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Abstract We investigate in this paper the generalized trust region subprob-
lem (GTRS) of minimizing a general quadratic objective function subject to
a general quadratic inequality constraint. By applying a simultaneous block
diagonalization approach, we obtain a congruent canonical form for the sym-
metric matrices in both the objective and constraint functions. By exploiting
the block separability of the canonical form, we show that all GTRSs with
an optimal value bounded from below are second order cone programming
(SOCP) representable. Our result generalizes the recent work of Ben-Tal and
Hertog (Math. Program. 143(1-2):1-29, 2014), which establishes the SOCP
representability of the GTRS under the assumption of the simultaneous di-
agonalizability of the two matrices in the objective and constraint functions.
Compared with the state-of-the-art approach to reformulate the GTRS as a
semi-definite programming problem, our SOCP reformulation delivers a much
faster solution algorithm. We further extend our method to two variants of
the GTRS in which the inequality constraint is replaced by either an equal-
ity constraint or an interval constraint. Our methods also enable us to obtain
simplified versions of the classical S-lemma, the S-lemma with equality, and
the S-lemma with interval bounds.
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1 Introduction

We consider in this paper the following generalized trust region subproblem
(GTRS):

(P) min f(x) =
1

2
xTDx+ eTx

s.t. h(x) =
1

2
xTAx+ bTx+ c ≤ 0,

where A and D are n × n symmetric matrices but not necessarily positive
semi-definite, b, e ∈ ℜn and c ∈ ℜ.

The GTRS has been widely investigated in the optimization literature and
includes the classical trust region subproblem as its special case where the
constraint reduces to a ball constraint, i.e., xTx ≤ 1. The classical trust region
subproblem is fundamental in trust region methods for nonlinear optimization
problems, see [9,13,19]. Other prominent applications of the classical trust
region subproblem can be found in regularization and robust optimization [2],
etc. Rendl and Wolkowicz [12] first solve the classical trust region subproblem
via a semi-definite programming (SDP) reformulation. The past two decades
have witnessed numerous methods developed for solving the GTRS under var-
ious assumptions, see, for example, [3,4,9,11,14,19]. Sturm and Zhang further
reveal that problem (P) admits an SDP reformulation. Still, the relatively large
computational complexity of SDP algorithms prevents them from scaling to
large-scale problems. Most fast algorithms [9,11] for the GTRS are developed
under a regular condition that there exists a λ ∈ ℜ such that D + λA ≻ 0,
together with some other mild conditions. Recently, Ben-Tal and Hertog [2]
show that if the two matrices in both the objective and constraint functions
are simultaneously diagonalizable, the GTRS can be then transformed into
an equivalent second order cone programming (SOCP) problem formulation.
Simultaneous diagonalizability is actually a more general condition than the
regular condition [4]. Conditions for simultaneous diagonalizability and corre-
sponding algorithms are investigated recently in [7]. Compared with the SDP
representation of the GTRS, the SOCP representation delivers a much faster
solution algorithm, which is critical for solving large-scale problems in practice.
This recognition motivates the investigation in our study.

We advance the state-of-the-art methods for solving the GTRS in this pa-
per. More specifically, we prove that all GTRSs with an optimal value bounded
from below are SOCP representable. To obtain the SOCP representation, we
invoke and extend the congruent canonical form in Uhlig [15]. We first trans-
form the two matrices into their canonical form of block diagonal matrices
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via congruence, and then make use of the block separability of the matri-
ces in the canonical form. In particular, we derive necessary conditions from
the canonical form for the GTRS to be bounded from below, and then show
that the problem can further be transformed to an SOCP reformulation under
such necessary conditions. Moreover, the attainableness of the optimal value
is determined by the associated coefficients in the linear terms in both the
objective and constraint functions. Note that the transformation into separa-
ble quadratic forms (the canonical form of block diagonal matrices) can be
done off-line (independent of the algorithm) and the time complexity of the
transformation is almost negligible when compared with that of the SDP re-
formulation. In fact, our method using simultaneous block diagonalization is
a generalization of the simultaneous diagonalizability in [2].

We also extend our approach to two variants of problem (P) where the
constraint is replaced by either an equality constraint,

(EP) min f(x) =
1

2
xTDx+ eTx

s.t. h(x) =
1

2
xTAx+ bTx+ c = 0,

or an interval constraint,

(IP) min f(x) =
1

2
xTDx+ eTx

s.t. c1 ≤ h(x) =
1

2
xTAx + bTx ≤ c2.

Moré [9] presents a method for problem (EP) by using the saddle point opti-
mality condition under some mild assumptions. Xia et al. [17] transform the
problem (EP) to an SDP reformulation by using the S-lemma with equality
under the conditions that A 6= 0 and h(x) can take both positive and negative
values. One application of problem (EP) is time of arrival problem [6]. Stern
and Wolkowicz [13] propose a method for problem (IP) under b = 0 and the
regular condition. By assuming b = 0 and the simultaneous diagonalizability
of A and D, Ben-Tal and Teboulle [3] derive the hidden convexity of problem
(IP) and thus transform the problem to an SOCP reformulation. Ye and Zhang
[18] further show that problem (IP) admits an SDP reformulation if both the
primal and dual Slater conditions are satisfied. Recently, strong duality con-
ditions of (IP) are studied in Pong and Wolkowicz [11] and a fast method is
provided under the regular condition. Wang and Xia [16] further simplify the
conditions in [11] and develop the S-lemma with interval bounds to solve (IP).
Ben-Tal and Hertog [2] further show that (IP) can be solved as an SOCP when
A and D are simultaneously diagonalizable without the assumption of b = 0.
Note that (IP) includes the equality constrained problem (EP) as a special
case when setting c1 = c2. On the other hand, we will discuss in latter sections
that solution methods for (EP) can also be used to solve (IP). Essentially, we
will show that some slightly modified versions of our previous results for prob-
lem (P) hold true for the equality constrained problem (EP) and the interval
constrained problem (IP).
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To summarize, we derive necessary conditions for problem (P) and its vari-
ants with equality constraint or interval constraint to be bounded from below
and further transform the problems to their SOCP reformulations by exploit-
ing the block separability of the canonical form. Besides, we also derive the
conditions for the attainableness of the problems. We emphasize that our meth-
ods are applicable for general situations without specific assumptions such as
the regular condition. We would also like to indicate that our methods avoid
involvement of linear matrix inequalities (LMI) as LMIs are usually hard to
handle for large-scale problems. As by-products of our research, we further
obtain simplified versions of the classical S-lemma, the S-lemma with equality
and the S-lemma with interval bounds.

We organize our paper as follows. In Section 2, we introduce and extend a
canonical form for the two matrices in both the objective and constraint func-
tions by a real congruent transformation. After identifying all the situations
in which the optimal value is bounded from below, we show that all remaining
bounded cases of problem (P) can be transformed into an SOCP reformula-
tion. In Section 3, we extend our methods to problems (EP) and (IP). Finally,
we conclude our paper in Section 4.

Notations: Throughout this paper, Im represents the m × m identical
matrix. 1̄ denotes the all one vector (1, . . . , 1)T . The notation ℜn represents
the n dimensional vector space. For symmetric matrices A and B, A � B
denotes that matrix A − B is positive semi-definite. We denote the Moore–
Penrose pseudoinverse by A+. We use sign(x) to denote the sign of a real
number x, i.e., sign(x) = 1, if x ≥ 0, otherwise sign(x) = −1. And we use
dimA to denote the dimension of a square matrix A. And Ak:l,k:l denotes the
submatrix of matrix A by selecting the rows k, k + 1, . . . , l, and the columns
k, k + 1, . . . , l. We also denote by diag(A1, . . . , Ak) the block diagonal matrix







A1 0
·
·

0 Ak







.

We denote by E the anti-diagonal matrix








0 1
·

·
·

1 0









, (1)

and by F the lower striped matrix








0
0 1

. . .
0 1

0 1









. (2)
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We use J(λ,m) to denote an m×m Jordan block









λ e
· ·
· ·
λ e
λ









.

If the eigenvalue is a real number, i.e., λ ∈ ℜ, then e = 1 for m ≥ 2, while
J = (λ) for m = 1. If the eigenvalues form a complex pair, i.e., a ± bi, then

λ =

(
a −b
b a

)

, with a and b ∈ ℜ, and b 6= 0, and e =

(
1 0
0 1

)

for m ≥ 4, while

J =

(
a −b
b a

)

for m = 2.

Let v(P) denote the optimal value of problem (P). For an optimization
problem min{f(x) | x ∈ X} with a nonempty feasible set X , we define its
optimal value as v = inf{f(x) | x ∈ X}. For any ǫ > 0, we call a solution
x̄ ∈ X an ǫ optimal solution, if f(x̄)− v ≤ ǫ. Note that we reuse the notations
h(x) and f(x) in problems (P), (EP) and (IP) and the simplified versions of
the S-lemma with different constraints to keep the notations simple and help
readers follow the main theme of the paper with ease.

2 SOCP reformulation for GTRS

In this section, we first use congruent transformation to transform any two
symmetric matrices into a canonical form of two block diagonal matrices. Then
we explore different cases of the canonical form with respect to the bounded-
ness of the optimal value and its attainability and transform problem (P) with
its optimal value bounded from below to an equivalent SOCP problem.

2.1 Canonical form of two symmetric matrices

We invoke the following lemmas from Uhlig [15] to obtain a canonical form of
any two real symmetric matrices.

Lemma 1 (Theorem 1 in [15]) Let A and D be two n × n real symmetric
matrices. Suppose A is nonsingular. Let A−1D have a Jordan normal form
diag(J1, . . . , Jk), where J1, . . . , Jk are Jordan blocks either with real eigenval-
ues or with complex eigenvalues. Then there exists an n × n real congruent
matrix S such that

STAS = diag(ε1E1, . . . , εkEk)

and

STDS = diag(ε1E1J1, . . . , εkEkJk),
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where εi = ±1 and Ei is defined in (1). Furthermore, the signs of εi, i = 1,
. . ., k, are uniquely (up to permutations) associated with the Jordan blocks, Ji,
i = 1, . . ., k. In particular, εi = 1 if Ji has a pair of complex eigenvalues.

Lemma 2 (Theorem 2 in [15]) Let A and D be two singular real symmetric
matrices and assume that there exists a µ ∈ ℜ such that C = A + µD is
nonsingular. Let

J = diag(J(λ1, n1), . . . , J(λk, nk), J(0, nk+1), . . . , J(0, np), J(1/µ, np+1), . . . ,

J(1/µ, nm))

be the Jordan normal form of C−1D. Then there exists an n×n real congruent
matrix S such that

STAS = diag(τ1E1, . . . , τkEk, τk+1Ek+1, . . . , τpEp, τp+1Fp+1, . . . , τmFm) (3)

and

STDS = diag(τ1E1J(κ1, n1), . . . , τkEkJ(κk, nk), τk+1Fk+1, . . . , τpFp,

τp+1Ep+1, . . . , τmEm), (4)

where Ei and Fi are defined in (1) and (2), respectively, τi = ±1, i = 1, . . . ,m,
dimEi = dimFi = ni, i = k+ 1, . . ., m, and κi = λi/(1− µλi), i = 1, . . ., k.
The signs of τi are uniquely (up to permutations) determined by the associated
Jordan blocks J(κi, ni), Ei or Fi. In particular, τi = 1 if J(λi, ni) has a pair
of complex eigenvalues, i = 1, . . . , k. Furthermore, p− k ≥ 1 and m− p ≥ 1.

Next we generalize the results in the previous two lemmas to general situ-
ations where we do not assume the existence of the nonsingular matrix pencil
for two symmetric matrices.

Theorem 1 For any two n × n real symmetric matrices A and D, there exists
an n× n real invertible matrix S such that

STAS = diag(τ1E1, . . . , τkEk, τk+1Ek+1, . . . , τpEp, τp+1Fp+1, . . . , τmFm,

0, . . . , 0) (5)

and

STDS = diag(τ1E1J(κ1, n1), . . . , τkEkJ(κk, nk), τk+1Fk+1, . . . , τpFp,

τp+1Ep+1, . . . , τmEm, 0 . . . , 0) (6)

where dimEi = dimFi = ni, i = k + 1, . . . ,m, and τi = ±1, i = 1, . . . ,m.
The signs of τi are uniquely (up to permutations) determined by the associ-
ated Jordan blocks J(κi, ni), Ei or Fi. The values of κi are uniquely (up to
permutations) determined by the associated Jordan blocks J(κi, ni).
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Proof Given Lemmas 1 and 2, we only need to consider in the the proof the
case where A and D are both singular and there does not exist a µ ∈ ℜ such
that A+ µD is nonsingular.

We can always find a congruent matrix Q1 such that Ā , QT
1 AQ1 =

diag(A1, 0, . . . , 0), where A1 is a q × q diagonal matrix and q = rank(A).
Denote

D̄ , QT
1 DQ1 =

(
D1 D2

DT
2 D3

)

,

where D1 is a q × q matrix. We can always find a congruent matrix S such
that STD3S = diag(D6, 0, . . . , 0), where D6 is a nonsingular s × s diagonal
matrix. Let Q2 , diag(Iq, S). Then Â , QT

2 ĀQ2 = Ā, and

D̂ , QT
2 D̄Q2 =





D1 D4 D5

DT
4 D6 0

DT
5 0 0



 .

Let

Q3 ,





Iq 0 0
−D−1

6 DT
4 Is 0

0 0 In−q−s



 .

Then,

D̃ , QT
3 D̂Q3 =





D1 −D4D
−1
6 DT

4 0 D5

0 D6 0
DT

5 0 0



 ,

and Ã , QT
3 ÂQ3 = Â = Ā. We can always choose a µ ∈ ℜ such that the first

q columns of D̃ + µÃ are linearly independent. For example, we can choose
µ = maxi=1,...,q

∑q
j=1 |bij |/|aii|+1, where bij is the element in the ith row and

the jth column of D1 −D4D
−1
6 DT

4 and aii is the ith diagonal element of A1.
Then µA1 +D1 −D4D

−1
6 DT

4 is nonsingular.
If the columns in D5 are linearly independent, then D̃+µÃ is nonsingular

and thus D+µA is nonsingular, which contradicts our assumption of no non-
singular matrix pencil. Thus the columns in D5 are linearly dependent. We
can always find a congruent matrix Q4 such that Ǎ = QT

4 ÃQ4 = Â = Ā, and

Ď , QT
4 D̃Q4 =







D1 −D4D
−1
6 D4 0 D′

5 0
0 D6 0 0

D′T
5 0 0 0
0 0 0 0







,

where D′
5 is of full column rank. Let

A′ ,





A1 0 0
0 0 0
0 0 0



 , D′ ,





D1 −D4D
−1
6 DT

4 0 D′
5

0 D6 0
D′T

5 0 0



 .

Then there exists a µ such that D′ + µA′ is nonsingular. From Lemma 2 we
know that A′ and D′ can be congruent to the canonical form in (3) and (4).
So A and D can be congruent to the canonical form in (5) and (6). �
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Remark 1 If A and D are both singular and there does not exist an µ ∈ ℜ
such that A+ µD is nonsingular, then the number of the common 0 terms in
the lower right part of (5) and (6) is equal to n− rank(A′ + µD′).

From Lemma 1, Lemma 2 and Theorem 1, we know that (5) and (6) rep-
resent a canonical form for any two real symmetric matrices A and D via
congruence. Without loss of generality, we assume from now on that matrices
A and D in problem (P) satisfy:

A = diag(A1, A2, . . . , As)

= diag(τ1E1, . . . , τkEk, τk+1Ek+1, . . . , τpEp, τp+1Fp+1, . . . , τmFm, 0, . . . , 0),

D = diag(D1, D2, . . . , Ds)

= diag(τ1E1J(κ1, n1), . . . , τkEkJ(κk, nk), τk+1Fk+1, . . . , τpFp, τp+1Ep+1,

. . . , τmEm, 0 . . . , 0).

Note that we have four kinds of block pairs (Ai, Di): (τiEi, τiEiJ(κi, ni)),
(τiEi, τiFi), (τiFi, τiEi) and (0, 0). In fact, the second kind of block pairs is a
special case of the first kind with κi = 0 due to EiJ(0, ni) = Fi. We call the
first two kinds of block pairs type A block pairs, the third kind of block pairs
type B block pairs and the last one type C block pairs.

2.2 SOCP reformulation from canonical form

Without loss of generality, we make the following assumptions.

Assumption 1 i) There is at least one feasible solution in problem (P); ii)
The following three conditions do not hold true at the same time: A � 0,
b ∈ Range(A) and c = 1

2b
TA+b.

Note that problem (P) is infeasible if and only if A � 0, b ∈ Range(A) and c =
1
2b

TA+b+k for some k > 0, which leads to h(x) = 1
2 (x+A+b)TA(x+A+b)+k >

0. If A � 0, b ∈ Range(A) and c = 1
2b

TA+b, then h(x) = 1
2x

TAx+ bTx + c =
1
2 (x +A+b)TA(x +A+b) ≥ 0. Thus, the inequality constraint in problem (P)
becomes an equality constraint which means all the feasible solutions are in
the boundary. Actually, Assumption 2.1 is equivalent to Slation condition, i.e.,
there exists an x Such that h(x) < 0.

Moreover, when the three conditions in ii) hold together, problem (P) re-
duces to an unconstrained quadratic problem: Decompose A as A = LTL,
where L ∈ ℜr×n with r being the rank of A. Then, the constraint becomes
(x + A+b)TLTL(x + A+b) = 0 and thus L(x + A+b) = 0. Rewrite x =
−A+b + V y, where V ∈ ℜn×(n−r) is a matrix basis of the null space of L
and y ∈ ℜn−r. The problem then reduces to an unconstrained quadratic opti-
mization problem.

Let us recall the S-lemma [10], which states the equivalence of the following
two statements under Slation condition:
(S1) (∀x ∈ ℜn) h(x) ≤ 0 ⇒ f(x) ≥ 0.
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(S2) ∃ µ ≥ 0 such that f(x) + µh(x) ≥ 0, ∀x ∈ ℜn.
In general, f(x) can be represented as f(x) = 1

2x
TDx + eTx + v with an

additional constant v in (S1) and (S2), and we use this representation of f(x)
in the following of this section when discussing about the S-lemma and its
variants. The connection between problem (P) and the S-Lemma is illustrated
in [17] by

v(P ) = inf
x∈ℜn

{ f(x) | h(x) ≤ 0}

= sup
η∈ℜ

{ η : {x ∈ ℜn | f(x) < η, h(x) ≤ 0} = ∅}

= sup
η∈ℜ

{ η | ∃µ ≥ 0 such that f(x)− η + µh(x) ≥ 0, ∀x ∈ ℜn}

= sup
η∈ℜ,µ≥0

{ η |
(

D + µA e+ µb
eT + µbT 2(v + µc− η)

)

� 0}. (7)

By invoking the S-lemma, we have the following theorems.

Theorem 2 Consider the case where a type A block pair (τiEi, τiEiJ(κi, ni))
exists in problem (P). If the size of the associated Jordan block J(κi, ni) is
greater than 2 and the associated eigenvalue of the Jordan block is real, then
the objective value of (P) is unbounded from below, i.e., v(P) = −∞.

Proof If the size of the associated Jordan block J(κi, ni) is greater than 2,
then τi(EiJ(κi, ni) + µEi) takes the following form

τi(EiJ(κi, ni) + µEi) = τi







κi + µ
κi + µ 1

· · · · · ·
κi + µ 1







.

Since the (ni − 1)× (ni − 1) principal minor

τi







κi + µ 1
· · · · · ·

κi + µ 1
1







is non-positive semi-definite when its size ni − 1 is greater than or equal to 2,
Di+µAi = τi(EiJ(κi, ni)+µEi) cannot be positive semi-definite. Thus, there
is no µ such that D + µA = diag(D1 + µA1, . . . , Dm + µAm, 0, . . . , 0) � 0. So
the problem in (7) is infeasible and by the S-lemma we have v(P) = −∞. �

Using similar proofs, we have the following theorems.

Theorem 3 Consider the case where a type A block pair (τiEi, τiEiJ(κi, ni))
exists in problem (P). If the eigenvalues of the associated Jordan block J(κi, ni)
form a complex pair, then the objective value of problem (P) is unbounded from
below, i.e., v(P) = −∞.
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Proof If the eigenvalues of the associated Jordan block J(κi, ni) form a com-
plex pair, then there does not exist a µ ∈ ℜ such that

τi(EiJ(κi, ni) + µEi) = τi









bi ai + µ
ai + µ −bi

. . .
bi ai + µ

ai + µ −bi









� 0,

because the 4× 4 principal minor (if ni = 4k for some positive integer k),

τi







bi ai + µ
ai + µ −bi

bi ai + µ
ai + µ −bi







or the 2× 2 principal minor (if ni = 4k + 2 for some positive integer k),

τi

(
bi ai + µ

ai + µ −bi

)

is non-positive semi-definite. So the problem in (7) is infeasible and by the
S-lemma we get v(P) = −∞. �

Theorem 4 Consider the case where a type B block pair (τiFi, τiEi) exists in
problem (P). If dimFi ≥ 2, then problem (P) is unbounded from below, i.e.,
v(P) = −∞.

Proof If the size of the associated Jordan block J(κi, ni) is larger than or equal
to 2, then there does not exist a µ ∈ ℜ such that

τi(Ei + µFi) = τi









1
1 µ

. . .
1 µ

1 µ









� 0.

So the problem in (7) is infeasible and by the S-lemma we have v(P) = −∞.
�

Remark 2 Assumption 1 is necessary in Theorem 4. Otherwise the S-lemma
does not hold and we have the following counter example: min f(x) = x1x2

subject to h(x) = x2
2 ≤ 0. The problem has a size 2 block pair (F2×2, E2×2) but

a finite optimal value of min
h(x)≤0

f(x) = 0.

So if problem (P) has a finite optimal solution, then any type B block pairs
are of size 1 and any type A block pairs are of a size less than or equal to 2 and
the eigenvalues in the associated Jordan blocks are real. Now let us consider
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a type A block pair with size 2, and, without loss of generality, let it be the
first block (A1, D1) = (τ1E1, τ1E1J1(λ, 2)) with

E1 =

(
0 1
1 0

)

, E1J1(λ, 2) =

(
0 λ
λ 1

)

.

Denote D = diag(D1, DJ), A = diag(A1, AJ ), I = {1, 2}, J = {3, . . . , n}, eI =
(e1, e2)

T , eJ = (e3, . . . , en)
T , bI = (b1, b2)

T , bJ = (b3, . . . , bn)
T , z = (x1, x2)

T ,
and y = (x3, . . . , xn)

T . We can then represent problem (P) as follows,

(RP) min
1

2
yTDJy + eTJ y +

1

2
zTD1z + eTI z

s.t.
1

2
yTAJy + bTJ y +

1

2
zTA1z + bTI z + c ≤ 0.

The term in the constraint associated with (A1, D1) is

1

2
zTA1z + bTI z =

1

2
τ1z

TE1z + bTI z = τ1z1z2 + b1z1 + b2z2, (8)

and the term in the objective function associated with (A1, D1) is

1

2
zTD1z+eTI z =

1

2
τ1z

TE1J1(λ, 2)z+eTI z = τ1λz1z2+
1

2
τ1z

2
2+e1z1+e2z2. (9)

Without loss of generality, we further assume b1 = b2 = 0. Since otherwise
when letting z′1 = z1 + τ1b2 and z′2 = z2 + τ1b1, the constraint function will

become 1
2y

TAJy+bTJ y+
1
2z

′TA1z
′+c′, where c′ = c−τ1b1b2, and the objective

function will become 1
2y

TDJy + eTJ y + 1
2z

′TD1z
′ + e′

T
I z

′ + d0, where e′1 =
e1 − λb1, e

′
2 = e2 − b1 − λb2, and d0 = −e1τ1b2 − e2τ1b1 + τ1λb1b2 +

1
2τ1b

2
1.

Note that τ1 = ±1 according to Theorem 1.
From now on, we assume that the coefficients in b corresponding to any

2× 2 type A Jordan block pair are 0.

Theorem 5 Consider the case where there exists a type A block pair (τ1E1,
τ1E1J1(λ, 2)) in problem (P) and the eigenvalue of the associated Jordan block
J1(λ, 2) is real. Assume there is a feasible solution x̄ = (z̄T , ȳT )T and let
π = τ1z̄1z̄2. Let ρ = inf{ (9) | (8) = τ1z1z2 ≤ π}. We have the following three
cases:

1. When τ1 = 1. If (λ ≤ 0, e1 = 0, e2 6= 0) or (λ = 0, e1 = 0, e2 = 0, π ≥ 0)
or (λ < 0, e1 = 0, e2 = 0, π = 0), then ρ = λπ − 1

2e
2
2 and the infimum is

attainable;
2. When τ1 = 1. If (λ = 0, e1 = 0, e2 = 0, π < 0) or (λ < 0, e1 = 0, e2 =

0, π 6= 0) , then ρ = λπ − 1
2e

2
2 and the infimum is unattainable;

3. Otherwise, ρ = −∞ and thus problem (P) is unbounded from below.

Proof We consider the problem in the following cases:
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– When τ1 = 1, (8) becomes z1z2 ≤ π and (9) becomes λz1z2 +
1
2z

2
2 + e1z1 +

e2z2. We then have the following cases corresponding to the values of λ,
e1, e2 and π.
– When λ > 0, set z1 = −M

λ
−M and z2 = M , where M ∈ ℜ is chosen

such that −(1 + 1
λ
)M2 ≤ π. Then z1z2 ≤ π and ρ = −(λ + 1

2 )M
2 −

( e1
λ
+ e1 − e2)M → −∞ when M → ∞. (case 3)

– When λ = 0, we have the following subcases:
• When e1 6= 0, set z1 = −sign(e1)M and z2 = −sign(e1)

π
M
, where

M ∈ ℜ and z1z2 = π. Then ρ = −|e1|M + C1 + C2 · 1
M

+ C3 ·
1

M2 → −∞ when M → +∞, where Ci, i = 1, 2, 3, are the reduced
constants. (case 3)

• When e1 = 0, (9) becomes 1
2z

2
2 + e2z2 = 1

2 (z2 + e2)
2 − 1

2e
2
2 ≥ − 1

2e
2
2

⇒ ρ ≥ − 1
2e

2
2.

· If e2 6= 0, set z1 = − π
e2

and z2 = −e2, then z1z2 = π and

(9) = − 1
2e

2
2. Thus ρ = − 1

2e
2
2 and the infimum is attainable.

(case 1)
· If e2 = 0 and π ≥ 0, we can set z1 at any real value and z2 = 0
such that z1z2 ≤ π and thus ρ = − 1

2e
2
2 and the infimum is

attainable. (case 1)
· If otherwise e2 = 0 and π < 0, we cannot set z2 = −e2 = 0,
which contradicts the constraint z1z2 ≤ π < 0. So the infimum
is unattainable. But we can set z1 = Mπ and z2 = 1

M
(M ∈ ℜ)

such thatz1z2 = π and (9) = 1
2M2 → 0 when M → ∞. Thus

ρ = lim
M→∞

1
2M2 − 1

2e
2
2 = 0 but the infimum is unattainable. (case

2)
– When λ < 0, we have the following subcases:

• When e1 6= 0, set z1 = −sign(e1)M and z2 = − sign(e1)π
M

(M ∈ ℜ)
such that z1z2 = π and then (9) = −|e1|M+C1+C2 · 1

M
+C3 · 1

M2 →
−∞ when M → ∞, where Ci, i = 1, 2, 3 are the reduced constants.
Thus ρ = −∞. (case 3)

• When e1 = 0, (9) = λz1z2+
1
2z

2
2 + e2z2 ≥ λπ+ 1

2 (z2+ e2)
2− 1

2e
2
2 ≥

λπ − 1
2e

2
2. Next we show that ρ = λπ − 1

2e
2
2. We first note that, to

achieve λz1z2 = λπ in the above inequality, we need to set z1z2 =
π.
· If e2 6= 0, set z1 = − π

e2
and z2 = −e2, such that z1z2 = π and

then (9) = λπ − 1
2e

2
2. (case 1)

· If e2 = 0 and π 6= 0, we cannot set z2 = −e2 = 0, which
contradicts the constraint z1z2 = π 6= 0. So the infimum is
unattainable. But we can set z1 = Mπ and z2 = 1

M
(M ∈ ℜ)

such that z1z2 = π and (9) = λπ + 1
2M2 → λπ when M → ∞.

So ρ = λπ − 1
2e

2
2 = λπ and the infimum is unattainable. (case

2)
· If e2 = 0 and π = 0, we can set z1 at any real value and z2 = 0
and thus attain the infimum ρ = λπ − 1

2e
2
2 = λπ. (case 1)



SOCP Reformulation for GTRS 13

– When τ1 = −1, set z1 = − π
M

and z2 = M (M ∈ ℜ) such that τ1z1z2 =
−z1z2 = π and (9) = − 1

2M
2+C1 ·M +C2 · 1

M
+C3 → −∞ when M → ∞,

where Ci, i = 1, 2, 3, are the reduced constants. Thus ρ = −∞. (case 3)

Since inf{ (9) | (8) = τ1z1z2 ≤ π} is a subproblem of (RP), if there is a feasible
solution (z̄T , ȳT )T for (RP) with z̄1z̄2 = π, and ρ = −∞, then v(P) = v(RP) =
−∞. �

Remark 3 1. Case 2 in the above theorem is the only case where problem
(P) is bounded from below but its infimum is unattainable.

2. If two matrices A and D are simultaneously diagonalizable via congruence,
which covers most conditions discussed in the existing literature ([2,4,9]),
then the optimal value is attainable when problem (P) is bounded from
below.

3. All the bounded cases require e1 = 0 in the linear terms in the objective
function associated with 2× 2 Jordan blocks.

The following theorem is a direct result of Theorems 2–5.

Theorem 6 If problem (P) has an optimal value bounded from below, then:

1. dimEi ≤ 2, i = 1, . . . , p, dimEi = 1, i = p + 1, . . . ,m, and there is no
complex eigenvalue pair in J(κi, ni);

2. If for some index i, dimEi = 2, then the ith block satisfies the conditions
in either case 1 or case 2 in Theorem 5.

Note that the conditions in items 1 and 2 of Theorem 6 are necessary
for problem (P) to be bounded from below and we assume these conditions
hold in the following discussion of this section. Rearrange the block pairs with
single elements to the upper left part of the diagonal in the canonical form
and express A and D in the following forms,

A = diag(α1, . . . , αl, E1, . . . , En−l
2

), (10)

D = diag(δ1, . . . , δl, E1J(ζ1, 2), . . . , En−l
2

J(ζn−l
2

, 2)), (11)

where l is the number of block pairs with size 1 in the canonical form of (5)
and (6). In the following, we assume A and D are in the form of (10) and (11)
and further assume bi = 0, i = l + 1, . . . , n, as we discussed after (9).

Moreover, from item 3 in Remark 3, we have el+2j−1 = 0, j = 1, . . . , n−l
2 .

Then problem (P) can be reduced to the following form:

(P1) min f(x) =

l∑

i=1

(δix
2
i + eixi) +

∑

j=1,...,n−l
2

(ζjxl+2j−1xl+2j +
1

2
x2
l+2j + el+2jxl+2j)

s.t. h(x) =

l∑

i=1

(αix
2
i + bixi) +

∑

j=1,...,n−l
2

(xl+2j−1xl+2j) + c ≤ 0.
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Theorem 7 Assume that items 1 and 2 in Theorem 6 are satisfied, then
v(P) = v(P1) = v(P2), where (P2) is the following SOCP problem:

(P2) min
l∑

i=1

(δiyi + eixi) +

n−l
2∑

j=1

ζjzj + c0

s.t.
l∑

i=1

(αiyi + bixi) +

n−l
2∑

j=1

zj + c ≤ 0,

1

2
x2
i − yi ≤ 0, ∀i = 1, 2, . . . , l,

x, y ∈ ℜl, z ∈ ℜn−l
2 ,

where c0 = −∑

j=1,...,n−l
2

1
2e

2
l+2j.

More specifically, if (P2) admits an optimal solution, then there exists an
optimal solution (x̄, ȳ, z̄) to (P2) with 1

2 x̄
2
i = ȳi, i = 1, 2, . . . , l. Moreover, we

can find an optimal solution (or an ǫ optimal solution) x̃ to (P1) with

x̃i = x̄i, i = 1, . . . , l,

x̃l+2j =







1/M if

{
ζj = 0, el+2j = 0, z̄j < 0,
or ζj < 0, el+2j = 0, z̄j 6= 0,

−el+2j otherwise,
j = 1, . . . , n−l

2 ,

x̃l+2j−1 =
z̄j

x̃l+2j
, j = 1, . . . , n−l

2 .

(12)

Particularly, if (P1) is bounded from below, then the optimal value of (P1)
is unattainable if and only if ζj = 0, el+2j = 0, z̄j < 0 or ζj < 0, el+2j =
0, z̄j 6= 0. In this case, for any ǫ > 0, there exists an ǫ optimal solution x̃ such
that f(x̃)− v(P1) < ǫ with a sufficiently large M > 0.

Proof Because of Theorem 6, (P1) is equivalent to (P). And the main dif-
ferences between (P1) and (P2) are the terms associated to the 2 × 2 Jor-
dan blocks. Let us consider how to simplify the terms associated with the
2 × 2 Jordan blocks. According to Assumption 1, (P1) is feasible. For any
feasible solution x̂ of (P1), we let πj = x̂l+2j−1x̂l+2j . Now let us concen-
trate on problem inf{ζjxl+2j−1xl+2j +

1
2x

2
l+2j + el+2jxl+2j | xl+2j−1xl+2j =

πj} = inf{ζjπj + 1
2x

2
l+2j + el+2jxl+2j | xl+2j−1xl+2j = πj} = inf{ζjπj +

1
2 (x

2
l+2j + el+2j)

2 − 1
2e

2
l+2j | xl+2j−1xl+2j = πj}. Thus setting xl+2j = −el+2j

(if el+2j = 0, set xl+2j =
1
M

as in the proof of Theorem 5) and xl+2j−1 =
πj

xl+2j
,

the objective function (ζjxl+2j−1xl+2j +
1
2x

2
l+2j + el+2jxl+2j) has an infimum

ζjπj − 1
2e

2
l+2j under the constraint xl+2j−1xl+2j = πj , which is linear with the

cross term xl+2j−1xl+2j = πj .
Using such a separability, we denote

zj = xl+2j−1xl+2j and c0 = −
∑

j=1,...,n−l
2

1

2
e2l+2j ,
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and have the following problem which has the same objective value with (P1):

(P3) min

l∑

i=1

(δix
2
i + eixi) +

n−l
2∑

j=1

ζjzj + c0

s.t.

l∑

i=1

(αix
2
i + bTi xi) +

n−l
2∑

j=1

zj + c ≤ 0.

Moreover, if there is an optimal solution (x̄, z̄) of (P3), we can also find an
optimal solution (or an ǫ optimal solution) x̃ of (P1) in the form of (12). In this
case, the optimal value of (P1) is unattainable if and only if ζj = 0, el+2j =
0, z̄j < 0 or ζj < 0, el+2j = 0, z̄j 6= 0 from Theorem 5. Furthermore, for any

ǫ > 0, if we set M ≥
√

1
2ǫ , then f(x̃)− v(P1) =

1
2M2 ≤ ǫ.

Introducing yi =
1
2x

2
i , i = 1, 2, . . . , l, (P3) is then equivalent to the follow-

ing (P4):

(P4) min

l∑

i=1

(δiyi + eixi) +

n−l
2∑

j=1

ζjzj + c0

s.t.

l∑

i=1

(αiyi + bixi) +

n−l
2∑

j=1

zj + c ≤ 0

1

2
x2
i − yi = 0, ∀i = 1, 2, . . . , l,

x, y ∈ ℜl, z ∈ ℜn−l
2 .

We next prove the equivalence of (P4) and (P2) in two parts:

1. If (P2) is unbounded from below, then (P4) is unbounded from below.
2. If (P2) has an optimal solution (x∗, y∗, z∗), then we can always find a

solution (x̄, ȳ, z̄) with ȳi =
1
2 x̄

2
i , i = 1, . . . , l and z̄ = z∗, which is optimal

not only to (P2) but also to (P4).

The first part is proved in the following Lemma 3. Now let us prove part
2. Note that if (P2) is bounded from below, then there must exist an optimal
solution (x∗, y∗, z∗) since Slation condition is satisfied. Denote

J := {i : 1
2
(x∗

i )
2 < y∗i , i = 1, . . . , l}.

If J = ∅, then (x∗, y∗, z∗) is also an optimal solution of (P4). If J 6= ∅, by
Theorem 3 in [2], we can transform the optimal solution (x∗, y∗, z∗) of (P2) to
an optimal solution (x̄, ȳ, z∗) of (P2) with ȳi =

1
2 x̄

2
i , i = 1, . . . , l, and (x̄, ȳ, z∗)

is also a feasible solution of (P4), since ȳi =
1
2 x̄

2
i , i = 1, . . . , l. So v(P2) ≥ v(P4).

But (P2) is a relaxation of (P4), so v(P2) ≤ v(P4). Thus v(P2) = v(P4) and
(x̄, ȳ, z∗) is optimal to (P4). �
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Lemma 3 If (P2) is unbounded from below, then (P4) is unbounded from be-
low.

Proof We only need to prove that (P3) (since (P4) is equivalent to (P3)) is
bounded from below implies that (P2) is bounded from below.

In this proof, we only consider the cases with no z term in (P2) and (P3),
since z only appears in linear terms in both the objective and constraint func-
tions., which can be regarded as a special case of the x variable (i.e., the
coefficients before z2j are 0, j = 1, . . . , n−l

2 ).

Denote the Lagrangian function of (P3) as L(x, ν) = f(x) + νh(x), and
the dual function as θ(ν) = min

x
L(x, ν), where ν ≥ 0. If (P3) is bounded from

below, from the S-lemma (as Slation condition holds here), we know there
is no duality gap between the primal problem (P3) and its Lagrangian dual
problem of max

ν≥0
θ(ν), i.e., there exists (x̄, ν̄) such that min

h(x)≤0
f(x) = f(x̄) =

θ(ν̄) = max
ν≥0

θ(ν). So (x̄, ν̄) is a saddle point of the Lagrangian function L(x, ν).

Then f(x̄) = min
x∈ℜn

L(x, ν̄), h(x̄) ≤ 0, ν̄ ≥ 0, ν̄h(x̄) = 0. From min
x∈ℜn

L(x, ν̄) =

min
x∈ℜn

∑l
i=1(

1
2 (δi + ν̄αi)x

2
i + (ei + ν̄bi)xi) + c0 + ν̄c = f(x̄), we get δi + ν̄αi ≥ 0

and (δi + ν̄αi)x̄i + (ei + ν̄bi) = 0 and if, in addition, δi + ν̄αi = 0, we have
ei + ν̄bi = 0, i = 1, . . . , l. So (x̄, ν̄) satisfies the KKT conditions of (P3) , i.e.,
(δi + ν̄αi)x̄i + ei + ν̄bi = 0, i = 1, . . . , l, ν̄ ≥ 0, ν̄h(x̄) = 0.

Next we can construct a KKT point of (P2) from the saddle point (x̄, ν̄).
Denote ȳi =

1
2 x̄

2
i and µ̄i = δi + ν̄αi ≥ 0, i = 1, . . . , l. Then (x̄, ȳ, µ̄, ν̄) satisfies

the KKT condition of (P2): δi+ ν̄αi−µ̄i = 0, ei+ ν̄bi+µ̄ix̄i = 0, µ̄i(
1
2 x̄

2
i − ȳi) =

0, i = 1, . . . , l, ν̄(
∑l

i=1(αiȳi + bix̄i) + c) = 0. Thus (x̄, ȳ) is a global optimal
solution of (P2) because of the convexity of (P2). So we conclude that (P2) is
bounded from below. �

Example 1 Consider the following problem:

min −x1x2 + 0.5x2
2 − x2

3 + x2
4 + 2x2 − x4

s.t. x1x2 + x2
3 + 0.75x2

4 ≤ 1.25,

where the related matrices can be expressed as

A =







0 1 0 0
1 0 0 0
0 0 2 0
0 0 0 1.5







, D =







0 −1 0 0
−1 1 0 0
0 0 −2 0
0 0 0 2







,

e = (0, 2, 0,−1)T , b = 0 and c = −1.25. Note that A and D are not simul-
taneously diagonalizable but in the canonical form (5) and (6). According to
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Theorem 7, we get the following equivalent SOCP reformulation,

min z1 − 2y3 + 2y4 − x4 − 2

s.t. z1 + 2y3 + 1.5y4 ≤ 1.25
1

2
x2
3 − y3 ≤ 0

1

2
x2
4 − y4 ≤ 0.

Solving the above SOCP problem yields the optimal solution z∗1 = −12.9773,
x∗
3 = 0, x∗

4 = 0.2857, y∗3 = 7.0830 and y∗4 = 0.0408. Note 1
2 (x

∗
3)

2 − y∗3 =
−7.0830 < 0. Using the transformation method in Theorem 3 in [2], we
obtain a new solution (x̄, ȳ, z̄), with x̄3 = ±

√
2y∗3 = ±3.7638, z̄1 = z∗1 ,

x̄3 = x∗
3, ȳ3 = y∗3 and ȳ4 = y∗4 . By applying Theorem 7, we get x̃2 = −2,

x̃1 = z̄1
x̃2

= 6.4886, x̃3 = x̄3 and x̃4 = x̄4. So we obtain an optimal solu-

tion x̃ = (6.4886,−2,±3.7638, 0.2857)T to the origin problem, with an optimal
value −3.3929.

2.3 Dual problem of SOCP reformulation

The following theorem shows that the dual problem of (P2) is a simple concave
maximization problem with a single variable.

Theorem 8 Under Assumption 2.1, the objective values of (P2) and the fol-
lowing Lagrangian dual problem are equal:

(D1) max
ν≥0

{ρ(ν) = cν + c0 +

l∑

i=1

hi(ν) + g(ν)},

where

hi(ν) =







− (νbi+ei)
2

2(ναi+δi)
if ναi + δi > 0,

0 if ναi + δi = 0 and ei + νbi = 0,
−∞ otherwise,

(13)

i = 1, . . . , l, and

g(ν) =

{
0 if ζj + ν = 0, ∀j = 1, . . . , n−l

2 ,
−∞ otherwise.

(14)

Proof The Lagrangian function of (P2) is:

L(x, y, z;µ, ν) = δT y + eTx+ ζT z + c0 + ν(αT y + bTx+ 1̄T z + c)

+
∑l

i=1 µi(
1
2x

2
i − yi)

=
∑l

i=1 yi(δi + ναi − µi) +
∑l

i=1 xi(ei +
1
2µixi + νbi)

+
∑n−l

2

j=1 (ζj + ν)zj + cv + c0,
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where µ ≥ 0 and ν ≥ 0.
The dual objective function is then given as

m(µ, ν) = min
x,y,z

L(x, y, z;µ, ν).

If m(µ, ν) is bounded from below, then the coefficients of yi and zi should be
equal to 0. As the objective function is separable, we can get an analytical
form of m(µ, ν):

max
µ≥0,ν≥0

m(µ, ν) = max
ν≥0

(cν + c0 +
l∑

i=1

hi(ν) + g(ν)),

where hi(ν) and g(ν) are given in (13) and (14), respectively. �

Remark 4 If variable z exists in (P2), i.e., (P2) has some 2× 2 block pairs,
then either all ζi, i = 1, . . . , n−l

2 , in (P2), are the same (there exists a ν ≥ 0

such that ν + ζi = 0, i = 1, . . . , n−l
2 , and v(D1) = ρ(ν)), or, otherwise, there

does not exist such a ν and v(P2) = v(D1) = −∞. The first case requires that
all ζi are equal, which is equivalent to that all 2×2 Jordan blocks have the same
eigenvalue, and we can directly calculate the optimal value by the dual problem
(D1) using ν = ζi. ∀i. In fact, we characterize all the possible situations of
the GTRS: If the GTRS is bounded from below, then there only exist 1× 1 or
2 × 2 Jordan blocks in the canonical form and in addition all 2 × 2 Jordan
blocks have the same eigenvalue. While the results in Ben-Tal and Hertog [2]
are restricted to simultaneously diagonalizable cases, our results identify all
the cases where the GTRS is bounded from below, though only one situation
(i.e., there exist 2×2 Jordan blocks in the canonical form and all 2×2 Jordan
blocks have the same eigenvalue) is proved to be possibly bounded from below.

If the variable z does not exist in (P2), (D1) can be formulated as an SOCP:

(D′
1) min cν + c0 +

n∑

i=1

wi

s.t. (ναi + δi +
1

2
wi)

2 ≥ (ναi + δi −
1

2
wi)

2 + (νbi + ei)
2, ∀i

ναi + δi ≥ 0, ∀i
ν ≥ 0.

2.4 A simplified S-lemma

Denote h(x) = 1
2x

TAx+bTx+c and f(x) = 1
2x

TDx+eTx+v in the following of
this section when discussing about the S-lemma and its variants. First recall
the classical S-lemma in Section 2.2 and note that LMI are involved in the
statement (S2) from (7).

By applying the canonical form and the SOCP reformulation (P2) of prob-
lem (P), we can obtain a simplified S-lemma, which shows the equivalence of
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the following statements (S1) and (S̃2) when Slation condition holds:
(S1) (∀x ∈ ℜn) h(x) ≤ 0 ⇒ f(x) ≥ 0.

(S̃2) ∃x, y ∈ ℜl, z ∈ ℜn−l
2 :







δT y + eTx+ ζT z + c0 + v ≥ 0
αT y + bTx+ 1̄T z + c ≤ 0
1
2x

2
i − yi ≤ 0, ∀ i = 1, . . . , l.

When solving the SOCP problem in (S̃2), we avoid LMI, which are hard to
handle for large-scale problems. Moreover, our simplified version of S-lemma
includes the simplified version of S-lemma in Ben-Tal and Hertog [2] as a
special case.

2.5 Algorithms for computing the canonical form

According to the proof of Theorem 1 in Uhlig [15], we present a method in
the appendices to get the canonical form for two arbitrary n × n symmetric
matrices under the following conditions:

1. A is nonsingular;
2. The Jordan normal form of A−1D has only 1× 1 and 2× 2 Jordan blocks

with real eigenvalues and all the 2× 2 Jordan blocks have the same eigen-
value.

We assume that the first condition holds because from Lemma 2 and Theorem
1, calculation for the canonical form of two arbitrary matrices can be reduced
to the situation that at least one of the matrices is nonsingular. We further
assume the second condition because otherwise v(P) = −∞ (according to
Remark 4).

In general, numerical computation for Jordan normal form is sometimes
unstable, see Chapter 7 in [5] and [8]. Large Jordan blocks are difficult to
handle due to the unstableness in calculating Jordan blocks, see [5,8]. On the
other hand, problem (P) itself also has some problematic cases, i.e., a small
perturbation of the matrices will cause a significant change of the optimal
solution, see [11], which, we believe, are strongly related to the unstableness
of the Jordan decomposition methods. Our analysis above sheds some light on
the relationship between the unstable cases of the Jordan normal form and the
problematic cases of problem (P). Fortunately, as we only need to calculate
the Jordan normal form for real eigenvalues and the blocks are of small sizes
of 1× 1 and 2× 2. Furthermore, if there are multiple 2× 2 blocks, they must
have the same eigenvalue. Thus, problem (P) is of a special structure in our
implementation. The steps in the algorithms in appendices show that if the
2 × 2 blocks are of the same eigenvalues and the number of the 2 × 2 blocks
are small, which covers all non-problematic cases of problem (P), the method
to calculate the canonical form will be very fast, i.e., with time complexity
O(n3). In the literature, there are O(n3) Jordan decomposition methods, see
[1,8].
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3 Extension to equality constrained and interval bounded variants
of GTRS

This section extends the usage of the canonical form and the SOCP refor-
mulation to the equality constrained problem (EP) and the interval bounded
problem (IP).

3.1 GTRS with equality constraint

We first make an assumption similarly to Assumption 1 to avoid some trivial
cases.

Assumption 2 i) There is at least one feasible solution in (EP); ii) The
following conditions do not hold true at the same time: A � 0, b ∈ Range(A)
and c = 1

2b
TA+b; and iii) A 6= 0.

This assumption is a “two-side” Slater condition (Assumption 1 in [17]) plus
the condition A 6= 0. In fact, if A = 0, we can transform the constraint
bTx + c = 0 to another quadratic equality constraint which satisfies all the
three conditions in ii), i.e., (bTx + c)2 = 0. So problem (EP) can be trans-
formed to an unconstrained quadratic optimization problem using the null
space representation of L(x+A+b) = 0, by decomposing A as A = LTL, when
ii) is violated, or using the null space representation of bTx + c = 0 when iii)
is violated.

With the same notations as in Section 2, Theorems 2, 3 and 4 still hold
here, which can be proved in a similar way by the S-lemma with equality
[17]. However, Theorem 5 needs some modifications. In the following of this
section, we still use (8) and (9) to denote the associated terms in both the
constraint and objective functions, i.e., (8) = 1

2τ1z
TEIz = τ1z1z2 = π and

(9) = τ1λz1z2 +
1
2τ1z

2
2 + e1z1 + e2z2.

Theorem 9 Consider the case where there exists a type A block pair (τ1E1,
τ1E1J1(λ, 2)) in problem (P) and the eigenvalue of the associated Jordan block
J1(λ, 2) is real. Assume there is a feasible solution x̄ = (z̄T , ȳT )T and let
π = τ1z̄1z̄2. Let ρ = inf{ (9) | (8) = τ1z1z2 = π}. We have the following three
cases:

1. When τ1 = 1. If (e1 = 0, e2 6= 0) or (e1 = 0, e2 = 0, π = 0), then ρ =
λπ − 1

2e
2
2 and the infimum is attainable;

2. When τ1 = 1. If e1 = 0, e2 = 0, π 6= 0, then ρ = λπ − 1
2e

2
2 and the infimum

is unattainable;
3. Otherwise, ρ = −∞ and thus (EP) is unbounded from below.

Proof The proof is similar to that of Theorem 5. �

Theorem 10 If the optimal value of problem (EP) is bounded from below,
then:
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1. dimEi ≤ 2, i = 1, . . . , p, dimEi = 1, i = p + 1, . . . ,m, and there is no
complex eigenvalue pair in J(κi, ni);

2. If for some index i, dimEi = 2, then the ith block satisfies case 1 or case
2 in Theorem 9.

Note that the conditions in items 1 and 2 of Theorem 10 are necessary for
problem (EP) to be bounded from below and we assume that the conditions
hold in the following of this section. In the same way as the method in solving
problem (P), we can then assume that A and D have the form in (10) and
(11), bj = 0, for j = l+ 1, . . . , n, and el+2j−1 = 0, j = 1, . . . , n−l

2 .
Similarly to Theorem 7, using the S-lemma with equality [17] under As-

sumption 2, we have the following theorem.

Theorem 11 Assume that items 1 and 2 in Theorem 10 are satisfied, then
problem (EP) has the same optimal value with the following SOCP reformu-
lation:

(EP1) min

l∑

i=1

(δiyi + eixi) +

n−l
2∑

j=1

ζjzj + c0

s.t.

l∑

i=1

(αiyi + bixi) +

n−l
2∑

j=1

zj + c = 0

1

2
x2
i − yi ≤ 0, ∀i = 1, 2, . . . , l,

x, y ∈ ℜl, z ∈ ℜn−l
2 ,

where c0 = −∑

j=1,...,n−l
2

1
2e

2
l+2j.

More specifically, if (EP1) admits an optimal solution, then there exists an
optimal solution (x̄, ȳ, z̄) to (EP1) with

1
2 x̄

2
i = ȳi, i = 1, 2, . . . , l. Moreover, we

can find an optimal solution (or an ǫ optimal solution) x̃ to (EP ) with

x̃i = x̄i, i = 1, . . . , l,

x̃l+2j =

{
1/M if el+2j = 0, z̄j 6= 0,
−el+2j otherwise,

j = 1, . . . , n−l
2 ,

x̃l+2j−1 =
z̄j

x̃l+2j
, j = 1, . . . , n−l

2 .

Particularly, if (EP) is bounded from below, the optimal value of (EP) is
unattainable if and only if el+2j = 0 and z̄j 6= 0. In this case, for any ǫ > 0,
there exists an ǫ optimal solution x̃ such that f(x̃)−v(EP) < ǫ with a sufficient
large M > 0.

Furthermore, if ζi 6= ζj for some i 6= j, where i, j ∈ {1, . . . , n−l
2 }, problem

(EP) is unbounded from below.

The dual problem of (EP1) has the same form with (D1), except that ν ≥ 0
is replaced by ν ∈ ℜ. From Theorem 11, we can also conclude that all the 2×2
Jordan blocks have the same eigenvalue, i.e., ζi = ζj for 1 ≤ i, j ≤ n−l

2 , if (EP1)
is bounded from below.



22 Rujun Jiang et al.

Theorem 12 Under Assumption 2, the objective values of (EP1) and the fol-
lowing Lagrangian dual problem are equal:

(D1) max
ν∈ℜ

(cν + c0 +

l∑

i=1

hi(ν) + g(ν)),

where

hi(ν) =







− (νbi+ei)
2

2(ναi+δi)
if ναi + δi > 0,

0 if ναi + δi = 0 and ei + νbi = 0,
−∞ otherwise,

i = 1, . . . , l, and

g(ν) =

{
0 if ζj + ν = 0, ∀j = 1, . . . , n−l

2 ,
−∞ otherwise.

Assumption 2 is necessary in the above theorem, since otherwise (EP1)
may not be equivalent to (EP). In fact, v(EP1) = −∞ and v(EP) > −∞ hold
true for the following case stated in Theorem 3 in [17]: D has exactly one
negative eigenvalue, A = 0, b 6= 0 and

(
V TDV V T (Dx0 + e)

(xT
0 D + eT )V f(x0)

)

� 0,

where x0 = − e
2bT b

b, V ∈ ℜn×(n−1) is the matrix basis of the null space of the
1 × n matrix bT . For example, consider the problem min{f(x) | h(x) = 0},
where f(x) = 2x2

1 − x2
2 and h(x) = x1 − x2. In this case v(EP1) = −∞ but

v(EP) = 0.
Now let us denote h(x) = 1

2x
TAx+bTx+c and f(x) = 1

2x
TDx+eTx+v in

the following of this section. Recently, Xia et al. [17] give the conditions when
the S-lemma with equality holds, with or without Assumption 1 in [17] (the
“two-side” Slater condition). The S-lemma with equality asks if the following
two statements are equivalent:
(E1) (∀x ∈ ℜn) h(x) = 0 ⇒ f(x) ≥ 0.
(E2) ∃ µ ∈ ℜ such that f(x) + µh(x) ≥ 0, ∀x ∈ ℜn.

Theorem 3 in [17] states that under the “two-side” Slater condition, (E1) is
equivalent to (E2) except for the following case: D has exactly one negative
eigenvalue, A = 0, b 6= 0 and

(
V TDV V T (Dx0 + e)

(xT
0 D + eT )V f(x0)

)

� 0,

where x0 = − c
2bT b

b and V ∈ ℜn×(n−1) is the matrix basis of the null space of
the 1×nmatrix bT . In fact, the above case violates condition iii) in Assumption
2. So under our assumption, this case is out of consideration and the S-lemma
with equality always holds in our investigation.

Under Assumption 2, by applying the canonical form and the SOCP refor-
mulation of (EP), we obtain a simplified S-lemma with equality, which shows
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the following two statements are equivalent:
(E1) (∀x ∈ ℜn) h(x) = 0 ⇒ f(x) ≥ 0.

(Ẽ2) ∃x, y ∈ ℜl, z ∈ ℜn−l
2 :







δT y + eTx+ ζT z + c0 + v ≥ 0
αT y + bTx+ 1̄T z + c = 0
1
2x

2
i − yi ≤ 0, ∀i = 1, . . . , l.

The equivalence between (E1) and (Ẽ2) can be directly derived from Theorem
11. One advantage of our simplified S-lemma with equality is its feature of LMI
free, thus being more tractable for large-scale problems, while the S-lemma in
[17] is not.

3.2 GTRS with interval constraint

Similarly to the equality constrained case, we make the following assumption.

Assumption 3 i) There is at least one feasible solution in (IP); ii) The fol-
lowing conditions do not hold true at the same time: A � 0, b ∈ Range(A)
and ci =

1
2 b

TA+b for i = 1 or 2; and iii) A 6= 0.

Theorem 10 holds in this case and thus we can still assume, without loss of
generality, A and D have the form in (10) and (11), bj = 0, for j = l+1, . . . , n,
and el+2j−1 = 0, j = 1, . . . , n−l

2 .

Theorem 13 Assume that the conditions in items 1 and 2 in Theorem 10 are
satisfied, problem (IP) has the same optimal value with the following SOCP
problem:

(IP1) min

l∑

i=1

(δiyi + eixi) +

n−l
2∑

j=1

ζjzj + c0

s.t. h̄(x, y, z) =

l∑

i=1

(αiyi + bixi) +

n−l
2∑

j=1

zj ≥ c1

h̄(x, y, z) =

l∑

i=1

(αiyi + bixi) +

n−l
2∑

j=1

zj ≤ c2

1

2
x2
i − yi ≤ 0, ∀i = 1, 2, . . . , l,

x, y ∈ ℜl, z ∈ ℜn−l
2 ,

c0 = −∑

j=1,...,n−l
2

1
2e

2
l+2j.

More specifically, if (IP1) admits an optimal solution, then there exists an
optimal solution (x̄, ȳ, z̄) to (IP1) with

1
2 x̄

2
i = ȳi, i = 1, 2, . . . , l. Moreover, we
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can find an optimal solution (or an ǫ optimal solution) to (IP) with

x̃i = x̄i, i = 1, . . . , l,

x̃l+2j =

{
1/M if el+2j = 0, z̄j 6= 0,
−el+2j otherwise,

j = 1, . . . , n−l
2 ,

x̃l+2j−1 =
z̄j

x̃l+2j
, j = 1, . . . , n−l

2 .

Particularly, if (IP) is bounded from below, the optimal value of (IP) is unattain-
able if and only if el+2j = 0 and z̄j 6= 0. In this case, for any ǫ > 0, there
exists an ǫ optimal solution x̃ such that f(x̃)−v(IP) < ǫ with a sufficient large
M > 0.

Furthermore, if ζi 6= ζj for some i 6= j, where i, j ∈ {1, . . . , n−l
2 }, problem

(IP) is unbounded from below.

Proof (IP) is equivalent to the following (IP2):

(IP2) min

l∑

i=1

(δiyi + eixi) +

n−l
2∑

j=1

ζjzj + c0

s.t. −
l∑

i=1

(αiyi + bixi)−
n−l
2∑

j=1

zj + c1 ≤ 0

l∑

i=1

(αiyi + bixi) +

n−l
2∑

j=1

zj − c2 ≤ 0

1

2
x2
i − yi = 0, ∀i = 1, 2, . . . , l,

x, y ∈ ℜl, z ∈ ℜn−l
2 .

So we only need to prove the equivalence between (IP1) and (IP2).
By the S-lemma with interval bounds [16], similarly to Lemma 3, we know

that if v(IP1) is unbounded from below, then v(IP2) is unbounded from below.
Now we consider the case where v(IP1) is bounded from below. Then there

exists a global minimum (x∗, y∗, z∗) for (IP1). The Fritz-John conditions of
(IP1) are stated as following: There exist ν0 ≥ 0, ν1 ≥ 0, ν2 ≥ 0, µi ≥ 0, i =
1, . . . , l, not all of which are zero, such that

ν0δi − (ν1 − ν2)αi − µi = 0, ∀i = 1, . . . , l,

ν0ei − (ν1 − ν2)bi + µix
∗
i = 0, ∀i = 1, . . . , l,

ν0ζj − (ν1 − ν2) = 0, ∀j = 1, . . . ,
n− l

2
.

We assume that αi and bi are not both zero for i = 1, . . . , l, otherwise xi is a
free variable only appearing in the objective function and then (IP1) is either
unbounded from below or can be reduced to a new problem without variable
xi. Moreover, we cannot take equality in both sides of the quadratic constraint,
so there must exist at least one strict inequality. Then, from the last equation
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in Fritz-John conditions and the complementary slack conditions, we conclude
ν1(h̄(x

∗, y∗, z∗) − c1) = 0, ν2(h̄(x
∗, y∗, z∗) − c2) = 0, and one of ν1 and ν2

must be 0. Then from the first equation in Fritz-John conditions we know
that if there exists some index i such that 1

2 (x
∗
i )

2 − y∗i < 0, together with the
complementary slack conditions µi(

1
2 (x

∗
i )

2 − y∗i ) = 0, we conclude µi = 0 and
ν0 > 0 (otherwise (ν1 − ν2)αi = (ν1 − ν2)bi = 0 ⇒ ν1 − ν2 = 0 ⇒ ν1 = ν2 = 0
and thus µi = 0 for all i, which contradicts the fact that ν0, ν1, ν2, µi, i =
1 · · · , l are not all zero). So the Fritz-John conditions is reduced to the KKT
conditions. Because one of ν1 and ν2 is 0, Assumption 6 in [2] holds. Then,
by applying Theorem 7 in [2], we can get another optimal solution (x̄, ȳ, z̄) to
(IP1) with

1
2 x̄

2
i = ȳi, i = 1, 2, . . . , l, and z̄ = z∗, which is also optimal to (IP2).

The remaining of the proof is similar to that of Theorem 7. �

Similarly, the dual problem of (IP1) is a simple problem with two variables.

Theorem 14 Under Assumption 2, the objective values of (IP1) and the fol-
lowing Lagrangian dual problem are equal:

(ID1)max
ν≥0

(ν1c1 − ν2c2 + c0 +

l∑

i=1

hi(ν) + g(ν)),

where

hi(ν) =







− (−ν1bi+ν2bi+ei)
2

2(−ν1αi+ν2αi+δi)
if −ν1αi + ν2αi + δi > 0,

0 if −ν1αi + ν2αi + δi = 0 and ei − ν1bi + ν2bi = 0,
−∞ otherwise,

(15)

i = 1, . . . , l, and

g(ν) =

{
0 if ζj − ν1 + ν2 = 0, for all j = 1, . . . , n−l

2 ,
−∞ otherwise.

(16)

Proof The Lagrangian of (IP1) is:

L(x, y, z;µ, ν) = δT y + eTx+ ζT z + c0 + ν1(−αT y − bTx− 1̄T z + c1)

+ν2(α
T y + bTx+ 1̄T z − c2) +

l∑

i=1

µi(
1

2
x2
i − yi)

=
l∑

i=1

yi(δi + ν2αi − ν1αi − µi) +
l∑

i=1

xi(ei +
1

2
µixi + ν2bi

−ν1bi) +

n−l
2∑

j=1

(ζj + ν2 − ν1)zj + c1ν1 − c2ν2 + c0.
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The dual Lagrangian function is then read as

m(µ, ν) = min
x,y,z

L(x, y, z;µ, ν).

As the objective function is separable, we can get an analytical form ofm(µ, ν):

max
µ≥0,ν≥0

m(µ, ν) = max
ν≥0

(c1ν1 − c2ν2 + c0 +

l∑

i=1

hi(ν) + g(ν)),

where hi(ν) and g(ν) are given in (15) and (16), respectively. �

Since one of the two Lagrangian multipliers ν1 and ν2 must be zero, we can
separate problem (ID1) into two problems with a single variable ν1 or ν2 by
setting either ν1 = 0 or ν2 = 0. Then problem (ID1) is reduced to a problem
with the same form as problem (D1). Besides, problem (ID1) is also equivalent
to an SOCP problem with two variables similar as problem (D1).

Remark 5 Actually, problem (IP) must have an optimal solution on the bound-
ary, except for the case where D � 0, e ∈ Range(D) and x = −D+e is in
the interior of the interval constraint. This is because, if the optimal solution
x∗ is not on the boundary, then x∗ must be a local minimum and (IP) has
only one local minimum under the conditions that D is semi-definite positive,
e ∈ Range(D) and the local minimum is x = −D+e. So we can first ver-
ify whether the conditions D � 0 and e ∈ Range(D) are satisfied and then
check whether x = −D+e is in the interior of the constraint. Otherwise, the
optimal solution must be on the boundary. Then we can separate the problem
into two equality constrained problems with an equality constraint h(x) = c1
or h(x) = c2, and solve them with the methods for the equality constrained
case. And the solution with the smaller optimal value of the above two equality
constrained problems is the optimal solution of problem (IP).

We now denote h(x) = 1
2x

TAx+ bTx and f(x) = 1
2x

TDx+ eTx+ v. Sim-
ilarly to the simplified S-lemma with equality, we can simplify the S-lemma
with interval bounds in [16] under Assumption 3 to the following form: (I1) ⇔
(̃I2).
(I1) (∀x ∈ ℜn) c1 ≤ h(x) ≤ c2 ⇒ f(x) ≥ 0.

(̃I2) ∃x, y ∈ ℜl, z ∈ ℜn−l
2 :







δT y + eTx+ ζT z + c0 + v ≥ 0,
c1 ≤ αT y + bTx+ 1̄T z ≤ c2,
1
2x

2
i − yi ≤ 0, ∀i = 1, . . . , l.

4 Conclusions

In this study, we have successfully developed an SOCP reformulation for the
GTRS, which is in fact a quadratic programming over a single nonconvex
quadratic constraint. Particularly, we have derived the SOCP reformulation
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under the condition that the GTRS is bounded from below, via a canonical con-
gruent form of the two matrices in both the objective and constraint functions.
While Ben-Tal and Hertog investigate in [2] the simultaneous diagonalizabil-
ity of the two matrices, we explore the simultaneous block diagonalizability,
which applies to arbitrary two matrices. More specifically, we introduce and
extend the canonical form for two real matrices in [15] to find a block diagonal
form for two matrices in both the objective and constraint functions. Exploit-
ing the separability of the block diagonal form of the two matrices, we show
that problem (P) is SOCP representable if it is bounded from below. We also
establish the attainableness of the problem from the canonical form without
any additional calculation. Moreover, as our SOCP reformulation is LMI free,
it can be solved much faster than the SDP reformulation for the GTRS. We
further extend our methods to solve variants of problem (P) where the in-
equality constraint is replaced by either an equality constraint or an interval
constraint. Moreover, we obtain simplified versions of the S-lemma under the
three kinds of constraints.

One of our future research is to consider variants of the GTRS with addi-
tional linear inequality constraints or two general quadratic constraints.

Appendices

In the appendices, we present an algorithm to compute the canonical form if
all the eigenvalues of the Jordan matrix of A−1D (A is assumed invertible)
are real and there only exist 1× 1 and 2× 2 Jordan blocks, where all the 2× 2
Jordan blocks have the same eigenvalue. Without loss of generality, we assume
the non-singularity of matrix A for simplicity of the analysis.

Definition 1 A single element a, a 2× 1 matrix

(
0
a

)

, a 1× 2 matrix (0, a)

or a 2× 2 matrix

(
0 a
a b

)

is called a lower striped matrix, where a, b ∈ ℜ.

Definition 2 Let J(λ, n1), J(λ, n2), . . . , J(λ, nl) denote all the Jordan blocks
associated with the same eigenvalue λ of a real matrix A. Then C(λ) =
diag(J(λ, n1), . . . , J(λ, nl)), where dimJi ≥ dimJi+1 for i = 1, . . . l − 1, is
called the full chain of Jordan blocks or full Jordan chain of length l associated
with λ.

We present the following two algorithms to calculate the canonical form.
Algorithm 1 is the main algorithm to compute the canonical form. Algorithm
2 is a subroutine to calculate the canonical form for the full Jordan chain
associated with λ.

Let us look into Algorithm 1 first. Line 2 is to find the Jordan normal
form of A−1D, i.e., J = V −1A−1DV , where V is some invertible matrix.
Lines 3–5 are just to avoid some unbounded cases of problem (P). Line 6
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updates A and D: A = V TAV = diag(A1, A2, · · · , Am) and D = V TDV =
diag(D1, D2, · · · , Dm). According to the proof of Theorem 1 in [15], A and D
are now both block diagonal matrices and the blocks Ai and Di have the same
dimension with C(λi), (in fact A−1

i Di = C(λi)), where C(λi) is the full Jordan
chain associated with λi, and has the form C(λi) = diag(J1(λi), J2(λi), · · · , Jli(λi)),
where

J1(λi) = . . . = Jk(λi) =

(
λi 1
0 λi

)

and Jk+1(λi) = . . . = Jli(λi) = λi.

Note that from the assumption there is at most one Jordan chain that has 2×2
Jordan blocks and we further assume that this Jordan chain is associated with
the eigenvalue λi. According to the Lemma 2 in [15], Ai is a block matrix in
the following form,






Ai
11 · · · Ai

1l
...

...
Ai

l1 · · · Ai
ll




 ,

where Ai
pq is a dim Jp(λi)×dim Jq(λi) lower striped matrix, p, q = 1, . . . , l (we

use l = li here and in the following for simplicity).

Algorithm 1 Calculate the canonical form for two real symmetric matrices

Input: A and D are n× n real symmetric matrices and A is nonsingular
Output: Ǎ and Ď in the canonical form and the congruent matrix U and the final matrices

Ǎ = UTAU and Ď = UTDU

1: function Canonical-transformation(A,D)
2: Calculate the Jordan normal form for A−1D, find a nonsingular matrix V such

that J = V −1A−1DV = diag(C(λ1), . . . , C(λm)), where C(λi) is the full Jordan chain
associated with the eigenvalue λi, denote li the number of blocks on the diagonal of
C(λi) and ki the number of 2× 2 blocks.1

3: if J has complex eigenvalues or Jordan blocks with size greater than 2 or more than
one full Jordan chain has 2× 2 Jordan blocks then

4: return (in this case problem (P) is unbounded from below)
5: end if

6: A = V TAV = diag(A1, A2, · · · , Am) and D = V TDV = diag(D1,D2, · · · ,Dm)
7: for i = 1; i ≤ m; i++ do

8: (Ǎi, Ďi, Ui) =JBF(Ai,Di, C(λi), ki, li)
9: end for

10: Ǎ = diag(Ǎ1, . . . , Ǎm), Ď = diag(Ď1, . . . , Ďm), U = diag(U1, . . . , Um)
11: end function

On Lines 7–10 of Algorithm 1, we switch to Algorithm 2 for the Jordan
chain C(λi) and then on Line 10 we use diagonal matrix U = diag(U1, . . . , Um)
as a congruent matrix to compute the canonical form of A and B.

Next we describe Lines 2–12 in Algorithm 2. Assuming the first k Jordan
blocks in C(λi) are of size 2 × 2 (we use k = ki here and in the following for
simplicity), we next make a transformation to make Ai

11 nonsingular if Ai
11 is



29

Algorithm 2 Calculate the canonical form for a Jordan chain

Input: A and D are l × l real symmetric matrices and A is nonsingular, J is the Jordan
matrix of A−1D and has only 1 × 1 and 2 × 2 Jordan blocks with a real eigenvalue,
where the first k blocks are 2× 2 blocks (k could be equal to 0) and the last l− k blocks
are 1× 1 blocks

Output: Ǎ and Ď in the canonical form and the congruent matrix U such that Ǎ = UTAU

and Ď = UTDU

1: function (Ǎ, Ď, U)= JBF(A,D, J, k, l)
2: U = Il+k

3: for j = 1; j ≤ k; j ++ do

4: Xj = Il+k

5: if the (j, j)th block of A, Ajj is singular then

6: Xj = (17)
7: else

8: Xj = (18)
9: end if

10: Yj = (19), U = UXjYj

11: end for

12: Ā = UTAU

13: Find the associated congruent matrix Q of the spectral decomposition of lower right
(l − k)× (l − k) submatrix Ā(k+1):l,(k+1):l

14: Q̄ = diag(I2k , Q), Ã = Q̄T ĀQ̄

15: for j = 1; j ≤ k; j ++ do

16: Pj =





1√
|aj1|

− aj2

2aj1

√
|aj1|

0 1√
|aj1|



 (Note the jth block of Ã is

(

0 aj1
aj1 aj2

)

)

17: end for

18: Pk+1 = diag( 1√
|ak+1|

, · · · , 1√
|al|

) (where ai is the (2k+ i)th element in the diagonal

of Ã)
19: P = diag(P1, . . . , Pk, Pk+1), Ǎ = PT ÃP, Ď = ǍJ, U = UQ̄P

20: end function

singular. If Ai
11 is singular, we show that after a suitable permutation to Ai,

the new Ai
11 will be nonsingular. If there exists some s, 2 ≤ s ≤ k such that

Ai
ss is nonsingular, let

X1
i = diag(










0 0 · · · 0 I2
0 I2
...

. . .

0 I2
I2 0










2s×2s

, I2, . . . , I2, Il−k)

then (X1
i )

TAiX
1
i has a nonsingular (1, 1) block. Otherwise all Ai

ss are singular,
s = 1, . . . , k. Since Ai is nonsingular and Ai

11, A
i
12, . . . , A

i
1l are low striped

matrices, there must be at least one nonsingular matrix among Ai
12, . . . , A

i
1k

(otherwise the first row of Ai is 0, which contradicts the nonsingularity of Ai).

1 In the algorithm, we arrange all the 2× 2 blocks to the upper left part of C(λi) and all
1× 1 blocks to the lower right part when calculating the Jordan normal form.
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Suppose that Ai
1s is nonsingular for 2 ≤ s ≤ k and let

X1
i = Il+k +








02×2 02×(2s−2) −I2 02×(l+k−2s)

0(2s−2)×2

. . . 0(2s−2)×2

I2 02×(2s−2) 02×2

0(l+k−2s)×2








.

Then

(X1
i )

TAiX
1
i =

(
Ai

11 +Ai
1s + (Ai

1s)
T +Ai

ss ∗
∗ ∗

)

with nonsingular (1, 1) block. Now, as Ai = (X1
i )

TAiX
1
i has nonsingular (1, 1)

block, we can transform Ai next to a simpler matrix with only 0 blocks in
(1, t) and (t, 1) positions via congruence, for all t = 2, . . . , l. Let

Y 1
i = Il+k +








0 −(Ai
11)

−1Ai
12 · · · −(Ai

11)
−1Ai

1l

0 0 · · · 0
...

...
...

0 0 · · · 0








.

Then we get

A1
i = (Y 1

i )
TAiY

1
i =








Ai,1
11 0 · · · 0

0 Ai,1
22 · · · Ai,1

2l

0
...

...

0 Ai,1
l2 · · · Ai,1

ll








.

Next, we conduct similar operations to the sub-matrix,






Ai,1
22 · · · Ai,1

2l
...

...

Ai,1
l2 · · · Ai,1

ll






and then conduct similar operations again iteratively for k− 2 times with the
associated congruent matrices in the jth iteration. Let us be more specific using
similar notations as in the first iteration. If some (sj , sj) block is nonsingular,
j + 1 ≤ sj ≤ k, we introduce

Xj
i = diag(I2, . . . , I2

︸ ︷︷ ︸

j−1

,K, I2, . . . , I2, Il−k), (17)

where

K =










0 0 · · · 0 I2
0 I2
...

. . .

0 I2
I2 0










2sj×2sj

.
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Otherwise, we denote

Xj
i = Il+k +










0(2j−2)×(2j−2) 0 0 0 0
0 02×2 02×(2sj−2) −I2 02×m

0 0(2sj−2)×2

. . . 0(2sj−2)×2 0
0 I2 02×(2sj−2) 02×2 0
0 0m×2 0 0 0










,(18)

where m = l + k − 2sj − 2j, and

Y j
i = Il+k +










0(2j−2)×(2j−2)

02×2 −(Ai
22)

−1Ai
23 · · · −(Ai

22)
−1Ai

2l

0 0 · · · 0
...

...
...

0 0 . . . 0










. (19)

Then we getĀi = Ak
i = (X1

i Y
1
i . . .Xk

i Y
k
i )

TAi(X
1
i Y

1
i . . . Xk

i Y
k
i ) =














Ai,k
11

. . .

Ai,k
kk

Ai,k
k+1,k+1 . . . Ai,k

k+1,l
...

...

Ai,k
l,k+1 . . . Ai,k

l,l














,

where Ai,k
jj is a 2 × 2 low striped matrix for j = 1, . . . , k, and Ai,k

pq is a single

number for p, q > k+1. (We rewrite in the following Ak
jj = Ai,k

jj for simplicity.)

Lines 13 − 14 of Algorithm 2 state that: using spectral decomposition to
the following submatrix,

Ā(k+1):l,(k+1):l =






Ak
k+1,k+1 . . . Ak

k+1,l
...

...
Ak

l,k+1 . . . Ak
l,l




 ,

we finally get QT
i Ā(k+1):l,(k+1):lQi=diag(ak+1, . . . , al). Denote

Wi = X1
i Y

1
i . . . Xk

i Y
k
i and Q̄i = diag(I2k, Qi),

and we get

Ãi = Q̄T
i ĀiQ̄i = diag(Ak

11, . . . , A
k
kk, ak+1, . . . , al).
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Since both Wi and Q̄i commute with C(λi) according to [15],

D̃i = (WiQ̄i)
TDiWiQ̄i

= (WiQ̄i)
TAiC(λi)WiQ̄i

= (WiQ̄i)
TAiWiQ̄iC(λi)

= ÃiC(λi)

= diag(Dk
11, . . . , D

k
kk, dk+1, . . . , dl)

has the same block diagonal form with Ã.
The remaining of Algorithm 2 considers the transformation of the following

block to the canonical form,

Ak
jj =

(
0 aj1
aj1 aj2

)

.

Introducing the following congruent matrix

P j
i =





1√
|aj1|

− aj2

2aj1

√
|aj1|

0 1√
|aj1|



 ,

we get

(P j
i )

TAk
jjP

j
i = ǫjiE

j
i ,

where Ej
i =

(
0 1
1 0

)

, ǫji = 1 if aj1 > 0 or otherwise ǫji = −1. Then from

(P j
i )

TAk
jjP

j
i = ǫjiE

j
i , we know

(P j
i )

TDk
jjP

j
i = (P j

i )
TAk

jjP
j
i (P

j
i )

−1Jj(λi)P
j
i

= (P j
i )

TAk
jjP

j
i Jj(λi)(P

j
i )

−1P j
i

= ǫjiE
j
i Jj(λi),

where the second last equality is due to that P j
i commutes with Jj(λi), see

Lemma 2 in [15]. Thus the jth block of (Ai, Di) is in the canonical form. For
the last l − k elements in D̃i, we have

Ã(k+1):l,(k+1):l = diag(ak+1, . . . , al).

Let

P k+1
i = diag(

1
√

|ak+1|
, . . . ,

1
√

|al|
),

then

(P k+1
i )T Ã(k+1):l,(k+1):lP

k+1
i = diag(ǫk+1

i , . . . , ǫli).

Denote Pi = diag(P 1
i , . . . , P

k
i , P

k+1
i ), then

Ǎi = PT
i ÃiPi = diag(ǫ1iE

1
i , . . . , ǫ

k
iE

k
i , ǫ

k+1
i , . . . , ǫli)
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is already in the canonical form (5). Besides,

Ďi = PT
i D̃iPi = PT

i ÃiC(λi)Pi = PT
i ÃiPiC(λi) = ǍiC(λi)

satisfies (6) (the second last equality is due to that the two block diagonal
matrices C(λi) and Pi commute).

Note in the above procedure, if there are too many 2×2 blocks in the same
Jordan chain, the time cost is very large. But this is really rare in practice since
it is actually rare that any two eigenvalues of A−1D are the same and much
rarer if two 2 × 2 blocks have the same eigenvalue, in which case at least 4
eigenvalues are the same.

For other Jordan chains, we only have 1× 1 Jordan blocks and thus it can
be easily transformed to the canonical form by Algorithm 2 on Lines 13–14
and 18–19 and the time required is very little when compared with the Jordan
chains that has 2× 2 blocks.
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