Introduction
	2 Abstract Branch & Bound model
	3 The Single Variable Branching problem
	3.1 Motivation: state-of-the-art scoring functions and example
	3.2 A polynomial-time algorithm
	3.3 Asymptotic study

	4 The Multiple Variable Branching problem
	4.1 Motivating example (continued)
	4.2 Asymptotic study

	5 The General Variable Branching problem
	5.1 Complexity of GVB

	6 Using the abstract model for scoring branching candidates
	6.1 Applicability of our results to rational numbers
	6.2 The ratio scoring function
	6.3 The svts scoring function

	7 Experimental results
	7.1 Numerical simulations
	7.1.1 Simulation results for the MVB problem
	7.1.2 Simulation results for the GVB problem

	7.2 Experiments on MIP instances
	7.2.1 Benchmark instances
	7.2.2 Instances with large B&B trees

	8 Conclusions
	A Proofs
	A.1 Proof of Theorem 4 and Corollary 5
	A.2 Proof of Theorem 7

	B Additional numerical simulations
	C Detailed results for the experiments on MIP instances
	C.1 Benchmark test set results
	C.2 Tree test set results

