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SYMMETRIC SUMS OF SQUARES OVER

k-SUBSET HYPERCUBES

ANNIE RAYMOND, JAMES SAUNDERSON, MOHIT SINGH, AND REKHA R. THOMAS

Abstract. We consider the problem of finding sum of squares (sos) expres-
sions to establish the non-negativity of a symmetric polynomial over a discrete

hypercube whose coordinates are indexed by the k-element subsets of [n]. For
simplicity, we focus on the case k = 2, but our results extend naturally to all
values of k ≥ 2. We develop a variant of the Gatermann-Parrilo symmetry-
reduction method tailored to our setting that allows for several simplifications
and a connection to flag algebras.

We show that every symmetric polynomial that has a sos expression of a
fixed degree also has a succinct sos expression whose size depends only on
the degree and not on the number of variables. Our method bypasses much
of the technical difficulties needed to apply the Gatermann-Parrilo method,
and offers flexibility in obtaining succinct sos expressions that are combina-
torially meaningful. As a byproduct of our results, we arrive at a natural
representation-theoretic justification for the concept of flags as introduced by
Razborov in his flag algebra calculus. Furthermore, this connection exposes a
family of non-negative polynomials that cannot be certified with any fixed set
of flags, answering a question of Razborov in the context of our finite setting.

1. Introduction

Polynomial optimization over discrete hypercubes plays a central role in many
areas such as combinatorial optimization, decision problems and proof complexity.
In many situations, it is natural to consider k-subset hypercubes by which we mean
discrete hypercubes whose coordinates are indexed by the k-element subsets of a
ground set [n]. For instance, a major focus in extremal graph theory is to optimize
the edge (hyperedge) density in families of graphs (hypergraphs) with specified
structure which can be cast as optimization problems over k-subset hypercubes.
In this scenario, as in many others, the polynomial to be optimized is often sym-
metric which allows representation-theoretic techniques to dramatically cut down
on computations. In this paper, we consider the general problem of optimizing a

symmetric polynomial over a k-subset hypercube Vn,k := {0, 1}(
n

k). We focus on the

case k = 2, and hence use the notation Vn in place of Vn,2 = {0, 1}(
n

2) throughout.
As we will explain in Section 7, our results extend naturally to all k ≥ 2.

Phrased differently, our central problem is to certify the non-negativity of a
symmetric polynomial p over Vn which can be done by finding a sum of squares (sos)
expression that equals p as a function on Vn. In [GP04], Gatermann and Parrilo
showed how to use representation theory to simplify the computations involved in
finding a sos representation of a polynomial p that is invariant under the action
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of a finite group. We propose a variant of their method that is adapted to the
combinatorics in our setting, and hence, offers many simplifications and advantages.
Among the highlights is a proof that if p has a sos certificate of degree d, then it
also has a succinct sos expression whose size depends on d but is independent of n.
Secondly, we show that Razborov’s theory of flags makes a natural entry into this
problem as a byproduct of the representation theory of the symmetric group.

We now introduce some notation that will help us elaborate on our results. Fix
a positive integer n and let R[x] := R[xij : 1 ≤ i < j ≤ n] be the polynomial ring
in variables indexed by the pairs ij where 1 ≤ i < j ≤ n. The set of polynomials
that vanish on the discrete hypercube Vn is the ideal In in R[x] generated by the
(

n
2

)

polynomials x2ij − xij for all 1 ≤ i < j ≤ n. The set of functions on Vn may be

identified with the quotient ring R[x]/In. Recall that two polynomials f, g ∈ R[x]
represent the same function in R[Vn] if and only if f − g ∈ In, written as f ≡
g mod In. This algebraic language is helpful in examples. The elements of R[x]/In
are in bijection with the square-free polynomials in R[x], namely, those polynomials
in which every monomial is square-free or multilinear. As a vector space, it will be
convenient to identify R[Vn] with the set of all square-free polynomials in R[x]. Let
R[x]≤d denote the polynomials of degree at most d in R[x]. Denote by R[Vn]≤d the
set of functions of degree at most d in R[Vn], namely the quotient ring R[x]≤d/In. As
a vector space, R[Vn]≤d can be identified with the set of all square-free polynomials
of degree at most d.

The symmetric group Sn acts on R[x] by linearly extending the action of Sn on
monomials via s · xij := xs(i)s(j) for each s ∈ Sn. Since the ideal In is invariant
under this action, the action of Sn extends to R[Vn] and R[Vn]≤d. We say that a
polynomial p is symmetric or Sn-invariant if it is fixed under this action of Sn.

Every non-negative p in R[Vn] is a sum of squares, i.e., p =
∑

f2i for finitely many
fi ∈ R[Vn] [Par02], see also [Lau09, Theorem 2.4]. If the fi are restricted to come
from a fixed subspace V ⊆ R[Vn], then we say that p is V -sos. If p is R[Vn]≤d-sos,
we simply say that p is d-sos.

If p ∈ R[Vn] is V -sos, then a sos certificate for it can be found by solving a semi-
definite program (SDP) (see, for instance, [BPT13, Chapter 3]). Indeed, this can
be done by finding a positive semidefinite (psd) matrix Q such that p = tr(Q vv⊤),
where v is a vector containing the elements in a basis of V , and tr(·) stands for
trace. In particular, if p is d-sos, we could choose the entries of v to consist of all
square-free monomials of degree at most d. Since the number of such monomials is
d
∑

i=0

(
(

n
2

)

i

)

, the size of Q becomes unwieldy as n grows.

If p is d-sos and invariant with respect to a finite group, Gatermann and Par-
rilo [GP04] show how to find sos expressions for p by solving a (potentially) much
smaller SDP than the one mentioned above. In our setting, their starting point
is the isotypic decomposition of the vector space V = R[Vn]≤d under the action
of Sn. This decomposition has the form V =

⊕

λ Vλ where λ is a partition of n,
and each isotypic Vλ is in turn a direct sum of mλ copies of a single irreducible
representation Sλ for Sn. Applying the results of [GP04] to our setting, one can

show that there exist mλ ×mλ psd matrices Q̃λ such that

(1) p =
∑

λ

tr
(

Q̃λ sym(ṽλṽ
⊤
λ )
)

.
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Here, for each partition λ, the entries of ṽλ consist of elements in a basis for its mλ-
dimensional multiplicity space (which is discussed in Section 2 and Appendix A).
The operation sym(·) symmetrizes its argument under the group action. Hence, if
p is symmetric and d-sos, we can find a symmetry-reduced sos description of p by
solving a SDP of size

∑

λmλ.
A priori, it is unclear how much smaller the size of the Gatermann-Parrilo SDP is

compared to the dimension of V . Another major challenge is that constructing this
SDP requires the explicit knowledge of a basis for each of the multiplicity spaces
(i.e., appropriate vectors ṽλ). The algorithm outlined in [GP04] requires construct-
ing a symmetry-adapted basis for V (see, e.g., [FS92]), which is computationally
costly, having complexity that depends on both n and d.

In this paper, we focus on finding sos certificates for symmetric polynomials over
discrete hypercubes Vn,k when k ≥ 2. In these cases, little is explicitly known about
how the space R[Vn,k] of square-free polynomials in

(

n
k

)

variables decomposes under
the action of Sn on k-tuples. This makes a direct application of the Gatermann-
Parrilo method infeasible in this setting. This is in sharp contrast with the sim-
pler case k = 1 for which the isotypic decomposition of R[Vn,1]≤d, and hence all
the information required for the Gatermann-Parrilo SDP, is explicitly known (see,
e.g., [BGP]). This decomposition underpins a number of recent results related to
non-negative Sn-invariant polynomials on {0, 1}n [BGP, LPdWY16, KLM16].

1.1. Our results. Our first contribution is to show that if p is symmetric and d-
sos, then it has a symmetry-reduced sos certificate that can be obtained by solving
a SDP of size independent of n. Throughout, we will informally refer to such a
sos expression as being succinct. We establish this result in two steps. First, we
show that the number of partitions needed in (1) is bounded above by p(0)+p(1)+
p(2) + · · · + p(2d) (where p(i) is the number of partitions of i), a quantity that
is independent of n. Second, we show that each mλ is also bounded above by a
quantity that is independent of n (see Proposition 3.21 for a precise statement).

Our next contribution is to develop a variant of the Gatermann-Parrilo method
tailored to our setting, that circumvents the representation-theoretic difficulties in-
herent in constructing bases for the multiplicity spaces. In particular, we show
how to construct subspaces that contain the multiplicity spaces, have dimension
depending only on d, and that are spanned by combinatorially meaningful polyno-
mials that can be enumerated easily. One such spanning set arises as polynomial
analogs of a specific collection of partially labeled graphs present in both the the-
ory of graph homomorphisms [Lov12] and flag algebras [Raz07]. Partially labeled
graphs are called flags in the latter. We will use this terminology for brevity and
since we make several connections to the work in [Raz07].

A key result coming from the connections we make to flags is that if p is symmet-
ric and d-sos, then there is an sos expression for p that uses only flag polynomials
from flags on at most 2d vertices. Further, we prove that even particular restricted
flag sos expressions commonly found in the flag algebra literature suffice for this
result. Together with [RST15], this implies the surprising result that flag meth-
ods are just as capable as standard symmetry-reduction methods for providing sos
certificates for symmetric polynomials over Vn. Moreover, this connection to flags
offers a family of symmetric polynomials of fixed degree that cannot be certified
with any fixed set of flags, answering a question in [Raz07] in the finite setting.
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The theories of flag algebras and graph homomorphisms have emerged as power-
ful tools for establishing asymptotic (symmetric) inequalities among graph densities
in extremal graph theory, by expressing them as sums of squares up to an error
that vanishes asymptotically. Viewed as optimization problems, these are instances
of polynomial optimization with infinitely many variables. Our results show that
there is much to be gained by pausing at a finite n. We show that flags can be used
to exactly certify the non-negativity of any symmetric polynomial over the discrete
hypercube Vn and its subsets. We illustrate our methods through a problem from
Ramsey theory and a Turán problem for 4-cycles.

1.2. Organization of the paper. This paper is organized as follows. In Sec-
tion 2.1, we introduce some concepts from the representation theory of Sn. In
particular, we define a key ingredient for the paper, namely subspacesWτλ indexed
by tableaux of shape λ, that are isomorphic to the multiplicity spaces referred
to in Section 1.1. These subspaces play a crucial role in the Gatermann-Parrilo
method tailored to our setting, which we present in Section 2.2. A proof can be
found in Appendix A. We prove in Section 2.3 that if d is fixed, then the number
of partitions that are needed in the resulting sos certificate for p is bounded by a
function of d that is independent of n. In Section 2.4, we provide a variant of the
Gatermann-Parrilo method that only requires spanning sets for the subspaces Wτλ

as opposed to bases. In Section 3, we construct three such interrelated spanning
sets, all of which have the property that their sizes depend on d but not n. In the
process, we naturally encounter flags and their densities as studied by Razborov.
In Section 4, we prove that the flag sos expressions that emerge from our method
can be simplified to take on the more restricted form commonly found in the flag
algebra literature. We also show that every symmetric d-sos expression can be re-
trieved from flags on at most 2d vertices. Our methods naturally extend to subsets
of Vn. We illustrate this in Section 5 by giving sos proofs of two known results.
The first is an upper bound on the edge density of a n-vertex graph that avoids
4-cycles, and the second is that the Ramsey number R(3, 3) = 6. The technical
details of the Ramsey proof are in Appendix B. In Section 6, we give a family of
non-negative symmetric polynomials that cannot be certified by a fixed collection
of flags. We close the paper in Section 7 with a discussion of our results, and their
extension to hypergraphs.

Acknowledgments. Several people offered valuable input to this paper. In
particular, we thank Albert Atserias, Monty McGovern, Pablo Parrilo and Sasha
Razborov. We especially thank Greg Blekherman for his help with several facets
of the representation theory that underlies this work.

2. Sums of squares certificates for symmetric polynomials

Suppose that p ∈ R[Vn] is d-sos. In other words, suppose that p =
∑

f2i where
fi ∈ R[Vn]≤d for all i. If, in addition, p is fixed by the action of Sn on R[Vn],
Gatermann and Parrilo [GP04] showed how to find simpler, symmetry-reduced,
sos expressions for p by exploiting the isotypic decomposition of R[Vn]≤d under
the action of Sn. In this section, we first introduce preliminary definitions and
describe the structure of these symmetry-reduced sos expressions of Gatermann
and Parrilo (Theorem 2.2). To search for these sos expressions via semidefinite
programming requires knowledge of bases for certain subspaces Wτλ of R[Vn]≤d
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(defined in Section 2.1). In Section 2.3, we show that the number of partitions λ

of n for which these subspaces are non-zero is bounded by a quantity that depends
on d but is independent of n (Corollary 2.5). In Section 2.4, we introduce the more
flexible variant of Theorem 2.2 that does not require explicit knowledge of bases
for the Wτλ , but instead allows us to work with spanning sets for these spaces.

2.1. Preliminaries. Recall that the symmetric group Sn acts on R[x]≤d, the ring
of polynomials of degree at most d in

(

n
2

)

variables, by sending each variable xij to
s·xij = xs(i)s(j) for each s ∈ Sn. This descends to an action on R[Vn]≤d = R[x]≤d/In
because In is invariant under the action of Sn. By extending these actions linearly,
we can regard R[x]≤d and R[Vn]≤d as Sn-modules.

We briefly summarize standard facts and terminology related to the representa-
tion theory of Sn (see, e.g., [Sag01, Chapters 1& 2]). A Sn-module U is irreducible
if the only subspaces of U that are invariant under the action of Sn are {0} and U .
The irreducible Sn-modules are indexed by partitions of n, namely sequences of
positive integers λ = (λ1, . . . , λk) such that λ1 ≥ · · · ≥ λk > 0 and λ1+· · ·+λk = n.
Each λi is called a part. We use the shorthand λ ⊢ n to indicate that λ is a parti-
tion of n. We denote the irreducible Sn-module indexed by the partition λ ⊢ n by
Sλ. Its dimension is denoted by nλ.

Any Sn-module V has an isotypic decomposition

(2) V =
⊕

λ⊢n
Vλ,

which expresses V as a direct sum of Sn-modules Vλ, called the isotypic com-
ponents. Each Vλ is the span of all possible isomorphic copies of the irreducible
Sn-module Sλ in V . (We define these notions precisely in Appendix A.)

Combinatorial objects, called tableaux, and related subgroups of Sn, called row
groups, play an important role in the representation theory of Sn, and appear
throughout this paper. A partition λ ⊢ n has a shape (or Young diagram) with
rows of size λ1 ≥ · · · ≥ λk. A tableau of shape λ, denoted τλ, is a filling of the
n boxes in the diagram of λ with the numbers 1, 2, . . . , n bijectively. A tableau
is standard if the numbering increases from left to right along each row and down
each column. The number of standard tableaux of shape λ is nλ, the dimension of
the irreducible Sn-module Sλ [Sag01, Theorem 2.5.2].

If τλ is a tableau of shape λ, let rowi(τλ) denote the set of labels in the ith row
of τλ. The row group Rτλ of the tableau τλ is the subgroup of Sn that leaves each
rowi(τλ) invariant, i.e.,

Rτλ := {s ∈ Sn : s · rowi(τλ) = rowi(τλ) for all i = 1, 2, . . . , k}.
If U is a Sn-module and τλ is a tableau, let URτλ denote the subspace of U

consisting of points fixed by the row group Rτλ , i.e.,

URτλ := {u ∈ U : s · u = u for all s ∈ Rτλ}.
The following definition plays a central role in the paper.

Definition 2.1. If R[Vn]≤d =
⊕

λ Vλ is the isotypic decomposition of R[Vn]≤d,
and τλ is a tableau of shape λ, define

Wτλ := V
Rτλ

λ

to be the subspace of the isotypic Vλ fixed by the action of the row group Rτλ .
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Since Vλ is a subspace of R[Vn]≤d, it follows that Wτλ is a subspace of R[Vn]
Rτλ

≤d ,

the subspace of R[Vn]≤d that is fixed by the action of the row group Rτλ . This
simple observation is the main property of Wτλ that we use in subsequent sections
of the paper.

In Lemma A.10 of Appendix A, we show that for any choice of tableau τλ of shape
λ, there is a vector space isomorphism betweenWτλ and themultiplicity space of the
irreducible Sn-module Sλ in R[Vn]≤d (defined in Appendix A). As such, dim(Wτλ)
is the same for any tableau τλ of shape λ. We denote this dimension by mλ, and
often refer to mλ as the multiplicity of Sλ in V . Some of the multiplicities mλ may
be zero as we will see in Section 2.3.

2.2. Symmetry-reduced sos expressions of Gatermann and Parrilo. We
are now in a position to state a version of the main result of [GP04] tailored to
our setting. This result tells us the structure of symmetry-reduced sos expressions
for Sn-invariant d-sos polynomials, and shows that we can search for such sos
expressions by solving a SDP of size

∑

λ⊢nmλ.

Theorem 2.2. [GP04] Suppose p ∈ R[Vn] is Sn-invariant and d-sos. For each
partition λ ⊢ n, fix a tableau τλ of shape λ and choose a vector space basis
{bτλ1 , . . . , bτλmλ

} for Wτλ . Then for each partition λ of n, there exists a mλ ×mλ

psd matrix Qλ such that

(3) p =
∑

λ⊢n
tr(Qλ Y

τλ),

where Y τλ
ij := sym(bτλi bτλj ).

We provide a full proof of Theorem 2.2 and the background needed in Appen-
dix A. Here, we make various comments about the statement of this theorem.

Notice that the matrix Y τλ in the statement of Theorem 2.2 is filled with poly-
nomials in x, and that it is psd for all evaluations of x on Vn. Hence the right-hand
side of (3) is clearly non-negative as a function on Vn. The content of Theorem 2.2
is that all d-sos Sn-invariant polynomials have certificates of non-negativity of this
form. Our statement of Theorem 2.2 does not require a full symmetry-adapted
basis (see [FS92]) for V = R[Vn]≤d. Instead it requires, for each partition λ, a basis
for Wτλ for a single fixed tableau of shape λ. That is why we have a SDP of size
∑

λ⊢nmλ rather than dim(V ) =
∑

λ⊢nmλnλ.
We also note that the original Gatermann-Parrilo method is about sos certificates

for globally non-negative invariant polynomials, but it is easily adapted to the
situation of non-negativity over an algebraic variety. In addition, [GP04] gives a
more refined symmetry-reduced sos result in terms of invariant theory.

In the next two subsections, we will see two important improvements to the
statement of Theorem 2.2 that will eventually establish one of our main results
that, whenever p is symmetric and d-sos, then p has a succinct sos expression
whose size is independent of n.

2.3. Partitions needed in the Gatermann-Parrilo sos. Recall that the vector
space Wτλ has dimension mλ and contributes the sos expression tr(Qλ Y

τλ) to the
sos certificate of p in (3) where Qλ has size mλ ×mλ. We now investigate which
multiplicities mλ are non-zero, or equivalently, which partitions are needed in the
Gatermann-Parrilo symmetry-reduced sos expression. We show that the number of
partitions that are needed in (3) depends on d but is independent of n.
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We begin by investigating which partitions λ ⊢ n can appear in the isotypic
decomposition of R[x]≤d. Our main tool is the following consequence of Young’s
rule, established in [RST15, Theorem 4.9]. In what follows, we write λ ≥lex µ for
λ,µ ⊢ n if λ is lexicographically greater than or equal to µ, and λDµ if λ ≥lex µ

and, in addition, λ has at most as many parts as µ.

Lemma 2.3. If V is a finite-dimensional Sn-module and τµ is a tableau of shape
µ, then

V Rτµ ⊆
⊕

λDµ

Vλ.

Recall that a hook partition of n is one in which all parts except the first has
size one, which we denote as (λ1, 1

n−λ1) where λ1 is the size of the first part, and
where the remaining n − λ1 parts constitute the tail of the hook. We now use
Lemma 2.3 to show that only partitions lexicographically at least as large as the
hook partition (n−2d, 12d) can appear in the isotypic decomposition of V = R[x]≤d.
In Proposition 2.7, we will see that the number of such partitions is bounded by a
function of d that is independent of n.

Theorem 2.4. The multiplicity mλ of Sλ in the decomposition of V = R[x]≤d into
irreducible Sn-modules is zero unless λ ≥lex (n− 2d, 12d), i.e.,

V =
⊕

λ≥lex(n−2d,12d)

Vλ.

Proof. Let xα1

i1j1
xα2

i2j2
· · · xαk

ikjk
be a monomial of degree

∑k
i=1 αi ≤ d. The set L =

{i1, j1, i2, j2, . . . , ik, jk} ⊆ [n] of indices appearing in the monomial has size at most
2d. Let τ be a tableau of shape (n − 2d, 12d) with the elements of L put into the
tail and the remaining n − |L| labels filled arbitrarily into the rest of the Young
diagram of τ . Since Rτ fixes every element of L, clearly xα1

i1j1
xα2

i2j2
· · · xαk

ikjk
∈ V Rτ .

Since V is spanned by monomials of degree at most d, we have that

V ⊆
∑

shape(τ)=(n−2d,12d)

V Rτ ⊆
⊕

λD(n−2d,12d)

Vλ,

where the second inclusion follows from Lemma 2.3. To finish the proof, we need
only show that for the hook shape (n − 2d, 12d), we have λ D (n − 2d, 12d) if and
only if λ ≥lex (n− 2d, 12d). It is enough to argue that if λ ≥lex (n− 2d, 12d), then
λ has at most as many parts as (n− 2d, 12d), i.e., λ has at most 2d+1 parts. This
is clearly the case since λ ⊢ n and λ1 ≥ n− 2d. �

By the same argument (but only considering square-free monomials), the same
conclusion holds for the isotypic decomposition of V = R[Vn]≤d.

Corollary 2.5. The multiplicity mλ of Sλ in the decomposition of V = R[Vn]≤d

into irreducible Sn-modules or, equivalently, the dimension of Wτλ for any tableau
of shape λ, is zero unless λ ≥lex (n− 2d, 12d), i.e.,

V =
⊕

λ≥lex(n−2d,12d)

Vλ.

For the rest of the body of the paper, we will fix

Λ := {λ ⊢ n : λ ≥lex (n− 2d, 12d)}.
Then, using Theorem 2.4, we obtain the following corollary to Theorem 2.2.
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Corollary 2.6. Suppose p ∈ R[Vn] is Sn-invariant and d-sos. For each partition
λ ⊢ n, fix a tableau τλ of shape λ and choose a vector space basis {bτλ1 , . . . , bτλmλ

}
for Wτλ . Then for each partition λ ∈ Λ, there exists a mλ ×mλ psd matrix Qλ

such that

p =
∑

λ∈Λ

tr(Qλ Y
τλ).

We now give an explicit upper bound on the number of partitions that are
lexicographically greater than or equal to the hook (n−2d, 12d), and hence a bound
on the number of partitions λ that appear in the isotypic decomposition of R[Vn]≤d.

Proposition 2.7. Let mλ be the multiplicity of Sλ in the isotypic decomposition
of V = R[Vn]≤d. Then the number of partitions λ of n such that mλ is non-zero
is bounded above by p(0) + p(1) + p(2) + · · · + p(2d), where p(i) is the number of
partitions of i. In particular, the size of Λ is independent of n.

Proof. By Corollary 2.5, the number of partitions λ such that mλ is non-zero is
bounded above by |Λ|. If λ ∈ Λ, then it has the form (n−2d+i,µ), where µ ⊢ 2d−i
and i is some integer satisfying 0 ≤ i ≤ 2d. The number of such partitions µ is
bounded above by p(0) + p(1) + p(2) + · · ·+ p(2d). �

By Proposition 2.7, we see that even though the number of partitions of n grows
with n, the number of those that are needed in the Gatermann-Parrilo symmetry-
reduced sos expression for a d-sos symmetric polynomial p is bounded by a function
of d that is independent of n. This is our first improvement to the statement of
Theorem 2.2 in our setting.

2.4. Symmetry-reduction via spanning sets. Next, we show that one does
not need bases for the Wτλ to find a sos certificate as in Theorem 2.2. Instead,
it suffices to have a set of polynomials whose span contains Wτλ . This relaxation
offers a great deal of flexibility in setting up the SDP in (3).

Theorem 2.8. Suppose p ∈ R[Vn] is Sn-invariant and d-sos. For each partition
λ ⊢ n, fix a tableau τλ of shape λ and let {pτλ1 , . . . , pτλlτλ

} be a set of polynomials

whose span contains Wτλ . Then for each partition λ ∈ Λ, there exists a lτλ × lτλ
psd matrix Rλ such that

p =
∑

λ∈Λ

tr(Rλ Z
τλ),

where Zτλ
ij := sym(pτλi pτλj ).

Proof. By Corollary 2.6, we know that under the hypotheses of the theorem, there
exist mλ ×mλ real psd matrices Qλ such that p =

∑

λ∈Λ tr(Qλ Y
τλ). Recall that

the matrix Y τλ , defined as Y τλ
ij = sym(bτλi b

τλ
j ), is constructed from a basis for Wτλ

after fixing one tableau τλ of shape λ. Since each bτλi is in the span of pτλ1 , . . . , pτλlτλ
,

there is a real matrix Mτλ of size lτλ ×mλ such that

(pτλ1 , . . . , pτλlτλ
)Mτλ = (bτλ1 , . . . , bτλmλ

).

Defining Rλ :=MτλQλM
⊤
τλ
, we see that

(bτλ1 , . . . , bτλmλ
)Qλ(b

τλ
1 , . . . , bτλmλ

)⊤ = (pτλ1 , . . . , pτλlτλ
)Rλ(p

τλ
1 , . . . , pτλlτλ

)⊤.
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Symmetrizing both sides we conclude that tr(QλY
τλ) = tr(Rλ Z

τλ), and hence,

p =
∑

λ∈Λ

tr(Qλ Y
τλ) =

∑

λ∈Λ

tr(Rλ Z
τλ).

�

Note that the sos in Theorem 2.8 retains the same structure as Corollary 2.6 in
the sense that for each λ ∈ Λ we only need to consider Wτλ for a single tableau τλ
of shape λ.

3. Spanning sets and Razborov’s flags

Recall that our goal is to find succinct sos expressions for Sn-invariant d-sos
polynomials. Theorem 2.8 implies that to achieve this, one needs to find, for a
fixed tableau τλ of shape λ ∈ Λ, a spanning set for Wτλ with size independent of
n. In Section 3.1, we show how to construct a näıve spanning set for Wτλ with
the property that the number of polynomials in it is independent of n. From that
first spanning set, we derive two more spanning sets that have the same prop-
erty, and which naturally introduce the notion of flags introduced by Razborov in
[Raz07]. This connection to flags provides a nice combinatorial interpretation for
these spanning sets which will be explained in Section 3.2.

3.1. Spanning sets. Recall that the vector space Wτλ is a subspace of R[Vn]≤d

which is spanned by square-free monomials in
(

n
2

)

variables of degree at most d. We

denote such a square-free monomial by xm :=
∏

1≤i<j≤n x
mij

ij with mij ∈ {0, 1}.
A very näıve spanning set for Wτλ can easily be generated as follows. For a

tableau τλ of shape λ = (λ1, λ2, . . .) and a monomial xm, let

symτλ(x
m) :=

1

|Rτλ |
∑

s∈Rτλ

s · xm

be the symmetrization of xm under the row groupRτλ . The polynomials symτλ
(xm)

as xm varies over square-free monomials of degree at most d form a natural spanning
set for Wτλ . Indeed, recall that Wτλ consists of Rτλ-invariant polynomials. There-
fore, if p ∈ Wτλ , then p = symτλ

(p) and so p is a linear combination of symτλ
(xm)

for different square-free monomials xm of degree at most d.
We will show in Lemma 3.2 that the symmetrized monomials symτλ(x

m) are
superfluous when λ is not a hook. Indeed, for any τλ, even when λ is not a hook,
Wτλ is in the span of symmetrizations of monomials under row groups of hooks.

Definition 3.1. Given a tableau τλ of shape λ = (λ1, λ2, . . .), define hook(τλ) to
be the tableau of shape (λ1, 1

n−λ1) such that the first row of hook(τλ) is the same
as that of τλ, and the remaining labels in τλ are put in the tail of the hook in
increasing order.

Lemma 3.2. For the tableau τλ, the vector spaceWτλ is spanned by the polynomials
symhook(τλ)(x

m), as xm varies over square-free monomials of degree at most d.

Proof. From the definition ofWτλ , we have thatWτλ = V
Rτλ

λ ⊆ V Rτλ , the subspace
of Rτλ-fixed elements of V = R[Vn]≤d. Since Rhook(τλ) is a subgroup of Rτλ ,

it follows directly that V Rτλ ⊆ V Rhook(τλ) . Hence Wτλ ⊆ V Rhook(τλ) , which is
certainly spanned by the polynomials symhook(τλ)(x

m), as xm varies over square-
free monomials of degree at most d. �
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One can think about these hook polynomials in a combinatorial manner starting
with the following definition.

Definition 3.3. The graph of a square-free monomial xm, denoted as G(xm), is the
labeled subgraph of the complete graph Kn containing the edge {i, j} if mij = 1.

Therefore, for any square-free monomial xm and any tableau τλ of shape λ =
(λ1, λ2, . . .), we have that

symhook(τλ)(x
m) =

1

|Rhook(τλ)|
∑

σ∈Rhook(τλ)

∏

{i,j}∈E(G(xm))

xσ(i)σ(j).

Note that any vertex of G(xm) that is in the tail of hook(τλ) is fixed byRhook(τλ).
This partitions the vertices of G(xm) into two sets: those fixed by Rhook(τλ), and
those that are not. We now see how this phenomenon is mirrored by flags, partially
labeled graphs where the labeled part is fixed. We can thus view graphs G(xm)
through the lens of flags and show that symhook(τλ)

(xm) can be thought of as poly-
nomials coming from flags instead. To formalize this connection, we introduce flags
and density polynomials arising from flags and then show their equivalence to the
symmetric polynomials defined above.

Definition 3.4. Consider three fixed integers 0 ≤ t ≤ f ≤ n.

(1) An intersection type of size t is a simple graph T on t vertices in which
every vertex is labeled with a distinct element of [t].

(2) A T -flag F of size f is a simple graph on f vertices with t of its vertices
labeled 1, . . . , t such that these labeled vertices induce a copy of T in F
with identical labels for the vertices.

(3) Let Ff
T be the set of all T -flags of size f up to isomorphism.

Example 3.5. Consider T =
1

2 3 and f = 4. Then Ff
T consists of the T -flags:

F0 =
1

2 3 , F1 =
1

2 3 , F2 =
1

2 3, F3 =
1

2 3,

F4 =
1

2 3 , F5 =
1

2 3 , F6 =
1

2 3, F7 =
1

2 3.

Definition 3.6. For two sets A and B, let Inj(A,B) denote the set of injective
maps h : A → B. Suppose F is a T -flag of size f and Θ ∈ Inj([t], [n]). We
say that h ∈ Inj(V (F ), [n]) respects the labeling Θ if h(v) = Θ(i) for any vertex
v ∈ V (F ) labeled i ∈ [t]. Let InjΘ(V (F ), [n]) denote the set of all injective maps
h : V (F ) → [n] that respect the labeling Θ.

Example 3.7. Suppose T =
1

2 3 and F =
1

2 3 . Identify [n] with {a1, a2, a3, . . .}.
Fix Θ ∈ Inj([3], [n]) to be the map Θ(1) = a2, Θ(2) = a1 and Θ(3) = a4. Let v
denote the unlabeled vertex in F . Then h ∈ Inj(V (F ), [n]) such that h(1) = a2,
h(2) = a1, h(3) = a4, h(v) ∈ [n] \ {a1, a2, a4} is Θ-preserving, while h such that
h(1) = a3, h(2) = a1, h(3) = a4, h(v) = a2 is not.

Definition 3.8. Fix T, f,Θ. Then for every flag F ∈ Ff
T , we let

gΘF =
∑

h∈InjΘ(V (F ),[n])

∏

{i,j}∈E(F )

xh(i)h(j).

Note that gΘF is always square-free since F is assumed to be a simple graph. So
the polynomials gΘF cannot span R[x]≤d but can possibly span R[Vn]≤d.
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Example 3.9. Consider our running example with the labeling Θ fixed to be
Θ(1) = ai, Θ(2) = aj and Θ(3) = ak where ai, aj , ak ∈ [n] are distinct and fixed.

F gΘF

F0 =
1

2 3 (n− 3)xijxik

F1 =
1

2 3 xijxik
∑

l∈[n]\{i,j,k} xil

F4 =
1

2 3 xijxik
∑

l∈[n]\{i,j,k} xilxjl

F7 =
1

2 3 xijxik
∑

l∈[n]\{i,j,k} xilxjlxkl

The polynomials gΘF can be interpreted in terms of tableaux and their row groups.

Definition 3.10. For Θ ∈ Inj([t], [n]), let hookΘ be the tableau of shape (n− t, 1t)
where the labels in Θ([t]) are placed in increasing order down the tail and the
remaining labels in [n] are put in increasing order in the first row.

Example 3.11. Let Θ be as in Example 3.9 and assume ai < aj < ak. Then

hookΘ = al1 al2 · · · aln−3

ai
aj
ak

where alr < alr+1 for all r, and {al1 , . . . , aln−3} = [n]\{ai, aj , ak}.
Since RhookΘ can be identified with the symmetric group on the labels [n]\Θ([t]),

we immediately get the following connection between gΘF and symhookΘ(xm).

Lemma 3.12. Fix any F ∈ Ff
T and Θ ∈ Inj([t], [n]). Then the polynomial gΘF

is equal to (n−t)!
(n−f)! · symhookΘ(xm) where xm =

∏

{i,j}∈E(F ) xh∗(i)h∗(j) for any fixed

h∗ ∈ InjΘ(V (F ), [n]).

Proof. This follows from the fact that |InjΘ(V (F ), [n])| =
(

n−t
f−t

)

(f − t)! and that,

for each h ∈ InjΘ(V (F ), [n]), there are (n− f)! permutations σ ∈ RhookΘ such that
σ(h(xm)) = h(xm). �

Example 3.13. From the previous example, we have that

gΘF0
= (n− 3) · symhookΘ(xijxik), gΘF1

= (n− 3) · symhookΘ(xijxikxil1).

Therefore, we will be able to reinterpret our näıve spanning set for a particular
Wτλ in terms of flags. Before doing so, we introduce a second set of flag-based
polynomials. Applying a Möbius transformation [Lov12, A.1] on the gΘF ’s, we get a
new set of polynomials. In Subsection 3.2, we remark on their link to flag algebras
and graph homomorphism densities.

Definition 3.14. (1) Define

Ff
≥T :=

⋃

{

F :F is a T ′-flag of size f where the vertices T ′are the same as

those of T (including the labels), and E(T ′) ⊇ E(T )

}

,

and let P f
T be the poset on Ff

≥T where F ≤ F ′ if E(F ) ⊆ E(F ′). This
poset can be graded by the number of edges.
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(2) For a flag F ∈ Ff
≥T , define the polynomial

dΘF :=
∑

F ′∈P f

T
:

F ′≥F

(−1)|E(F ′)|−|E(F )|gΘF ′ .

Note that unlike Ff
T , the set F

f
≥T is not defined up to isomorphism; for example,

it would contain both
1

and
1

even though they are isomorphic flags.

Example 3.15. Consider T and f as before. They yield the following poset P f
T .

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

Continuing our example, for F6 =
1

2 3 , the polynomial

dΘF6
= xijxik

∑

l∈[n]\{i,j,k}
(xjlxkl − xilxjlxkl − xjkxjlxkl + xjkxilxjlxkl) .

Definition 3.16. Given a tableau τλ of shape λ = (λ1, λ2, . . .), define Θτλ ∈
Inj([n−λ1], [n]) such that Θτλ(i) is the ith smallest label not in the first row of τλ.

Lemma 3.17. Let F ∈ Ff
T and F ′ ∈ Ff ′

T where n ≥ f ′ > f and E(F ) = E(F ′),
i.e., F ′ is obtained from F by adding isolated vertices. Then

gΘF ′ =

(

n− f

f ′ − f

)

(f ′ − f)! · gΘF .

Proof. Since E(F ) = E(F ′),

gΘF ′ =
∑

h∈InjΘ(V (F ′),[n])

∏

{i,j}∈E(F ′)

xh(i)h(j)

=
∑

h∈InjΘ(V (F ′),[n])

∏

{i,j}∈E(F )

xh(i)h(j)

=

(

n− f

f ′ − f

)

(f ′ − f)!
∑

h∈InjΘ(V (F ),[n])

∏

{i,j}∈E(F )

xh(i)h(j). �
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We will now show that for the vector spaceWτλ , the polynomials g
Θτλ

F and d
Θτλ

F

form a spanning set as F varies over all graphs in F2d
T where T has n−λ1 vertices.

From now on, we denote the number of vertices in T by |T |.

Theorem 3.18. For the tableau τλ, the vector space Wτλ is spanned by

(1) the polynomials g
Θτλ

F with flags F ∈ F2d
T where |T | = n− λ1, and

(2) the polynomials d
Θτλ

F with flags F ∈ F2d
T where |T | = n− λ1.

Proof. Recall from Lemma 3.2 that the polynomials symhook(τλ)(x
m) span Wτλ as

xm varies over certain square-free monomials of degree at most d.
Since Wτλ sits in the span of the polynomials symhook(τλ)(x

m), it also sits in the

span of
|Rhook(τλ)|

(n−|V (G(xm))|)! ·symhook(τλ)(x
m), where xm varies over square-free monomials

of degree at most d. For a polynomial
|Rhook(τλ)|

(n−|V (G(xm))|)! · symhook(τλ)(x
m), consider

the graph G(xm) and note that, since xm has degree at most d, G(xm) has at most
2d vertices. Unlabel any vertex in G(xm) whose label is in row1(hook(τλ)), and
replace the labels of the remaining n−λ1 labeled vertices with the labels in [n−λ1]
through a map φ that does so in increasing order (i.e., the smallest labeled vertex
becomes vertex 1, and the largest labeled vertex becomes vertex n−λ1). Let F be
that graph, and let Θ = φ−1. Note that |V (F )| = |V (G(xm))| and Θ = Θτλ . Then,

by Lemma 3.12, gΘF =
|Rhook(τλ)|

(n−|V (G(xm))|)! · symhook(τλ)(x
m), and so Wτλ sits in the span

of gΘF for flags F ∈ Ff
T where f ≤ 2d, |T | = n−λ1 and Θ = Θτλ . See Example 3.20

for an illustration of the process just described.

By Lemma 3.17, one only needs to keep the polynomials gΘF for flags F ∈ Ff
T

where f = 2d and |T | = n − λ1 since, for any flag F ∗ ∈ Ff∗

T where f∗ < 2d, there
exists a flag F+ with the same edge set but on 2d vertices such that gΘF+ = kgΘF∗

where k is a scalar.
The spans of polynomials gΘF and dΘF for F ∈ F2d

≤T coincide since they are related

by a Möbius transformation. Thus Wτλ also sits in the span of the polynomials dΘF
for flags F ∈ F2d

T with |T | = n− λ1 and where Θ = Θτλ . �

Remark 3.19. Let λ,λ′ be partitions of n with λ1 = λ′1, and let τλ and τλ′ be two
tableaux of shape λ and λ′ such that row1(τλ) = row1(τλ′ ) and thus hook(τλ) =
hook(τλ′). Then, since Θτλ = Θτλ′

, the vector spaces Wτλ and Wτλ′
are both

spanned by the polynomials g
Θτλ

F (respectively d
Θτλ

F ) with flags F ∈ F2d
T where

|T | = n− λ1. In particular, the polynomials in Theorem 3.18 that span Whook(τλ)

also span Wτλ .

Example 3.20. We give an example to illustrate the proof of the theorem above.
Consider any tableau τλ for which

hook(τλ) = al1 al2 · · · aln−3

ai
aj
ak

where ai < aj < ak are fixed and {al1 , . . . , aln−3} = [n]\{ai, aj , ak}. Now consider
the monomial xm = xijxikxjlrxklr for some fixed lr such that 1 ≤ r ≤ n− 3. Then
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note that

|Rhook(τλ)|
(n− |V (G(xm))|)! · symhook(τλ)(x

m) = xijxik
∑

l∈[n]\{i,j,k}
xjlxkl.

The graph G(xm) is
i

j k
lr . Unlabeling the vertex labeled lr since lr is in the first

row of hook(τλ), we get the graph
i

j k . Now we replace the labels i, j, k with 1, 2, 3

in that order to get F6 =
1

2 3 . Thus the map φ in the proof of the lemma sends
i 7→ 1, j 7→ 2, k 7→ 3. Hence take Θ to be the map that sends 1 7→ i, 2 7→ j, 3 7→ k
and F to be the flag F6. Then the polynomial gΘF6

is exactly (n−3)·symhook(τλ)
(xm).

We now observe that, when λ ≥lex (n − 2d, 12d), we have been successful in
generating spanning sets for Wτλ whose sizes are independent of n.

Proposition 3.21. Fix some tableau τλ of shape λ ≥lex (n − 2d, 12d). Then the
number of polynomials in each spanning set of Wτλ described in Lemma 3.2 and
Theorem 3.18 is independent of n.

Proof. Suppose λ = (λ1, λ2, . . .). Then, since λ ≥lex (n − 2d, 12d), we have that

n−λ1 ≤ 2d. Thus, the polynomials g
Θτλ

F (or d
Θτλ

F ) with flags F ∈ F2d
T spanWτλ as

T varies over all intersection types on n− λ1 ≤ 2d vertices. Note that the number
of intersection types on at most 2d vertices does not depend on n. Moreover, note
that the number of flags in F2d

T for any intersection type T such that |T | ≤ 2d

is independent of n by Definition 3.4. Thus the number of polynomials g
Θτλ

F (or

d
Θτλ

F ) does not depend on n. By the bijection in Lemma 3.12, the result holds. �

3.2. Relationship with flag and graph densities. We now discuss how to in-

terpret combinatorially the spanning sets involving g
Θτλ

F ’s or d
Θτλ

F ’s.

The characteristic vector of a graph G, denoted as 1G, is the vector in {0, 1}(
n

2)

whose ij-entry is one if and only if {i, j} ∈ E(G). The polynomial gΘF , when
evaluated on 1G for a graph G on n vertices, calculates the number ways of picking
uniformly at random a set of t vertices of G to label by Θ and f − t additional
unlabeled vertices in such a way that they produce a copy of F in G (not necessarily
as an induced subgraph). These numbers are at the core of the theory of graph
homomorphisms. In fact, the polynomials gΘF and dΘF , and the relationship between
them, exactly matches the graph densities tinj and tind in the theory of graph
limits [Lov12, Chapter 5].

On the other hand, we now observe that dΘF (1G) for a graph G on n vertices, is
the number of ways in which one can induce a copy of F in G by picking uniformly
at random t vertices in G to label by Θ along with f − t unlabeled vertices i.e.,
(

n−t
f−t

)

(f − t)! times the flag density of F in G, as in the theory of flag algebras

[Raz07]. This brings us to a combinatorial expression for the polynomial dΘF .

Lemma 3.22. The polynomial

dΘF =
∑

h∈InjΘ(V (F ),[n])

∏

{i,j}∈E(F )

xh(i)h(j)
∏

{i,j}∈(V (F )
2 )\E(F )

(1− xh(i)h(j)).

Proof. Expanding the expression on the right-hand side we obtain
∑

h∈InjΘ(V (F ),[n])

∑

F ′⊇F

aF ′

∏

{i,j}∈E(F ′)

xh(i)h(j),
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where aF ′ = (−1)|E(F ′)|−|E(F )| · |{F ′′|F ′′ is isomorphic to F ′}| and F ′ ⊇ F is a
graph on the labeled and unlabeled vertices of F and where any edge in F is also

an edge in F ′. In other words, F ′ ∈ Ff
≥T where T is the intersection type of F and

f = |V (F )|, and the result holds. �

Example 3.23. Recall from Example 3.15 that

dΘF6
= xijxik

∑

l∈[n]\{i,j,k}
(xjlxkl − xilxjlxkl − xjkxjlxkl + xjkxilxjlxkl) .

However, this expression can be rewritten to see that

dΘF6
=

∑

l∈[n]\{i,j,k}
xijxikxjlxkl(1 − xil)(1− xjk).

4. Flag sums of squares for the hypercube

Applying Theorem 2.8 to the spanning sets for Wτλ consisting of the dΘF and gΘF
polynomials from the previous section, we immediately get the following corollaries.

Corollary 4.1. Suppose p is symmetric and d-sos. For each partition λ ∈ Λ, fix
a tableau τλ of shape λ. Then there exists psd matrices Rλ such that

p =
∑

λ∈Λ

tr(Rλ Z
τλ),

where Zτλ := sym(gτλ
g⊤
τλ
) and gτλ

is the vector of polynomials g
Θτλ

F such that

F ∈ F2d
T where |T | = n− λ1.

Corollary 4.2. Suppose p is symmetric and d-sos. For each partition λ ∈ Λ, fix
a tableau τλ of shape λ. Then there exists psd matrices Rλ such that

p =
∑

λ∈Λ

tr(Rλ Z
τλ),

where Zτλ := sym(dτλd
⊤
τλ
) and dτλ is the vector of polynomials d

Θτλ

F such that

F ∈ F2d
T where |T | = n− λ1.

By Proposition 3.21, the size of each Rλ, which equals the size of the spanning
set being used for Wτλ , is independent of n. By Proposition 2.7, the number of
partitions λ ∈ Λ is also independent of n. Therefore, the sizes of the SDPs that
need to be solved in Corollaries 4.1 and 4.2 are independent of n. Thus, we have
established that symmetric non-negative polynomials over the discrete hypercube
Vn have succinct sos certificates that come from the flag polynomials dΘF and their
cousins gΘF . In particular, flag algebra techniques extend beyond the realm of
extremal graph theory and can be used to establish symmetric inequalities on Vn.

The sos expressions that typically appear in the flag algebra literature, e.g.,
[Raz10], [Raz14], [FRV13], are more restricted than those in Corollary 4.2. The
main result of this section is to show that even these rather special looking sos
expressions, which we will refer to as flag sos expressions, are sufficient to establish
the non-negativity of symmetric polynomials over Vn. The first step in passing to
these restricted sos expressions is the following observation.

Lemma 4.3. For two flags F and F ′ with different intersection types of equal size
t, and any labeling Θ ∈ Inj([t], [n]), dΘF d

Θ
F ′ is the zero function on Vn.
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Proof. Suppose F is a T -flag, F ′ is a T ′-flag and |E(T )| ≥ |E(T ′)|. Since T 6= T ′,
there exist vertices i and j such that {i, j} ∈ E(T ) and {i, j} 6∈ E(T ′). Therefore,
there is some polynomial q such that

dΘF d
Θ
F ′ = xij(1− xij)q = 0.

The last equality follows from the fact that xij(1− xij) = 0 on Vn. �

Note that the hypercube ideal In was crucial for the proof of Lemma 4.3. Using
this lemma, we now obtain a refined version of Corollary 4.2 (and similarly, Corol-
lary 4.1, which we omit). This will allow us to translate our d-sos expressions into
flag sums of squares afterwards.

Proposition 4.4. Suppose p is symmetric and d-sos. For each intersection type T
of size t ≤ 2d, fix ΘT ∈ Inj([t], [n]). Then there exists psd matrices RT such that

p =

2d
∑

t=0

∑

T :|T |=t

tr
(

RT sym(dTd
⊤
T )
)

,

where dT is the vector of polynomials dΘT

F such that F ∈ F2d
T .

Proof. Suppose p is symmetric and d-sos. For each partition λ ∈ Λ (where Λ =
{λ|λ ≥lex (n − 2d, 12d)}), fix a tableau τλ of shape λ = (λ1, λ2, . . .). Then, by
Corollary 4.2, there exist psd matrices Rλ such that

p =
∑

λ∈Λ

tr(Rλ Z
τλ),

where Zτλ = sym(dτλd
⊤
τλ) and dτλ is the vector containing all the polynomials d

Θτλ

F

such that F ∈ F2d
T where |T | = n− λ1.

For each intersection type T with |T | = n − λ1, let dτλ,T be the restriction of
dτλ to entries corresponding to flags in F2d

T . Similarly, let Rλ,T be the principal
submatrix of Rλ corresponding to rows and columns indexed by flags in F2d

T . Since
Rλ is psd, we get that Rλ,T is psd for each T . From Lemma 4.3, we know that
for any labeling Θ, if F and F ′ have different intersection types, then dΘF d

Θ
F ′ = 0.

Hence, Zτλ
FF ′ = 0 if F and F ′ have different intersection types, and so Zτλ is block

diagonal, with one block for each intersection type. Thus, we have

p =
∑

λ∈Λ

∑

T :
|T |=n−λ1

tr
(

Rλ,T sym(dτλ,Td
⊤
τλ,T )

)

.

Since λ1 ≥ n− 2d for each partition λ ∈ Λ and |T | = n− λ1 ≤ 2d, by switching
the sums, we may write the above expression as follows:

p =
∑

T :
0≤|T |≤2d

∑

λ:
λ1=n−|T |

tr
(

Rλ,T sym(dτλ,Td
⊤
τλ,T )

)

.

Note that the vectors dτλ,T and dτλ′ ,T are equal if row1(τλ) = row1(τλ′ ) since
Θτλ = Θτλ′

. For every λ in the inner sum above, we could choose the first row of
each corresponding τλ to be the same. Combining these two observations, we can
reindex the vectors dτλ,T by just dT . Therefore, the expression for p can be further
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rewritten as

p =
∑

T :
0≤|T |≤2d

tr
(

RT sym(dTd
⊤
T )
)

=

2d
∑

t=0

∑

T :|T |=t

tr
(

RT sym(dTd
⊤
T )
)

,

where RT =
∑

λ:
λ1=n−|T |

Rτλ,T which is again psd.

�

The next step in getting to flag sos expressions is to switch from the operator
sym(·) to the language of expectations. This does not change the expressions we
care about as we will see in Lemma 4.7.

Definition 4.5. Fix Θ0 ∈ Inj([t], [n]), and F, F ′ ∈ Ff
T where |T | = t. We define

EΘ[d
Θ0

F dΘ0

F ′ ] :=
1

|Inj([t], [n])|
∑

Θ∈Inj([t],[n])

dΘF d
Θ
F ′

Lemma 4.6. Fix Θ0 ∈ Inj([t], [n]), and F, F ′ ∈ Ff
T where |T | = t, then

sym(dΘ0

F dΘ0

F ′ ) =
1

|Sn|
∑

s∈Sn

ds·Θ0

F ds·Θ0

F ′ ,

where s ·Θ0(i) = s(Θ0(i)).

Proof. This follows from the definitions of the operator sym and polynomials dΘF .
�

Lemma 4.7. Fix Θ0 ∈ Inj([t], [n]), and F, F ′ ∈ Ff
T where |T | = t, then

sym(dΘ0

F dΘ0

F ′ ) = EΘ[d
Θ0

F dΘ0

F ′ ]

Proof. This follows from the fact that |Inj([t], [n])| =
(

n
t

)

t! and that, for each Θ ∈
Inj([t], [n]), there are (n− t)! permutations s ∈ Sn such that s ·Θ0 = Θ. �

Definition 4.8. Let dΘ,T,f = (dΘF )F∈Ff
T

be the vector of flag polynomials for a

fixed intersection type T , flag size f , and labeling Θ. A flag sos is a sos expression
of the form

∑

T,f

tr
(

RT,f EΘ

[

dΘ,T,fdΘ,T,f⊤
])

,

where the sum is indexed by some chosen T and f , and the matrices RT,f are psd.
This expression is called fmax-flag sos if every flag present has size at most fmax.

Note that the main difference between the sos expression in Corollary 4.2 and
a flag sos expression is that each summand in the latter uses only one intersection
type. However, we saw in Proposition 4.4 that we can refine the sos in Corol-
lary 4.2 to have the same property. The only step left is to bring in the language
of expectations to obtain flag sos expressions.

Theorem 4.9. If p is symmetric and d-sos, then p is also a 2d-flag sos.

Proof. By Proposition 4.4, if p is symmetric and d-sos, then

p =

2d
∑

t=0

∑

T :|T |=t

tr
(

RT sym(dTd
⊤
T )
)

,
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where dT is the vector of polynomials dΘT

F such that F ∈ F2d
T and ΘT ∈ Inj([t], [n]).

By Lemma 4.7, we then have that

p =
2d
∑

t=0

∑

T :|T |=t

tr
(

RTEΘ[dTd
⊤
T ]
)

.

�

In [RST15], we proved that any flag sos polynomial of degree 2d can be written
as a sos coming from R[x]≤d using the techniques of [GP04]. We have now shown
that the reverse is also true in the sense that any symmetric sos over Vn can also
be written as a flag sos. Thus flag methods are equivalent to general methods for
finding sos expressions over Vn.

5. Examples

In this section, we illustrate our methods on two examples. The first is a sos proof
of an upper bound on the edge density of a n-vertex graph that does not contain
any 4-cycles, and the second is a sos proof that the Ramsey number R(3, 3) = 6.
These example illustrates various features of our method. The first is that we can
work with additional constraints beyond those defining the discrete hypercube. The
second is that in both examples, n is fixed, and hence they showcase the merits
of considering flags in a finite setting. Thirdly, the polynomials gΘF and dΘF that
appear in these proofs are inspired by the combinatorics of the problems at hand.
Normally, the bases used in symmetry-reduction, such as the Gatermann-Parrilo
method, does not preserve this sort of combinatorial information.

5.1. Avoiding 4-cycles. In [KST54], Kővari, Sós and Turán proved that the num-
ber of edges in a n-vertex graph not containing C4, the cycle on four vertices, is
bounded above by 1

2n
3/2 + O(n). Observe that the bound implies that the edge

density of an extremal graph in this setting tends to zero, and thus the standard
application of the flag algebra method cannot recover the precise lower order term.
We give a succinct sos proof for this result using our methods which follows the
proof outline in [KST54].

Theorem 5.1. [KST54] Let G be a n vertex graph not containing a C4. Then the

number of edges in G is at most 1
2n

3
2 +O(n).

Proof. Fix n and make the following definitions:

s :=
∑

1≤i<j≤n

xij , and

I := 〈x2ij − xij ∀1 ≤ i < j ≤ n, xijxikxljxlk ∀i, j, k, l ∈ [n]〉.
Note that the variety of I is the subset of Vn that consists of characteristic vectors
of n-vertex graphs that avoid a C4. We will show that n + 2

n−1 s − 2

(n2)
s2 is 2-sos

modulo the ideal I. This will imply that s ≤ n+
√
4n3−3n2

4 for all C4-free graphs on
n vertices giving the bound claimed in the theorem.

We first consider the spanning set given by the gΘF polynomials. Consider flags

of size three with the intersection type
1

2 , and let Θjk ∈ Inj([2], [n]) be such that
Θ(1) = j and Θ(2) = k. Then,
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g
Θjk

1 2

= n− 2, g
Θjk

1 2

=
∑

i∈[n]\{j,k}
xij ,

g
Θjk

1 2

=
∑

i∈[n]\{j,k}
xik, g

Θjk

1 2

=
∑

i∈[n]\{j,k}
xijxik.

We now claim that the following sos certificate is correct and thus prove the theo-
rem.

n+
2

n− 1
s− 2

(

n
2

) s2

≡ EΘjk

[

n

(

1

n− 2
g
Θjk

1 2

− g
Θjk

1 2

)2

+
1

2

(

g
Θjk

1 2

− g
Θjk

1 2

)2
]

mod I.

The above expression follows from the following equalities. First, for each j 6= k,
we have the following equivalence:

(

1

n− 2
g
Θjk

1 2

− g
Θjk

1 2

)2

=



1−
∑

i∈[n]\{j,k}
xijxik





2

= 1 +
∑

i∈[n]\{j,k}
x2ijx

2
ik − 2

∑

i∈[n]\{j,k}
xijxik +

∑

i6=l:i,l∈[n]\{j,k}
xijxikxljxlk

≡



1−
∑

i∈[n]\{j,k}
xijxik



 mod I.

Thus,

EΘjk

[

n

(

1

n− 2
g
Θjk

1 2

− g
Θjk

1 2

)2
]

≡ n− 1

n− 1

∑

j,k∈[n],j 6=k

∑

i∈[n]\{j,k}
xijxik mod I.
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Next,

EΘjk

[

1

2

(

g
Θjk

1 2

− g
Θjk

1 2

)2
]

=
1

n(n− 1)

∑

j,k∈[n]:
j 6=k

1

2





∑

i∈[n]\{j}
xij −

∑

i∈[n]\{k}
xik





2

=
1

n(n− 1)









n
∑

j∈[n]





∑

i∈[n]\{j}
xij





2

−









∑

i,j∈[n]:
i6=j

xij









2







=
1

n− 1

∑

j,k∈[n]:
j 6=k





∑

i∈[n]\{j,k}
xijxik



+
1

n− 1
2s− 1

n(n− 1)
4s2.

In order to check the above equations, it helps to think of
∑

i∈[n]\{j} xij for a

fixed j as the degree of vertex j, and
∑

i,j∈[n]:i6=j xij as the sum of the degrees of

all vertices. Combining the two equalities above, yields the desired sos expression.
Similarly, for the dΘF ’s, we again consider flags of size three with the intersection

types
1

2 and
1

2 . We also again let Θjk ∈ Inj([2], [n]) be such that Θ(1) = j and
Θ(2) = k. This gives us the following sos expression

n+
2

n− 1
s− 2

(

n
2

) s2 ≡

EΘjk

[

n

(

d
Θjk

1 2

+ d
Θjk

1 2

+ d
Θjk

1 2

)2

+ n

(

d
Θjk

1 2

+ d
Θjk

1 2

+ d
Θjk

1 2

)2

+
1

2

(

d
Θjk

1 2

− d
Θjk

1 2

)2

+
1

2

(

d
Θjk

1 2

− d
Θjk

1 2

)2
]

mod I,

where each summand involves a single intersection type.
�

5.2. A Ramsey example. Next we give a sos proof that the Ramsey number
R(3, 3) = 6. The Ramsey R(r, s) problem consists of finding the minimum number
of vertices n such that it is impossible to color all the edges of the complete graph
Kn blue and red without creating either a blue clique of size r or a red clique of
size s [Rad94]. Ramsey’s theorem states that this number is finite for any r, s ∈ Z.
Several values of R(r, s) are known. For example, R(3, 3) = 6: no matter how one
colors the edges of K6, one is guaranteed to have a monochromatic triangle.

We consider the following model. We let xe be one if edge e is colored red and

zero if edge e is colored blue; x ∈ R
(62). Consider the ideal

I = 〈x2e − xe ∀e ∈ E(K6)〉+ 〈xijxikxjk ∀i < j < k ∈ [6]〉
+ 〈(1 − xij)(1 − xik)(1 − xjk) ∀i < j < k ∈ [6]〉.

The variety of I consists of those vectors in {0, 1}(
6
2) that record a red/blue coloring

of K6 without monochromatic triangles since the first part ensures that each xe is
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either 0 or 1, the second part, that no triangle is red, and the third part, that no
triangle is blue. Showing that the variety of I is empty will prove that R(3, 3) ≤ 6.
The coloring of K5 below establishes that R(3, 3) > 5.

To prove that the variety of I is empty, it suffices to show that −1 is equivalent
to a sos mod I. We now provide sos expressions that do this job in our setting.

Consider the dΘF ’s from the the following flags: , , 1 and 1 . Note that for the
first two, Θ is irrelevant and unique since the intersection type is empty. For the
last two, we assume that Θi sends 1 to vertex i. We have

dΘ = 2
∑

1≤i<j≤6

xij , dΘ = 2
∑

1≤i<j≤6

(1 − xij),

dΘi

1

=
∑

j∈[6]\{i}
xij , dΘi

1

=

6
∑

j∈[6]\{i}
(1− xij).

Similarly, for the gΘF ’s, we need the flags: , 1 and 1 . Note that for the first
one, Θ is irrelevant and unique since the intersection type is empty. For the last
two, we assume that Θi sends 1 to vertex i. We have

gΘ = 30, gΘi

1

=
∑

j∈[6]\{i}
xij , gΘi

1

= 5.

Theorem 5.2. The following expressions

1

8
(

6
2

)2

(

dΘ + dΘ
)2

+ EΘi

[

1

2

(

dΘi

1

− dΘi

1

)2
]

and
1

2

(

1

30
gΘ
)2

+ EΘi

[

(√
2gΘi

1

− 1√
2
gΘi

1

)2
]

are each equivalent to −1 modulo I and hence the variety of I is empty.

Proof. Check that the expressions in the dΘF ’s and gΘF ’s are each equal to

sym





(

1√
2

)2

+

(

√
2

6
∑

i=2

x1i −
5√
2

)2


 .

This sos is equal to another sos

sym





(

2−
6
∑

i=2

x1i

)2

+

(

2−
6
∑

i=2

(1− x1i)

)2


 ,

which is equivalent to −1 modulo I by Lemma B.1. �
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6. An example needing infinitely many flags

For every positive integer n, define the degree two polynomial

(4) fn =
1
(

n
2

)2





∑

e∈E(Kn)

xe −
⌊

(

n
2

)

2

⌋









∑

e∈E(Kn)

xe −
⌊

(

n
2

)

2

⌋

− 1



 .

Observe that fn satisfies 0 ≤ fn(x) ≤ 1 for all x ∈ Vn. (Here the upper bound is
not tight.) In this section, we show that there is no finite collection of flags F such
that each fn is equivalent to a sos (modulo In) of flag polynomials dFΘ for F ∈ F .

Despite being of degree two and non-negative on Vn, Grigoriev [Gri01] showed
that any sos hn, such that hn(x) = fn(x) for all x ∈ Vn, necessarily has degree Ω

((

n
2

))

(see also [BGP] for an extension to the case in which h is rational). Recently, Lee,
Prakesh, de Wolf, and Yuen [LPdWY16] extended this degree lower bound to the
case in which hn approximates fn in the ℓ∞ sense. The following is a special case
of [LPdWY16, Theorem 1.1].

Theorem 6.1. There exists a (sufficiently small) positive constant c such that for
any positive integer n, if hn is d-sos and satisfies

|hn(x)− fn(x)| ≤
(1/50)
(

n
2

)2

for all x ∈ Vn, then d ≥ c
(

n
2

)

.

Since the minimum value of fn on R
(n2) is −(1/4)/

(

n
2

)2
, it follows that fn(x) +

(1/4)/
(

n
2

)2
is a non-negative quadratic on R

(n2), and so it is a sos of degree one
polynomials. As such, we certainly cannot hope to tolerate errors larger than

(1/4)/
(

n
2

)2
in Theorem 6.1.

Any symmetric sos of flag polynomials dΘF using a fixed collection of flags F
necessarily has bounded degree. Hence the (growing) lower bound on degree from
Theorem 6.1 implies that sums of squares of flag polynomials using a fixed collection
of flags cannot be used to certify non-negativity of every fn, n ≥ 1.

Proposition 6.2. For any fixed positive integer f , there does not exist a f -flag sos

p such that |p(x)− fn(x)| ≤ (1/50)

(n2)
2 for all x ∈ Vn and all sufficiently large n.

Proof. If p is a f -flag sos, then p is
(

f
2

)

-sos. If n is large enough, then c
(

n
2

)

>
(

f
2

)

,
where c is the constant in Theorem 6.1. �

This shows that there is a sequence of symmetric polynomials of degree two, all
of which are non-negative and bounded on Vn, that cannot be approximated within
O(1/n4) by f -flag sums of squares for any fixed f . We make several comments.

Razborov’s application of flag density polynomials typically allows much larger
errors of size O(1/n), suggesting the following question. Is there a sequence of
symmetric polynomials taking values in [0, 1] that cannot be approximated within
O(1/n) by sums of squares from a finite collection of flags?

In [Raz07], Razborov asked whether every asymptotic graph density inequality
can be certified by a finite set of flags. As an answer to this, Hatami and Norine
proved that deciding the non-negativity of a linear inequality in graph densities
is in general undecidable [HN11]. Proposition 6.2 can be viewed as an answer to
Razborov’s question in our setting of the discrete hypercube for finite n.
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At a quick glance, Proposition 6.2 may seem to contradict our earlier result that
it is possible to write a flag sos expression that depends only on the degree of a
given sos expression and independent of n. For the family of quadratic polynomials
fn, the degree of any sos expression is a function of n and therefore, by our results,
the number of flags needed in a flag sos expression also depends on n.

7. Summary and Discussion

Our results give the following framework for searching for a succinct sos expres-
sion for a symmetric polynomial p that is d-sos.

(1) For each partition λ ∈ Λ = {λ ⊢ n : λ ≥lex (n − 2d, 12d)}, fix a standard
tableau τλ of shape λ.

(2) Pick polynomials pτλ1 , . . . , pτλlτλ
whose span contains Wτλ .

(3) Introduce a matrix of variables Rλ of size lτλ × lτλ .
(4) Formulate a SDP using the following polynomial equivalence

p =
∑

λ∈Λ

tr(Rλ Z
τλ)

where Zτλ
ij := sym(pτλi pτλj ).

We summarize the computational savings in each of the above steps. First of,
the symmetry of p allows us to work with a single standard tableau τλ of shape
λ ∈ Λ as in Corollary 2.6. By Proposition 2.7, the size of Λ, and hence the number
of partitions that are needed for sos expressions in our method, is independent of
n. Our framework gives us the flexibility to work with a spanning set for Wτλ as
opposed to a basis. We constructed spanning sets in Section 3 whose cardinalities
are independent of n as proved in Proposition 3.21. The size of the formulated
SDP depends on the total sum of dimensions mλ of Wτλ for λ ∈ Λ. Combining
Propositions 2.7 and 3.21, we get that

∑

λ∈Λmλ is also independent of n.
Our spanning sets for Wτλ can have combinatorial meaning and structure rele-

vant to the polynomial p in some instances. For example, in extremal combinatorics,
the density polynomials from flag algebras have simple combinatorial interpreta-
tions as compared to the basis necessary for the Gatermann-Parrilo method. We
also saw in Section 3 that the concept of flags arise naturally in our theory from
the action of Sn on square-free monomials.

We now make several comments on various features, connections and extensions
of our method. While we presented our results for the hypercube Vn, the arguments
naturally generalize to subsets of Vn by working with ideals that contain In and are
invariant under Sn. There are several ways to approach this general situation. If
the ideal in question is I, then for instance, one could look for symmetry-reduced sos
expressions from the vector space V = R[Vn]≤d as we have been doing in this paper.
In this case, our methods work as is and we can further reduce the obtained sos
expression by the ideal I as seen in the Ramsey example in Section 5.2. Alternately,
one could work with V = R[x]≤d/I or V = (R[x]/I)≤d. In both these cases, our
strategy would work in principle but we would need to understand the isotypic
decomposition of V and the associated vector spaces Wτλ .

In contrast to the flag algebra and graph homomorphism frameworks, our meth-
ods work on graphs of finite size when applied to graph density problems. This
allows us to obtain new types of exact sos proofs that apply to finite, as opposed
to asymptotic situations. For example, in Section 5.2, we gave a sos proof for an
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upper bound on the Ramsey number R(3, 3) in which case n = 6. Our methods also
naturally give upper bounds on extremal graph theoretic problems in the sparse
regime. For example, we saw how to use our method to obtain a succinct sos proof
of the result of Kővari, Sós and Turán [KST54] that a n-vertex graph not containing
C4 has at most 1

2n
3/2 + O(n) edges. Since the extremal graphs are not dense in

this case, applying the flag algebra framework gives an upper bound of zero on the
limiting edge density but our method can give a precise estimate of the lower order
terms.

Finally, as promised in the Introduction, our results extend naturally to the

hypercube Vn,k := {0, 1}(
n

k). We would use the polynomial ring with variables
xi1...ik indexed by the edges in the complete k-uniform hypergraph Kk

n with Sn

acting on monomials via s · xi1...ik := xs(i1)...s(ik) for each s ∈ Sn. The ideal needed

here is In,k := 〈x2i1...ik − xi1...ik ∀{i1, . . . , ik} ∈
(

[n]
k

)

〉. All of our results and their
proofs can be translated in a straightforward manner to this setting and we give a
few samples below.

• In Theorem 2.4, the multiplicity mλ of Sλ in the decomposition of V =
R[xi1...ik ]≤d into irreducible Sn-modules is zero unless λ ≥lex (n− kd, 1kd),
i.e., V =

⊕

λ≥lex(n−kd,1kd) Vλ. Thus the number of partitions with non-zero

mλ can be bounded by p(0)+p(1)+. . .+p(kd) generalizing Proposition 2.7.
• In Theorem 3.18, the polynomials gΘF (respectively dΘF ) with flags F ∈ Fkd

T

(with the same restrictions) spanWτλ . The sizes of these spanning sets will
be independent of n as in Proposition 3.21.

• In Theorem 4.9, if a non-negative symmetric polynomial p ∈ R[Vn,k] is d-
sos, then p also has a flag sos certificate coming from flags with at most kd
vertices.
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Appendix A. Proof of Theorem 2.2

The aim of this appendix is to prove Theorem 2.2, describing the structure of
symmetry-reduced certificates of non-negativity for Sn-invariant polynomials that
are d-sos. Rather than proving Theorem 2.2 directly, we establish a slightly more
general result (Theorem A.8 to follow) and then specialize to give Theorem 2.2. This
more general result is essentially the main result of Gatermann and Parrilo [GP04].
In Section A.1, we summarize some basic facts about real representations needed
for the appendix. In Section A.2, we examine what happens when we symmetrize
products and squares of polynomials under a finite group action, leading to a proof
of Theorem A.8 and of Theorem 2.2.

A.1. Preliminaries on real representations. Let G be a finite group and let U
be a finite-dimensional RG-module, (i.e., a real vector space with an action of G
by linear transformations). An RG-module U is irreducible if the only real vector
subspaces of U invariant under the action of G are {0} and U . Given any pair U,W
of RG-modules, let HomG(U,W ) be the vector space of R-linear maps φ : U →W
such that φ(g ·u) = g ·φ(u) for all u ∈ U . If U,W are RG-modules, then the tensor
product (over R), U⊗W , is a RG-module with the action g ·(u⊗w) = (g ·u)⊗(g ·w).
If U is a RG-module, then the space U∗ of R-valued linear functionals on U is a
RG-module via (g · ℓ)(u) = ℓ(g−1 · u).

If U is a RG-module, define the linear map symG : U → U by

symG(u) =
1

|G|
∑

g∈G

g · u.

Clearly, the image of symG is the set of elements of U fixed by the action of G, i.e.,
UG := {u ∈ U : g · u = u for all g ∈ G}. We omit the subscript G from symG

if the group is clear from the context. We also note that symG ∈ HomG(U,U
G)

where UG carries the trivial action of G.
We now recall the the isotypic decomposition of a RG-module V . Let (Sλ)λ∈Λ

be an enumeration of inequivalent irreducible RG-modules and let nλ = dim(Sλ).
For each λ ∈ Λ, let HomG(Sλ, V ) denote the mλ-dimensional multiplicity space of
Sλ in V . Let

Vλ = span{φ(s) : φ ∈ HomG(Sλ, V ), s ∈ Sλ}
denote the isotypic component of V corresponding to Sλ. The decomposition V =
⊕

λ∈Λ Vλ is the isotypic decomposition of V .
There are two natural ways to construct subspaces of the isotypic components

Vλ. If we fix a non-zero φ ∈ HomG(Sλ, V ) and consider {φ(s) : s ∈ Sλ}, we obtain
a G-invariant subspace of Vλ that is isomorphic to Sλ and has dimension nλ. On
the other hand, if we fix a non-zero sλ ∈ Sλ, we can define

(5) Wsλ := {φ(sλ) : φ ∈ HomG(Sλ, V )} ⊆ Vλ.

This is a vector subspace of Vλ of dimension mλ, but is not G-invariant. It is
however isomorphic to the multiplicitly space HomG(Sλ, V ) as a vector space.

Lemma A.1. Fix some non-zero sλ ∈ Sλ. Then the map Φsλ : HomG(Sλ, V ) →
Wsλ defined by Φsλ(φ) = φ(sλ) is an isomorphism of vector spaces.

Proof. The map Φsλ is clearly linear. It is surjective by the definition of Wsλ . It
remains to show that Φsλ is injective. Let φ ∈ HomG(Sλ, V ) and suppose that
Φsλ(φ) = φ(sλ) = 0. Since φ ∈ HomG(Sλ, V ), the kernel of φ is an invariant
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subspace of Sλ that contains the non-zero element sλ. Since Sλ is irreducible, the
kernel of φ must then be all of Sλ, and so φ = 0. Hence Φsλ is injective and so an
isomorphism of vector spaces. �

The following standard fact about invariant bilinear forms on RG-modules, is
central to our discussion.

Lemma A.2. If G is a finite group and U is a finite-dimensional RG-module then
U has a non-degenerate, G-invariant, symmetric, bilinear form B : U × U → R

satisfying B(u, u) > 0 for all non-zero u ∈ U . Moreover, if U is irreducible, then
any G-invariant bilinear form on U is a scalar multiple of B.

Proof. Let 〈·, ·〉 be any inner product on U , i.e., 〈·, ·〉 is a symmetric, non-degenerate,
positive definite, bilinear form. Then B : U × U → R, defined by

B(u, v) =
1

|G|
∑

g∈G

〈g · u, g · v〉,

is G-invariant, and is a convex combination of non-degenerate, symmetric, posi-
tive definite, bilinear forms. Hence, B also has these properties. Now suppose U
is irreducible and B′ is another G-invariant bilinear form on U . Since B(·, ·) is
positive definite, we can choose λ such that the subspace {v ∈ U : λB(u, v) =
B′(u, v) for all u ∈ U} is non-zero. (Here, we can take λ to be any generalized
eigenvalue for the pair of symmetric matrices representing the bilinear forms.) Since
B and B′ are both G-invariant, this is a G-invariant subspace of U . Since U is ir-
reducible, we must have {v ∈ U : λB(u, v) = B′(u, v) for all u ∈ U} = U . Hence
λB = B′, as required. �

We now record basic facts about G-invariant elements of tensor products.

Lemma A.3. If G is a finite group and U and W be non-isomorphic irreducible
finite-dimensional RG-modules, then (U ⊗W )G = {0}.
Proof. Suppose W and U are irreducible and not isomorphic. By Schur’s lemma
(see, for instance, [Ser77, Section 2.2]), HomG(W,U) = {0}. Since U is a finite-
dimensional RG-module, by Lemma A.2 it has a non-degenerate, G-invariant, bi-
linear form B : U ×U → R. Hence the map U ∋ u 7→ B(u, ·) ∈ U∗ gives an isomor-
phism between U and U∗. Then (U⊗W )G ∼= (U∗⊗W )G ∼= HomG(U,W ) = {0}. �

The following result tells us that if U is irreducible, then (U ⊗ U)G is one-
dimensional. It also explicitly describes the map sym : U ⊗ U → (U ⊗ U)G.

Lemma A.4. If G is a finite group and U is a finite-dimensional irredcuible RG-
module then for all s ∈ U and all u, u′ ∈ U ,

B(s, s) sym(u ⊗ u′) = B(u, u′) sym(s⊗ s)

where B(·, ·) is the (unique up to scale) non-zero G-invariant bilinear form on U .

Proof. If s = 0 then the statement clearly holds. Assume s 6= 0 and let η ∈ (U⊗U)∗

be an arbitrary linear functional on U ⊗U . Then the map (u, u′) 7→ η(sym(u⊗u′))
is a G-invariant bilinear form on U . By Lemma A.2, η(sym(u⊗u′)) = κ(η)B(u, u′)
for some κ(η) ∈ R. By putting u = u′ = s, we see that κ(η) = η(sym(s⊗s))/B(s, s).
Together these imply that

B(s, s) η(sym(u ⊗ u′)) = B(u, u′) η(sym(s⊗ s)).
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Since η was arbitrary, it follows that B(s, s) sym(u ⊗ u′) = B(u, u′) sym(s⊗ s) for
all u, u′ ∈ U . �

A.2. Symmetrizing sums of squares. Let R[x] be the polynomial ring in q inde-
terminates and let G be a finite group acting linearly on R

q. Then G acts on R[x] via
(g ·p)(x) = p(g · x). If I be an ideal invariant under the action of G, then the action
of G descends to the quotient R[x]/I. Let V be a finite-dimensional G-invariant
subspace of R[x]/I. Let V ⊗ V be the tensor product (over R) of V with itself.
Given f1, f2 ∈ V , their product f1f2 ∈ R[x]/I is a R-bilinear map V × V → R[x]/I.
Hence there is a linear map MV : V ⊗ V → R[x]/I such that

f1f2 =MV (f1 ⊗ f2).

The actions of G on V ⊗ V and on R[x]/I are such that MV is a RG-module
homomorphism.

As before, let (Sλ)λ∈Λ be an enumeration of inequivalent irreducible RG-modules.
Let V =

⊕

λ∈Λ Vλ be the isotypic decomposition of V . We now show that if we
take functions from two different isotypic components of V and symmetrize their
product, the result is zero.

Lemma A.5. If λ 6= µ, fλ ∈ Vλ, and fµ ∈ Vµ, then sym(fλfµ) = 0.

Proof. First, let φµ ∈ HomG(Sµ, V ) and φλ ∈ HomG(Sλ, V ), and let uµ ∈ Sµ and
uλ ∈ Sλ. Then, since MV and φµ ⊗ φλ are both R-linear and commute with the
action of G, we have that

sym(φµ(uµ)φλ(uλ)) = sym(MV ((φµ⊗φλ)(uµ⊗uλ))) =MV ((φµ⊗φλ)(sym(uµ⊗uλ))).
Since µ 6= λ, Lemma A.3 tells us that sym(uµ ⊗ uλ) ∈ (Sµ ⊗ Sλ)

G = {0} and so
sym(φµ(uµ)φλ(uλ)) = 0. Finally, because any fµ ∈ Vµ is a linear combination of
elements of the form φµ(uµ) for φµ ∈ HomG(Sµ, V ) and uµ ∈ Sµ (and similarly for
any fλ ∈ Vλ), we have that sym(fµfλ) = 0 by bilinearity. �

We now investigate what happens when we symmetrize products of certain ele-
ments of Vλ.

Lemma A.6. Let φ, ψ ∈ HomG(Sλ, V ) and u, u′ ∈ Sλ. Let B be the unique (up to
scale), G-invariant bilinear form on Sλ. Then, for any sλ ∈ Sλ,

B(sλ, sλ) sym(φ(u)ψ(u′)) = B(u, u′) sym(φ(sλ)ψ(sλ)).

Proof. Since MV and φ⊗ ψ are both R-linear and commute with the action of G,

sym(φ(u)ψ(u′)) = sym(MV ((φ⊗ ψ)(u ⊗ u′))) =MV ((φ⊗ ψ)(sym(u ⊗ u′))).

By substituting u = u′ = sλ, we have

sym(φ(sλ)ψ(sλ)) =MV ((φ ⊗ ψ)(sym(sλ ⊗ sλ))).

Relating sym(u ⊗ u′) and sym(sλ ⊗ sλ) via Lemma A.4, and using the fact that
MV and φ⊗ ψ are both R-linear, we obtain the stated result. �

Our next aim is to describe the structure of sym(f2) for f ∈ Vλ.

Proposition A.7. Let φ1, φ2, . . . , φmλ
be a basis for HomG(Sλ, V ), let sλ ∈ Sλ be

non-zero, and let

Y λ
jℓ = sym(φj(sλ)φℓ(sλ))
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for all j, ℓ ∈ [mλ]. If f ∈ Vλ, then there exists a mλ ×mλ psd matrix Qλ such that

sym(f2) =
∑

j,ℓ∈[mλ]

Qλ
jℓY

λ
jℓ.

Proof. Let f ∈ Vλ = {φ(u) : φ ∈ HomG(Sλ, V ), u ∈ Sλ}. Then a straightforward
argument shows that there are u1, u2, . . . , umλ

∈ Sλ such that

f =
∑

k∈[mλ]

φi(ui).

We expand sym(f2) in terms of sym(φi(ui)φj(uj)) and apply Lemma A.6 to get

sym(f2) =
∑

i,j∈[mλ]

sym(φi(ui)φj(uj)) =
∑

i,j∈[mλ]

B(ui, uj)

B(sλ, sλ)
sym(φi(sλ)φj(sλ)).

Since u 7→ B(u, u) is a positive definite quadratic form and sλ 6= 0, if we define
Qλ

ij := B(ui, uj)/B(sλ, sλ), we see that Qλ is psd. Since Y λ
ij = sym(φi(sλ)φj(sλ)),

we have obtained an expression for sym(f2) in the required form. �

We have seen how to symmetrize products from different isotypic components of
V and how to symmetrize squares of polynomials from the same isotypic component.
We can now combine these earlier arguments in a straightforward way to desribe
symmetry-reduced non-negativity certificates for sos that are invariant under the
action of G. This is the main result of the appendix (which is essentially the main
result of [GP04]).

Theorem A.8. Let V be a finite-dimensional G-invariant subspace of R[x]/I with
isotypic decomposition V =

⊕

λ∈Λ Vλ and corresponding multiplicities mλ. For
each λ ∈ Λ, fix a non-zero element sλ ∈ Sλ. Let b1, . . . , bmλ

be a basis for the
subspace Wsλ . Define for each λ ∈ Λ

Y λ
ij = sym(bibj)

for i, j ∈ [mλ]. Suppose p ∈ R[x]/I is invariant under the action of G and is V -sos.
Then there exist mλ ×mλ psd matrices Qλ such that

p =
∑

λ∈Λ

∑

i,j∈[mλ]

Qλ
ijY

λ
ij .

Proof. Fix λ ∈ Λ. By Lemma A.1, the map φ 7→ φ(sλ) gives an isomorphism be-
tweenWsλ and HomG(Sλ, V ). Hence, for each i ∈ [mλ], there is φi ∈ HomG(Sλ, V )
such that bi = φi(sλ). Moreover, the φi for i ∈ [mλ] form a basis for HomG(Sλ, V ).
As such,

Y λ
ij = sym(bibj) = sym(φi(sλ)φj(sλ))

for i, j ∈ [mλ]. Now suppose that p is G-invariant and V -sos. Then, since V =
⊕

λ Vλ, we have that fk =
∑

λ∈Λ fkλ where each fkλ ∈ Vλ. Hence

p =
∑

k

∑

λ,µ∈Λ

fkλfkµ.

From Lemma A.5, we have that sym(fkλfkµ) = 0 whenever λ 6= µ. Using the fact
that p is fixed by the action of G,

p = sym(p) =
∑

k

∑

λ,µ∈Λ

sym(fkλfkµ) =
∑

k

∑

λ∈Λ

sym(f2kλ)
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where each fkλ ∈ Vλ. Applying Proposition A.7 for each λ and each k, we see that
there exist psd matrices Qλ,k such that

p =
∑

k

∑

λ∈Λ

∑

i,j∈[mλ]

Y λ
ijQ

λ,k
ij =

∑

λ∈Λ

∑

j,ℓ∈[mλ]

Y λ
ij

(

∑

k

Qλ,k
ij

)

.

Defining Qλ =
∑

k Q
λ,k, which is again psd, gives an expression for p as

p =
∑

λ∈Λ

∑

i,j∈[mλ]

Y λ
ijQ

λ
ij

as we require. �

A.3. Specialization to Theorem 2.2. This specializes to give Theorem 2.2 as
follows. Let q =

(

n
2

)

and let In = 〈x2ij = xij 1 ≤ i < j ≤ n〉 denote the square-free

ideal in R[x]. Let R[x]/In = R[Vn] be the corresponding quotient of the polynomial
ring. Let G = Sn and suppose that Sn acts on monomials by s · xij = xs(i)s(j). Let
V = R[Vn]≤d be the Sn-invariant subspace of square-free polynomials of degree at
most d.

To relate Theorem 2.2 to Theorem A.8, we need to show that the subspaces
Wτλ defined in Section 2.1 are isomorphic as vector spaces to Ws for some non-
zero s ∈ Sλ, and hence to the multiplicity space HomSn

(Sλ, V ) (via Lemma A.1).
The argument requires the following fact, which follows from Young’s rule (see,
e.g., [RST15, Theorem 4.6] for a statement of Young’s rule in the required form)
and the fact that the diagonal Kostka numbers Kλλ are one (see, e.g., [Sag01,
Example 2.11.4]).

Lemma A.9. If τλ is a tableau of shape λ, then dim(S
Rτλ

λ ) = 1.

Lemma A.10. Fix a standard tableau τλ of shape λ. If sτλ ∈ S
Rτλ

λ is non-zero,
then

V
Rτλ

λ =Wτλ =Wsτλ
= {φ(sτλ) : φ ∈ HomSn

(Sλ, V )}.

Proof. If w ∈ Wsτλ
then there is φ ∈ HomSn

(Sλ, V ) such that φ(sτλ) = w. If
s ∈ Rτλ then

s · w = s · φ(sτλ) = φ(s · sτλ) = φ(sτλ) = w.

Hence Wsλ ⊆ V
Rτλ

λ = Wτλ . On the other hand, if w ∈ Wτλ , then there are
v1, . . . , vmλ

∈ Sλ and φ1, . . . , φmλ
such that w =

∑

i∈[mλ] φi(vi) ∈ Vλ and w =

sym
Rτλ

(w). Then

w = symRτλ
(w) =

∑

i∈[mλ]

symRτλ
(φi(vi)) =

∑

i∈[mλ]

φi(symRτλ
(vi)).

Since S
Rτλ

λ is one-dimensional, it is spanned by sτλ . Hence for any vi ∈ Sλ, we
have that symRτλ

(vi) is a scalar multiple of sτλ . It then follows that w ∈ Wsτλ
,

giving the reverse inclusion. �

Applying Theorem A.8 in this setting, and choosing sλ := sτλ (defined in
Lemma A.10) for each λ, yields the statement of Theorem 2.2.
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Appendix B. Ramsey Number R(3, 3)

In this section, we prove the following lemma.

Lemma B.1.


2−
∑

2≤i≤6

x1i





2

+



2−
∑

2≤i≤6

(1 − x1i)





2

≡ −1 mod I.

Recall that the ideal in Section 5.2 was

I = 〈x2e − xe ∀e ∈ E(K6)〉+ 〈xijxikxjk ∀i < j < k ∈ [6]〉
+ 〈(1 − xij)(1 − xik)(1 − xjk) ∀i < j < k ∈ [6]〉.

The following fact saves us from duplicating all of our arguments.

Lemma B.2. p((xij)1≤i<j≤6) ∈ I if and only if p((1− xij)1≤i<j≤6) ∈ I.

Proof. This follows by exchanging the colors of the edges. This can also be observed
algebraically by working with the ideal. �

We now note that claws are in the ideal, allowing us to relate certain degree two
and degree one elements of the ideal.

Lemma B.3. For i ∈ [6], and j < k < l ∈ [6]\{i},
xijxikxil ∈ I and (1− xij)(1− xik)(1− xil) ∈ I.

Consequently,

1−
∑

2≤i≤6

x1i +
∑

2≤i<j≤6

x1ix1j ∈ I.

Proof. Indeed, combinatorially, if xijxikxil were one for some i, j, k, l, then edges
{i, j}, {i, k}, and {i, l} would be colored red. Then if we color any of {j, k}, {k, l}
and {j, l} red, we would have a red triangle spanned by that edge and vertex i,
but if we color all of them blue, then we would have a blue j, k, l-triangle. We can
observe the same thing symmetrically for blue edges.

Algebraically, observe that xjkxjlxkl ∈ I and (1−xjk)(1−xjl)(1−xkl) ∈ I implies
that

1 ≡ xjk + xjl + xkl − (xjkxjl + xjkxkl + xjlxkl) + xjkxjlxkl

≡ xjk + xjl + xkl − (xjkxjl + xjkxkl + xjlxkl) mod I.
Hence

xijxikxil(1) ≡ xijxikxil (xjk + xjl + xkl − (xjkxjl + xjkxkl + xjlxkl))

≡ 0 mod I
since every monomial on the right hand side contains either xijxikxjk or xijxilxjl
or xikxilxkl, each of which is in the ideal. Thus xijxikxil ∈ I. By Lemma B.2,
(1− xij)(1− xik)(1− xil) ∈ I as well.

Since (1− x1i)(1 − x1j)(1 − x1l) ∈ I whenever 1 < i < j < k ≤ 6, we have that

0 ≡
∏

2≤i≤6

(1− x1i) mod I.
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Expanding the right hand side and using the fact that x1ix1jx1k ∈ I whenever
1 < i < j < k ≤ 6, we obtain

0 ≡ 1−
∑

2≤i≤6

x1i +
∑

2≤i<j≤6

x1ix1j mod I

since all of the higher order terms must vanish. �

Proof of Lemma B.1:


2−
∑

2≤i≤6

x1i





2

= 4− 4
∑

2≤i≤6

x1i +
∑

2≤i≤6

x21i + 2
∑

2≤i<j≤6

x1ix1j

≡ 4− 4
∑

2≤i≤6

x1i +
∑

2≤i≤6

x1i + 2(−1 +
∑

2≤i≤6

x1i) mod I

= 2−
∑

2≤i≤6

x1i.

By Lemma B.2,
(

2−∑2≤i≤6(1− x1i)
)2

≡ 2−∑2≤i≤6(1− x1i). Therefore,



2−
∑

2≤i≤6

x1i





2

+



2−
∑

2≤i≤6

(1− x1i)





2

≡ 2−
∑

2≤i≤6

x1i + 2−
∑

2≤i≤6

(1− x1i)

= 4− 5 = −1 mod I.
�

For completeness, we explicitly wrote out how we used the ideal in the above sum
of squares, putting the elements of the ideal in red. These calculations can be found
online: http://www.math.washington.edu/∼thomas/ramsey calculations.pdf.
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